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Abstract

We live in a data-driven era, large amounts of data are generated and collected every day.

Storage systems are the backbone of this era, as they store and retrieve data. To cope

with increasing data demands (e.g., diversity, scalability), storage systems are experiencing

changes across the stack. As other computer systems, storage systems rely on layering

and modularity, to allow rapid development. Unfortunately, this can hinder performance

clarity and introduce degradations (e.g., tail latency), due to unexpected interactions between

components of the stack.

In this thesis, we first perform a study to understand the behavior across different layers of the

storage stack. We focus on sequential read workloads, a common I/O pattern in distributed

file systems (e.g., HDFS, GFS). We analyze the interaction between read workloads, local

file systems (i.e., ext4), and storage media (i.e., SSDs). We perform the same experiment

over different periods of time (e.g., file lifetime). We uncover 3 slowdowns, all of which

occur in the lower layers. When combined, these slowdowns can degrade throughput by

30%. We find that increased parallelism on the local file system mitigates these slowdowns,

showing the need for adaptability in storage stacks.

Given the fact that performance instabilities can occur at any layer of the stack, it is important

that upper-layer systems are able to react. We propose smart hedging, a novel technique to

manage high-percentile (tail) latency variations in read operations. Smart hedging considers

production challenges, such as massive scalability, heterogeneity, and ease of deployment

and maintainability. Our technique establishes a dynamic threshold by tracking latencies on

the client-side. If a read operation exceeds the threshold, a new hedged request is issued, in

an exponential back-off manner. We implement our technique in HDFS and evaluate it on



70k servers in 3 datacenters. Our technique reduces average tail latency, without generating

excessive system load.
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Chapter 1

Introduction

We are experiencing a massive data growth. In 2017, IBM revealed that 90% of the world’s

data had been created in 2015 and 2016 alone [56]. Seagate projects that the global data

size will reach 175 Zettabytes by 2025, 10 times more than in 2016 [85, 86]. Data powers

different services that enhance our every day life. Ride-sharing services and autonomous

cars rely on data for cost-efficient route planning. Robots that assist the elderly and aid in

education. Smart home devices (e.g., smart locks, smart plugs, virtual assistants) are present

in many homes. These data intensive services, among many others, do not only analyze

existing data, but are constantly generating it.

In an environment of endless data collection and analysis, storage is a critical piece of

infrastructure. The increase in demand, both in volume and types of data, has unleashed

a complete revolution of the storage stack [20]. At the bottom of the stack, new storage

media are introduced (e.g., PCIe SSDs, shingled-mangetic recording (SMR) disks). New

local file systems are designed to better manage new storage technologies [64, 59, 66], while

existing ones evolve and adapt [19, 74]. On the higher levels of the stack, new data service

platforms, ranging from key-value stores (e.g., RocksDB [46], HBase [26], Cassandra [65])

to distributed file systems (e.g., GFS [47], HDFS [89], Cosmos [38]) have been developed to

manage different types of data.
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Most of these storage systems run on cloud platforms [86] (e.g., AWS [2], GCP [6], Azure [8],

Nutanix [9]) and are hosted in datacenters [4] with thousands of servers [21, 35, 76, 77, 82,

115]. The rapid data explosion and large scale have impacted the design of current and next

generation storage systems.

As a result, large body of storage systems platforms rely on layered architectures, rather than

on building end-to-end platforms from the ground up. Layering relieves system engineers

from the complex tasks of designing and deploying large-scale systems from the ground up.

For instance, HBase [26], a distributed key-value store, relies on the Hadoop Distributed

File System (HDFS) [89], a user-space distributed file system, to provide fault-tolerance

mechanisms. In turn, HDFS leverages local file system’s interfaces to simplify the interaction

with underlaying block devices and provide portability. However, layering can hinder

performance understanding and efficiency [53, 87, 99].

Furthermore, in large-scale environments (e.g., large datacenters), even carefully designed

and tested systems can suffer unexpected performance degradations [52, 84]. In today’s data

intensive era, users and applications demand low response times. Consequently, unpredictable

high-percentile (tail) performance variations are costly and become intolerable. Several

studies show that high response times can drive users away and decrease revenues [30, 91].

However, identifying the sources of these performance variations is not trivial, since they

can have different root causes, such as component failures, replication overhead, resource

contention, software bugs, among many others.

Additionally, these variations can simultaneously occur at any layer of the stack [53, 67, 87].

The problem becomes more challenging when systems run on harvested resources [76, 112,

115]. Resource-harvesting datacenters improve resource utilization via the co-location of

batch jobs (e.g., data analytics, machine learning) and latency-sensitive services (e.g., search

engines). In these settings, performance isolation mechanisms [43, 48, 57, 70, 73, 101, 109,

111, 112, 115] manage (i.e., throttle or deny) the resources of batch jobs according to the

needs of latency-sensitive services.
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1.1 Contributions

Consequently, as the storage stack evolves, both in terms of software and hardware, un-

derstanding the interaction between different components becomes indispensable to reduce

performance variations. Moreover, as performance instabilities vary depending on different

system characteristics, such as scale, it becomes relevant to study widely used workloads and

behaviors across different scenarios.

1.1 Contributions

In this thesis, we focus on understanding and improving the performance of read workloads

in storage systems. More specifically, we target large read operations (> 1MB), a common

workload in distributed file system [38, 47, 89]. The complexity of systems, in both design

(layering) and scale, can obscure performance understanding and introduce unexpected

performance variations. The goal of this work is to understand and improve performance

in both situations. To this end, we first study the interaction between different components

of the storage stack (e.g., application, local file system, block layer, storage device), as well

as their impact on performance variability. Since performance degradations can occur at

any component of the storage stack, it is important to provide applications with mechanisms

to react. The second part of this thesis studies the performance of high-percentile (tail)

latency, with a focus on the user-space application. In particular, we examine the behavior of

distributed file systems in large-scale (tens of thousands of servers) production settings. We

provide a brief overview of the components of this thesis in the paragraphs below.

1.1.1 Understanding the Performance of Read Operations in SSDs

The first part of this thesis seeks to understand performance instabilities caused by the

interactions between different layers of the storage stack. Our study focuses on large

sequential read operations, a common workload in distributed file systems [38, 47, 89]. We

3



1.1 Contributions

decide to solely investigate read workloads because they involve less complex interactions,

both with software and hardware, than write operations. Additionally, most of the insights

observe in read workloads will typically affect write workloads, paving the way for insights

on write workloads.

In this work, we particularly study the interactions between large sequential read workloads

with ext4 [74] as a local file system, and three SATA SSDs (from different manufacturers)

as the storage media. Our study reveals that the majority of performance degradation come

from components in the lower layers of the storage stack. In particular, they are caused by

the interaction between the local file system and SSDs.

We expose and investigate three slowdowns that negatively impact read throughput in large

sequential read operations. We refer to these slowdowns as intrinsic, temporal, and permanent.

First, the intrinsic slowdown, which reduces read throughput for a (variable) short amount

of time (seconds). The intrinsic slowdown takes place at the start of every new ext4 extent

read only tested on ext4, but our observations might be applicable to other extent based local

file systems. Second, the temporal slowdown, which affects read operations at medium time

scales (minutes to hours). In the temporal slowdown, storage device tail latencies increase

periodically and temporarily, producing throughput degradation. The effect of this slowdown

is very similar to reported effects of write-triggered SSD garbage collection [90, 108].

However, we find that this slowdown occurs on read-only workloads. Finally, the permanent

slowdown, which influences read operations permanently and develops in long time scales

(days to weeks). After a long period of time (of file lifetime), read throughput permanently

decreases and never recovers. It is important to note, that this slowdown affects files

individually, and it is not caused by a single drive-wide malfunction. In comparison to

temporal slowdown, all requests in permanent slowdown show an increase in storage device

latency, not only the tail. Via experimentation, we show that each slowdown can individually

degrade throughput (at least) between 10% to 15%. When all three slowdowns combine, we

observe a throughput loss of up to 30%.
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1.1 Contributions

We find that these slowdowns can be masked via increased parallelism on the lower layers.

However, HDFS, as well as other storage systems, cannot trigger this increased parallelism

by default. Our results point to a need for developing more adaptable storage stacks. We

believe that understanding which interactions cause performance instability, as well as its

temporal characteristics can provide helpful advice towards the future design of different

layers in the storage stack.

1.1.2 Reducing Read Tail Latency in Distributed File Systems

In the second part of this thesis, we focus on reducing tail latency for read operations. Specif-

ically, we focus on large-scale (tens of thousands of servers) distributed file systems with

real production-constraints. Tail latency management in distributed systems has been ad-

dressed by several prior works, from data analytics frameworks [22, 23, 92, 113], distributed

storage systems [68, 93], to systems that enforce service-level objectives for compute or

storage [62, 71, 97, 102, 104, 105, 116]. Unfortunately, these works do not account for

some important constraints that are present in real production systems. These constraints

are exacerbated in resource harvesting datacenters in which batch workloads are co-located

with latency-sensitive services [101, 112, 115]. The development of effective solutions in

this context becomes critical, specially as the majority of the world’s data moves to the the

cloud [4, 86].

Some of the constraints present in production datacenters include: resource-harvesting, static

heterogeneity (i.e., different server hardware), dynamic heterogeneity (i.e., produced by

performance isolation mechanisms), scalability (e.g., centralized components), and maintain-

ability.

In this thesis, we address the challenging scenario where the distributed file system only

stores data for the batch workloads, but the latency-sensitive services have full priority over

5



1.1 Contributions

the shared resources. We propose smart hedging, a production-complaint technique to reduce

read operation tail latency in distributed file systems.

Smart hedging is oblivious to the source of variations, relies on client-side tracking, and ex-

ploits already existing replication and fault-tolerance mechanisms in distributed file systems.

Our technique monitors, in the client, server-side performance reporting on a per-packet

basis. Smart hedging triggers a "hedge" [41] (duplicate) request when performance starts to

degrade. Excessive hedging may cause server overload, to prevent this situation we hedge

adaptively and (exponentially) back-off from a server that does not complete a hedge before

the original request.

We implement smart hedging as part of a client library in HDFS, which we call "Cur-

tailHDFS"1. Our evaluation uses synthetic workloads on 4,000 servers; and production

workloads on 70,000 servers across 3 Microsoft’s datacenters. We reduce the average read

latency by 1.4× compared to state-of-the-practice hedging, without server overloading. This

is a significant improvement, specifically given the limited scope of our changes, which work

on top of existing techniques (e.g., speculative task execution). Even though we evaluate our

techniques on highly heterogeneous resource-harvesting datacenters, we believe that they are

applicable in other contexts as well.

1.1.3 Summary of Contributions

To summarize, this thesis makes the following contributions:

• We identify and analyze the intrinsic slowdown. We show that it affects read operations

at the start of every new ext4 extent, for a variable amount of time.

1CurtailHDFS [77] reduces tail latency operations for both read and write operations. Smart hedging, the
technique to mitigate tail latency in read operations, is the contribution of this thesis. The technique that
CurtailHDFS uses to reduce tail latency in write operations is not a topic of discussion in this thesis.
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1.2 Outline

• We identify and analyze the temporal slowdown. We show how it affects read opera-

tions in a periodic and temporal manner.

• We identify and analyze the permanent slowdown. We show read operations can be

permanently affected on a per file basis, rather than via a full drive failure.

• We characterize the tail latency of batch jobs running on production HDFS in resource-

harvesting datacenters.

• We propose smart hedging, a client-side technique to manage read operation tail latency

in distributed file systems, and implemented it in HDFS.

• We evaluate our technique with both synthetic and real production workloads, and

show that the average tail latency decreases without generating extensive system load.

1.2 Outline

The rest of this thesis is structured as follows. Chapter 2 describes relevant background

on storage systems. Chapter 3 presents an study on the performance of sequential read

operations in SSDs, it presents some temporal performance degradations. Chapter 4 details

the motivation, challenges, design, and evaluation of smart hedging, our technique to mitigate

read tail latencies in distributed file systems. Chapter 5 proposes future research directions.

Finally, chapter 6 concludes.
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Chapter 2

Background

This chapter describes the necessary background, architecture and access pattern, of the

Hadoop Distributed File System (HDFS) related to this thesis.

