1,158 research outputs found

    LRMM: Learning to Recommend with Missing Modalities

    Full text link
    Multimodal learning has shown promising performance in content-based recommendation due to the auxiliary user and item information of multiple modalities such as text and images. However, the problem of incomplete and missing modality is rarely explored and most existing methods fail in learning a recommendation model with missing or corrupted modalities. In this paper, we propose LRMM, a novel framework that mitigates not only the problem of missing modalities but also more generally the cold-start problem of recommender systems. We propose modality dropout (m-drop) and a multimodal sequential autoencoder (m-auto) to learn multimodal representations for complementing and imputing missing modalities. Extensive experiments on real-world Amazon data show that LRMM achieves state-of-the-art performance on rating prediction tasks. More importantly, LRMM is more robust to previous methods in alleviating data-sparsity and the cold-start problem.Comment: 11 pages, EMNLP 201

    Predictive Accuracy of Recommender Algorithms

    Get PDF
    Recommender systems present a customized list of items based upon user or item characteristics with the objective of reducing a large number of possible choices to a smaller ranked set most likely to appeal to the user. A variety of algorithms for recommender systems have been developed and refined including applications of deep learning neural networks. Recent research reports point to a need to perform carefully controlled experiments to gain insights about the relative accuracy of different recommender algorithms, because studies evaluating different methods have not used a common set of benchmark data sets, baseline models, and evaluation metrics. The dissertation used publicly available sources of ratings data with a suite of three conventional recommender algorithms and two deep learning (DL) algorithms in controlled experiments to assess their comparative accuracy. Results for the non-DL algorithms conformed well to published results and benchmarks. The two DL algorithms did not perform as well and illuminated known challenges implementing DL recommender algorithms as reported in the literature. Model overfitting is discussed as a potential explanation for the weaker performance of the DL algorithms and several regularization strategies are reviewed as possible approaches to improve predictive error. Findings justify the need for further research in the use of deep learning models for recommender systems

    Recommender Systems Based on Deep Learning Techniques

    Get PDF
    Tese de mestrado em Ciência de Dados, Universidade de Lisboa, Faculdade de Ciências, 2020O atual aumento do número de opções disponíveis aquando a tomada de uma decisão, faz com que vários indivíduos se sintam sobrecarregados, o que origina experiências de utilização frustrantes e demoradas. Sistemas de Recomendação são ferramentas fundamentais para a mitigação deste acontecimento, ao remover certas alternativas que provavelmente serão irrelevantes para cada indivíduo. Desenvolver estes sistemas apresenta vários desafios, tornando-se assim uma tarefa de difícil realização. Para tal, vários sistemas (frameworks) para facilitar estes desenvolvimentos foram propostos, ajudando assim a reduzir os custos de desenvolvimento, através da oferta de ferramentas reutilizáveis, tal como implementações de estratégias comuns e modelos populares. Contudo, ainda é difícil encontrar um sistema (framework) que também ofereça uma abstração completa na conversão de conjuntos de dados, suporte para abordagens baseadas em aprendizagem profunda, modelos extensíveis, e avaliações reproduzíveis. Este trabalho introduz o DRecPy, um novo sistema (framework) que oferece vários módulos para evitar trabalho de desenvolvimento repetitivo, mas também para auxiliar os praticantes nos desafios mencionados anteriormente. O DRecPy contém módulos para lidar com: tarefas de carregar e converter conjuntos de dados; divisão de conjuntos de dados para treino, validação e teste de modelos; amostragem de pontos de dados através de estratégias distintas; criação de sistemas de recomendação complexos e extensíveis, ao seguir uma estrutura de modelo definida mas flexível; juntamente com vários processos de avaliação que originam resultados determinísticos por padrão. Para avaliar este novo sistema (framework), a sua consistência é analisada através da comparação dos resultados produzidos, com os resultados publicados na literatura. Para mostrar que o DRecPy pode ser uma ferramenta valiosa para a comunidade de sistemas de recomendação, várias características são também avaliadas e comparadas com ferramentas existentes, tais como extensibilidade, reutilização e reprodutibilidade.The current increase in available options makes individuals feel overwhelmed whenever facing a decision, resulting in a frustrating and time-consuming user experience. Recommender systems are a fundamental tool to solve this issue, filtering out the options that are most likely to be irrelevant for each person. Developing these systems presents us with a vast number of challenges, making it a difficult task to accomplish. To this end, various frameworks to aid their development have been proposed, helping reducing development costs by offering reusable tools, as well as implementations of common strategies and popular models. However, it is still hard to find a framework that also provides full abstraction over data set conversion, support for deep learning-based approaches, extensible models, and reproducible evaluations. This work introduces DRecPy, a novel framework that not only provides several modules to avoid repetitive development work, but also to assist practitioners with the above challenges. DRecPy contains modules to deal with: data set import and conversion tasks; splitting data sets for model training, validation, and testing; sampling data points using distinct strategies; creating extensible and complex recommenders, by following a defined but flexible model structure; together with many evaluation procedures that provide deterministic results by default. To evaluate this new framework, its consistency is analyzed by comparing the results generated by DRecPy against the results published by others using the same algorithms. Also, to show that DRecPy can be a valuable tool for the recommender systems’ community, several framework characteristics are evaluated and compared against existing tools, such as extensibility, reusability, and reproducibility

