1,087 research outputs found

    Robust nonlinear control of vectored thrust aircraft

    Get PDF
    An interdisciplinary program in robust control for nonlinear systems with applications to a variety of engineering problems is outlined. Major emphasis will be placed on flight control, with both experimental and analytical studies. This program builds on recent new results in control theory for stability, stabilization, robust stability, robust performance, synthesis, and model reduction in a unified framework using Linear Fractional Transformations (LFT's), Linear Matrix Inequalities (LMI's), and the structured singular value micron. Most of these new advances have been accomplished by the Caltech controls group independently or in collaboration with researchers in other institutions. These recent results offer a new and remarkably unified framework for all aspects of robust control, but what is particularly important for this program is that they also have important implications for system identification and control of nonlinear systems. This combines well with Caltech's expertise in nonlinear control theory, both in geometric methods and methods for systems with constraints and saturations

    Frequency-Aware Model Predictive Control

    Full text link
    Transferring solutions found by trajectory optimization to robotic hardware remains a challenging task. When the optimization fully exploits the provided model to perform dynamic tasks, the presence of unmodeled dynamics renders the motion infeasible on the real system. Model errors can be a result of model simplifications, but also naturally arise when deploying the robot in unstructured and nondeterministic environments. Predominantly, compliant contacts and actuator dynamics lead to bandwidth limitations. While classical control methods provide tools to synthesize controllers that are robust to a class of model errors, such a notion is missing in modern trajectory optimization, which is solved in the time domain. We propose frequency-shaped cost functions to achieve robust solutions in the context of optimal control for legged robots. Through simulation and hardware experiments we show that motion plans can be made compatible with bandwidth limits set by actuators and contact dynamics. The smoothness of the model predictive solutions can be continuously tuned without compromising the feasibility of the problem. Experiments with the quadrupedal robot ANYmal, which is driven by highly-compliant series elastic actuators, showed significantly improved tracking performance of the planned motion, torque, and force trajectories and enabled the machine to walk robustly on terrain with unmodeled compliance

    Robust control for independently rotating wheelsets on a railway vehicle using practical sensors

    Get PDF
    This paper presents the development of H-infinity control strategy for the active steering of railway vehicles with independently rotating wheelsets. The primary objective of the active steering is to stabilize the wheelset and to provide a guidance control. Some fundamental problems for active steering are addressed in the study. The developed controller is able to maintain stability and good performance when parameter variations occur, in particular at the wheel-rail interface. The control is also robust against structured uncertainties that are not included in the model such as actuator dynamics. Furthermore the control design is formulated to use only practical sensors of inertial and speed measurements, as some basic measurements required for active steering such as wheel-rail lateral displacement cannot be easily and economically measured in practice

    Adaptive Output Feedback Apparatuses And Methods Capable Of Controlling A Non-minimum Phase System

    Get PDF
    The invention comprises apparatuses and methods for providing the capability to stabilize and control a non-minimum phase, nonlinear plant with unmodeled dynamics and/or parametric uncertainty through the use of adaptive output feedback. A disclosed apparatus can comprise a reference model unit for generating a reference model output signal ym. The apparatus can comprise a combining unit that combines and differences a plant output signal y of a non-minimum phase plant for which not all of the states can be sensed, and a plant output signal y, to generate an output error signal ỹ. The apparatus can further comprise an adaptive control unit for generating an adaptive control signal uad used to control the plant.Georgia Tech Research Corporatio

    Rejection of mismatched disturbances for systems with input delay via a predictive extended state observer

