
Received April 17, 2019, accepted May 7, 2019, date of publication May 22, 2019, date of current version June 7, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2918469

Selection of Software Product Line
Implementation Components Using
Recommender Systems: An Application
to Wordpress
JORGE RODAS-SILVA 1, JOSÉ A. GALINDO 2, JORGE GARCÍA-GUTIÉRREZ2,
AND DAVID BENAVIDES 2
1Facultad de Ciencias de la Ingeniería, University of Milagro, Milagro 091050, Ecuador
2Departamento Lenguajes y Sistemas Informáticos, University of Seville, 41012 Seville, Spain

Corresponding author: Jorge Rodas-Silva (jrodass@unemi.edu.ec)

This work was supported in part by the EU FEDER Program of the MINECO projects OPHELIA (RTI2018-101204-B-C22), in part by the
Big Time-Aware Data: Análisis de Datos Masivos Indexados en el Tiempo. Reglas y Clustering under Grant TIN2014-55894-C2-1-R,
in part by the Big Data Streaming: Análisis de Datos Masivos Continuos. Modelos Descriptivos under Grant TIN2017-88209-C2-2-R, in
part by the Juan de la Cierva postdoctoral program, in part by the TASOVA network under Grant MCIU-AEI TIN2017-90644-REDT,
in part by the Junta de Andalucia METAMORFOSIS Project, and in part by the University of Milagro with its Scholarship Program.

ABSTRACT In software products line (SPL), there may be features which can be implemented by
different components, which means there are several implementations for the same feature. In this context,
the selection of the best components set to implement a given configuration is a challenging task due to the
high number of combinations and options which could be selected. In certain scenarios, it is possible to find
information associated with the components which could help in this selection task, such as user ratings.
In this paper, we introduce a component-based recommender system, called (REcommender System that
suggests implementation Components from selecteD fEatures), which uses information associated with the
implementation components to make recommendations in the domain of the SPL configuration. We also
provide a RESDEC reference implementation that supports collaborative-based and content-based filtering
algorithms to recommend (i.e., implementation components) regarding WordPress-based websites configu-
ration. The empirical results, on a knowledge base with 680 plugins and 187 000 ratings by 116 000 users,
show promising results. Concretely, this indicates that it is possible to guide the user throughout the
implementation components selection with a margin of error smaller than 13% according to our evaluation.

INDEX TERMS Feature models, implementation components, recommender systems, software product
line, wordpress.

I. INTRODUCTION
A Software Product Line (SPL) is defined as a set of software-
intensive systems that share a set of common features that can
be customized according to the specific needs of the stake-
holders in a particular context [1], [2]. For the management of
an SPL, models are used to represent all the possible products
that can be derived from it. The most popular models used for
this purpose, are called feature models [3]. Feature models
graphically represent the common and variable features in

The associate editor coordinating the review of this manuscript and
approving it for publication was Fabio Gasparetti.

an SPL. Understanding the impact of feature selections of an
SPL is a costly and error-prone activity due to a combinatorial
explosion of possible combinations of features.

To overcome this problem, research has proposed
the use of the so-called Automated Analysis of Feature
Models [4], [5] which, using computer-aided techniques
and tools, allow configuration space management. However,
the problem becomes more complex when for each feature
of a configuration, there is more than one component that
implements it.

Consider the example of eCommerce websites develop-
ment in WordPress. When a website is configured in this

69226
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0001-6526-7740
https://orcid.org/0000-0001-9293-9784
https://orcid.org/0000-0002-8449-3273

J. Rodas-Silva et al.: Selection of SPL Implementation Components Using Recommender Systems

platform, each feature can be implemented by a set of plugins.
If it is necessary to implement the online payment feature,
theremay bemore than one plugin that provides this function-
ality. Selecting the plugins that best adapt to this requirement,
considering the variety of plugins (WordPress is comprised
of more than 55,000 plugins,)1 can be a critical, tedious,
error–prone and time-consuming activity. In this example,
the eCommerce website defines the SPL domain, the web-
site functionalities represent the features, and the plugins set
represents the alternative components set to implement a
certain feature.