2.1 Hadoop Distributed File System

2.1.1 Architecture

The Hadoop Distributed File System (HDFS) [12, 89] is a popular open-source system

that has been used by companies like Yahoo [89], Facebook [53], Microsoft [76, 115],

Twitter [7], and Spotify [78]. HDFS is based on the Google File System (GFS) [47]. To

provide portability, HDFS is implemented in Java as a user-space file system. Thus, HDFS

relies on the underlying local file system (e.g., ext4 [74], XFS [94]) as backend storage. An

HDFS file is composed of several blocks, each block is stored as one separate file in the

local file system. Blocks are typically large files, 256MB is a common size in real world

deployments [76, 115].

The HDFS design implements two services, a metadata manager service and a per-server

block storage. The NameNode is the primary metadata manager, it is a centralized component
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Fig. 2.1 Read a block in HDFS.

that operates on a single server. This service manages the namespace and maps HDFS files to

their corresponding blocks. The NameNode does not maintain HDFS data, but rather keeps a

mapping between HDFS file name and a list of DataNode(s) on which the blocks are stored.

HDFS clients contact the NameNode to perform regular file system operations (e.g., open,

close, rename, delete). The DataNode is the per-server block storage, and is implemented

by every other server in the cluster. Each DataNode stores HDFS blocks in the server’s

local file system. The DataNodes create or destroy blocks at the request of the NameNode,

which handle client’s requests. Although the NameNode manages the namespace, clients

communicate directly with DataNodes in order to read or write data at the HDFS block level.

Next, we describe read operations on an HDFS file.

Reads. Figure 2.1 shows the steps in reading a block. First, the client asks the NameNode

for the block’s locations. Then, the NameNode returns a list of DataNodes that store the

block replicas; the list is sorted based on proximity to the client. Next, the client establishes

a connection with the first DataNode on the list and reads one packet (1MB) at a time. In

case of errors (e.g., DataNode failure or data corruption), the client attempts to read the

remaining packets from the next DataNode on the list. HDFS read operations access files
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with a streaming access patterns. Each read operation performs several sequential iterations,

during which it sequentially retrieves large data segments (e.g., hundreds of kBs).

2.1.2 Access Pattern

We now summarize the main characteristics of the HDFS read access pattern since this

pattern is central to our work.

• Single-threaded. One request from a compute task is handled by a single worker

thread in the DataNode.

• Large files. HDFS blocks are large files (e.g., 128MB, 256MB). Each HDFS block is

a separate file in the local file system.

• Sequential access. The HDFS reads access data sequentially for performance reasons.

• Buffered I/O. HDFS uses buffered I/O in the DataNode (via sendfile() or read()

system calls).

10



Chapter 3

Understanding Performance of Read Op-

erations in SSDs

3.1 Motivation and Overview

Layering is a popular approach to build big data processing systems and it is particularly

central to the design of storage stacks for big data systems. Even the simplest designs involve

lots of layers: a data-processing system (e.g., Hadoop [25], Spark [27]) processes data stored

in a distributed file system (e.g., HDFS [12, 89], GFS [47]), which in turn relies on an OS

running a local file system (e.g., ext4 [74]) which, finally, manages data on disks. Oftentimes,

additional layers are used such as big data stores (e.g., BigTable [39], HBase [26]) that

are layered on top of the distributed file systems. Such layered architectures are in part

responsible for the massive success and diversity of data processing systems today because

they encourage rapid development by reusing existing functionality.

Regardless of the specific layers in a storage stack the goal of fully utilizing the capabilities of

the underlying storage remains equally important. Layering makes this goal more challenging

to achieve, because each layer can introduce potential performance bottlenecks as well as

sources of performance variability. Performance bottlenecks in upper layers can mask sub-

optimal performance behavior in lower layers. Moreover, layering significantly complicates
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root-cause analysis of performance problems and this can lead to blame being assigned to

the wrong layer due to lack of information.

In this chapter we perform a deep dive into the performance of a critical layer in today’s big

data storage stacks, namely the Hadoop Distributed File System (HDFS). We particularly

focus on the influence that other layers have on HDFS’ ability to extract the maximum

throughput that the underlying storage is capable of providing. We analyze and discover a

number of software and hardware bottlenecks, some surprising, that prevent HDFS from

reaching maximum performance. We focus on the read path of HDFS, because it can

easily become a performance bottleneck for an application’s input stage due to accessing

comparatively slower storage media. Subsequent stages of an application are typically speed

up using in-memory storage techniques and are oftentimes fast because they process less

data than the input stage.

Central to our exploration is the storage access pattern of a single HDFS read request: single

threaded, sequential access to large files (hundreds of megabytes) using buffered I/O. This

access pattern is simple but tried and tested and has remained unchanged since the beginnings

of HDFS. It is increasingly important to understand whether even a single HDFS read request

using this access pattern can extract by itself the maximum throughput that the underlying

storage can provide. As many big data processing systems are heavily I/O provisioned and the

ratio of cores to disks reaches 1, relying on task-level parallelism to generate enough parallel

requests to saturate storage is no longer sufficient. Moreover, relying on such parallelism is

detrimental to application performance since each of the concurrent read requests is served

slower than it would be in isolation.

We start our analysis by identifying and removing software bottlenecks present in other

layers and that limit HDFS. These are compute bottlenecks introduced by the processing

frameworks, network bottlenecks introduced by the OS configuration as well as performance

interference caused by the local file system. We show that with simple changes HDFS reads

can fully utilize the underlying storage.
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Having decoupled HDFS performance from software bottlenecks we are now able to clearly

identify and analyze several surprising hardware performance bottlenecks and performance

variability sources induced by device internals. We focus on SSDs in this work. First, we

find that the read throughput obtained from reading the same file over time can significantly

and irreversibly decrease due to an increase in the per-request latency inside some SSDs.

Importantly this occurs on a file-level and not for an entire device. We call this permanent

slowdown. Second, we find temporary and periodic read throughput slowdown. While this

temporary slowdown bears the hallmarks of SSD garbage collection we find, surprisingly,

that it can occur even in the complete absence of writes. This temporary slowdown is also

caused by an increase in the per-request latency inside the drive. Third, we find that file

fragmentation at the file system level (ext4) introduces performance variability and slowdown

during reading from every different file system extent.

All of the above findings show that the HDFS read access pattern, while generally sufficient

to maximize SSD performance, can fail to do so in certain cases. Normally, HDFS maximizes

SSD performance during reads because its access pattern provides enough opportunity to

leverage the internal SSD parallelism. When, as discussed above, latencies inside the drive

increase, the same HDFS read access pattern does not adapt by increasing the I/O request-

level parallelism and this results in a throughput loss. With the help of the Flexible I/O Tester

(FIO) [5] synthetic benchmark, we further analyze several OS-based approach to compensate

for the throughput loss.

With experiments on 3 SSD based systems, we show that each of the slowdown we identified

can individually introduce at least 10% read throughput degradation. The effect is cumulative.

In the worst case, all slowdowns can overlap leading to a 30% throughput loss.

Our primary contributions are:

• We decouple HDFS read performance from several compute and configuration bottle-

necks and show that it can maximize SSD read throughput.
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• We identify and analyze the permanent slowdown affecting reads from the same file

over time.

• We identify and analyze temporary slowdowns that affect reads even in the absence of

writes.

• We identify and analyze the fragmentation slowdown affecting reads crossing to every

new file system extent.

3.2 Methodology

In this section, we describe the hardware and software settings, tools, workloads, and metrics

used in our analysis.

3.2.1 Removal Software Bottlenecks

We now detail the configuration changes we made to alleviate network and compute bottle-

necks affecting HDFS and to eliminate sources of interference. As a result, we observed that

HDFS can extract the maximum performance that our SSDs can generate.

File system configuration. We disabled access time update, directory access time update,

and data-ordered journaling (we use write-back journaling) in ext4. This removes sources of

interference so that we can profile HDFS in isolation.

OS configuration. Small socket buffer sizes limit the number of packets that the DataNode

can send to a task and thus reduce performance by interrupting disk reads and inducing disk

idleness. We increase the socket buffer size for both reads and write to match the size of the

HDFS blocks.
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HDFS configuration. We configured io.file.buffer.size to be equal to the HDFS

block size. The default value of this parameter (64KB) results in too many sendFile system

call, which in turn create a lot of context-switching between user and kernel space, which

results in idleness for the IO device. We modified the HDFS code to allow the parameter to

be set to 256MB as by default the maximum size is 32MB.

3.2.2 Experimental Setup

Hardware. We use three types of machines: Machine A has 2 Intel Xeon 2.4GHz E5-2630v3

processors, with 32 cores in total, 128GB of RAM, and a 450GB Intel DC S3500 Series

(MLC) SATA 3.0 SSD. Machine B has 4 Intel Xeon 2.7GHz E5-4650 processors, with 32

cores in total, 1.5TB of RAM, and a 800GB HP 6G Enterprise SATA 3.0 SSD. Machine C

has 2 Intel Xeon 2.4GHz E5-2630v3 processors, with 32 cores in total, 128GB of RAM, and

a 512GB Samsung 860 Pro (V-NAND) SATA 3.0 SSD.

Our SSDs have been very lightly used throughout their lifetimes. After concluding our

analysis we computed the total lifetime reads and writes performed on the drives using the

"sectors read" and "sectors written" fields in /proc/diskstats in Linux. The value was less

than 1TB for both reads and writes for each drive. This is orders of magnitude less than the

manufacturer provided guarantees for SSDs. Thus, past heavy use of the drives is not a factor

in our findings. Moreover, the disk utilization of our SSDs in the experiments is very low,

under 20%.

Software. We use Ubuntu 16.04 with Linux kernel version 4.4.0. As a local file system we

use ext4, one the most popular Linux file systems. We use HDFS version 2.7.1.

Monitoring Tools. To monitor I/O at the storage device, we rely on block layer measure-

ments using blktrace and blkparse [3]. Blktrace collects I/O information at the block

layer, while blkparse makes the traces human readable. Where necessary we use perf [10]

and strace [11] to analyze program behavior.
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Workloads. We use HDFS via Hadoop where we run a simple WordCount job. The exact

type of Hadoop job is inconsequential for our findings because we have already decoupled

HDFS performance from software bottlenecks in Section 3.2.1. We modified the Hadoop

WordCount job to not write any output so that we can reliably measure read performance.

We use the FIO [5] tool for analysis beyond HDFS. The data read by HDFS (or FIO) is

composed of randomly generated strings and is divided in 8 ext4 files of 256MB each.

Presenting slowdowns. For every slowdown we are able to separate its effect and present

results for periods with and without that slowdown. The results without a slowdown include

the effects of all other slowdowns that occur at shorter timescales. For example, when

comparing results with or without temporal slowdown, the results include the effect of

intrinsic slowdown but not that of permanent slowdown. This is acceptable because the effect

of a slowdown is roughly constant over longer periods of time.

What we measure. We evaluate performance at the HDFS DataNode level. We measure the

throughput of HDFS reads and the latency of individual block layer I/O requests. As our focus

is on understanding storage I/O in HDFS, we do not measure end-to-end performance related

to compute frameworks’ (e.g., Hadoop, Spark) tasks. This allows us to avoid overheads (e.g.,

compute, network) that compute frameworks can introduce on top of HDFS. Nonetheless,

we believe that the I/O effects observed on HDFS will have an impact on I/O intensive jobs

on different frameworks, no matter other overheads introduced by other resources. Before

every experiment we drop all caches to ensure reads actually come from the drive.

The Hadoop tasks are collocated with the HDFS DataNodes on the same machines. The

DataNodes send data to the tasks via the loopback interface using the sendfile system call.

We also analyzed short-circuit reads which enable Hadoop tasks to read local input directly

(using standard read calls) by completely bypassing HDFS but the findings remained the

same.
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Generating single requests. In our experiments using buffered I/O, two requests overlap

in the device driver. In such a case, increases in request latency could be caused either

by drive internals or by a sub-optimal request overlap. To distinguish such cases we per-

formed experiments in which we tweak buffered I/O to send one request at a time. To

send a single request of size X we first set the Linux read ahead size to X KB by tuning

/sys/block/<device>/queue/read_ahead_kb. We then use the dd command to read

one chunk of size X (dd bs=X count=1). The influence of read ahead size on block layer size

is known and discussed in related work [54].

3.2.3 Metrics

For the rest of this section, the word "file" refers to one 256MB ext4 file. In HDFS parlance

this represents one HDFS block.

