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A set of key properties for an ideal dissipation scheme in gyrokinetic simulations is proposed, and
implementation of a model collision operator satisfying these properties is described. This operator
is based on the exact linearized test-particle collision operator, with approximations to the
field-particle terms that preserve conservation laws and an H-theorem. It includes energy diffusion,
pitch-angle scattering, and finite Larmor radius effects corresponding to classical �real-space�
diffusion. The numerical implementation in the continuum gyrokinetic code GS2 �Kotschenreuther
et al., Comput. Phys. Comm. 88, 128 �1995�� is fully implicit and guarantees exact satisfaction of
conservation properties. Numerical results are presented showing that the correct physics is captured
over the entire range of collisionalities, from the collisionless to the strongly collisional regimes,
without recourse to artificial dissipation. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3155085�

I. INTRODUCTION

Collisions play an important role in gyrokinetics. An ac-
curate collision operator is important for calculation of neo-
classical transport1,2 and the growth rate of instabilities such
as trapped electron modes,3,4 dissipative drift waves,5–7 and
microtearing modes8 in moderate collisionality regimes. Col-
lisions can also affect the damping of zonal flows9 and other
modes that provide a sink for turbulent energy. In their ab-
sence, arbitrarily fine scales can develop in phase space,10–14

which can in some cases pose challenges for discrete numeri-
cal algorithms, especially in the long-time limit;15,16 even a
modest amount of collisions can make accurate numerical
calculation much easier.

Furthermore, inclusion of a small collisionality keeps the
distribution function smooth enough in velocity space that
the standard gyrokinetic ordering17 for velocity space gradi-
ents is satisfied. For example, the parallel nonlinearity18,19

given by

−
�

�v�

�h� q

m
b̂ + v�

b̂ � �B

B2 � · �	�
� �1�

enters at the same order as the other terms in the gyrokinetic
equation if the typical scale of parallel velocity fluctuations
�v� is one order smaller in the gyrokinetic expansion param-

eter � /L ���gyroradius and L�background scale length�
than the thermal speed vth. Here, h is the non-Boltzmann part
of the perturbed distribution function �defined more rigor-
ously in Sec. II�, � is the electrostatic potential, B is the

magnetic field strength, b̂�B /B, q is particle charge, m is
particle mass, and 	·
 denotes the gyroaverage at fixed guid-
ing center position R.

While such a situation is possible in the collisionless
limit, a small collisionality prohibits the formation of struc-
tures with �v� �� /L�vth. The level of collisionality neces-
sary to negate the importance of the parallel nonlinearity can
be calculated by assuming a balance between collisions and
fluctuation dynamics,

�h

�t
 C�h� ⇒ �h  �vth

2 �2h

�v2 , �2�

where C�h� describes the effect of collisions on h, � is the
fluctuation frequency, and � is the collision frequency. From
the above expression, we see that scales in velocity space
become small enough for the parallel nonlinearity to be im-
portant only when the collision frequency satisfies �
� �� /L�2�. Such low collisionalities are not present in most
fusion plasmas of interest. Furthermore, if such an ordering
had to be adopted, the lowest order distribution function
could become strongly non-Maxwellian. This is a problem
for �f codes that assume an equilibrium Maxwellian.

In light of the above considerations, it is important to
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include an accurate treatment of dissipation in gyrokinetic
simulations. In order to faithfully represent gyrokinetic
plasma dynamics at reasonable numerical expense, we take
the view that the form of the dissipation should be such that
it ensures satisfaction of the standard gyrokinetic ordering,
locally conserves particle number, momentum, and energy,
satisfies Boltzmann’s H-theorem, and efficiently smooths
phase-space structure. The first of these requirements has
already been discussed in the context of the parallel nonlin-
earity. Conservation properties have been found to be impor-
tant, for instance, in calculations of the neoclassical ion ther-
mal conductivity,20 as well as in a wide range of problems in
fluid dynamics. The existence of an H-theorem is critical for
entropy balance10,21,22 and for the dynamics of the turbulent
phase-space cascade.12,13 Efficient smoothing of phase-space
structures is necessary to resolve numerical simulations at
reasonable computational expense.

A commonly employed dissipation mechanism in gyro-
kinetic simulations is artificial �hyper� dissipation, often in
physical �position� space.5,14,23–25 Ideally, the form of the ar-
tificial dissipation should be chosen to satisfy the require-
ments listed above and should be tested for convergence to
the collisionless result. Of course, artificial dissipation alone
is unable to capture the correct dynamics for moderate to
strongly collisional systems where turbulent fluxes and other
observable quantities depend sensitively on collisionality; for
such systems, a physical dissipation model is desired.

A number of such model physical collision operators are
employed in gyrokinetic codes.5,23,24,26 These range in com-
plexity from the Krook operator27 to the Rutherford–
Kovrizhnikh operator28 to the Catto–Tsang operator,29 all of
which have previously been implemented in GS2. The most
advanced of these operators �Catto–Tsang�, implemented us-
ing a split-implicit method,4,26 consists of the linearized Lan-
dau test-particle operator �both pitch-angle scattering and en-
ergy diffusion� with a model field-particle operator designed
to satisfy conservation properties. However, due to the form
chosen for the field-particle piece, the Catto–Tsang operator
does not satisfy Boltzmann’s H-theorem and does not vanish
on a perturbed Maxwellian. Here, we discuss numerical
implementation in GS2 of a new, improved model operator
which includes the effects of both pitch-angle scattering and
energy diffusion �i.e., efficiently smooths in phase-space and
ensures gyrokinetic ordering�, conserves particle number,
momentum, and energy, satisfies Boltzmann’s H-theorem
�therefore vanishing on a perturbed Maxwellian�, and re-
duces to the linearized Landau operator in the large k��
limit. A full description of this operator and a discussion of
its desirable properties, including comparison with the previ-
ous models of Catto–Tsang and Hirshman–Sigmar,32 is given
in the companion paper30 �henceforth Paper I�. We will focus
on how such an operator can be implemented efficiently in
gyrokinetic codes while numerically maintaining the proper-
ties listed above and on how our gyrokinetic dissipation
scheme �or any other� might be tested against a number of
plasma physics problems.