    Full text link
    [EN] The problem of output stabilization and disturbance rejection for input-delayed systems is tackled in this work. First, a suitable transformation is introduced to translate mismatched disturbances into an equivalent input disturbance. Then, an extended state observer is combined with a predictive observer structure to obtain a future estimation of both the state and the disturbance. A disturbance model is assumed to be known but attenuation of unmodeled components is also considered. The stabilization is proved via Lyapunov-Krasovskii functionals, leading to sufficient conditions in terms of linear matrix inequalities for the closed-loop analysis and parameter tuning. The proposed strategy is illustrated through a numerical example.PROMETEOII/2013/004; Conselleria d'Educacio; Generalitat Valenciana, Grant/Award Number: TIN2014-56158-C4-4-P-AR; Ministerio de Economia y Competitividad, Grant/Award Number: FPI-UPV 2014; Universitat Politecnica de ValenciaSanz Diaz, R.; García Gil, PJ.; Fridman, E.; Albertos Pérez, P. (2018). Rejection of mismatched disturbances for systems with input delay via a predictive extended state observer. International Journal of Robust and Nonlinear Control. 28(6):2457-2467. https://doi.org/10.1002/rnc.4027S24572467286Stability and Stabilization of Systems with Time Delay. (2011). IEEE Control Systems, 31(1), 38-65. doi:10.1109/mcs.2010.939135Fridman, E. (2014). Introduction to Time-Delay Systems. Systems & Control: Foundations & Applications. doi:10.1007/978-3-319-09393-2Watanabe, K., & Ito, M. (1981). A process-model control for linear systems with delay. IEEE Transactions on Automatic Control, 26(6), 1261-1269. doi:10.1109/tac.1981.1102802Astrom, K. J., Hang, C. C., & Lim, B. C. (1994). A new Smith predictor for controlling a process with an integrator and long dead-time. IEEE Transactions on Automatic Control, 39(2), 343-345. doi:10.1109/9.272329Matausek, M. R., & Micic, A. D. (1996). A modified Smith predictor for controlling a process with an integrator and long dead-time. IEEE Transactions on Automatic Control, 41(8), 1199-1203. doi:10.1109/9.533684García, P., & Albertos, P. (2008). A new dead-time compensator to control stable and integrating processes with long dead-time. Automatica, 44(4), 1062-1071. doi:10.1016/j.automatica.2007.08.022Normey-Rico, J. E., & Camacho, E. F. (2009). Unified approach for robust dead-time compensator design. Journal of Process Control, 19(1), 38-47. doi:10.1016/j.jprocont.2008.02.003Manitius, A., & Olbrot, A. (1979). Finite spectrum assignment problem for systems with delays. IEEE Transactions on Automatic Control, 24(4), 541-552. doi:10.1109/tac.1979.1102124Artstein, Z. (1982). Linear systems with delayed controls: A reduction. IEEE Transactions on Automatic Control, 27(4), 869-879. doi:10.1109/tac.1982.1103023Krstic, M. (2008). Lyapunov tools for predictor feedbacks for delay systems: Inverse optimality and robustness to delay mismatch. Automatica, 44(11), 2930-2935. doi:10.1016/j.automatica.2008.04.010Léchappé, V., Moulay, E., Plestan, F., Glumineau, A., & Chriette, A. (2015). New predictive scheme for the control of LTI systems with input delay and unknown disturbances. Automatica, 52, 179-184. doi:10.1016/j.automatica.2014.11.003Sanz, R., Garcia, P., & Albertos, P. (2016). Enhanced disturbance rejection for a predictor-based control of LTI systems with input delay. Automatica, 72, 205-208. doi:10.1016/j.automatica.2016.05.019Basturk, H. I., & Krstic, M. (2015). Adaptive sinusoidal disturbance cancellation for unknown LTI systems despite input delay. Automatica, 58, 131-138. doi:10.1016/j.automatica.2015.05.013Basturk, H. I. (2017). Cancellation of unmatched biased sinusoidal disturbances for unknown LTI systems in the presence of state delay. Automatica, 76, 169-176. doi:10.1016/j.automatica.2016.10.006Sanz, R., Garcia, P., Albertos, P., & Zhong, Q.