File throughput. The number of bytes, read from the target file, divided by the period of

time. The period starts with the submission of the first block layer I/O request in the file (as

timestamped by blktrace) and finishes with the completion of the last block layer I/O request

in the file (as timestamped by blktrace). During this period we only count time when the disk

is active, i.e. there is at least one I/O request being serviced by or queued for the drive. This

metric removes the impact of disk idle time caused by context-switches between user and

kernel space in the application. Our HDFS results show no disk idle time after applying the

changes in Section 3.2.1 Nevertheless, disk idle time appears in FIO and we chose to discard

it for a fair comparison to HDFS. Overall, the disk idle time does not influence our main

findings.

Request Latency. The time between the timestamp when a block layer request is sent to the

drive (D symbol in blktrace) and the timestamp of its completion (C symbol in blktrace).

Both timestamps are taken from blktrace.
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Fragmentation. The number of extents an ext4 file has. Note that all of our files are 256MB

(frequently used by industrial workloads [76, 77, 115]). The maximum extent size in ext4

is 128MB. Thus, the minimum possible number of extents in a file is 2. This file size, in

conjunction with ext4 extent size, allows us to observe the behavior of smaller files sizes (i.e.,

each extent of 128MB). Note that we do not study smaller files sizes (e.g., <1MB) as HDFS

was not designed for these workloads.

Recovery Time. The period of time during which I/O requests have higher than usual latency

due to intrinsic slowdown. This is measured starting from the first I/O read request of an ext4

extent until either the latency of the requests decreases to normal or the extent is fully read,

whichever comes first.

3.2.4 Maximizing Device Throughput

An important goal for HDFS is to maximize the throughput obtained from the storage devices.

One way to achieve this is via multi-threading in the DataNode. This is already part of the

design as different DataNode threads can serve different task requests concurrently. While

this can maximize device throughput it does so at the expense of single-thread performance

which reduces task performance.

State-of-the-art data processing systems are heavily I/O provisioned, with a ratio of CPU

to disk close 1 [9]. In this context, relying on parallelism to make the most of the storage

is unlikely to help because the number of tasks is roughly the same as the number of disks

(tasks are usually scheduled on a separate core). As a result, it is important to understand and

ensure that the HDFS access pattern (single-thread, large files, sequential access, buffered

I/O) can by itself extract maximum performance from SSDs.
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3.3 Intrinsic Slowdown

In this section, we introduce the intrinsic slowdown, a performance degradation that pre-

dictably affects files at short time scales (seconds to minutes). This slowdown is related to

the logical file fragmentation. Every time a new file system extent is read, a number of I/O

requests from the start of the extent are served with increased latency and that is correlated

with throughput drops. Interestingly, even non-fragmented files are affected since a file has to

have at least one extent and every extent is affected by the slowdown. The more fragmented

a file is, the more extents it has, and the bigger is the impact of the slowdown.

Intrinsic slowdown appears on all the machines we tested and causes a drop in throughput of

10-15% depending on the machine. The slowdown lasts a variable amount of time but there

is no correlation with extent size. This slowdown affects not only HDFS but all applications

using buffered I/O.

The remainder of this section presents an overview of the throughput loss, an analysis of the

results, a discussion on the causes, and an analysis of the mitigation strategies.

3.3.1 Performance Degradation at Glance

Figure 3.1 illustrates the influence that an increased number of extents has on throughput

for each of the 3 machines. In this figure, each point represents the average file throughput

of a set of files with the same number of extents in one machine. Files were created using

ext4’s default file allocation policies so we had no control over the number of extent each

file was allocated. We observed that ext4 allocations result in highly variable fragmentation

levels even on our drives which were less then 20% full. We often saw cases where one file

was allocated 30 extents and a file created seconds after was allocated 2 extents. A thorough

analysis of ext4 allocation patterns is, however, beyond the scope of this work.
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Fig. 3.1 HDFS read. Average file throughput vs number of extents.

The figure shows that an increase in fragmentation is correlated with a loss in throughput.

This finding holds on all 3 machines but the magnitude of the throughput loss is different

because the SSDs are different. With 29 extents, throughput drops by roughly 13% for

machines A and B, but by less than 5% for machine C. There is a limit to the throughput loss

and that is best exemplified by the fact that throughput drops very slowly for machines A and

B after 20 extents. The reason is that the extents are smaller but the recovery period is not

correlated with the extent size so a very large percentage of the I/O requests is affected by

the slowdown.

Correlations. We next analyze I/O request latency. Figure 3.2 presents the request latencies

on machines A, B and C, during an HDFS read. The dashed lines correspond to request

latencies after the intrinsic slowdown disappeared while the continuous one show latencies

during the slowdown. Latencies increase during slowdown both at the median but especially

in the tail. Machine C shows both the smallest latencies and the smallest degradation and

this is due to the fact that its SSD is based on a different technology (V-NAND).

The above latencies correspond to the standard buffered I/O configuration in which 2 requests

overlap in the device driver. We also measured (not illustrated) the request latency when
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Fig. 3.2 HDFS read. Request Latency CDFs during and after intrinsic slowdown.

sending one single request a time. We find that latency remains unaffected even during the

parts of the extent that are normally affected by intrinsic slowdown. This suggests that the

latency increase and throughput loss are not solely due to drive internals. This is expected as

the SSD FTL has no notion of extents which are a file system construct.

We find that the inherent slowdown is correlated with a sub-optimal request overlap in the

device. Consider a request R2 and let S2 and E2 be its en-queueing and completion time.

With buffered I/O, the execution of R2 overlaps with the final part of R1 and the first part

of R3, R1 being the previous request and R3 the next. We have that S2 < E1 < S3 < E2. We

find that periods of intrinsic slowdown are correlated with an imbalanced overlap, that is

R2 overlaps much more with either R1 or R3. In other words, imbalance overlap occurs

when T >> 0 where T = abs((E2 −S3)− (E1 −S2)). To exemplify, Figure 3.3 shows the

correlation between T and request latency for a sample extent. For the first 20 requests, the

overlap is sub-optimal and latency suffers. The overlap imbalance is corrected around request

22 and soon after latency drops under 1ms which is the latency we normally see outside

of intrinsic slowdown. The following paragraphs describe the intuitions behind the overlap

imbalance.

21



3.3 Intrinsic Slowdown

 0

 0.25

 0.5

 0.75

 1

 1.25

 1.5

 0  5  10  15  20  25  30  35

D
u
ra
tio
n

 
(m
s
)

Request ID in extent

Latency of request
Imbalance of request overlap

Fig. 3.3 Correlation between increased latency and request overlap imbalance.

Characterization of recovery periods. We next analyze the duration and variability of the

recovery periods. There are two main insights. First, even for a single extent size and one

machine, there can be significant variation in the duration of the recovery period. Second,

the duration of the recovery period is not correlated to the extent size.

Figure 3.4 shows CDFs of the duration of the recovery period on the 3 machines. For

each machine we show large extents (128MB) with continuous lines and smaller extents

(32-40MB) with dashed lines. We aggregated results from extents from multiple files if they

have the target size and reside on the same machine. We measure the recovery duration in

number of requests. The request size is 256 KB.

The CDFs for any one of the machines show a similar pattern in the recovery period despite

the different extent size. Therefore, extent size is not a factor with respect to the duration of

the recovery period.

There is significant variability in the recovery period for every extent size on machines A

and B. The worst case recovery duration is more than 5× that of the best case. In contrast,

machine C shows much less variability.
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Fig. 3.4 HDFS read. CDFs of number of requests executed in the recovery period for large
and small extents.

If we compute the recovery period relative to extent size (not illustrated) we find that for the

smallest extents (e.g., 8MB) it is common for at least 50% of the requests in the extent to

be affected by intrinsic slowdown. In the worst case, we have seen 90% of an extent being

affected.

Discussion on internal SSD root cause. Since we do not have access to the proprietary

SSD FTL design we cannot directly search for the root cause internal to the drive. We

believe that sub-optimal request overlap leads to throughput loss because it forces the drive

to be inefficient by serving both overlapping requests in parallel when the most efficient

strategy would sometimes be to focus on the oldest one first. The request stream enters

in this state due to the initial requests at the start of the extent. The stream self-corrects

by eventually reaching the optimal (balanced) request overlap and remaining there, in our

setting, an optimal I/O request latency corresponds to < 1ms. The software does not help

in the correction as it functions in a reactive manner. It sends a new request as soon as one

completes. The self-correction happens solely due to timing, based on the request latencies.

This also explain the variability in the recovery periods.
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Discussion on OS root cause. Operating systems provide abstractions (e.g., system calls)

to improve the performance and efficiency of resources under particular workloads. In

particular, the Linux kernel attempts to improve the I/O performance of sequential workloads

via the readahead functionality [103]. In Linux, the readahead size is adaptive [1], thus the

requests generated by this technique can vary in size and behavior, depending on the system

state (e.g., memory). In further paragraphs, we show that configuration parameters related to

readahead (i.e., request size) can mask the intrinsic slowdown, mainly by increasing request

parallelism. Analyzing behavior of the readahead implementations is out of the scope of this

thesis, and it is left for future work.

3.3.2 Mitigation Strategies

We consider mitigation strategies that are more aggressive in generating request level paral-

lelism in the hope that they could compensate for the loss in throughput due to the slowdown.

We find that both direct I/O as well as increasing the number of requests sent in parallel

with buffered I/O can mask intrinsic slowdown. Our evaluation indicates that an increase

in request parallelism can amortize the request processing latency delay. Hence, the root

cause of the initial tail latency seems to be due to the relationship between OS behavior (i.e.,

buffered I/O) and drive behavior (i.e., error correction and request processing).

Figure 3.5 compares average file throughput vs number of extents, when using direct I/O

across different machines. The files are the same as in Figure 3.1. The figure shows that

average throughput is maintained across different numbers of extents with direct I/O. The

tendency holds across all machines tested. In other words, direct I/O can mask intrinsic

slowdown. The reason is that by sending more and larger requests, direct I/O better leverages

the device parallelism. We observe the same effect when increasing parallelism in buffered

I/O, by increasing the read ahead size. This setting results in both larger requests as well as

more requests being sent in parallel to the drive.
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Fig. 3.5 FIO Direct I/O read. Average file throughput vs number of extents.

3.4 Temporal Slowdown

In this section, we introduce the temporal slowdown, a periodic and temporary performance

degradation that affects files at medium timescales (minutes to hours). At the high level, the

pattern in which temporal slowdown manifests might we confused with write-induced SSD

garbage collection (GC). However, temporal slowdown is not always GC. Surprisingly, on

machine A, it always manifests even in read-only workloads. On machine B, it is indeed

triggered by writes but interestingly it takes a very small amount of writes relative to the

drive capacity to trigger temporal slowdown. Moreover, our SSDs have a very low utilization

(under 20%). We link the slowdown to tail latency increases inside the drive. Temporal

slowdown causes a throughput drop of up to 14%. Temporal slowdown affects not only

HDFS, but all applications using either direct or buffered I/O.

The remainder of this section presents an overview of a throughput loss, an analysis of the

results, a discussion on causes, and an analysis of mitigation strategies.
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Fig. 3.6 HDFS read. File throughput timeline on Machine A.

3.4.1 Performance Degradation at a Glance

Figure 3.6 presents the throughput timeline of a file affected by temporal slowdown on

machine A. It shows three instances of the slowdown around the 1:00, 3:30 and 5:40 marks.

The rest of the throughput variation is caused by inherent slowdown. The average throughput

of the periods not affected by the slowdown is 430MB/s. The first instance of slowdown

causes a drop in throughput to 370MB/s, a 14% drop from the 430 MB/s average. On

machine A, temporal slowdown appears on average every 130 min and last on average 5 min.

Figure 3.7 shows the same experiment on machine B. There are 5 instances of temporal

slowdown clearly visible due to the pronounced drops in throughput. The average throughput

of the periods not affected by the slowdown is 455MB/s. The biggest impact is caused by

the third slowdown instance which causes a drop to 390MB/s, almost 15% down from the

average. On machine B, temporal slowdown appears on average every 18 minutes and last

for 1.5 minutes.
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Fig. 3.7 HDFS read. File throughput timeline on Machine B.

3.4.2 Analysis

Correlations. We next analyze I/O request latency. Figure 3.8 shows a CDF of the request

latencies for one file. One line shows latencies during temporal slowdown while another

shows latencies during periods not affected by the slowdown. The difference lies in the tail

behavior. During temporal slowdown a small percentage of the requests show much larger

latency. This is consistent with the impact of background activities internal to the drive.