The paper is organized as follows. In Sec. II, we intro-
duce the gyroaveraged collision operator from Paper I and
examine properties that should be taken into account when

using it in numerical simulations. In Sec. III, we describe our
numerical implementation of the collision operator. In Sec.
IV we present numerical results for a number of tests dem-
onstrating the ability of our collision operator implementa-
tion to reproduce correct collisional and collisionless phys-
ics. And in Sec. V, we summarize our findings.

II. PROPERTIES OF THE GYROAVERAGED
COLLISION OPERATOR

In order to include collisions in gyrokinetics, we follow
the treatment of Ref. 22 and assume the collision frequency �
to be the same order in the gyrokinetic ordering as the char-
acteristic fluctuation frequency �.31 This leads to the require-
ment that the distribution of particles in velocity space is
Maxwellian to lowest order and allows us to represent the
total distribution function through first order in � /L �where �
is ion gyroradius and L is the scale length of equilibrium
quantities� as

f�r,�,	,t� = F0�	��1 −
q��r,t�

T0
� + h�R,�,	,t� , �3�

where r is particle position, R=r− b̂�v /
0 is guiding cen-
ter position, ��mv�

2 /2B0 is magnetic moment, 	�mv2 /2 is
particle energy, F0 is a Maxwellian, � is the electrostatic
potential, B0 is the magnitude of the background magnetic
field, T0 is the background temperature, q is particle charge,
and 
0=qB0 /mc. The gyrokinetic equation governing the
evolution of h is given by

�h

�t
+ �v�b̂ + vD� ·

�h

�R
+

c

B0
�	�
R,h�

= − q
�F0

�	

�	�
R

�t
+

c

B0
�F0,	�
R� + 	C�h�
R, �4�

where b̂�B0 /B0, vD is the drift velocity of guiding centers,
���−v ·A /c, A is the vector potential, �a ,b� is the Poisson
bracket of a and b, 	a
R is the gyroaverage of a at constant
R, and 	C�h�
R is the gyroaveraged collision operator.

For 	C�h�
R, we restrict our attention to the model colli-
sion operator presented in Paper I. We work within the
framework of the continuum gyrokinetic code GS2,5 which
assumes periodicity in the spatial directions perpendicular to
B0 in order to reduce the simulation volume to a thin flux
tube encompassing a single magnetic field line. Conse-
quently, we require a spectral representation of 	C�h�
R,

	C�h�
R � �
k

eik·RCGK�hk� , �5�

where k is the perpendicular wavevector. For convenience,
we reproduce the expression for the same-species part of
CGK�hk� from Paper I in operator form,

CGK�hk� � L�hk� + D�hk� + UL�hk� + UD�hk� + E�hk� ,

�6�

where
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0
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are the gyroaveraged Lorentz and energy diffusion operators
�which together form the test-particle piece of the linearized
Landau operator, as shown in Refs. 29 and 30�,

UL�hk� � �DF0�J0��v�

�d3v�Dv�J0��hk

�d3v�Dv�
2F0

+ J1��v�

�d3v�Dv�J1��hk

�d3v�Dv�
2F0

� �9�

and

UD�hk� � − ��F0�J0��v�

�d3v��v�J0��hk

�d3v��v�
2F0

+ J1��v�

�d3v��v�J1��hk

�d3v��v�
2F0

� �10�

are the gyroaveraged momentum-conserving corrections to
the Lorentz and energy diffusion operators, and

E�hk� � �Ev2J0��F0
�d3v�Ev2J0��hk

�d3v�Ev4F0
�11�

is the gyroaveraged energy-conserving correction �the con-
serving terms are an approximation to the field-particle piece
of the linearized Landau operator�. The electron collision
operator has the following additional term to account for
electron-ion collisions:

CGK
ei �he,k� = �D

ei�1

2

�

��
�1 − �2�

�he,k

��
−

k2v2

4
0e

2 �1 + �2�he,k

+
2v�u��hi,k�

vthe

2 J0�e�F0e� , �12�

where ��v� /v is the pitch angle, �kv� /
0, J0 and J1 are

Bessel functions of the first kind, vth��2T0 /m is the thermal
velocity, and u��hi,k� is the perturbed parallel ion flow veloc-
ity. Expressions for the velocity-dependent collision frequen-
cies �D, ��, ��, and �E are given in Paper I �which follows
the notation of Ref. 32�.

Having specified the form of our collision operator, we
now discuss some of its fundamental properties that guide
our choice of numerical implementation.

A. Collision operator amplitude

Even when the collisionality approaches zero, CGK�hk�
can have appreciable amplitude. There are two reasons for
this: first, the velocity dependence of �D, �E, and �� is such
that each go to infinity as v→0 �so low-velocity particles are
always collisional�, and second, we expect the distribution
function to develop increasingly smaller scales in v and � as
collisionality decreases, so that the amplitude of the terms

proportional to �2h /��2 and �2h /�v2 may remain approxi-
mately constant33 �i.e., CGK�hk� does not vanish as
�→0�.10–12,14 The fact that CGK�hk� can be quite large even
at very low collisionalities means that it should be treated
implicitly if one wants to avoid a stability limit on the size of
the time step �t. In Sec. III, we describe our fully implicit
implementation of the collision operator.

B. Local moment conservation

Since collisions locally conserve particle density, mo-
mentum, and energy, one would like these properties to be
guaranteed by the discrete version of the collision operator.
Mathematically, this means that the density, momentum, and
energy moments of the original �ungyroaveraged� collision
operator must vanish �for same-species collisions�. However,
the nonlocal nature of the gyroaveraging operation intro-
duces finite Larmor radius �FLR� effects that lead to nonzero
values for the analogous moments of 	C�h�
R. Since this is
the quantity we employ in gyrokinetics, we need to find the
pertinent relations its moments must satisfy in order to guar-
antee local conservation properties.

