We develop an adaptive control architecture to achieve stabilization and
command following of uncertain dynamical systems with improved transient
performance. Our framework consists of a new reference system and an adaptive
controller. The proposed reference system captures a desired closed-loop
dynamical system behavior modified by a mismatch term representing the
high-frequency content between the uncertain dynamical system and this
reference system, i.e., the system error. In particular, this mismatch term
allows to limit the frequency content of the system error dynamics, which is
used to drive the adaptive controller. It is shown that this key feature of our
framework yields fast adaptation with- out incurring high-frequency
oscillations in the transient performance. We further show the effects of
design parameters on the system performance, analyze closeness of the uncertain
dynamical system to the unmodified (ideal) reference system, discuss robustness
of the proposed approach with respect to time-varying uncertainties and
disturbances, and make connections to gradient minimization and classical
control theory.Comment: 27 pages, 7 figure