The experiments in Figures 3.6 and 3.7 introduce writes and they responsibility on triggering

temporal slowdown on machine B. Even though from the application perspective (i.e.,

Hadoop) the workload is read-only, a small number of writes appear due to HDFS metadata

management. These are the only writes in the system as we explicitly turned off journaling

and metadata updates in ext4. Interestingly, a small amount of writes relative to the drive

size is sufficient to trigger temporal slowdown. On machine B, temporal slowdown occurs

approximately every 120MB. That amounts to only 0.015% of the disk size.
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Fig. 3.8 HDFS read. CDFs of read request latencies during and outside of temporal slowdown
on Machine A.

Temporal slowdown without writes. Our main finding related to temporal slowdown is

that it can occur in the complete absence of writes. This occurs only on machine A so we

focus on it for these experiments. To avoid any writes, we repeat the experiment using FIO

instead of HDFS. We configure FIO to use the read system call and evaluated both direct

I/O and buffered I/O. The results were similar so we only show direct I/O. We confirm that

there are no writes performed during the experiments by checking the number of written

sectors on the drive (from /proc/diskstats), before and after the experiments. In addition,

we ensure that no writes have been performed in the system for at least one hour before the

start of the experiments.

In Figure 3.9, we show the throughput timeline when using FIO with direct I/O. FIO shows

more variability in the common case compared to Hadoop because of context switches

between kernel and user space. The temporal slowdown is again visible despite the absence

of writes. The slowdown appears every 130 minutes on average and lasts 5 minutes on

average. The periodicity is almost identical to the HDFS case, suggesting that the HDFS

metadata writes did not play a role in triggering temporal slowdown on machine A.
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Fig. 3.9 FIO direct I/O Read. File throughput timeline on Machine A.

Figure 3.10 presents the I/O request latency for FIO with direct I/O. Again, tail latency

increases during slowdown. The four different latency steps appear because direct I/O sends,

by default, four large block layer requests (1MB) to the drive. Note that we also performed

experiments to discard the I/O scheduler as the root cause for the latency delays. Different

I/O schedulers (e.g., deadline, NOOP, CFQ) were evaluated. The experiments did not reveal

any significant difference in the latency distributions between distinct I/O schedulers. Hence,

we present the I/O request latencies for the deadline scheduler (the default I/O scheduler in

linux).

Trigger of slowdown without writes. Next, we analyze whether temporal slowdown in

the absence of writes is correlated with the number of reads performed or it is time-based.

We introduce periods of inactivity using sleep periods between the reads. We make sure

that these periods are much smaller than the duration of temporal slowdown so that we do

not miss slowdown events. We find that regardless of the inactivity period induced, the

periodicity remains the same suggesting time-based triggers.
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Fig. 3.10 FIO Direct I/O Read. CDFs of read request latencies before and during temporal
slowdown on Machine A.

Discussion on internal SSD root cause. Since we do not have access to the proprietary

SSD FTL design we cannot directly search for the root cause internal to the drive. In theory,

there are three known culprits for temporal slowdowns in SSDs, yet our findings does not

match any of them. The first one is write-induced GC [90, 108]. However, we show that

temporal slowdown can appear in the absence of writes as well. The last two culprits are

read disturbance and retention errors [31]. In the related work, in Section 3.6, we argue at

length that these culprits appear on drives that are far more worn out (orders of magnitude

more P/E cycles) than ours and after order of magnitude more reads have been performed.

We hypothesize that temporal slowdown on our drives is triggered by periodic internal

bookkeeping tasks unrelated to past drive usage or current workload.

3.4.3 Mitigation Strategies

We have found no simple way of masking temporal slowdown. It occurs for both buffered

I/O and direct I/O. One could attempt to detect early signs of slowdown or estimate its start

30



3.5 Permanent Slowdown

via profiling and then avoid performing reads during the period. This would yield more

predictable performance at the expense of delays.

3.5 Permanent Slowdown

In this section, we introduce the permanent slowdown, an irreversible performance degrada-

tion that affects files at long timescales (days to weeks). Permanent slowdown occurs at a

file level. It is not triggered by a single drive-wide event. Thus, at any point in time, a drive

can contain both files affected by permanent slowdown and files unaffected by it. The exact

amount of time it takes for a file to be affected by permanent slowdown varies from file to file

and is not influenced by how many times a file was read. We only see permanent slowdown

on machines of type A. Permanent slowdown causes a throughput drop of up to 15%.

We find that permanent slowdown is not specific to HDFS, but affects all read system call

that use buffered I/O. We link the slowdown to unexpected and permanent latency increases

inside the drive for all I/O requests.

For terminology, in the context of permanent slowdown, "before" means before the first signs

of slowdown and "after" means after slowdown completely set in. The CDFs represent a

single HDFS file composed of 8 blocks (i.e., 8 ext4 files). Figure 3.11 shows a different file

where we caught the onset of the slowdown. Nevertheless, we have seen that all files affected

by the slowdown show a similar degradation pattern and magnitude.

The remainder of this section presents an overview of a throughput loss, an analysis of the

results, a discussion on causes and an analysis of mitigation strategies.
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Fig. 3.11 HDFS read. File throughput over a 10 hour period centered around the onset of
permanent slowdown.

3.5.1 Performance Degradation at a Glance

Figure 3.11 shows the onset and impact of permanent slowdown. The plot shows a 10 hour

interval centered around the onset of permanent slowdown. The file was created several

days before this experiment was ran. For the first 4 hours, read throughput lies between 340

MB/s and 430 MB/s. This variation is explained by the intrinsic and the temporal slowdowns

described in Sections 3.3 and 3.4. Around the fourth hour, the permanent slowdown appears

and after less than one hour it completely sets in. From that point on, read throughput remains

between 320 MB/s and 380 MB/s in this experiment and all future experiments involving

this file.

Figure 3.12 compares the CDF of the read throughput of the same file before and after

slowdown. At the median, throughput drops by 14.7% from 418 MB/s to 365 MB/s.
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Fig. 3.12 HDFS read. CDFs of file throughput before and after permanent slowdown.

3.5.2 Analysis

Generality. We start by analyzing the generality of the permanent slowdown. HDFS uses

the sendfile() system call to transfer data. Using the perf tool we find that sendfile()

shares most of its I/O path in the Linux kernel with the read system calls that use buffered

I/O. Therefore, we ask whether permanent slowdown affects only sendfile() system calls

or also read system calls that use buffered I/O.

We use FIO to generate reads using buffered I/O. We configure FIO to use the read system

call (i.e., sync io engine as a FIO parameter). Figure 3.13 presents a throughput comparison

between HDFS (the sendfile() system call) and FIO (read system call). The two rightmost

CDFs show the throughput for HDFS and FIO before permanent slowdown. HDFS and

FIO behave similarly. The same applies after permanent slowdown sets in (leftmost CDFs).

Similar results were obtained using libaio as an I/O engine for FIO. This result show that

permanent slowdown does not affect a particular system call (sendfile()) but the group of

read system calls that perform buffered I/O.
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Fig. 3.13 HDFS read vs Buffered FIO. CDFs of file throughput before and after permanent
slowdown.

Correlations. We next analyze I/O request latency. Figure 3.14 compares the CDFs of

request latency in HDFS on one file before and after permanent slowdown. Permanent

slowdown induced an increase in latency at almost every percentile. Thus, most requests are

treated slower. At the median, the latency increases by 25%. The latencies in the tail of the

CDF are explained by the inherent and the temporary slowdowns. We re-run the experiment

using FIO and saw similar results.

We also measure latency when sending one request at a time. We vary request size between

128KB and 1MB. We find that single request latency also increases after permanent slowdown

and for all sizes. The increase in latency is constant in absolute terms and is thus not correlated

to request size. The latency for the default request size of 256KB increased by 33%. These

findings show that latency increases are due to the drive and not due to the software layers.

Discussion on internal SSD root cause. The read disturbance and retention errors dis-

cussed as potential culprits for temporary slowdown could conceivably lead to permanent

slowdown [31] if left uncorrected by the drive. However, the same argument we made for

temporal slowdown applies. Read disturbance and retention occur on drives much more
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Fig. 3.14 HDFS read. CDFs of request latency before and after permanent slowdown.

worn out (orders of magnitude more P/E cycles) than ours and after performing orders of

magnitude more reads. We hypothesize that the reason for permanent slowdown lies with

error correction algorithms being triggered inside the drive after enough time has passed

since file creation. Note that once the permanent slowdown presents itself, file access is

consistently slower. This behavior slowdown persists across time, even when file access

stops (e.g., for a period of days, weeks, or months).

Discussion on internal OS root cause. The increase of request parallelism via operating

system configuration parameters. More specifically, tunning the configuration values that

are pertitnent to the readahead optimization [80] (i.e., request size), similar to the intrinsic

slowdown, masks the performance degradation caused by the permanent slowdown. However,

unlike the previous slowdowns, permanent slowdown is not present from the beginning of

file lifetime. Therefore, oeprating system configuration values, in particular local file system

behavior cannot be signaled as the sole cause of the slowdown. Instead, we believe that

particular OS behaviors in conjuction with internal drive behaviors cause the permanent

slowdown.
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Fig. 3.15 HDFS read vs FIO Direct I/O. CDFs of file throughput before and after permanent
slowdown.

3.5.3 Mitigation Strategies

We consider mitigation strategies that are more aggressive in generating request level par-

allelism in the hope that they could compensate for the throughput loss. We find that both

direct I/O as well as increasing the number of requests sent in parallel with buffered I/O can

mask permanent slowdown.

First, we look at the behavior of permanent slowdown when reading with direct I/O. It is

known that direct I/O issues more and larger requests to the block layer, when compared to

buffered I/O [54]. In our experiments it issues four 1 MB in parallel. Figure 3.15 presents a

throughput comparison between HDFS and FIO with direct I/O. The two rightmost CDFs cor-

respond to the throughput of FIO with direct I/O before and after permanent slowdown. The

difference between the two is minimal. We repeated the experiment using a smaller, 256KB

direct I/O request size (by tuning /sys/block/<device>/queue/max_sectors_kb). The

results remained the same suggesting that having a larger number of parallel requests is key

for best performance.
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slowdown with I/O requests of 256KB, and after permanent slowdown with large I/O
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We also analyzed making buffered I/O more aggressive. We increase the request size from

256KB to 2MB by modifying the read ahead value. This change automatically brings about a

change in the number of request sent in parallel to the drive. When request size is 256KB, two

requests execute in parallel. For a 2MB request, four parallel execute in parallel. Figure 3.16

presents four CDFs representing the throughput after permanent slowdown with HDFS reads

and FIO buffered reads. The leftmost CDFs correspond to the default request size of 256KB

and show the impact of permanent slowdown. The rightmost CDFs are for a request size of

2MB. The modified buffered I/O is able to mask the permanent slowdown with increased

parallelism.

3.6 Related Work

Related to sources of performance variation internal to SSDs. Garbage collection (GC)

in SSDs is known to trigger temporary slowdowns but it is write induced [90, 108]. Flash on
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Rails [90] reports no GC-like effects in read-only workloads. Since our paper focus solely

on read-only workloads we do not discuss further GC.

There are two types of errors that can appear in read-only workloads, retention errors and

read errors. Retention errors occur when data stored in a cell changes as time passes and

are caused by the charge in a cell dissipating over time through the leakage current [31, 33].

Read (disturbance) errors occur when the data in a cell is modified over time as a neighboring

cell is read repeatedly and are caused by the repeated reads shifting the threshold voltages of

unread cells and switching them to a different logical state [31, 32]. In practice, retention

errors happen much more frequently than read disturbance errors [75].

The temporary slowdowns we encountered show a different pattern compared to the two

read errors described above. Related work shows that read errors are highly correlated with

the number of P/E cycles that the drive went through [31]. Our drives have a very low P/E

cycle. At the end of our experiments, the amount of data written to the drives over their

entire lifetime was just 1 TB, double their capacity. In contrast, related work uses drives with

thousands of P/E cycles to show a noticeable increase in error rates [31]. Similarly, to obtain

read errors, related work [32] perform hundreds of thousands of reads on a single page in

order to see noticeable effects. Our experiments perform at most a few thousand reads. In

addition, the read-errors results from related work [32] are on drives that already underwent

thousands of P/E cycles.

Gunawi et al. [50] study 101 reports of fail-slow hardware (some of which SSD-related)

incidents, collected from large-scale cluster deployments. One the SSD front, they find

firmware bugs that cause latency spikes or stalls and slow reads due to read retries or parity-

based read reconstruction. The study finds that slow reads occurs mostly on worn out SSDs or

SSDs that approach end of life. We show that similar problems can occur on very lightly used

SSDs. Moreover, we analyze the impact that these hardware issues have at the application

level.
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Jung et al. [61] find at least 5× increased latency on reads when enabling reliability manage-

ment on reads (RMR). RMR refers collectively to handling read disturbance management,

runtime bad block management, and ECC. The latency differences causing the slowdown we

uncover are much less pronounced. Moreover, our slowdowns illustrate dynamics in read

latency over time whereas this work focuses on read-related insights from parameter sweeps.