This is accomplished by Taylor expanding the Bessel
functions J0�� and J1��. Because the Bessel functions are
entire functions, they can be represented exactly �for all val-
ues of k�� by the infinite Taylor series expanded about k�
=0. In particular, one can write

J0�� = J0� = 0� + �� �J0

�
�

=0
+ � �2J0

�2 �
=0

+ ¯ �
= 1 − k · �k

v�
2

4
0
2�1 −

k2v�
2

4
+ ¯ �� = 1 + k · �k,

�13�

and, similarly, J1��=k · �̃k. This indicates that the FLR cor-
rections can be written as the divergence of a flux in physical
space. As a result, one can show that30

� d3v� 1

v

v2�		C�h�
R
r = �
k

eik·r� d3v� 1

v�b̂

v2 �CGK
0 �hk�

− � · �C, �14�

where 	 · 
r denotes a gyroaverage at fixed r, CGK
0 �hk� is the

operator of Eq. �6� with k�=0 �neglecting FLR terms but
retaining nonzero subscripts k for h�, and �C is the colli-
sional flux of number, momentum, and energy arising from
FLR terms. Consequently, the density, momentum, and en-
ergy moments of the gyrokinetic equation can be written in
the conservative form,

�M
�t

+ � · �M =� d3v� 1

v�b̂

v2 �CGK
0 �hk� , �15�

where M���n n�u� �p�T represents the perturbed number,
momentum, and energy densities, the superscript T denotes
the transpose, and �M contains both the collisional flux �C

and the flux arising from all other terms in the gyrokinetic
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equation �for a more detailed discussion, see Paper I�. Thus,
local conservation properties are assured in gyrokinetics as
long as the density, momentum, and energy moments of
CGK

0 �hk� vanish,

� d3v� 1

v�

v2�CGK
0 �hk� = 0. �16�

We describe how this is accomplished numerically in
Sec. III.

C. H-theorem

In contrast with local conservation properties, the state-
ment of the H-theorem is unmodified by gyroaveraging the
collision operator. Defining the entropy as S=−f ln f , Boltz-
mann’s H-theorem tells us that collisions can only increase
entropy,

� �S

�t
�

C
= −� d3r

V
� d3v ln�f�C�f� � 0, �17�

where V��d3r and the double integration spans phase space
�the velocity integration is taken at constant particle position
r�. Expanding the distribution function as before, we find to
lowest order in the gyrokinetic ordering,

� �S

�t
�

C
= −� d3r

V
� d3v

h

F0
C�h� � 0. �18�

Changing variables from particle position r to guiding center
position R, we obtain

� �S

�t
�

C
= −� d3v� d3R

V

h

F0
	C�h�
R � 0, �19�

where now the velocity integration is taken at constant R. In
this case, the nonlocality of the gyroaveraging operation
leads to no modification of the H-theorem because of the
definition of entropy as a phase-space averaged quantity �as
opposed to local conservation properties, which involve only
velocity-space averages�. Therefore, one can easily diagnose
entropy generation and test numerical satisfaction of the
H-theorem in gyrokinetic simulations, as we show in Sec. IV.

III. NUMERICAL IMPLEMENTATION

It is convenient for numerical purposes to separately
treat collisional and collisionless physics. Thus, we begin by
writing the gyrokinetic equation in the form

�hk

�t
= CGK�hk� + A�hk� , �20�

where A�hk� represents the rate of change of hk due to the
collisionless physics. In order to separate these terms, we
utilize Godunov dimensional splitting,34 which is accurate to
first order in the timestep �t,

hk
* − hk

n

�t
= A�hk

n,hk
*� , �21�

hk
n+1 − hk

*

�t
= CGK�hk

n+1� , �22�

where n and n+1 are indices representing the current and
future time steps and h

k
* is defined by Eq. �21�—it is the

result of advancing the collisionless part of the gyrokinetic
equation. With h

k
* thus given, we restrict our attention to

solving Eq. �22�. For notational convenience, we suppress all
further k subscripts, as we will be working exclusively in
k-space.

As argued in Sec. II, we must treat the collision operator
implicitly to avoid a stability limit on the size of �t. We use
a first order accurate backward-difference scheme in time
instead of a second order scheme �such as
Crank–Nicholson35� because it is well known that the Crank–
Nicholson scheme introduces spurious behavior in solutions
to diffusion equations when taking large timesteps �and be-
cause Godunov splitting is only first order accurate for mul-
tiple splittings, which will be introduced shortly�.

With this choice, hn+1 is given by

hn+1 = �1 − �tCGK�−1h*. �23�

In general, CGK is a dense matrix, with both energy and
pitch-angle indices. Inversion of such a matrix, which is nec-
essary to solve for hn+1 in our implicit scheme, is computa-
tionally expensive. We avoid this by taking two additional
simplifying steps. First we employ another application of the
Godunov splitting technique, which, combined with the
choice of a �� ,v� grid in GS2,14 allows us to consider energy
and pitch-angle dependence separately,

h** = �1 − �t�L + UL��−1h*, �24�

hn+1 = �1 − �t�D + UD + E��−1h**. �25�

The h* and h** are vectors whose components are the values
of h at each of the �� ,v� grid points. In Eq. �24� we order the
components so that

h � �h11,h21, . . . ,hN1,h12, . . . ,hNM�T, �26�

where the first index represents pitch angle, the second rep-
resents energy, and N and M are the numbers of pitch-angle
and energy grid points, respectively. This allows for a com-
pact representation in pitch angle. When solving Eq. �25�, we
reorder the components of h so that

h � �h11,h12, . . . ,h1N,h21, . . . ,hNM�T, �27�

allowing for a compact representation in energy.