A possible way to select appropriate components is to
analyze information associated with them. This information
is generally provided by users through reviews, reports of
errors or ratings about the products in use. As an example,
in website configurations, user ratings could be an indicator
to determine how well they worked when implemented on a
certain website and, at the same time, it can be a guide to other
users in similar developments.

The information provided by users through ratings can be
exploited by Recommender Systems. Recommender Systems
have been successfully applied in various scenarios such as
online stores (Amazon), over-the-top media services provider
(Netflix), among others [6]. Recommender systems suggest
personalized products and services to users according to their
preferences and tastes.

There are several works in the literature that use
recommender techniques to support the SPL configuration
process. These studies address configuration from different
perspectives and contexts. For example, feature model struc-
tural properties [7]–[11] in which the use of recommendation
techniques are used for the configurations selection and pri-
oritization. Also, using quality attributes [12]–[15] which use
contextual information of features to select optimal configu-
rations and offer a more personalized product to the user.

These studies do not research the specific components
selection scenario to implement features. In other words,
in product configuration environments, there is no effec-
tive solution using recommender systems to efficiently assist
users to find suitable components to implement features.

To address this challenge, we propose a component-based
recommender system, called RESDEC (REcommender Sys-
tem that suggest implementation Components from selecteD
fEatures). RESDEC aims to take advantage from an infor-
mation repository generated by users to efficiently search for
appropriate components to implement features in a specific
context. To this end, we adapt a set of recommendation
algorithms, based on collaborative and content filtering tech-
niques. Concretely, we present the following contributions:

1) Modelling the implementation components selec-
tion problem as a recommendation task using
collaborative–based and content–based filtering,
addressing three common scenarios that arise during
the configuration of products.

1WordPress Website: https://wordpress.org/plugins/

2) A prototype of a component-based recommender sys-
tem tool ready to use and extend to other environments
where it is necessary to configure the features of a prod-
uct from the implementation components selection.

3) An empirical evaluation of our approach in an scenario
of eCommerce website using Wordpress. The evalua-
tion is based on data from 116,000 users, 680 plugins,
and 187,000 ratings. Results show promising values
with a margin of error smaller than 13% according to
our evaluation.

The rest of the paper is structured as follows: Section II
introduces a brief background on SPLs and recommender
systems. Section III, present the motivation for the problem
and illustrates it through an example. Section IV provides an
overview of our proposed solution. Section V describes de
design and results of the performed experiments. Section VI
discusses the related work. Section VII outlines directions for
future work. Finally, Section VIII concludes the paper.

II. PRELIMINARIES
In this section, we present all the required information to
make this paper self-contained. Initially, we introduce Soft-
ware Product Lines (SPL) with a brief overview on feature
models and product configuration. Furthermore, we present
the basic concepts about non-personalized and personalized
Recommender Systems with an overview of the algorithms
used in this work.

A. SOFTWARE PRODUCT LINES
According to Clements and Northrop [16], an SPL is a set
of software-intensive systems that share a set of common
features that meet the specific needs of a market segment.
A feature is defined as a software functionality. In 1990,
the FODA (Feature-Oriented Domain Analysis) [3] intro-
duced the concept of feature models, which remained as
one of the main research areas in SPL engineering. Feature
models allow to graphically represent all the valid config-
urations of an SPL in terms of features and relationships
in a compact manner. A graphical illustration, known as a
feature diagram, is shown in Fig. 1. In feature diagrams,
features are represented by boxes and relationships by edges.
Features can be abstract or concrete [17]. A feature is
abstract, if it is not mapped to any implementation arti-
fact, and it is non-abstract or concrete, when it is assigned
to at least one implementation artifact. Batory et al. [18]
classifies relationships into three groups: ‘‘and-group’’,
‘‘or-group’’, and ‘‘alternative-group’’. And-group can be
mandatory or optional. A relationship is mandatory when
a child feature has a mandatory relationship with its parent
and it is included in all the products in which its parent
feature appears; and it is optional, when a child feature has
an optional relationship with its parent and can optionally
be included in all the products in which its parent feature
appears.