Hao et al. [52] perform a large-scale study analysis of tail latency in production HDDs and

SSDs. Their study presents a series of slowdowns and shows that drive internal characteristics

are most likely responsible form them. They characterize long slowdown periods that (may)

last hours and affect the whole drive, without any particular correlation to I/O rate. Like

them, we find that the drive is most likely responsible for most of the slowdowns. We did not

experience large period of slowdowns across the whole drive, probably due to the fact that

our drives are more lightly used.

Related to fragmentation in SSDs. Conway et al. [40] show that certain workloads cause

file systems to age (become fragmented) and this causes performance loss even on SSDs.

Their workloads involve many small files (<1MB). Kadekodi et al. [63] also exposes the

impact of aging in SSD across a variation of workloads and file sizes. They focus on

replicating fragmentation to improve benchmarking quality. Similarly, Chopper [55] studies

tail latencies introduced by block allocation in ext4 in files of maximum 256KB. In contrast,

we study intrinsic slowdown in much larger files (256MB) and we quantify the impact on

HDFS.

Related to extracting best performance out of SSDs. He et al. [54] focus on five unwritten

rules that applications should abide by to get the most performance out of the SSDs and

analyze how a number of popular applications abide by those rules. These rules boil down to

specific ways of creating and writing files: write aligned, group writes by death time, create

data with similar lifetimes, etc. These findings are all complementary to our work. The

authors also point to small I/O request sizes and argue that they are unlikely to use the SSD

parallelism well. In contrast we see that in the common case, the default I/O request sizes
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can extract the maximum SSD performance but fall short when hardware behavior changes

as exemplified by the permanent slowdown.

Related to storage-influenced HDFS performance. Shafer et al. [87] analyze the perfor-

mance of HDFS v1 on HDDs using Hadoop jobs. They show three main findings. First,

architectural bottlenecks exist in Hadoop that result in inefficient HDFS usage. Second,

portability limitations prevent Java from exploiting features of the native platform. Third,

HDFS makes assumptions about how native platforms manage storage resources even though

these vary widely in design and behavior. Our findings complement this past work by looking

at SSDs instead of HDDs. Moreover, we look at the influence that internal drive characteris-

tics have on HDFS performance while this past work focuses on software level interactions.

Harter et al. [53] study HDFS behavior under HBase workload constraints: store small files

(<15MB) and random I/O. In contrast, we study HDFS under regular conditions, with large

files and sequential I/O.

Related to performance variability of storage stacks. Cao et al. [36] study the perfor-

mance variation of modern storage stacks, on both SSDs and HDDs. For the workloads they

analized they find SDD performance in ext4 to be stable even across different configurations,

with less than 5% relative range. In contrast we show variations of up to 30% over time,

for one single configuration for HDFS. Maricq et al. [72] conduct a large-scale variability

study. Storage wise, they focus on understanding performance variability between HDDs

and SSDs. Similar to us, they find that sending large number of requests to the SSDs reduces

performance variability. However, they focus on workloads with direct I/O and small request

sizes (4 KB). In contrast, we study SSD variability both under direct I/O and buffered I/O.

We dive deeper into the importance on the number and size of requests. Vangoor et al. [99]

analyze the performance overheads of FUSE versus native ext4. Their analysis shows that

in some cases FUSE overhead is negligible, while in some others it can heavily degrade

performance. HDFS is also a user space file system, however it has a different architecture

and functionality, and use cases than FUSE. In this work, we analyze the interaction between
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HDFS and lower layers of the storage stack, under HDFS main use case, sequential I/O in

large files.

3.7 Discussion

We showed that intrinsic and permanent slowdowns occur because software cannot adapt

its strategy for extracting the maximum performance and parallelism from the device in the

face of changes in SSD behavior. In the common case, software can extract the maximum

performance and parallelism from the SSD using a set strategy of generating I/O requests.

When SSD performance drops due to internal causes, the same set strategy cannot continue to

extract the same performance level. A more aggressive strategy is needed. Yet, HDFS cannot

adapt. This points to the need to consider more adaptable software designs that readjust

according to perceived performance drops and instabilities in hardware.

The more aggressive approaches that we evaluated were switching to direct I/O and increasing

the size and number of parallel I/O requests in buffered I/O. Unfortunately, for existing

applications, especially those with large code bases like HDFS, this more aggressive approach

may not always be easy to leverage. Switching to direct I/O may require extensive changes

to application code. Increasing the aggressiveness of buffered I/O may lead to wasted disk

reads if turned on at machine level. If turned on per application, aggressive buffered I/O

may influence fairness in the co-existence with collocated workloads. In addition, from an

operational perspective, increasing the aggressiveness of buffered I/O is not straight-forward.

First, it is not intuitive because under the common case the default strategy for buffered I/O

is enough to extract maximum performance from SSDs. Moreover, in Linux, the settings

required to increase aggressiveness are controlled by a seemingly unrelated configuration

that controls read ahead size.

Our findings have an impact on they way systems are benchmarked on SSDs. If two systems

are tested on copies of the exact same file, 10-20% of the performance difference may come
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from intrinsic slowdown (a copy is more fragmented) and/or permanent slowdown (a copy

is older). Even if the same input file is used but at different points in time, 10% of the

performance difference may come from permanent slowdown. Finally, if systems are tested

for short periods of time, 10% of the difference can come from temporary slowdown if one of

the systems is unlucky to run during one slowdown episode. In the extreme case, one system

may be affected by all three slowdowns at the same time while another may only be slightly

affected by intrinsic slowdown. In this case, almost 30% of the performance difference may

come from the slowdowns and not the systems under test.

3.8 Summary

In this chapter we introduced and analyzed three surprising performance problems (inherent,

temporal and permanent slowdowns) that stop large sequential read workloads from extracting

maximum performance from some SSDs. These problems are introduced by the layers sitting

beneath user-space storage systems (e.g., file system, SSDs). The lower layers also hold the

key to masking two of the three problems by increasing I/O request parallelism during the

problems. Unfortunately, user-space storage systems do not have the ability to adapt. A large

sequential read access pattern access pattern successfully extracts maximum performance

from SSDs in the common case but it is not aggressive enough to mask the performance

problems we found. Our results point to a need for adaptability in storage stacks.
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Chapter 4

Reducing Read Tail Latency in Distributed

File Systems

4.1 Motivation

Large-scale distributed systems exhibit unpredictable high-percentile (tail) latency variations,

which harm performance predictability and may drive users away. Many factors may

cause these variations, such as component failures, replication overhead, load imbalance,

and resource contention [41, 44, 62, 69, 100]. The problem is exacerbated when systems

run on harvested resources. Resource-harvesting datacenters co-locate latency-sensitive

services (e.g., search engines) with batch jobs (e.g., data analytics, machine learning) to

improve resource utilization [48, 101, 112, 115]. In these datacenters, performance isolation

mechanisms [43, 48, 57, 70, 73, 101, 109, 111, 112, 115] throttle or even deny resources to

the batch jobs when the services need them.

Many papers have addressed tail latency management in distributed systems. For example,

they have tackled straggler tasks in data analytics frameworks [22, 23, 92, 113] and requests in

multi-tier services [58], tail latencies in distributed file/storage systems [68, 93], and enforced

service-level objectives (SLOs) for compute or storage [62, 71, 97, 102, 104, 105, 116].
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Fig. 4.1 Run times of 300 copy jobs over 2 weeks. All days are overlayed over their 24 hours.

Unfortunately, the prior works do not account for some important challenges and constraints

of real production systems (Sections 4.2 and 4.7). For example, the server hardware in

datacenters is heterogeneous in terms of resources and storage configurations (static hetero-

geneity). The performance isolation mechanisms of resource-harvesting datacenters produce

another form of (dynamic) heterogeneity. Thus, tail latency management techniques eval-

uated in the absence of such static and dynamic heterogeneity may miss important effects.

Datacenters are also very large; evaluating ideas on small systems side-steps many scalability

challenges, e.g. difficulties with using centralized components. Perhaps most importantly,

production systems must be simple and maintainable. Complex techniques (e.g., relying on

sophisticated performance modeling) are undesirable, as they require expertise and skills that

most engineers are not trained on.

In this section, we focus on tail latencies in distributed file systems under these production

constraints. In particular, we address the challenging scenario where the distributed file

system only stores data for the batch workloads, but the latency-sensitive services have full

priority over the shared resources (e.g., CPUs, local disk bandwidth) on the same machines.
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Thus, we seek the best possible file system tail latency for the batch workloads; service

performance is protected by isolation techniques (e.g., [57, 70]) and are not a topic of this

work.

Though the batch jobs have more relaxed performance constraints than the services, lowering

their tail latency is important because: (1) completing them faster frees up capacity for other

jobs to run; (2) lower tail latency improves performance predictability and user satisfaction;

and (3) batch jobs may be rendered useless if they take excessively long. As an illustration

of the performance variation we observe, Figure 4.1 shows the run times of 300 executions

of a simple I/O-bound job (distributed copy of a 200GB file) on 4k servers in a production

datacenter over 2 weeks. As we can see, job performance may vary 60× or more, due to tail

data access latencies.

These performance variations occur despite the fact that speculative execution (SE) is

enabled in our jobs. SE tracks the tasks’ durations and issues duplicate tasks for managing

tail latencies in batch workloads [22, 23, 113]. Unfortunately, SE cannot tackle all sources

of storage-level tail latencies without a stronger coupling between compute and storage

layers [92]. Worse, SE may harm performance when resources are scarce [95, 83, 21, 92, 79],

a common scenario in resource-harvesting datacenters. Thus, managing storage-level tail

latencies independently is more attractive, leads to simpler systems (less coupling), and

reduces the need for speculative tasks.

Along these lines, we first characterize the sources of storage-level tail latency impacting

the run times of I/O-bound jobs shown in Figure 4.1 (Section 4.3). The characterization

shows that data read and write accesses exhibit the most performance variation, not metadata

operations. In addition, long disk queues and server-side throttling are the main culprits, not

the utilization of the network, CPU or memory.

We then propose two client-side techniques for managing tail data access latencies: “fail fast”

for writes, and “smart hedging” for reads (Section 4.4). Both techniques are oblivious to
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the source of variations, and rely on simple server-side performance reporting and careful

reactive policies, while leveraging the existing replication and fault-tolerance mechanisms

in distributed file systems. Many systems use chain replication [98] for data writes, where

each write request (possibly broken into chunks called “packets”) is pipelined serially across

the servers that store a replica of the block [12, 47, 13, 96, 24, 34, 45, 28]. In such systems,

a slow server in the pipeline can significantly degrade write latency. However, prior works

have almost always assumed that writes happen “in the background” (buffered writes). In

contrast, our characterization shows that, in practice, several concurrent block writes on the

same server can overflow the write buffer and significantly impact tail latencies.

To reduce data write tail latencies, our fail fast technique detects and replaces the slowest

server in a pipeline. The new server must receive all packets that have already been written

before writing can resume. However, aggressive server replacements may overload the

system. In fact, since replacements are expensive, fail fast estimates the cost of replacing a

server and performs a replacement only if it would indeed reduce write latencies overall.

Our smart hedging technique for data reads monitors the server’s performance on a per-packet

basis, and starts a “hedge” (duplicate) request [41] when performance starts to degrade. Since

aggressive hedging may cause overload, we hedge adaptively and (exponentially) back-off

from a server that does not complete a hedge before the original request.

To experimentally evaluate our techniques, we implement them in Hadoop Distributed File

System (HDFS) [12], a popular file system for frameworks such as MapReduce [42] and

Spark [27], and call the result “CurtailHDFS” (Section 4.5).

Our evaluation uses (1) synthetic workloads on a 4k-server testbed; and (2) production

workloads in 3 datacenters with a total of 70k servers (Section 4.6). We compare CurtailHDFS

to baselines that include typical server-side techniques for managing latency, such as tracking

server performance. The results show that CurtailHDFS can reduce 99th-percentile latency

by 19× compared to HDFS for I/O-bound jobs. For the more balanced production workloads,
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CurtailHDFS reduces the 99.9th-percentile write latency by 2× compared to HDFS, and

the average read latency by 1.4× compared to state-of-the-practice hedging. These are

significant improvements, especially given the limited scope of our changes, on top of

existing techniques (e.g., speculative task execution).