A. Conserving terms

The matrices 1−�tL and 1−�tD are chosen to be tridi-
agonal by employing three-point stencils for finite differenc-
ing in � and v. This permits computationally inexpensive
matrix inversion. However, the full matrices to be inverted
include the momentum- and energy-conserving operators, U
and E, which are dense matrices. We avoid direct inversion
of these matrices by employing the Sherman–Morrison
formula,36,37 which gives x in the matrix equation Mx=b, as
long as M can be written in the following form:
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M = A + uvT, �28�

where T denotes the vector transpose. The solution is then
given by

x = y − � v · y

1 + v · z
�z , �29�

where y=A−1b, z=A−1u, and the dot products represent in-
tegrals over velocity space. If A−1 is known or easily obtain-
able �as in our case�, this formulation provides significant
computational savings over the straighforward method of di-
rectly inverting the dense matrix M.

Details of the application of the Sherman–Morrison for-
mula to Eqs. �24� and �25� are given in Appendix A. Here,
we state the main points. The matrix operators L and D are to
be identified with A, and the integral conserving terms U and
E can be written in the form of the tensor product, u � v.
Identifying h** and hn+1 with x, we find that multiple appli-
cations of the Sherman–Morrison formula give

h = y2 − � v2 · y2

1 + v2 · z2
�z2, �30�

where

y2 = y0 − � v0 · y0

1 + v0 · s0
�s0 − � v1 · y0

1 + v1 · w0
�w0, �31�

z2 = z0 − � v0 · z0

1 + v0 · s0
�s0 − � v1 · z0

1 + v1 · w0
�w0. �32�

The quantities v0, v1, v2, z0, s0, w0, and y0 are specified in
Appendix A. With the exception of y0, each of these quanti-
ties is time independent, so they need be computed only once
at the beginning of each simulation. Consequently, inclusion
of the conserving terms in our implicit scheme comes at little
additional expense.

We note that when Eq. �30� is applied to computing the
inverse matrix in Eq. �24�, the corresponding v2 is nonzero
only for the electron collision operator. This term arises by
using the parallel component of Ampere’s law to rewrite the
electron-ion collision operator of Eq. �12� as

CGK
ei �he� = �D

ei� 1

2

�

��
�1 − �2�

�he

��
−

k2v2

4
0,e
2 �1 + �2�he

+
2v�

vthe

2 J0�e�F0e�u��he� +
ck2

4�en0,e
A��� , �33�

where e is the magnitude of the electron charge, u��he� is the
parallel component of the electron fluid velocity, and n0,e is
the equilibrium electron density. For electron collisions, the
A� term is absorbed into h* so that we use the modified
quantity

h̃
e
* = h

e
* + �D

ei�t
ck2v�

2�evthe

2 n0,e
A�J0�e�F0,e �34�

when applying the Sherman–Morrison formula, where A�

from the n+1 time level is used �for details on the implicit
calculation of A�, see Ref. 5�.

B. Discretization in energy and pitch angle

We still must specify our choice of discretization for
CGK. Ideally, we would like the discrete scheme to guarantee
the conservation properties and H-theorem associated with
C. As discussed in Sec. II, the former is equivalent to requir-
ing that the k�=0 component of CGK, CGK

0 , satisfies Eq. �16�.
We now proceed to show that this requirement is satisfied by
carefully discretizing the conserving terms and by employing
a novel finite difference scheme that incorporates the weights
associated with our numerical integration scheme.

We begin by writing CGK
0 �h� for same-species collisions,

CGK
0 �h� =

�D

2

�

��
�1 − �2�

�h

��
+

1

2v2

�

�v
���v4F0

�

�v

h

F0
�

+ �Dv�F0
�d3v�Dv�h

�d3v�Dv�
2F0

− ��v�F0
�d3v��v�h

�d3v��v�
2F0

+ �Ev2F0
�d3v�Ev2h

�d3v�Ev4F0
. �35�

With CGK
0 thus specified, we now consider numerical evalu-

ation of the relevant moments of Eq. �35�. To satisfy number
conservation ��d3vCGK

0 �h�=0�, velocity space integrals of
each of the terms in Eq. �35� should vanish individually. For
integrals of the first two terms to vanish, we require a finite
difference scheme that satisfies a discrete analog of the fun-
damental theorem of calculus �i.e., conservative differenc-
ing�; for the last three terms, we must have a discrete inte-
gration scheme satisfying �d3v�Dv�F0=�d3v��v�F0

=�d3v�Ev2F0=0. The requirement that �d3v�Dv�F0

=�d3v��v�F0=0 is satisfied by any integration scheme with
velocity space grid points and associated integration weights
symmetric about v� =0, which is true for the �� ,v� grid used
in GS2. By substituting for �E everywhere using the identity

�Ev2F0 = −
1

v2

�

�v
���v5F0� , �36�

the other integral constraint ��d3v�Ev2F0=0� reduces to the
requirement that finite difference schemes must satisfy the
fundamental theorem of calculus.

Parallel momentum conservation ��d3vv�CGK
0 �h�=0� in-

troduces the additional requirements that

� d3vv���D

2

�

��
�1 − �2�

�h

��
+ v��DF0

�d3v�Dv�h

�d3v�Dv�
2F0

� = 0

�37�

and

� d3v
v�

2v2

�

�v
���v4F0

�

�v

h

F0
�

=� d3v��v�
2F0

�d3v��v�h

�d3v��v�
2F0

. �38�

If the finite difference scheme used for all differentiation
possesses a discrete version of integration by parts �upon
double application�, then Eqs. �37� and �38� are numerically
satisfied as long as v��Dh in the second term of Eq. �37� is
expressed in the form
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v��Dh = −
1

2
� �

��
�1 − �2�

�v�

��
��Dh , �39�

�� on the right hand side of Eq. �38� is expressed using the
identity

2��v3F0 =
�

�v
���v4F0

�v
�v
� , �40�

and all integrals are computed using the same numerical in-
tegration scheme �if analytic results for the integral denomi-
nators in terms 3 and 4 of Eq. �35� are used, then the neces-
sary exact cancellation in Eqs. �37� and �38� will not occur�.