-C. (2016). Robust controller design for input-delayed systems using predictive feedback and an uncertainty estimator. International Journal of Robust and Nonlinear Control, 27(10), 1826-1840. doi:10.1002/rnc.3639Mondie, S., & Michiels, W. (2003). Finite spectrum assignment of unstable time-delay systems with a safe implementation. IEEE Transactions on Automatic Control, 48(12), 2207-2212. doi:10.1109/tac.2003.820147Zhong, Q.-C. (2004). On Distributed Delay in Linear Control Laws—Part I: Discrete-Delay Implementations. IEEE Transactions on Automatic Control, 49(11), 2074-2080. doi:10.1109/tac.2004.837531Zhou, B., Lin, Z., & Duan, G.-R. (2012). Truncated predictor feedback for linear systems with long time-varying input delays. Automatica, 48(10), 2387-2399. doi:10.1016/j.automatica.2012.06.032Zhou, B., Li, Z.-Y., & Lin, Z. (2013). On higher-order truncated predictor feedback for linear systems with input delay. International Journal of Robust and Nonlinear Control, 24(17), 2609-2627. doi:10.1002/rnc.3012Besançon G Georges D Benayache Z Asymptotic state prediction for continuous-time systems with delayed input and application to control IEEE 2007 Kos, GreeceNajafi, M., Hosseinnia, S., Sheikholeslam, F., & Karimadini, M. (2013). Closed-loop control of dead time systems via sequential sub-predictors. International Journal of Control, 86(4), 599-609. doi:10.1080/00207179.2012.751627Léchappé V Moulay E Plestan F Dynamic observation-prediction for LTI systems with a time-varying delay in the input IEEE 2016 Las Vegas, NVCacace, F., Conte, F., Germani, A., & Pepe, P. (2016). Stabilization of strict-feedback nonlinear systems with input delay using closed-loop predictors. International Journal of Robust and Nonlinear Control, 26(16), 3524-3540. doi:10.1002/rnc.3517Mazenc, F., & Malisoff, M. (2017). Stabilization of Nonlinear Time-Varying Systems Through a New Prediction Based Approach. IEEE Transactions on Automatic Control, 62(6), 2908-2915. doi:10.1109/tac.2016.2600500Guo, L., & Chen, W.-H. (2005). Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach. International Journal of Robust and Nonlinear Control, 15(3), 109-125. doi:10.1002/rnc.978Fridman, E. (2003). Output regulation of nonlinear systems with delay. Systems & Control Letters, 50(2), 81-93. doi:10.1016/s0167-6911(03)00131-2Isidori, A., & Byrnes, C. I. (1990). Output regulation of nonlinear systems. IEEE Transactions on Automatic Control, 35(2), 131-140. doi:10.1109/9.45168Ding, Z. (2003). Global stabilization and disturbance suppression of a class of nonlinear systems with uncertain internal model. Automatica, 39(3), 471-479. doi:10.1016/s0005-1098(02)00251-0Chen, W.-H., Yang, J., Guo, L., & Li, S. (2016). Disturbance-Observer-Based Control and Related Methods—An Overview. IEEE Transactions on Industrial Electronics, 63(2), 1083-1095. doi:10.1109/tie.2015.2478397Fridman, E., & Shaked, U. (2002). An improved stabilization method for linear time-delay systems. IEEE Transactions on Automatic Control, 47(11), 1931-1937. doi:10.1109/tac.2002.804462Fridman, E., & Orlov, Y. (2009). Exponential stability of linear distributed parameter systems with time-varying delays. Automatica, 45(1), 194-201. doi:10.1016/j.automatica.2008.06.00