Though we evaluate our techniques in highly heterogeneous resource-harvesting datacenters,

they are general and applicable in other contexts as well. In fact, we are contributing our

techniques to open-source HDFS, so they will immediately benefit frameworks and workloads

that currently use it in any datacenter.

Our contributions are:

• We characterize the tail latency of batch jobs running on production HDFS in resource-

harvesting datacenters.

• We propose general client-side techniques for managing tail latencies in distributed

file systems, and implement them in HDFS. Our write technique uses an entirely new

approach to shortening tail latencies, whereas our read technique improves on prior

works.

• We evaluate our techniques extensively, and show that they lower tail latencies signifi-

cantly.

4.2 Production challenges and constraints

There are many challenges to manage tail latency in production distributed file systems. In

this section we enumerate several we encountered.

Massive scale. Datacenters host thousands of servers. At this scale, systems are more prone

to transient misbehaviors or failures that cause latency tails. Moreover, they must avoid
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centralized components. So, distributed file systems with a single primary metadata manager,

such as HDFS, must be extended. Our production HDFS federates multiple HDFS sub-

clusters by placing multiple software “routers” in front of the sub-cluster metadata managers,

as proposed by Misra et al. [76].

High heterogeneity. Datacenter hardware is often heterogeneous, with at least a few server

generations with different performance characteristics. Even servers of the same generation

may use multiple types (SSD, HDD, or both) or configurations of storage media (e.g., raided

with different numbers of devices). There are 12 server configurations in the datacenters we

study in this work.

Resource harvesting. Our production HDFS uses two isolation mechanisms to protect the

co-located services: (1) throttling of the data access throughput of the server (at 60MB/sec),

and (2) a “busy” flag that informs the corresponding metadata manager and clients that the

server cannot take more access load. Distributed file systems that run on harvested resources

may have their requests throttled or denied because of latency-sensitive service activity. We

find that ∼20% of servers may concurrently become unavailable because of such activity.

Background replication. On server or disk failures, the lost replicas must be re-created in

the background, which increases server load. The problem is exacerbated in our datacenters

because the operators of the latency-sensitive services may reformat disks at any time. The

reformatting rate varies in each datacenter, but in the worst case, up to 90% of servers get

reformatted in a month [115]. To prevent data loss, our production HDFS stores the replicas

of each block on servers that run different services, as proposed by Zhang et al. [115].

Despite doing this, it is common to have to re-create 25TB monthly, due to reformatting,

with peaks of 128TB.

Load imbalance. At scale, data servers and/or metadata managers may become overloaded

and provide poor performance. Our production HDFS deployments create an average of 2

48



4.3 Characterizing Performance Variation

blocks per second with spikes of more than 100. During these spikes, some servers are idle

while others show more than 20 concurrent data accesses.

High hidden costs. Datacenter operators are careful to limit complexity in their systems, to

lower labor and maintenance costs. Similarly, new system components and data pipelines

are expensive to produce, operate, and maintain. Complexity and new infrastructure must

produce significant benefits to justify their costs.

4.3 Characterizing Performance Variation

This section characterizes the performance variations we observe in real datacenters and

their sources. We base our study on HDFS, but our observations directly apply to other

well-known systems, such as Cosmos Store [38] and GFS [47], that have similar structure.

We start with an overview of our production HDFS and our methodology. Then, we discuss

the job/task and data access performance variations.

4.3.1 Methodology

Experimental setup. For our next experiments, we deploy our production HDFS on 4k

servers across 4 sub-clusters in a resource-harvesting datacenter. The servers have 12-32

cores, 32-128GB of memory, 10-Gbps NICs, and a 6TB RAID consisting of 4 15k-RPM

HDDs. In some servers, we also use a 1TB RAID of 2 SSDs to store the file system data. The

NN in each sub-cluster replicates each block across 4 DNs in the same sub-cluster; replicas

of a block may be stored on HDDs, SSDs or some combination of the two storage mediums.

Workload. Our experiment profiles a DistCP [15] job that spawns 200 tasks for copying a

200GB file between 2 sub-clusters. We run this experiment every 2 hours, for a week. Each

run spans a few thousand servers; speculative task execution is enabled in each run. We use
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TeraGen [16] to re-create the source file before each run. See Section 4.6 for our study of

other workloads.

Monitoring infrastructure. We extended HTrace [14] to profile I/O operations at a packet

granularity and collect system load metrics. During run time, each server logs details of

profiled packets on a local disk (separate from HDFS data disk). Once a job finishes, a

collection framework parses the job logs to determine, fetch and create request traces from the

profile logs of servers involved in the job. We are contributing our extensions to open-source

HDFS [18, 17].

4.3.2 Job/task performance variation

Figure 4.2a presents the CDF of the DistCP job runtimes. The average job run time is 20

minutes and the standard deviation is 27 minutes. More strikingly, the fastest job takes 2

minutes whereas the 99th percentile is 120 minutes. To understand this huge variation, we

consider the running times of tasks within a job.

Figure 4.2a also shows a CDF of the task runtimes across all DistCP jobs. Though each task

does the same amount of work (copies 1GB), their runtimes vary significantly. The average

task run time is 334 seconds and the standard deviation is 730 seconds. The fastest task takes

32 seconds whereas the 99th percentile is ∼1 hour.

To explore whether there are common job slowdown patterns, we consider the task runtimes

within a job. Figure 4.2b shows the results for a few DistCP jobs. Clearly, a few hotspots

slow down jobs in some cases and heavy load on the entire system has an impact in others.

For example, a few stragglers slow down Job 5. In contrast, more than 75% of the tasks

are an order of magnitude slower than the fastest task in Job 4, indicating that the system is

under heavy load. This is also corroborated by the fact that the fastest task in Jobs 4 and 5

has similar runtimes (∼50 seconds), but the median task run time in Job 4 (1000 seconds) is
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Fig. 4.2 Performance of DistCP jobs and file accesses.
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Table 4.1 Correlating latency and DN resource utilization.

Resource type
Spearman coefficient (ρ)
Reads Writes

CPU utilization (%) 0.23 0.31
Memory utilization (%) 0.29 0.25

Disk queue length 0.7 0.65
Network bandwidth (MB/s) 0.14 0.11

20× slower than the fastest task and 15× slower than the median task run time in Job 5 (70

seconds). The other jobs show similar behavior.

These extreme variations in runtimes are less likely to occur in other settings. For example,

in smaller clusters lacking server heterogeneity [51, 92, 93, 110], or when experiments

(e.g., background load) are tightly controlled. In contrast, datacenters exhibit more static

and dynamic heterogeneity, non-uniform server load distributions [57], interference from

co-located applications, and server re-imaging/restart by cluster management systems.

4.3.3 Sources of performance variation

In this section, we analyze the traces of slow tasks to determine operations that cause tasks

to slowdown. Figure 4.2c shows a CDF of the operation latencies. We classify operations

into block read, block write and block metadata. Reads and writes suffer major slowdowns:

the 99th percentile latencies are an order of magnitude greater than the median, but metadata

operations have little impact since the 99th percentile metadata operation latency is similar

to the fastest reads and writes. Note that using sub-cluster federation already reduces the

performance degradation in the metadata operations.

Next, we look at individual traces of writes and reads to determine the causes for slowdown.
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(b) Read four 256MB blocks from a 1GB file.

Fig. 4.3 Sample write and read timelines. Each color represents a block. Each point depicts a
set of bytes transferred during a write or read. Time is on the Y axis.

Reads. We correlate between block read latencies and DN resource utilization in Table 4.1.

Our correlation analysis shows that disk contention (either from latency-sensitive services

or other batch jobs) and the resulting queuing delays are the primary cause for performance
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variation. Figure 4.3b shows the packet latencies while reading four blocks. As we can see,

block 2 takes significantly longer (more than 1 minute) to read. However, long disk queues

are not the only reason. Another factor is server-side throttling that limits the overall DN

throughput at 60MB/s (instead of the many hundreds of MB/s we can get from the RAIDed

storage devices), regardless of how many clients are accessing the server. This effect would

not have occurred in dedicated clusters or other setups where there is no resource harvesting.

Writes.1 Like reads, our correlation analysis between block write latencies and DN resource

utilization (Table 4.1) indicates that disk contention has a substantial impact on performance

variation. Figure 4.3a illustrates the write performance variation. It shows the observed

latencies while writing the packets of the four blocks in a file, each represented with a

different color. Block 3 suffers a huge slowdown because of high write latencies through

its pipeline, taking more than 2 minutes to complete. Two servers exhibit large disk queues

during the writing of this block.

Other sources. We find cases where contention for other resources (e.g., CPU, network

bandwidth) has an impact on performance, but they are rare.

4.3.4 Summary

We find that:

1. Job running times are highly variable and without clear slowdown patterns, such as

time of day.

2. Load from both latency-critical services and other batch jobs impacts performance.

3. Data read and write accesses exhibit the most performance variation, not metadata

operations.

1Note that writes are not targeted in this thesis. However, they are part of of the larger scope of the
project [77].
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4. Long disk queues and server-side throttling introduce the most variation, not the

utilization of the network, CPU or memory.

These effects are more likely to occur in large production systems.

As Figures 4.3a and 4.3b show, long disk queues and throttling can last for minutes, whereas

other block accesses take seconds. In addition, although not seen in our characterization study,

contention for other resources can cause similar performance variation for data accesses,

e.g., contention for CPU in erasure-coded systems and/or due to high demand from co-

located CPU-bound applications. This means that, regardless of the source of the delay,

it is important to react, i.e. direct accesses away from these slow servers. However, we

need to react carefully so (1) transient effects do not cause unneeded reactions; (2) older,

less-performant servers can still be used; and (3) we avoid reactions when all servers are

overloaded.

4.4 Managing read tail latencies

In this section, we present our technique for tackling the sources of performance variability in

read accesses from Section 4.3. Throughout the section, we use the general terms “metadata

server” and “block server”, as our techniques apply to distributed file systems beyond just

HDFS.

4.4.1 Basic principles

Our technique leverages information available at the distributed file system client library

to make decisions. At a high level, it proceeds through the following phases: track latency,

check for slowness, decide whether to act, and take action. In the track phase, the client

stores the packet and block latencies for each block server with which it is communicating.
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It then uses these tracked latencies in the check phase to determine whether a server is slow.

This check needs to be agnostic of the source of the delay and, simultaneously, loose enough

to avoid reacting to transient conditions or older, less-performant servers. The client runs the

check phase for the first time after it has collected enough latencies to make a meaningful

decision. If the check determines that a server is slow, the client decides whether to take a

mitigation action (i.e., hedge for a read). This decision includes backing off from overloaded

servers (reads). If the client decides that it will be beneficial to act, it takes the action and

goes back to the tracking phase.

Our approach adapts to dynamic load changes by only considering recent requests in the

check phase (load may have changed recently at the servers), and by comparing the server’s

request latency against those of other servers (all servers may be highly loaded). Moreover,

the approach is agnostic to the reason for slowness, e.g. delays due to other file system

requests, latency-sensitive service activity, or throttling.

Importantly, these basic principles conform to the constraints of production environments.

First, they enable a client to make local decisions and do not require any centralized infras-

tructure in the decision-making process. Therefore, they do not pose any impediment to

scalability. Second, they adapt to dynamic changes and do not make any assumptions about

the system, which makes them amenable to run on harvested and heterogeneous resources.

Third, they can be easily deployed and integrated into existing systems, since our techniques

are simple and do not require invasive server-side changes.

Below, we detail our technique and discuss the alternate approaches we considered in

Section 4.4.3.

4.4.2 Smart hedging for reads

Request hedging [41] leverages the multiple copies of data for cutting read tail latencies.

A popular approach is to issue a hedge request, if the latency of the current request is
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greater than a static threshold. Figure 4.4 illustrates read hedging, where a client switches to

another replica (server 2) after observing a high read latency (from server 1). Although this

static approach can cut tail latencies, its effectiveness depends on the value of the threshold:

an excessively high value may result in infrequent hedging, whereas an excessively low

value could overload the system. We actually observed the latter behavior in production

(Section 4.6.4). Moreover, even a finely-tuned threshold value may require readjustment

under varying load conditions (dynamic heterogeneity).