The only additional constraint imposed by energy con-
servation ��d3vv2CGK

0 �h�=0� is that the form of Eq. �36� be
slightly modified so that

�Ev2F0 = −
1

v2

�

�v
���v4F0

�v2

�v
� , �41�

which still satisfies the number conservation constraint. Us-
ing the forms given by Eqs. �39�–�41�, conservation proper-
ties are guaranteed as long as one employs a finite difference
scheme for pitch-angle scattering and energy diffusion that
satisfies discrete versions of the fundamental theorem of cal-
culus and integration by parts.

For the case of equally spaced grid points in v and �,
there is a straightforward difference scheme, accurate to sec-
ond order in the grid spacing, that satisfies both
requirements,38

�

�x
G

�h

�x
�

Gj+1/2�hj+1 − hj� − Gj−1/2�hj − hj−1�
�x2 , �42�

where x is a dummy variable representing either v or �, �x is
the grid spacing, hj is the value of h evaluated at the grid
point xj, xj�1/2��xj +xj�1� /2, and G is either 1−�2 �for
pitch-angle scattering� or ��v4F0 �for energy diffusion�.
However, in order to achieve higher order accuracy in the
calculation of the velocity space integrals necessary to obtain
electromagnetic fields, GS2 �Ref. 14� and a number of other
gyrokinetic codes39 use grids with unequal spacing in v and
� and integration weights that are not equal to the grid
spacings.

Given the constraints of a three-point stencil on an un-
equally spaced grid, we are forced to choose between a

higher order scheme �a second order accurate scheme can be
obtained with compact differencing,40 as described in Appen-
dix B� that does not satisfy our two requirements and a lower
order scheme that does. Since our analytic expression for
CGK was designed in large part to satisfy conservation prop-
erties �and because the conserving terms are only a zeroth
order accurate approximation to the field-particle piece of the
linearized Landau operator32�, we choose the lower order
scheme, given here, as the default,

�

�x
G

�h

�x
�

1

wj
�Gj+1/2

hj+1 − hj

xj+1 − xj
− Gj−1/2

hj − hj−1

xj − xj−1
� , �43�

where wj is the integration weight associated with xj.
Defining ��Gh�, with the prime denoting differentia-

tion with respect to x, Taylor series can be used to show

� j+1/2 − � j−1/2

wj
= � j�

�xj

wj
+ O� ��x� j

2

wj
� , �44�

where �xj =xj+1/2−xj−1/2. With the exception of pitch angles
corresponding to trapped particles,5,14 the grid points �xj� and
associated integration weights �wj� in GS2 are chosen accord-
ing to Gauss–Legendre quadrature rules.41 For this case, we
show numerically in Fig. 1 that

1

N
�
j=1

N
�xj

wj
= 1 + O� 1

N
�
j=1

N

�xj� = 1 + O� 1

N
� �45�

and

max
j=2,. . .,N−1

�1 −
�xj

� j
� = O� 1

N
� , �46�

where N is the number of grid points in x.
The boundary points �j=1,N� are excluded from the

max operator above. This is because �x /w �the factor mul-
tiplying � j� in Eq. �44�� converges to approximately 1.2 for
the boundary points as the grid spacing is decreased �Fig. 1�.
For the energy diffusion operator, we can make use of the
property that G�x�=G�x��=0 at x=0 and x=� to show

FIG. 1. �Left� Solid line indicates the
scaling of the leading order error, av-
eraged over all grid points, of the con-
servative finite difference scheme for a
Gauss–Legendre grid �the grid used in
GS2�. The slope of the dotted line cor-
responds to a first order scheme.
�Right� Factor by which the conserva-
tive finite difference scheme of Eq.
�43� amplifies the true collision opera-
tor amplitude at the boundaries of the
Gauss–Legendre grid.
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�
� j�1/2

wj
= � j� + O� ��x� j

2

wj
� , �47�

with the plus sign corresponding to j=1 and the minus sign
to j=N. This is not true for the Lorentz operator, so we are
forced to accept an approximately 20% magnification of the
Lorentz operator amplitude at �= �1. We find that this rela-
tively small error at the boundaries has a negligible effect on
measurable �velocity space averaged� quantities in our simu-
lations.

IV. NUMERICAL TESTS

We now proceed to demonstrate the validity of our col-
lision operator implementation. In particular, we demonstrate
conservation properties, satisfaction of Boltzmann’s
H-theorem, efficient smoothing in velocity space, and recov-
ery of theoretically expected results in both collisional �fluid�
and collisionless limits. While we do not claim that the suite
of tests we have performed is exhaustive, it constitutes a
convenient set of numerical benchmarks that can be used for
validating collision operators in gyrokinetics.

A. Homogeneous plasma slab

We first consider the long wavelength limit of a homo-
geneous plasma slab with Boltzmann electrons and no varia-
tion along the magnetic field �k� =0�. The gyrokinetic equa-
tion for this system simplifies to

���f�
�t

� CGK
0 �h� , �48�

which means local density, momentum, and energy should be
conserved. In Fig. 2 we show numerical results for the time
evolution of the local density, momentum, and energy for
this system.

Without inclusion of the conserving terms �9�–�11�, we
see that density is conserved, as guaranteed by the conserva-
tive differencing scheme, while the momentum and energy
decay away over several collision times. Inclusion of the

conserving terms provides us with exact �up to numerical
precision� conservation of number, momentum, and energy.
To illustrate the utility of our conservative implementation,
we also present results from a numerical scheme that does
not make use of Eqs. �39�–�41� and that employs a finite
difference scheme that does not possess discrete versions of
the fundamental theorem of calculus and integration by parts.
Specifically, we consider a first order accurate finite differ-
ence scheme similar to that given by Eq. �43�, with the only
difference being that the weights in the denominator are re-
placed with the local grid spacings. In this case, we see that
density, momentum, and energy are not exactly conserved
�how well they are conserved depends on velocity space res-
olution, which is 16 pitch angles and 16 energies for the run
considered here�.

