4,477 research outputs found

    Three Dimensional Numerical General Relativistic Hydrodynamics I: Formulations, Methods, and Code Tests

    Full text link
    This is the first in a series of papers on the construction and validation of a three-dimensional code for general relativistic hydrodynamics, and its application to general relativistic astrophysics. This paper studies the consistency and convergence of our general relativistic hydrodynamic treatment and its coupling to the spacetime evolutions described by the full set of Einstein equations with a perfect fluid source. The numerical treatment of the general relativistic hydrodynamic equations is based on high resolution shock capturing schemes. These schemes rely on the characteristic information of the system. A spectral decomposition for general relativistic hydrodynamics suitable for a general spacetime metric is presented. Evolutions based on three different approximate Riemann solvers coupled to four different discretizations of the Einstein equations are studied and compared. The coupling between the hydrodynamics and the spacetime (the right and left hand side of the Einstein equations) is carried out in a treatment which is second order accurate in {\it both} space and time. Convergence tests for all twelve combinations with a variety of test beds are studied, showing consistency with the differential equations and correct convergence properties. The test-beds examined include shocktubes, Friedmann-Robertson-Walker cosmology tests, evolutions of self-gravitating compact (TOV) stars, and evolutions of relativistically boosted TOV stars. Special attention is paid to the numerical evolution of strongly gravitating objects, e.g., neutron stars, in the full theory of general relativity, including a simple, yet effective treatment for the surface region of the star (where the rest mass density is abruptly dropping to zero).Comment: 45 pages RevTeX, 34 figure

    General-relativistic resistive magnetohydrodynamics in three dimensions: Formulation and tests

    Full text link
    We present a new numerical implementation of the general-relativistic resistive magnetohydrodynamics (MHD) equations within the Whisky code. The numerical method adopted exploits the properties of implicit-explicit Runge-Kutta numerical schemes to treat the stiff terms that appear in the equations for large electrical conductivities. Using tests in one, two, and three dimensions, we show that our implementation is robust and recovers the ideal-MHD limit in regimes of very high conductivity. Moreover, the results illustrate that the code is capable of describing scenarios in a very wide range of conductivities. In addition to tests in flat spacetime, we report simulations of magnetized nonrotating relativistic stars, both in the Cowling approximation and in dynamical spacetimes. Finally, because of its astrophysical relevance and because it provides a severe testbed for general-relativistic codes with dynamical electromagnetic fields, we study the collapse of a nonrotating star to a black hole. We show that also in this case our results on the quasinormal mode frequencies of the excited electromagnetic fields in the Schwarzschild background agree with the perturbative studies within 0.7% and 5.6% for the real and the imaginary part of the l=1 mode eigenfrequency, respectively. Finally we provide an estimate of the electromagnetic efficiency of this process.Comment: 22 pages, 19 figure

    THC: a new high-order finite-difference high-resolution shock-capturing code for special-relativistic hydrodynamics

    Full text link
    We present THC: a new high-order flux-vector-splitting code for Newtonian and special-relativistic hydrodynamics designed for direct numerical simulations of turbulent flows. Our code implements a variety of different reconstruction algorithms, such as the popular weighted essentially non oscillatory and monotonicity-preserving schemes, or the more specialised bandwidth-optimised WENO scheme that has been specifically designed for the study of compressible turbulence. We show the first systematic comparison of these schemes in Newtonian physics as well as for special-relativistic flows. In particular we will present the results obtained in simulations of grid-aligned and oblique shock waves and nonlinear, large-amplitude, smooth adiabatic waves. We will also discuss the results obtained in classical benchmarks such as the double-Mach shock reflection test in Newtonian physics or the linear and nonlinear development of the relativistic Kelvin-Helmholtz instability in two and three dimensions. Finally, we study the turbulent flow induced by the Kelvin-Helmholtz instability and we show that our code is able to obtain well-converged velocity spectra, from which we benchmark the effective resolution of the different schemes.Comment: Updated to match the published versio

    Solving 3D relativistic hydrodynamical problems with WENO discontinuous Galerkin methods

    Get PDF
    Discontinuous Galerkin (DG) methods coupled to WENO algorithms allow high order convergence for smooth problems and for the simulation of discontinuities and shocks. In this work, we investigate WENO-DG algorithms in the context of numerical general relativity, in particular for general relativistic hydrodynamics. We implement the standard WENO method at different orders, a compact (simple) WENO scheme, as well as an alternative subcell evolution algorithm. To evaluate the performance of the different numerical schemes, we study non-relativistic, special relativistic, and general relativistic testbeds. We present the first three-dimensional simulations of general relativistic hydrodynamics, albeit for a fixed spacetime background, within the framework of WENO-DG methods. The most important testbed is a single TOV-star in three dimensions, showing that long term stable simulations of single isolated neutron stars can be obtained with WENO-DG methods.Comment: 21 pages, 10 figure

    General-relativistic Resistive Magnetohydrodynamics with Robust Primitive-variable Recovery for Accretion Disk Simulations

    Get PDF
    Recent advances in black hole astrophysics, particularly the first visual evidence of a supermassive black hole at the center of the galaxy M87 by the Event Horizon Telescope, and the detection of an orbiting "hot spot" nearby the event horizon of Sgr A* in the Galactic center by the Gravity Collaboration, require the development of novel numerical methods to understand the underlying plasma microphysics. Non-thermal emission related to such hot spots is conjectured to originate from plasmoids that form due to magnetic reconnection in thin current layers in the innermost accretion zone. Resistivity plays a crucial role in current sheet formation, magnetic reconnection, and plasmoid growth in black hole accretion disks and jets. We included resistivity in the three-dimensional general-relativistic magnetohydrodynamics (GRMHD) code BHAC and present the implementation of an implicit–explicit scheme to treat the stiff resistive source terms of the GRMHD equations. The algorithm is tested in combination with adaptive mesh refinement to resolve the resistive scales and a constrained transport method to keep the magnetic field solenoidal. Several novel methods for primitive-variable recovery, a key part in relativistic magnetohydrodynamics codes, are presented and compared for accuracy, robustness, and efficiency. We propose a new inversion strategy that allows for resistive-GRMHD simulations of low gas-to-magnetic pressure ratio and highly magnetized regimes as applicable for black hole accretion disks, jets, and neutron-star magnetospheres. We apply the new scheme to study the effect of resistivity on accreting black holes, accounting for dissipative effects as reconnection

    Linearized model Fokker-Planck collision operators for gyrokinetic simulations. II. Numerical implementation and tests

    Get PDF
    A set of key properties for an ideal dissipation scheme in gyrokinetic simulations is proposed, and implementation of a model collision operator satisfying these properties is described. This operator is based on the exact linearized test-particle collision operator, with approximations to the field-particle terms that preserve conservation laws and an H-Theorem. It includes energy diffusion, pitch-angle scattering, and finite Larmor radius effects corresponding to classical (real-space) diffusion. The numerical implementation in the continuum gyrokinetic code GS2 is fully implicit and guarantees exact satisfaction of conservation properties. Numerical results are presented showing that the correct physics is captured over the entire range of collisionalities, from the collisionless to the strongly collisional regimes, without recourse to artificial dissipation.Comment: 13 pages, 8 figures, submitted to Physics of Plasmas; typos fixe
    • …
    corecore