Thus, our smart hedging technique uses a per-client dynamic threshold along with a retry

policy to control the hedging rate. Each client constantly records the latency of the packets

it reads from servers (track). Initially, it uses a static threshold to trigger hedging and over

time leverages the tracked latencies to adjust the threshold (check). The check compares

the latency of the server against a multiple of a high percentile of the latencies the client

has experienced from other servers. Note that the client tracks the latency on a server

basis, but keeps a dynamic threshold for all servers. In this case, the multiplicative factor

compensates for variability in request service times [93] or queuing delays [52]. (In our

HDFS implementation, the default high percentile is the 95th and the multiplicative factor

is 3×.) As the value of this high percentile latency changes, the hedging threshold for each

client changes as well.

If a request is taking too long, the client considers sending a hedge request to the next server

on the replica list for the block (decide), say server 2. Before issuing the hedge, it checks

whether the last hedge to server 2 completed after the corresponding non-hedge request (i.e.,

the last hedge to server 2 was unsuccessful). If so, it exponentially backs off from server 2

and considers the next one on the list. Otherwise, it issues the hedge to server 2 (action).

Exponential backoff ensures that we do not attempt to access an already overloaded server,

and works well in practice. Specifically, our smart client waits for an exponentially increasing

number of packets before re-attempting a hedge request to a server who failed a hedge in the

past attempt.
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Fig. 4.4 Read hedging.

4.4.3 Alternative techniques we discarded

Centralized controller. Instead of making independent, local decisions about contention,

the clients could access this information in a central repository maintained by the metadata

manager. However, this approach would be highly dependent on the freshness of the load

estimations. If the estimation window is too large, the manager would provide stale data and

may not reduce tail latencies. On the other hand, a small window could provide accurate

information but may overwhelm the manager. As others have observed in production [76],

centralized components often harm scalability.

A different alternative would be to introduce a different centralized structure in the distributed

file system. However, this introduces additional network overhead to coordinate between

clients and the centralized structure, as well as a centralized storage point to keep track of

relevant measurements such as latency. Our approach relies on local data, thus we avoid

coordination overhead between clients and centralized structures.

OS-based improvements. A design goal of many large-scale distributed systems, such as

HDFS or Spark, is to provide portability across platforms. Thus, we focus on improving
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file system performance in the user space, rather than modifying the underlying software or

requiring features that few operating systems provide.

4.5 Implementation in HDFS

We implement our technique in HDFS, together with fail fast writes (technique to mitigate

tail latency for write operations [77], we call the resulting system “CurtailHDFS”.

We create a new client library that applications can use. The library allows each technique to

be enabled independently, which is key for assessing their benefits in production. Moreover,

adoption can be incremental as users slowly deploy our client.

Our client keeps a configurable amount of the recent history of packet and block latencies.

For smart hedging, we extend HDFS’s static hedging option [106, 107]. with a per-client

dynamic threshold and exponential backoff.

We avoid using any DN that has flagged itself as “busy” (a latency-sensitive service needs

the server’s resources). We discuss the impact of the techniques’ parameters in Section 4.6.2.

Finally, our code is modular and easy to add/remove/configure, as needed for maintainability

in production.

4.6 Evaluation

In this section, we describe our experimental methodology and results. We conclude with a

discussion of our experience bringing Smart Hedging, as part of CurtailHDFS2, to production.

2The CurtailHDFS contains solutions to mitigate tail latency of read and write operations, smart hedging
and fail fast, respectively. Fail fast is not a topic of discussion in this thesis, but more information can be found
in Misra et al. [77].
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4.6.1 Methodology

Experimental setup. We evaluate CurtailHDFS in two environments: the 4k-server experi-

mental testbed we describe in Section 4.3.1; and 3 large production deployments, each with

20k to 30k servers spread across 6 to 10 federated sub-clusters. These deployments use the

same server configurations as the testbed, but exhibit more sharing with latency-sensitive

services. The replication factor is 4 in the testbed and production deployments.

Evaluating our techniques in production deployments is difficult, because both the batch

and latency-sensitive service loads are constantly changing. To do so accurately, we take an

“A/B testing” approach where we run multiple techniques simultaneously. Specifically, we

configure some clients to run the technique(s) we are evaluating while other clients run the

baseline(s) for comparison. To simplify log processing, all clients on the same machine run

the same technique(s). In addition, the deployments experience periods of relative inactivity

that are uninteresting. Thus, we collect file system telemetry in 10-minute periods, and focus

our evaluation on those periods that experience both more than 1000 full-block reads and

1000 full-block writes. These are the minimum number of accesses we need to compute

99.9th percentiles for each access type. Table 4.2 lists the percentage of time these intervals

represent.

Workloads. We evaluate CurtailHDFS with synthetic and production workloads. For our

synthetic workload, we extend DistCP in three ways. First, we allow one of the sides of

the copy to be main memory, so that we can either only read file data or only write file

data. Second, we allow the setting of the number of tasks that should use each technique

(e.g., 1000 map tasks should read blocks using smart hedging and 1000 map tasks should

use static hedging). Third, we instrument the code to collect key metrics from the client,

such as latency and number of hedges. We call the resulting program ExtendedCP. We also

implement a MapReduce job that creates a pre-defined amount of background file system

load (i.e., amount of HDFS open connections) in our testbed. The job monitors the load in
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Table 4.2 Characteristics of production deployments.

Metric DC0 DC1 DC2
#servers 25.2k 32.4k 19.0k
#server configs 4 4 4
#local storage configs 3 3 3
%servers shared with services 66.5% 29.4% 28.7%
%time in 10-min intervals 29.2% 72.0% 36.0%
#reads 2.6M 43.3M 38.6M
#writes 2.3M 8.3M 9.0M
#compute frameworks 4 4 4

the cluster and generates/terminates read/write operations to maintain a constant load over

time. Moreover, we ensure that the distribution of load it generates across DNs is the same

as in the production workloads.

In contrast, the production workloads are organic to our deployments and come from multiple

engineering teams. They comprise various data analytics frameworks and applications. Spark

and machine learning training, respectively, being the most common. The number of tasks

in each job varies from a few to tens of thousands, whereas the tasks’ lifespans vary from a

few seconds to hours. Another common application is moving data between systems (e.g.,

Cosmos to HDFS) for other applications (e.g., training of machine learning models) to use.

Section 4.6.3 details the patterns of these workloads. A large percentage (> 90%) of the jobs

access the distributed file system with our extended client, but others still use older clients.

Monitoring infrastructure. In Section 4.3.1, we describe our HTrace-based fine-grained

monitoring infrastructure. The data provided by this infrastructure is extremely detailed,

which leads to high collection, aggregation and processing times. So, it is only suitable

for characterization and troubleshooting. Our synthetic and production workloads do not

need this much detail. For our synthetic workloads, we use the metrics we collect from

ExtendedCP. For the production workload, we extend the client to log per-block statistics

(i.e., total bytes, time of the operation, and throughput) for each read/write operation [18].
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We rely on the existing Hadoop infrastructure to collect and store these logs in a repository

(in HDFS). To speed up our analysis process, we implement a MapReduce job that parses all

application logs and gets statistics related to (1) the throughput of each access, (2) hedges

(tried and successful), and (3) fail fast replacements. In production, we parse these logs,

aggregate the data, and expose the statistics as performance counters.

4.6.2 Synthetic workload results

We first evaluate CurtailHDFS with our ExtendedCP job in the 4k-server experimental

testbed.

Reads. We now evaluate smart hedging against the baseline and the baseline with static

hedging (100ms threshold), using the same setup as above but reading 1GB files. Without

background file system load, the medians of the 99th-percentile read latencies are 36 seconds

for the baseline, 22 seconds for static hedging, and 32 seconds for smart hedging. The

static version triggers a median of 56 hedges whereas the smart approach uses only 22. This

trade-off becomes starker as the load increases. For instance, during high load scenarios,

common in production environments, additional (and unnecessary) load can generate a cluster

overload; leading to job failures and under-utilized resources, among other consequences.

We provide a concrete production experience in Section 4.6.4. We run 10 more experiments

with 30k clients generating high background load by reading from HDFS. (Reads are less

expensive than writes, so they need more clients for the same amount of load.) In this case,

the medians of the 99th-percentile latencies are more than 22 minutes for the baseline, 81

seconds for static hedging, and 89 seconds for smart hedging. In addition, static hedging

triggers a median of 97 hedges whereas smart triggers only 21. Figure 4.5 shows the latency

(top) and the hedging (bottom) statistics for one of these experiments. In the hedging graph,

the vertical ranges go from the minimum to the maximum number of total and successful

hedges, whereas the blue boxes range from the 25th to the 75th percentiles. The horizontal

line across the boxes is the median value. The figure shows that smart hedging is effective at
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Fig. 4.5 Latency (top) and hedges (bottom) of 1000 reads under heavy load.
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lowering the latency with a much lower number of hedges. Overall, the tail latency for static

and smart hedging is similar at higher loads, while the number of hedges is much smaller

under smart hedging.

Static hedging depends on a single parameter: the time to wait for a read before triggering a

hedge. This threshold can be too conservative thereby offering little benefit, or too aggressive

thereby increasing the load on the system. For example, we have observed scenarios where,

under heavy load, the common-case read latency was greater than the timeout in the static

technique. In such cases, the clients kept bouncing between replicas.

In general, we observe that static hedging thresholds longer than 100ms degrade latency,

especially under low background load. However, in a production environment with many

co-located latency-sensitive services, it makes sense to use a higher value (e.g., 500ms as

in our deployments) to reduce the amount of hedging load. Smart hedging does not depend

strongly on this parameter as it only uses the static value for bootstrapping.

Reads sensitivity analysis. Smart hedging has the same three parameters as fail fast, as well

as the retry policy. Higher percentiles and higher slowness factors do not impact latency

significantly, but do reduce the number of hedges. As for writes, the best trade-off is to use

the 95th percentile and a factor of 3×. The number of recent requests to consider does not

have a significant impact and medium numbers (e.g., 20 samples) provide a good trade-off.

Finally, the retry policy has a large impact on both latency and number of hedges. The best

policy is exponential with 3 retries, which provides a latency comparable to static hedging

with fewer hedges. Thus, it provides low latency without excessively increasing the system

load. In contrast, a highly restrictive retry policy (e.g., never retrying a failed hedge) reduces

significantly the number of hedges, but latency increases substantially.
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Fig. 4.6 Characteristics of production workloads. Note the same log scales in the left and
right Y-axes.

4.6.3 Production results

Table 4.2 lists the main characteristics of our production deployments and workloads for

one month. The workload data includes only the 10-minute intervals for which we report

results. Recall that our evaluation focuses on time intervals with enough file system load to

meaningfully compute 99.9th-percentile latencies. Most rows in the table are self-explanatory.

The three local storage configurations are SSD RAID only, HDD RAID only, and both SSD

and HDD RAIDs. The “%time in 10-min intervals” row lists the percentage of the month

that we are reporting about in the 10-minute intervals. The four compute frameworks include

Spark and MapReduce. As we can see from the table, our deployments are large and

heterogeneous in terms of hardware and software.
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Figure 4.6 illustrates the characteristics of the production workloads (again only accounting

for the 10-minute intervals) in each deployment. The graphs on the left show the numbers

of jobs (top) and blocks accessed (bottom) in log scale. We split the job data into jobs with

read accesses and write accesses; the two sets overlap, but not every job reads data and not

every job writes data in our intervals. The graphs on the right show the distribution of reads

and writes across jobs (top) and blocks (bottom) in log scale. For example, the leftmost bar

in the top right graph shows the number of reads that the job with the minimum number of

reads performed in DC0. Similarly, the leftmost bar in the bottom right shows the minimum

number of reads that a block received in DC0. On both sides, the bars with solid and dashed

contours represent reads and writes, respectively.

Unlike our synthetic jobs, the figure shows significant skew in the distributions of the number

of accesses across jobs, and even greater skew in the distribution of the popularity of blocks

for reading. Blocks only get written more than once when the first write does not write the

entire block. Our intervals include any access to 256MB or more, but in some cases users

define their blocks to be larger than 256MB. That is why the maximum number of writes per

block is more than 2 in our deployments.

Although we do not illustrate this, the production workloads are more balanced than our

ExtendedCP job, using much more compute cycles per file system access.

Figure 4.7 shows the aggregate client write and read access throughputs (in MB/second) in

our intervals. In all deployments, throughputs vary significantly (up to 3 orders of magnitude)

over time, and read throughput tends to be higher than write throughputs.