The rate at which our collision operator generates en-
tropy in the homogenous plasma slab is shown in Fig. 3. As
required by the H-theorem, the rate of entropy production is
always non-negative and approaches zero in the long-time
limit as the distribution function approaches a shifted Max-
wellian. We find this to hold independent of both the grid
spacing in velocity space and the initial condition for the
distribution function �in Fig. 3, the values of h�� ,v� were
drawn randomly from the uniform distribution on the inter-
val �−1 /2,1 /2��.

B. Resistive damping

We now modify the system above by adding a finite A�.
From fluid theory, we know that collisional friction between
electrons and ions provides resistivity which leads to the
decay of current profiles. Because the resistive time is long
compared to the collision time, one can neglect ���f� /�t.
However, since A� k−2, and we are considering k�1,
�A� /�t must be retained. The resulting electron equation is of
the form of the classical Spitzer problem �see, e.g., Ref. 42�,

FIG. 2. Plots showing evolution of the perturbed local density, parallel momentum, and energy over fifty collision times. Without the conserving terms
�9�–�11�, both parallel momentum and energy decay significantly over a few collision times �long dashed lines�. Inclusion of conserving terms with the
conservative scheme detailed in Sec. III leads to exact moment conservation �solid lines�. Use of a nonconservative scheme leads to inexact conservation that
depends on grid spacing �short dashed lines�.
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CGK
0 �he� = −

eF0,e

T0,e

v�

c

�A�

�t
. �49�

The parallel current evolution for this system is given by

J��t� = J��t = 0�exp�−
c2k2

4�
�t� , �50�

where �=1 /�� is the resistivity, �� =1.98�enee
2 /me is the

Spitzer conductivity, and �e=3�� /4�ei is the electron colli-
sion time.

We demonstrate that the numerical implementation of
our operator correctly captures this resistive damping in Figs.
4 and 5. We also see in these figures that in the absence of
the ion drag term from Eq. �12�, the electron flow is incor-
rectly damped to zero �instead of to the ion flow�, leading to
a steady-state current.

C. Slow mode damping

We next consider the damping of the slow mode in a
homogenous plasma slab as a function of collisionality. In
the low k��i, high �i limit, one can obtain analytic expres-
sions for the damping rate in both the collisional �k��mfp

�1� and collisionless �k��mfp�1� regimes, where �mfp is the
ion mean free path �see, e.g., Ref. 12�. The expressions are

� = � k�vA�1 − ���,ik�

2vA
�2

− i
��,ik�

2

2
�51�

for k��mfp�1 and

� = − i
�k��vA

���i

�52�

for k��mfp�1. Here, vA=vth,i /��i is the Alfven speed and ��,i

is the parallel ion viscosity, which is inversely proportional
to the ion-ion collision frequency, �ii: ��,i�vth,i

2 /�ii. As one
would expect, the damping in the strongly collisional regime
�Eq. �51�� is due primarily to viscosity, while the collision-
less regime �Eq. �52�� is dominated by Barnes damping.43

In Fig. 6, we plot the collisional dependence of the
damping rate of the slow mode obtained numerically using
the new collision operator implementation in GS2. In order to
isolate the slow mode in these simulations, we took �=A�

=�ne=0 and measured the damping rate of �B�. This is pos-
sible because �B� effectively decouples from � and A� for our
system, and �ne can be neglected because �i�1.12 We find
quantitative agreement with the analytic expressions �51� and
�52� in the appropriate regimes. In particular, we recover the
correct viscous behavior in the k��mfp�1 limit �damping rate
proportional to ��,i�, the correct collisional damping in the
k��mfp1 limit �damping rate inversely proportional to ��,i�,
and the correct collisionless �i.e., Barnes� damping in the
k��mfp�1 limit.

D. Electrostatic turbulence

Finally, we illustrate the utility of our collision operator
in a nonlinear simulation of electrostatic turbulence in a
Z-pinch field configuration.44 We consider the Z pinch be-
cause it contains much of the physics of toroidal configura-
tions �i.e., curvature� without some of the complexity �no

FIG. 3. Plot of the evolution of entropy generation for the homogeneous
plasma slab over 20 collision times. Our initial distribution in velocity space
is random noise, and we use a grid with 16 pitch angles and 8 energies. The
entropy generation rate is always non-negative and approaches zero in the
long-time limit.

FIG. 4. Evolution of �J�� for the electromagnetic plasma slab with �=10−4,
ky�i=0.1, and �ei=10k�vth,i. Inclusion of the ion drag term in the electron-ion
collision operator leads to the theoretically predicted damping rate for the
parallel current given in Eq. �50�. Without the ion drag term, the parallel
current decays past zero �at t�22� and converges to a negative value as the
electron flow damps to zero.
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particle trapping�. At relatively weak pressure gradients, the
dominant gyrokinetic linear instability in the Z pinch is the
entropy mode,45–50 which is nonlinearly unstable to second-
ary instabilities such as Kelvin–Helmholtz.51

In previous numerical investigations of linear50 and
nonlinear51 plasma dynamics in a Z pinch, collisions were
found to play an important role in the damping of zonal
flows and in providing an effective energy cutoff at short
wavelengths. However, as pointed out in Ref. 51, the Lorentz
collision operator used in those investigations provided in-
sufficient damping of short wavelength structures to obtain
steady-state fluxes. Consequently, a model hyperviscosity
had to be employed.

We have reproduced a simulation from Ref. 49 using our
new collision operator, and we find that hyperviscosity is no
longer necessary to obtain steady-state fluxes �Fig. 7�. This
can be understood by examining the linear growth rate spec-
trum of Fig. 8. We see that in this system energy diffusion is
much more efficient at suppressing short wavelength struc-
tures than pitch-angle scattering. Consequently, no artificial
dissipation of short wavelength structures is necessary. We
also note that inclusion of conserving terms has a significant
effect on the linear growth rate spectrum for this system,
changing the peak growth rate by more than 50%.