According to the model presented in Fig.1 an eCommerce
website should implement a catalog of products, a payment

VOLUME 7, 2019 69227

J. Rodas-Silva et al.: Selection of SPL Implementation Components Using Recommender Systems

FIGURE 1. A simplified feature model describing an eCommerce-based website. Below to the feature model
representation, we show the list of components that could implement each feature.

module, security policies and could optionally include a
search tool.

In an or-group when a parent feature is selected, at least a
child sub-feature must be selected. In the payment module
of an eCommerce website, a combination of the features
Bank Transfer, Credit Card, and PayPal could be activated.
Finally, in an alternative-group, when a parent feature is
selected, only a child sub-feature can be selected. For exam-
ple, the eCommerce website must have one of the following
active security policies: high or standard; but not both.

In addition to the parental relationships between features,
a feature model can also contain restrictions between non-
connected features [4]. These restrictions can be of two types:
requires and excludes. A restriction is requires when an A
feature requires a B feature, that is, the inclusion of A also
implies the inclusion of B within the product configuration.
For example, for the eCommerce website in Figure 1, imple-
menting credit card payment function requires high security
policies. Otherwise, it is excludes when a feature A excludes
a feature B, that is, both features cannot be part of the same
product. In the case of the eCommerce website, the policies
of high security and payments by bank transfer are incompat-
ible, since the activation of high security policies requires the
use of a credit card or PayPal payment.
A set of selected features derived from the model will

create a product configuration. A product configuration is
valid if it satisfies all the feature model constraints. There are
several configurators in the SPL literature to guide users into
a valid configuration by using visualizationmechanisms [19].
Moreover, recent approaches suggest the use of recommender
techniques to customize configurations to users [8]–[10],
[13]–[15]. In the work presented by Pereira et al. [13],
the authors extend a state-of-the-art configurator with
personalized collaborative-based recommender techniques.

Despite the efforts made so far in the SPL literature, we do not
know any SPL configurator to support the component-based
configuration process. In the component-based configuration
scenario, a product configuration contains a set of necessary
components to implement each feature. This set of compo-
nents are called implementation components [20].

As an example, catalog, search, payment and security
features of the eCommerce website presented in Figure 1
can be implemented using the list of components shown at
the bottom of the figure. It is noted that, several features
can be implemented by the same component. In a specific
case, if we want to implement the catalog feature identified
with 1, we could have more than one selection alternative to
implement it. As an illustration in the Figure 1, we present a
list of three components in which the user could choose one.
However, in the practice we can find a wide variety of com-
ponents available for selection which could also implement
the catalog feature, which makes critical the implementation
process of the feature.

In this context, we conclude that component-based con-
figuration process seems to be equally (or even more) chal-
lenging than the usual feature-based configuration process.
In section III, we present the main challenges faced in this
scenario and illustrate it using an example.

B. RECOMMENDER SYSTEMS
A recommender system (RS) is defined as a system that
provides users with a series of suggestions in a personalized
way according to their tastes or preferences [21]. There are
successful practical examples of implementing recommender
systems in actual scenarios, such as Amazon [22] and Net-
flix [23]. Recommender systems are mainly divided [24]
into two groups: collaborative-based and content-based

69228 VOLUME 7, 2019

J. Rodas-Silva et al.: Selection of SPL Implementation Components Using Recommender Systems

recommender systems. As follows, we will provide more
details on these techniques, emphasizing the algorithms that
we will use in the present work.

1) COLLABORATIVE-BASED RECOMMENDER SYSTEMS
The systems based on collaborative filtering techniques
[22], [25], also known as personalized recommender systems,
are based on the analysis of user profiles, where recommen-
dations are generated according to the tastes of users with
similar preferences. For example, on Netflix, a user who has
rated a series of movies could receive recommendations from
other users who have also rated the same movies in a similar
way or at least a large part of them, which we call a group of
users with similar interests.