In the context of these deployments, Figure 4.8 summarizes the latency results in log scale

for reads across many percentiles; the leftmost bars show the average results. The bars

compare smart hedging against static hedging (we cannot use regular reads in production, as

users are already accustomed to the lower tail latency of hedging). The height of the bars

is the average value for the percentile/average across the 10-minute intervals, whereas the
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vertical ranges go from the 5th to the 95th percentiles of the distributions of the 10-minute

intervals.

The results show that smart hedging reduces latency in the middle percentiles (25th to

95th), as we are comparing it to static hedging configured for low traffic with a threshold

of 500ms. (As we mention in Section 4.6.4, the initial setting of 100ms for static hedging

was generating too much traffic in production, so it had to be increased to 500ms.) For these

percentiles, the improvements to the low end of the distributions (bottom end of the vertical

ranges) is particularly pronounced. On average, smart hedging reduces latency by 1.4×

compared to static hedging. The improvement difference between synthetic and production

workloads is due to two factors. (1) The higher load present in production environments,

this includes the fact that static hedging has a threshold of 500ms, rather than 100ms as in

synthetic evaluations. (2) The different workloads (and their resource usage), as illustrated in

Fig. 4.6. In particular, the synthetic workloads were more I/O intensive, while the production

workloads have a more balanced use of different resources (e.g., network, CPU).
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These improvements are remarkable for two main reasons: (1) our baselines already include

techniques that help mitigate tail latencies (e.g., speculative task execution, static hedging,

servers warn clients and metadata managers when they are busy); and (2) they embody all

challenges of production systems (e.g., need to be simple, high heterogeneity, extreme scale,

real workloads, interference from services).

To understand these results at a deeper level, we next detail the impact of our techniques for

writes and reads.

Reads. Figure 4.9 shows the distribution of the average read latencies (left) and the dis-

tribution of the average number of hedges per block request (right), across the 10-minute

intervals. Clearly, the average read latency is lower in nearly all intervals. Hence, smart

hedging reduces tail latencies without negatively impacting the average read latency.
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Figure 4.9 also shows a side-effect of smart hedging: slightly more hedges per request on

average compared to static hedging. The static hedging threshold in production deployments

is 500ms, up from the 100ms threshold in the 4k-server testbed (Section 4.6.2). A higher

threshold in production reduces the number of hedges, which is especially important under

heavy load (Section 4.6.4). In contrast, smart hedging uses the 500ms threshold only for

bootstrapping and later adapts the threshold based on observed read latencies. This approach

reduces tail latencies, but can also cause more hedges in scenarios where the load across

replicas is non-uniform (e.g., high for a few and low across the remaining replicas).

Coming full circle. We motivated this chapter by showing that I/O-bound jobs using our

production HDFS (plus static hedging) exhibit large performance variations in one of our

production deployments (Figure 4.1). Figure 4.10 shows the same data, and CurtailHDFS

results for these jobs in the same deployment; speculative task execution is enabled in jobs on

both systems. CurtailHDFS significantly improves performance across most of the spectrum,

but especially in the high percentiles (by ∼ 3×).
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Unfortunately, we cannot perform the same analysis with production jobs, as we do not know

whether two executions of a job use the same data (we expect that they do not) or even the

same code.

4.6.4 Experiences in production

Our experience taking CurtailHDFS from the 4k-server testbed to production illustrates issues

that are often overlooked in the literature. We first experimented extensively with I/O-bound

jobs in the testbed, always observing significant improvements from our techniques.

We deployed static hedging in production in one datacenter with a threshold of 100ms.

Read latency improved significantly and we enabled it in all deployments after 3 months.

However, after a few months, we started to observe periods when some servers were becoming

overloaded. After some investigation, we realized that this behavior was caused by the high

number of hedges under high load. To mitigate this issue, we increased the threshold to
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500ms. This significantly reduced the load, but it also reduced the effectiveness of the

technique. As a result, tail latencies were still reduced significantly, but the average latency

increased. Clearly, static hedging is heavily dependent on its threshold and load. So, we

introduced smart hedging to reduce read tail latencies, without negatively impacting the

average latency.

We concluded the A/B testing and enabled our tail-mitigation technique by default in the

modified HDFS client. The technique has improved the user experience significantly and

many users have already switched to our client.

4.7 Related Work

Tail Latency in Distributed File and Storage Systems. Several works addressed read tail

latencies [93, 81, 37, 106, 107, 96, 105]. C3 [93] proposes a replica selection algorithm

that uses server-side information and rate limits. However, C3 is not scalable as it needs to

store server load data on ephemeral clients. Rein [81] targets key-value stores and schedules

concurrent reads of multiple keys. CRAQ [96] improves read throughput and latency under

chain replication by enabling reading from any replica in the chain, while still providing

strong consistency. Smart hedging is orthogonal to CRAQ and can reduce its read tail

latencies. Other works propose techniques that run at pre-defined intervals. For example,

Cassandra uses dynamic snitching [37], which periodically ranks servers based on observed

latencies and server-reported loads to select the best replica for a read. CosTLO [105] issues

redundant reads and writes in key-value stores, and considers the first response. CosTLO

searches through several configurations, estimates the latency cost of particular configurations,

and picks a cost-effective configuration. HDFS has a (static) read hedging option [106, 107]

that starts a duplicate (hedge) request to another server, if the original request has taken

longer than a threshold. Unfortunately, these techniques cannot tackle dynamic heterogeneity
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since the interval/threshold might be inappropriate at run time. In smart hedging, each client

determines when to react at run time, and uses back-off to prevent overload.

Earlier works [49, 60, 88] manage resources to meet tail latency SLOs and ensure fair

sharing. For example, Cake [102] and Avatar [114] use a centralized reactive feedback-

control scheduler for proportional sharing. PriorityMeister [116] uses proactive techniques

for bursty workloads, workload priorities, and rate limiters. SCADS [97] uses model-

predictive control for resource allocation. These works are orthogonal to our techniques, and

often rely on complex performance models.

Tail Latency in the Storage Stack. Many distributed file systems and storage systems rely

on layering, rather than end-to-end platforms, to provide storage functionality. Therefore,

performance degradations in lower layers of the storage stack (e.g., local file systems, block

layer, storage devices) can negatively impact the performance of upper level storage systems.

Hao et al. [52] characterize tail latency of storage device. Their study finds that tail latency is

mainly caused by internal characteristics of storage devices and propose tail-tolerant RAID.

Tail-tolerant RAID endures tail latency in read workloads by using an analogous approach to

hedging. Chopper [55] analyzes the impact of file system policies on performance behavior.

Chopper shows the impact of block allocation policies and poor layouts on tail latency.

MittOS [51] provides operating system support to reduce tail latency and achieve Server

Level Objectives (SLOs). In MittOS, the operating system exposes SLO interfaces in I/O

requests to user-space applications. The SLO interface allows the operating system to rapidly

reject I/O requests that cannot be served in time. When an I/O request is rejected, it is sent to

another node to be handled. MittOS techniques are complementary to our solution.

Tail Latency in Data Analytics Frameworks. A large majority of data analytic frameworks

rely on speculative execution (SE) to mitigate tail latency. LATE [113] is a scheduler for Map-

Reduce frameworks. LATE speculatively executes the task (within a job) that is expected to

finish further in the future. Mantri [23] uses real-time progress reports to monitor, detect, and

act against straggler tasks using resource aware techniques. Dolly [22] fully clones small
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jobs, avoiding the waiting time in previous speculative execution solutions. Dolly relies on

the fact that small jobs consume a little amount of resources; thus cloning full jobs increase

resource utilization marginally. Unfortunately, this approach does not work for large jobs,

in which clones may significantly increase cluster resource utilization. These techniques

improve running times by cutting compute bottlenecks. However, they cannot manage

storage bottlenecks. PBSE [92] couples compute and storage, to allow better detection of

stragglers by exposing dataflows characteristics to the compute framework. Our technique

handles storage-level bottlenecks independently from computation, while avoiding greater

compute-storage coupling.

4.8 Summary

We introduced smart hedging, a technique to manage read tail latencies in production

distributed file systems, distributed file systems. We implemented it in a popular system, and

evaluated it extensively. Our results demonstrate large latency improvements with I/O-bound

jobs, and smaller improvements with more balanced production workloads. The results

also illustrate that it is easy to overlook important effects in non-production systems. We

conclude that it is possible to devise effective techniques while considering the challenges

and constraints of real datacenters.

73



Chapter 5

Future Work

In this chapter we propose different ideas in which this thesis can be extended.

Storage devices, block layers, and local file systems are fundamental infrastructure com-

ponents in today’s computer systems. The better understanding of the interaction between

multiple components, as well as tunable parameters, would increase performance stability

across all systems in the storage stack. Extending our study could be a first step to achieve

this goal. For instance, we could analyze the interaction between different file systems

(e.g.F2FS [66], XFS [94], BetrFS [59]) and SDDs; as well as how different I/O schedulers

impact performance variability. Our analysis solely focused on sequential read workloads;

it would be interesting to see if the slowdown patterns observed there are also present in

random read workloads, sequential write workloads, random write workloads, and mixed

workloads. One more possible extension to this work consists of using the analysis insights

to develop local file systems that are more resilient to performance variability or that can at

least automatically detect it.

Another option is to develop applications that are able to detect performance degradation

due to lower layer misbehaviors. For instance, by modifying the local file system APIs,

applications can automatically detect slowdowns and react accordingly. This is somewhat

similar to what MittOS proposed with read system calls [51]. This approach could be

extended across upper layers of the stack and across other system calls. With these changes,
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applications can develop policies to provide performance guarantees. However, this approach

would require API modifications on each one of the lower layers in the stack. Unfortunately,

this would affect portability, one of the key benefits that many of these systems target [87],

as well as maintainability, and ease of deployment.
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Chapter 6

Conclusions

Over the last years, large amounts of data demand efficient computer systems. In particular,

efficient storage systems, since they are in charge of storing and retrieving the data. To keep

up with the demand, storage systems have evolved quickly across the stack; from new storage

media (e.g., PCIe SSDs, SMR disks), local file systems (e.g., F2FS [66], BetrFS [59]), to

layered storage systems (e.g., distributed file systems, key-value stores). In this thesis, we

studied and improved the performance of storage systems.

We first analyzed the interaction of SSDs and ext4 in sequential read workloads, with a

focused on buffered I/O. In our study, we performed the same experiment over extended

periods of time, and monitored the I/O behavior with existing Linux tools. The experiment

consisted on reading a large file (i.e., 256MB), both with HDFS and FIO, using system calls

that performed buffered I/O. We found that throughput varied differently depending on the

file lifetime and SSD characteristics. For instance, the performance of read operations varied

regularly in the beginning of a read operation that concerned a file fragment. Moreover, a file

with a long lifetime (i.e., weeks) experienced a permanent slowdown. Overall, we uncovered

three performance instabilities, we refer to them as intrinsic, temporal, and permanent

slowdown. When combined, these slowdowns can decrease throughput up to 30%. We

determined that the primary causes of these variations are the interaction between SSD

misbehaviors and lack of enough parallelism from the local file system. We showed that the

local file system can mitigate these variations by requesting larger and more I/O requests.
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However, in buffered I/O applications this cannot be direct mitigation, since larger requests

would fill the buffer cache faster, which might remove the benefits of using a buffered cache.

Our analysis points to the fact that local file system need to become more adaptable, specially

as multiple parts of the stack are in continuous change.

We also investigated the causes of performance degradation in distributed file systems,

focusing on the tail latency of read operations. First, we characterized the performance of

a distributed file system (i.e., HDFS) in Microsoft’s resource harvesting datacenters. We

showed that disk I/O contention is the primary cause of tail latency (in our datacenters).

We then proposed smart hedging, a technique to mitigate tail latency in read operations.

Smart hedging reacts to tail latency, no matter the root cause of the variation. Moreover,

our technique is production compliant, it effectively deals with heterogeneity (static and

dynamic), massive scale, resource harvesting, load imbalance, and maintainability and ease of

deployment. Our technique reduces tail latencies by tracking latencies on the client side and

establishes a dynamic threshold. A hedge (i.e., duplicate request) is triggered when a request

surpasses the dynamic latency threshold in an exponential back off manner. We implemented

our solution in HDFS, as part of a client library. We evaluated smart hedging with synthetic

workloads in a testbed with 4K servers. We also evaluated our technique with production

workloads on 70K servers across 3 Microsoft’s datacenters. We compared our solution against

baseline HDFS and a production version of HDFS with regular hedging. We showed that it is

possible to create techniques to reduce read operations tail latency in distributed file systems

under production constraints. Our technique is deployed in Microsoft’s resource-harvesting

datacenters.
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