V. SUMMARY

In Sec. I we proposed a set of key properties that an
ideal dissipation scheme for gyrokinetics should satisfy.
Namely, the scheme should limit the scale size of structures
in phase space in order to guarantee the validity of the gyro-
kinetic ordering and to provide numerical resolution at rea-
sonable expense, conserve particle number, momentum, and
energy, and satisfy Boltzmann’s H-theorem. While com-
monly employed simplified collision operators or hypervis-

FIG. 5. Evolution of perturbed parallel flow for the electromagnetic plasma
slab with �=10−4, ky�i=0.1, and �ei=10k�vti. Without inclusion of the ion
drag term in Eq. �12�, the electron flow is erroneously damped to zero
�instead of to the ion flow�.

FIG. 6. Damping rate of the slow mode for a range of collisionalities span-
ning the collisionless to strongly collisional regimes. Dashed lines corre-
spond to the theoretical prediction for the damping rate in the collisional
�k��mfp�1� and collisionless �k��mfp�1� limits. The solid line is the result
obtained numerically with GS2. Vertical dotted lines denote approximate re-
gions �collisional and collisionless� for which the analytic theory is valid.

FIG. 7. Evolution of ion particle and heat fluxes for an electrostatic, two-
species Z-pinch simulation. We are considering R /Ln=2.0 and �ii

=0.01vth,i /R. The particle flux is indicated by the solid line and is given in
units of �� /R�n0,ivth,i. The heat flux is indicated by the dashed line and is
given in units of �� /R�n0,ivth,i. We see that a steady state is achieved for both
fluxes without artificial dissipation.
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cosity operators may be adequate for some calculations,52 it
is important to be able to use the more complete collision
operator described in this paper, which preserves all of these
desirable dissipation properties.

In Sec. II we presented the model collision operator de-
rived in Paper I and discussed some of its features that
strongly influence our choice of numerical implementation.
In particular, we noted that local conservation properties are
guaranteed as long as the �1,v� ,v2� moments of the k�=0
component of the gyroaveraged collision operator vanish.
Further, we argued that the collision operator should be
treated implicitly because in some regions of phase space, its
amplitude can be large even at very small collisionalities.

Our numerical implementation of the collision operator
was described in Sec. III. We separate collisional and colli-
sionless physics through the use of Godunov dimensional
splitting and advance the collision operator in time using a
backward Euler scheme. The test particle part of the collision
operator is differenced using a scheme that possesses discrete
versions of the fundamental theorem of calculus and integra-
tion by parts �upon double application�. These properties are
necessary in order to exactly satisfy the desired conservation
properties in the long wavelength limit. The field particle
response is treated implicitly with little additional computa-
tional expense by employing repeated application of the
Sherman–Morrison formula, as detailed in Appendix A.

In Sec. IV we presented numerical tests to demonstrate
that our implemented collision operator possesses the prop-
erties required for a good gyrokinetic dissipation scheme. In

addition to these basic properties, we showed that the imple-
mented collision operator allows us to correctly capture
physics phenomena ranging from the collisionless to the
strongly collisional regimes. In particular, we provided ex-
amples for which we are able to obtain quantitatively correct
results for collisionless �Landau or Barnes�, resistive, and
viscous damping.

In conclusion, we note that the resolution of the colli-
sionless �and collisional� physics in our simulations was ob-
tained solely with physical collisions; no recourse to any
form of artificial numerical dissipation was necessary.
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APPENDIX A: SHERMAN–MORRISON
FORMULATION

The repeated application of the Sherman–Morrison for-
mula considered here is an extension of the scheme pre-
sented in Tatsuno and Dorland.53 Throughout this calcula-
tion, we adopt general notation applicable to both Eqs. �24�
and �25� and provide specific variable definitions in Table I.
Both Eqs. �24� and �25� can be written in the form

Ax = b . �A1�

Because 	U
 and 	E
 are integral operators, we can write
them as tensor �outer� products so that

TABLE I. Sherman–Morrison variable definitions for Lorentz and energy
diffusion operator equations

Variable L D

A 1−�t�	L
+ 	UL
� 1−�t�	D
+ 	UD
+ 	E
�
x h** hn+1

b h* h**

A0 1−�t	L
 1−�t	D

v0 �D��J1 −����J1

v1 �D��J0 −����J0

v2 �� �electrons� �E�2J0

0 �ions�
u0 −�tv0 /du −�tv0 /du

u1 −�tv0 /du −�tv0 /du

u2 −�t�D
ei�� /dq �electrons� −�tv2 /dq

0 �ions�
du �d3� �D��

2F0 �d3� ����
2F0

dq uth,e
2 /2 �d3� �E�4F0

FIG. 8. Linear growth rate spectrum of the entropy mode in a Z pinch for
R /Ln=2.0, where R is major radius and Ln is density gradient scale length.
The solid line is the collisionless result, and the other lines represent the
result of including collisions. The short dashed line corresponds to using
only the Lorentz operator; the dotted line corresponds to the full model
collision operator without conserving terms; and the long dashed line cor-
responds to the full model collision operator with conserving terms. All
collisional cases were carried out with �ii=0.01vth,i /R.
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A � A0 + u0v0
T + u1v1