    Selection of Software Product Line Implementation Components Using Recommender Systems: An Application to Wordpress

    Get PDF
    In software products line (SPL), there may be features which can be implemented by different components, which means there are several implementations for the same feature. In this context, the selection of the best components set to implement a given configuration is a challenging task due to the high number of combinations and options which could be selected. In certain scenarios, it is possible to find information associated with the components which could help in this selection task, such as user ratings. In this paper, we introduce a component-based recommender system, called (REcommender System that suggests implementation Components from selecteD fEatures), which uses information associated with the implementation components to make recommendations in the domain of the SPL configuration. We also provide a RESDEC reference implementation that supports collaborative-based and content-based filtering algorithms to recommend (i.e., implementation components) regarding WordPress-based websites configuration. The empirical results, on a knowledge base with 680 plugins and 187 000 ratings by 116 000 users, show promising results. Concretely, this indicates that it is possible to guide the user throughout the implementation components selection with a margin of error smaller than 13% according to our evaluation.Ministerio de Economía y Competitividad RTI2018-101204-B-C22Ministerio de Economía y Competitividad TIN2014-55894-C2-1-RMinisterio de Economía y Competitividad TIN2017-88209-C2-2-RMinisterio de Economía, Industria y Competitividad MCIU-AEI TIN2017-90644-RED

    From implicit preferences to ratings: Video games recommendation based on collaborative filtering

    Get PDF
    This work studies and compares the performance of collaborative filtering algorithms, with the intent of proposing a videogame-oriented recommendation system. This system uses information from the video game platform Steam, which contains information about the game usage, corresponding to the implicit feedback that was later transformed into explicit feedback. These algorithms were implemented using the Surprise library, that allows to create and evaluate recommender systems that deal with explicit data. The algorithms are evaluated and compared with each other using metrics such as RSME, MAE, Precision@k, Recall@k and F1@k. We have concluded that computationally low demanding approaches can still obtain suitable results.info:eu-repo/semantics/acceptedVersio

    Beyond Personalization: Research Directions in Multistakeholder Recommendation

    Get PDF
    Recommender systems are personalized information access applications; they are ubiquitous in today's online environment, and effective at finding items that meet user needs and tastes. As the reach of recommender systems has extended, it has become apparent that the single-minded focus on the user common to academic research has obscured other important aspects of recommendation outcomes. Properties such as fairness, balance, profitability, and reciprocity are not captured by typical metrics for recommender system evaluation. The concept of multistakeholder recommendation has emerged as a unifying framework for describing and understanding recommendation settings where the end user is not the sole focus. This article describes the origins of multistakeholder recommendation, and the landscape of system designs. It provides illustrative examples of current research, as well as outlining open questions and research directions for the field.Comment: 64 page

    Alleviating the Long-Tail Problem in Conversational Recommender Systems

    Full text link
    Conversational recommender systems (CRS) aim to provide the recommendation service via natural language conversations. To develop an effective CRS, high-quality CRS datasets are very crucial. However, existing CRS datasets suffer from the long-tail issue, \ie a large proportion of items are rarely (or even never) mentioned in the conversations, which are called long-tail items. As a result, the CRSs trained on these datasets tend to recommend frequent items, and the diversity of the recommended items would be largely reduced, making users easier to get bored. To address this issue, this paper presents \textbf{LOT-CRS}, a novel framework that focuses on simulating and utilizing a balanced CRS dataset (\ie covering all the items evenly) for improving \textbf{LO}ng-\textbf{T}ail recommendation performance of CRSs. In our approach, we design two pre-training tasks to enhance the understanding of simulated conversation for long-tail items, and adopt retrieval-augmented fine-tuning with label smoothness strategy to further improve the recommendation of long-tail items. Extensive experiments on two public CRS datasets have demonstrated the effectiveness and extensibility of our approach, especially on long-tail recommendation.Comment: work in progres
    corecore