One of the main challenges of collaborative filtering sys-
tems is how to recommend to new or inexperienced users,
which means, users who have never used the system, so there
is no record of their interests. The lack of experience of
these users makes it difficult to find relevant results (similar
users or items) that fit their profiles. This case is defined
in recommender systems as Cold Start. Non-personalized
recommender systems have been introduced in the literature
to solve cold-start problems [26]. This recommendation tech-
nique calculates the average rating (r̄pj) of each item (pj) from
the users who have rated it (Upj) (see Equation 1). Then,
the best rated items are selected from Equation 2 to build the
recommendation of the new user.

r̄pj ←

∑
ui∈Upj

rui

|Upj |
; j = 1..n (1)

Puk ← maxt (r̄pj) (2)

As it is observed, this technique is very general, so it does
not customize the recommendations.

A most interesting case in the collaborative filtering sce-
nario is to make recommendations to users who have experi-
ence in the system, which means that have issued some kind
of ratings for used items, so the system uses the records to find
other users with similar interests. Next, we will describe two
collaborative-filtering techniques used to build recommenda-
tions to experienced users.
Memory-based collaborative-filtering: Memory-based

collaborative filtering algorithms [27] are characterized by
employing the entire matrix of ratings to generate predictions
(i.e., estimate how a user would rate each item). In these
algorithms, each user is part of a group of people with
similar interests that is known as ‘‘neighborhood". From the
identified neighborhoods, preferences can be combined to
make predictions. The most commonly used approaches in
this category according to the literature are the so-called
neighbourhood-based collaborative filtering (kNN-CF).
KNN-CF algorithms [28] use statistical techniques to find
neighbors with a ratings record similar to the active user
ratings (i.e., user for whom recommendations are done).
When the nearest neighbors are found, their preferences
are combined to create a list of recommendations for an

active user. Two well-known KNN-CF algorithms are: user-
user KNN and item-item KNN.

• User-User KNN: This algorithm [29] uses the expe-
rience of other users to build recommendations to an
active user. The input of the system is a matrix of rat-
ings (M). Ratings are collected in advance by measur-
ing the relevance of the items by users. The similarity
between users is established by the Pearson Correlation
Coefficient (PCC) [30]. In Equation 3, we compute the
similarity between an active user uk and any other user
of the system ui.

suk ,ui =

∑
pεP(ruk ,pj − r̄uk)(rui,pj − r̄ui)√∑

pεP(ruk ,pj − r̄uk)2
√∑

pεP(rui,p − r̄ui)2

(3)

where:

– suk ,ui represents the similarity between the user k
and the user i for k 6= i.

– P is the set of items rated by users uk and ui.
– ruk ,pj and rui,pj is the rating on the item pj issued by

the user uk and ui respectively.
– r̄uk and r̄ui is the average rating on all items also

rated by uk and ui.

Once the similarity between the users is established,
the algorithm uses these results in Equation 4 to predict
the relevance that the user uk would give to those items
p not yet rated.

ruk ,p = r̄uk +

∑
u∈U (rui,p − r̄ui)Suk ,ui∑

u∈U Suk ,ui
(4)

where:

– ruk ,p is the possible rating that would give uk to the
item p.

– Suk ,ui is the similarity between users k and i (result
of Equation 3).

– U is the set of users (more) similar to uk . This set
of users varies depending on the user population.
In this case the top-10 of the best ratings has been
used.

• Item-Item KNN: This algorithm, unlike the previ-
ous one, generates the recommendations based on the
similarities between the items [27] rated by an active
user. The similarity between items is also calculated
through the PCC (i.e., similar to Equation 3). Equation 5
describes this process:

spi,pj =

∑
uεU (ru,pi − r̄pi)(ru,pj − r̄pj)√∑

uεU (ru,pi − r̄pi)2
√∑

uεU (ru,pj − r̄pj)2

(5)

where:

– spi,pj determines the similarity between the items pi
and pj.

VOLUME 7, 2019 69229

J. Rodas-Silva et al.: Selection of SPL Implementation Components Using Recommender Systems

– U is the set of all the users who have rated both the
item pi and pj.

– ru,pi is the rating of user u on the item pi.
– r̄pi is the average rating on the item pi.