    Switching Control in the Presence of Constraints and Unmodeled Dynamics

    Get PDF

    Improving Transient Performance of Adaptive Control Architectures using Frequency-Limited System Error Dynamics

    Full text link
    We develop an adaptive control architecture to achieve stabilization and command following of uncertain dynamical systems with improved transient performance. Our framework consists of a new reference system and an adaptive controller. The proposed reference system captures a desired closed-loop dynamical system behavior modified by a mismatch term representing the high-frequency content between the uncertain dynamical system and this reference system, i.e., the system error. In particular, this mismatch term allows to limit the frequency content of the system error dynamics, which is used to drive the adaptive controller. It is shown that this key feature of our framework yields fast adaptation with- out incurring high-frequency oscillations in the transient performance. We further show the effects of design parameters on the system performance, analyze closeness of the uncertain dynamical system to the unmodified (ideal) reference system, discuss robustness of the proposed approach with respect to time-varying uncertainties and disturbances, and make connections to gradient minimization and classical control theory.Comment: 27 pages, 7 figure

    Adaptive and Reconfigurable Flight Control

    Get PDF
    An indirect adaptive and reconfigurable flight control system is developed. The three-module controller consists of: (1) a system identification module, (2) a parameter estimate smoother, and (3) a proportional and integral compensator for tracking control. Specifically: (1) The identification of a linear discrete-time control system\u27s open-loop gain is addressed. The classical Kalman filter theory for linear control systems is extended and the control system\u27s state and loop gain are jointly estimated on-line. Explicit formulae for the loop gain\u27s estimate and estimation error covariance are derived. The estimate is unbiased and the predicted covariance is reliable. (2) An adaptive smoother is developed to reduce the fluctuations automatically in the gain estimate, and bursting, caused by instances of poor excitation. (3) Special attention is given to the design of a proportional and integral tracking controller. The outputs of the system identification and gain smoother modules are used to adjust the tracking controller\u27s gain continuously in order to compensate for a possible reduction in the loop gain due to control surface area loss, thus achieving the benefits of adaptive and reconfigurable control. The performance of the adaptive and reconfigurable controller in the face of a simulated control surface failure is examined in carefully designed experiments. The adaptive controller developed in this dissertation and illustrated in a flight control Context is applicable to a wide range of control problems

    Active fault tolerant control for nonlinear systems with simultaneous actuator and sensor faults

    Get PDF
    The goal of this paper is to describe a novel fault tolerant tracking control (FTTC) strategy based on robust fault estimation and compensation of simultaneous actuator and sensor faults. Within the framework of fault tolerant control (FTC) the challenge is to develop an FTTC design strategy for nonlinear systems to tolerate simultaneous actuator and sensor faults that have bounded first time derivatives. The main contribution of this paper is the proposal of a new architecture based on a combination of actuator and sensor Takagi-Sugeno (T-S) proportional state estimators augmented with proportional and integral feedback (PPI) fault estimators together with a T-S dynamic output feedback control (TSDOFC) capable of time-varying reference tracking. Within this architecture the design freedom for each of the T-S estimators and the control system are available separately with an important consequence on robust Lâ‚‚ norm fault estimation and robust Lâ‚‚ norm closed-loop tracking performance. The FTTC strategy is illustrated using a nonlinear inverted pendulum example with time-varying tracking of a moving linear position reference. Keyword

    Active stabilization to prevent surge in centrifugal compression systems

    Get PDF
    This report documents an experimental and analytical study of the active stabilization of surge in a centrifugal engine. The aims of the research were to extend the operating range of a compressor as far as possible and to establish the theoretical framework for the active stabilization of surge from both an aerodynamic stability and a control theoretic perspective. In particular, much attention was paid to understanding the physical limitations of active stabilization and how they are influenced by control system design parameters. Previously developed linear models of actively stabilized compressors were extended to include such nonlinear phenomena as bounded actuation, bandwidth limits, and robustness criteria. This model was then used to systematically quantify the influence of sensor-actuator selection on system performance. Five different actuation schemes were considered along with four different sensors. Sensor-actuator choice was shown to have a profound effect on the performance of the stabilized compressor. The optimum choice was not unique, but rather shown to be a strong function of some of the non-dimensional parameters which characterize the compression system dynamics. Specifically, the utility of the concepts were shown to depend on the system compliance to inertia ratio ('B' parameter) and the local slope of the compressor speedline. In general, the most effective arrangements are ones in which the actuator is most closely coupled to the compressor, such as a close-coupled bleed valve inlet jet, rather than elsewhere in the flow train, such as a fuel flow modulator. The analytical model was used to explore the influence of control system bandwidth on control effectiveness. The relevant reference frequency was shown to be the compression system's Helmholtz frequency rather than the surge frequency. The analysis shows that control bandwidths of three to ten times the Helmholtz frequency are required for larger increases in the compressor flow range. This has important implications for implementation in gas turbine engines since the Helmholtz frequencies can be over 100 Hz, making actuator design extremely challenging
    • …
    corecore