T + u2v2
T, �A2�

where the superscript T denotes the vector transpose. We
now define

A1 = A0 + u0v0
T, A2 = A1 + u1v1

T, �A3�

so that

�A2 + u2v2
T�x = b . �A4�

Applying the Sherman–Morrison formula to this equation,
we find

x = y2 −
v2 · y2

1 + v2 · z2
z2, �A5�

where A2y2=b and A2z2=u2.
Applying the Sherman–Morrison formula to each of

these equations gives

y2 = y1 −
v1 · y1

1 + v1 · w1
w1, �A6�

z2 = z1 −
v1 · z1

1 + v1 · w1
w1, �A7�

where A1y1=b, A1w1=u1, and A1z1=u2. A final application
of Sherman–Morrison to these three equations yields

y1 = y0 −
v0 · y0

1 + v0 · s0
s0, �A8�

w1 = w0 −
v0 · w0

1 + v0 · s0
s0, �A9�

z1 = z0 −
v0 · z0

1 + v0 · s0
s0, �A10�

where A0y0=b, A0s0=u0, A0w0=u1, and A0z0=u2.
We can simplify our expressions by noting that v0,1,2 and

u0,1,2 have definite parity in v�. A number of inner products
then vanish by symmetry, leaving the general expressions

y2 = y0 − � v0 · y0

1 + v0 · s0
�s0 − � v1 · y0

1 + v1 · w0
�w0, �A11�

z2 = z0 − � v0 · z0

1 + v0 · s0
�s0 − � v1 · z0

1 + v1 · w0
�w0. �A12�

APPENDIX B: COMPACT DIFFERENCING
OF THE TEST-PARTICLE OPERATOR

In this appendix, we derive a second order accurate com-
pact difference scheme for pitch-angle scattering and energy
diffusion on an unequally spaced grid. The higher order of
accuracy of this scheme is desirable, but it does not possess
discrete versions of the fundamental theorem of calculus and
integration by parts when used with Gauss–Legendre quadra-
ture �or any other integration scheme with grid spacings un-
equal to integration weights�. Consequently, one should uti-

lize this scheme only if integration weights and grid spacings
are equal or if automatic satisfaction of conservation proper-
ties is not considered important.

For convenience, we begin by noting that Eqs. �24� and
�25� can both be written in the general form

� �h

�t
�

C
= H�Gh��� + S = H�G�h� + Gh�� + S , �B1�

where for the Lorentz operator equation �24� we identify H
=1, G=�D�1−�2� /2, S=UL�h�−k2v2�D�1+�2�h /4
0

2, and
the prime denotes differentiation with respect to �; and
for the energy diffusion operator equation �25�, we
identify H=1 /2v2F0, G=��v4F0, S=UD�h�+E�h�
−k2v2���1−�2�h /4
0

2, and the prime denotes differentiation
with respect to v. Here, the h we are using is actually nor-
malized by F0.

Employing Taylor series expansions of h, we obtain the
expressions

hi� =
�−

2�hi+1 − hi� + �+
2�hi − hi−1�

�+�−��+ + �−�
+ O��2� �B2�

and

hi� = 2
�−�hi+1 − hi� − �+�hi − hi−1�

�+�−��+ + �−�
+

�− − �+

3
hi� + O��2� ,

�B3�

where i denotes evaluation at the velocity space gridpoint xi

and ����xi�1−xi� �here x is a dummy variable representing
either � or v�. In order for the hi� expression to be second
order accurate, we must obtain a first order accurate expres-
sion for hi� in terms of hi, hi�, and hi�. We accomplish this by
differentiating Eq. �B1� with respect to x,

� �h�

�t
�

C
= H��Gh��� + H�Gh��� + S�, �B4�

and rearranging terms to find

hi� =
1

HiGi
�� �hi

�t
�

C
− Hi��Gi�hi� + Gihi�� − Hi�Gi�hi

+ 2Gi�hi�� − Si�� + O��� , �B5�

where, unless denoted otherwise, all quantities are taken at
the n+1 time level. Plugging this result into Eq. �B3� and
grouping terms, we have

�ihi� =
�− − �+

3HiGi
�hi�� 1

�t
− Hi�Gi� − HiGi�� −

�hi
n��

�t
− Si��

+ 2
�−�hi+1 − hi� − �+�hi − hi−1�

�+�−��+ + �−�
+ O��2� , �B6�

where �i=1+ ��+−�−��Hi�Gi+2HiGi�� /3HiGi, and we have
taken ��h /�t�C= �hn+1−hn� /�t. Using Eq. �B4� and the above
result in Eq. �B1�, we find
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� �h

�t
�

C
= hi��HiGi� −

�+ + �−

3�i
� 1

�t
− Hi�Gi� − HiGi���

+
HiGi

�i
�2

�−�hi+1 − hi� − �+�hi − hi−1�
�+�−��+ + �−�

+
�+ + �−

3HiGi
� �hi

n��
�t

+ Si��� + Si + O��2� . �B7�

This is the general compact differenced form to be used
when solving Eqs. �24� and �25�.

In order to illustrate how compact differencing affects
the implicit solution using Sherman–Morrison, we present
the result of using the particular form of S for energy diffu-
sion in Eq. �B7�,

hi
n+1 − hi

n

�t
=

hi+1

�+��+ + �−�
�2HiGi

�i
+ �−�i�

+
hi−1

�−��+ + �−�
�2HiGi

�i
− �+�i�

+
hi

�−�+
�−

2HiGi

�i
+ ��+ − �−��i − �+�−K�̃s�

+
�i

�t
�hi+1

n �−

�+��+ + �−�
− hi−1

n �+

�−��+ + �−�

+ hi
n�+ − �−

�+�−
� + Ũ�V� + Ũ�V� + Ũqq + O��2� ,

�B8�

where

�i = ��+ − �−�/3�i,

K = k2vth
2 �1 − �2�/8
0

2,

�i = HiGi� − �i�1/�t − Hi�Gi� − HiGi� + K�s� ,

�s = ��vth
2 /2v2,

Ã = A + �A�,

U�,�,q = u0,1,2,

V�,�,q = v0,1,2,

with u and v given in Table I.
We see that the only significant effects of compact dif-

ferencing on numerical implementation are modification of

h** in Eq. �25� to reflect the hn terms on the right-hand side
of Eq. �B8� and modification of the U�, U�, and Uq terms
that appear in Sherman–Morrison �u0,1,2 from Appendix A�
to include an additional �U� term.
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