Once the similarity between the items is established,
the algorithm predicts the rating of the user uk for an
item pi not yet rated, using the Equation 6.

ruk ,pi =

∑
pj∈P ruk ,pjSpi,pj∑
pj∈P |Spi,pj |

(6)

where:
– Spi,pj is the similarity between the items pi and pj

(result of Equation 4).
– P represents the set of items more similar to the

item pi.
Model-based collaborative filtering: The ratings matrix is

often very large and sparse. For this reason, model-based
collaborative filtering algorithms [27] use knowledge base
reduction techniques which aim to decompose the matrix into
smaller ones, which reflect the common characteristics of
the original matrix. These algorithms create a model through
which matrices of smaller dimensions are built. These matri-
ces represent the affinity degree between users and items.
Thus, they may allow the system to recognize patterns that
may be hidden in the dataset.

Unlike the algorithms based on memory, model-based
collaborative filtering does not use the whole set of items
and users to make predictions. Previously, it performs a pre-
filtering process to create groups or user segments based on
their common interests. From these segments, it establishes
the recommendations.

In this work, we use the Matrix factorization (MF)
algorithm [31], characterized by decomposing the matrix
of ratings in n sub-matrices. This algorithm, according to
the literature, is designed to process large volumes of data,
achieving good scalability, more accurate predictions and
flexibility in the model. More specifically, we have used SVD
for MF in our implementation.
• Singular Value Decomposition (SVD). This algo-
rithm [32] decomposes the rating matrix (M) into three
matrices (U ,V , S). The first one is an orthogonal matrix
Un×n that represents the relationships between users.
The second one is an orthogonal matrix V t

m×m that
determines the relationships between the features. The
third one is a diagonal matrix Sn×M that establishes the
relationship between both matrices.
To improve efficiency, the algorithm applies the Eckart-
Young theorem [33] that obtains an approximation with
only k factors (k < n), so that the matrices would remain
as Un×k , Sk×k and V t

k×m, as it is shown in Equation 7.

SVD(M1m×n) ' Um×k × Sk×k × V T
k×n (7)

After this process, calculating the prediction of the user
uk on the item p is reduced by multiplying the k-th row
vector of the matrix U (i.e., U (uk)) with the matrix S

and the p − th vector column of the matrix V t , (V t (p))
as shown in the Equation 8.

ruk , p = r̄uk + U (uk)× S × V T (p) (8)

Collaborative filtering algorithms use different equations
to estimate the ratings (ruk ,p) of an active user on a set of
target items (see Equations 1, 4, 6, and 8). These algorithms
returns the k the best rated items.

2) CONTENT-BASED RECOMMENDER SYSTEMS
Content-based recommender systems [34] make recommen-
dations based on the characteristics of the items. Without the
need to use information from other users. They are generally
used for information retrieval, such as search engines. In this
work, we use TF-IDF (Term frequency – Inverse document
frequency) algorithm to the SPL configuration domain.
• TF-IDF: The TF-IDF algorithm [35] is commonly
used to perform customized searches by internet search
engines. It is characterized by being able to find the
local weight and the global weight in a collection of
documents that are being analyzed. The local weight is
known as TF (Term Frequency) and specifies the number
of times a word is repeated within a document; while
the global weight, known as IDF (Inverse Document
Frequency), indicates the number of documents in which
that word appears at least once. The number of TF
and IDF occurrences for each document determines the
elements to recommend.
To adapt this algorithm to the SPL configuration domain,
we use a user rating matrix M and a binary matrix N
that relates the items with their features. The vector vu
describes the ratings of each user and a binary vector
vp determines the profile of each item p. The vector vu
represents the frequency in which each feature appears
in the item rated by the user u, and the vector vp deter-
mines the presence or not of each characteristic in the
items p (obtained by each row of the matrix N). Vectors
vu and vp have the same dimension, determined by the
number of features f in the matrix N .
Once we attributed the values to the vectors, the algo-
rithm uses the TF-IDF strategy to obtain a weight
for each characteristic, penalizing those that are not
very similar and rewarding the most distinctive ones.
Equation 9 presents the way to calculate the weighting
of each feature fi

wfi = F(fi, uk).log
(

n
IF(fi)

)
(9)

where F(fi, uk) represents the frequency which the char-
acteristic fi appears in the items rated by the user uk
and represents IF(fi) the inverse frequency or number
of times the same characteristic appears but in the items
that have not yet been rated by uk .
Then, to recommend items to the user uk , the algo-
rithm calculates the cosine similarity (see Equation10)
between the user profile (vuk) and the profile of the items

69230 VOLUME 7, 2019

J. Rodas-Silva et al.: Selection of SPL Implementation Components Using Recommender Systems

FIGURE 2. Motivation scenario inspired on WordPress.

not rated by the user (vp, p ∈ P). In this computa-
tion, we use the weight vector calculated according to
Equation 9.

Scos(vuk , vp,w) =

∑t
i=1 vuk (i) ∗ vp(i) ∗ w(i)√∑t

i=1(vuk (i))2 ∗
√∑t

i=1(vp(i))2

(10)

Finally, the algorithm recommends the k items with
higher similarity with the user.

III. MOTIVATING SCENARIO
The way in which software is developed today differs extraor-
dinarily from the way it was done 20 years ago. For example,
there are multiple scenarios in which it is no longer necessary
to develop applications from scratch. The great flexibility
shown by the so-called configurable platforms, greatly facil-
itate the creation of new software. In general terms, it is
enough to use a pre-configured architecture, and add the
functionalities required in the form of existing components
to obtain as a result, a solution if not definitive, close enough
to the one desired. Actual examples of these configurable
platforms, in the scenario of web development, are the content
managers (CMS) WordPress, Joomla and Drupal [36].

However, although the process of creating new software
has been benefited through the availability of functionalities
in the form of components, obtaining proper configuration
that meets a set of given requirements is a complex activity.
Mainly, due to the huge number of options (concrete variants
of application), that can be generated from the combination of
existing components. A similar scenario occurs in the domain
of SPL configuration. In SPL, feature models capture the
common and variable aspects of a family of similar products,
which allow the generation of different software variants.
These variants may later be customized with the inclusion of
specific implementation components that add a functionality
to existing features defined in the feature model.

For a better understanding, Figure 2 shows an example
of a configurable platform, in which a web developer faces
the difficult task of selecting plugins (i.e., implementation
components) to implement the online payments feature in
an eCommerce website. To implement this feature, it is pos-
sible to choose among several available options of plugins.

The typical way to search for plugins on configurable plat-
forms (including online software repositories) is to perform
a search for keywords frequently related to the functionality
desired to be added in the application. Therefore, understand-
ing the correlation between feature selections and plugins is
important for decision makers to be able to select a plugin
that best suits their needs and expectation.

This task takes time and it does not always guarantee that
the selected components are the most adequate (in terms
of quality) for the required application. To the best of our
knowledge in configurable development environments, there
are no effective solutions to assist the developer in the task of
finding suitable implementation components.

Our focus in this paper is to guide users through this pro-
cess by employing techniques from recommender systems.

Next, wemotivate three scenarios that can occur frequently
in the process of setting up a website in WordPress and may
benefit from a recommender system.

1) A common case is a developer who for the first
time start a web development in WordPress. Normally,
the developer starts building his new website and has a
default structure (e.g., of the own configurable platform
chosen to implement his solution). This structure is
generally an invariable kernel of source code to which
plugins can be incorporated. At this point, we know
which functionalities should be included, but we do not
know the plugins that must be specified.

2) Another case that may arise is when it is assumed that
the developer has already implemented a website with a
set of plugins, and from the selection of a plugin already
incorporated in the current version, wants to get rec-
ommendations with alternatives from different sources
which could be of interest to enrich the functionality of
the website. In this scenario, the recommendations are
obtained based on similar plugins that other developers,
with the same profile as the current developer, have
used in their websites.

3) Similar to case 2, we assume that the developer has
a website implementation. However, the intention is
for the site to improve its functionalities by varying
the features with plugins that could replace existing
plugins. Since a feature can be implemented by several
plugins, the application can suffer structural changes in

VOLUME 7, 2019 69231

J. Rodas-Silva et al.: Selection of SPL Implementation Components Using Recommender Systems

the number of features and plugins. To achieve this evo-
lution, our approach from a plugin already incorporated
in the current version of the site, analyzes its descriptive
information (e.g., the set of tags associated with each
plugin) and recommends plugins similar to the current
one that might interest the developer to enrich and
offer new services on the website. For example, if on
a website developed in WordPress, the feature Catalog
has been configured with a specific plugin with the sole
purpose of listing the products of the store, the tags
associated with this plugin will help to find new plugin
alternatives to improve the functionality of the site.
In other words, the list of recommendations could offer
plugins with additional functions, i.e., in addition to
listing the products, they could also allow to compare
themwith others, view them in different ways andmake
the payment process quickly.

In Section IV, we describe in detail how RESDEC
addresses each of the scenarios described through the use of
the proposed algorithms that are commonly used in recom-
mender systems.

IV. THE RESDEC SOLUTION
In this section, we introduce RESDEC (REcommender Sys-
tem that suggest implementation Components from selecteD
fEatures). RESDEC recommends component to users by ana-
lyzing a repository of rated components, as well as content
information from components. RESDEC supplies users with
information about which components are more suitable to
them in the context of SPL configuration.
RESDEC Requirements: To list the set of valid SPL con-

figurations, computer-assisted mechanisms are needed. The
number of valid configurations in an SPL can grow up to 2n,
where n is the number of features. With a large number of
features, managing the configuration of a product becomes a
difficult task, evenmore difficult when, for each feature, there
is more than one possibility of implementation.

As shown in Fig. 1, when managing an SPL of eCommerce
websites based on WordPress, there can be a large number of
implementation components (plugins) associated to features,
such as payment options or security controls. This relation-
ship between the features and the implementation compo-
nents is usually too large, so implementing the website with
a combination of appropriate components can be a complex
activity to solve.

RESDEC uses feature models to describe the set of valid
configurations. From these models, we can identify the
implementation components associated with each feature and
obtain the information developed around them. In our case,
wewill consider the ratings of the components. The processes
for building these feature models are beyond the scope of
this paper. Therefore, our approach takes as an input a fea-
ture model with components information associated to each
feature.
RESDEC Components: Fig. 3 illustrates the components

of our proposal. As a first element, we have the feature model

FIGURE 3. RESDEC components.

that describes the variability present in a domain of an SPL.
From the feature model, it is possible to select a set of features
that are associated to a series of components. Some of these
implementation components contain a set of information that
is generated by users, such as, the ratings received by these
components, bugs reports, number of installations, test cases
exceeded, etc.

The information collected from the users allows building
the Knowledge Base (KB) composed of two matrices, M1
andM2. MatrixM1 relates user information, implementation
components and ratings; while the matrix M2 relates the
information between the implementation components and the
associated features (see Section IV-A).

The Recommender System contains a set of collaborative-
based and content-based filtering recommender algo-
rithms; which are implemented in three different scenarios
(see Section IV-B): (i) cold start; (ii) Recommendations
of implementation components based on ratings; and
(iii) Recommendations of implementation components based
on features. Finally, regardless of the scenario and the algo-
rithm, RESDEC recommends a list of implementation com-
ponents which guides the configuration of a product in an
SPL domain. Next, we will describe the information required
as an input by RESDEC and the recommender algorithms
handled in each identified scenario.

A. KNOWLEDGE BASE
The knowledge base of our proposal contains information
about the implementation components which used and rated
in previous configurations (see Fig. 3).We will use the term
stakeholder or user to identify the software specialists and
the term implementation components to represent the items
recommended. As we have mentioned, these ratings can rep-
resent the quantitative degree of importance and relevance of
a component to a specific user. In addition, it contains textual

69232 VOLUME 7, 2019

J. Rodas-Silva et al.: Selection of SPL Implementation Components Using Recommender Systems

information (in form of tags) that characterizes each of the
implementation components.

The user ratings on the implementation components are
represented by an Mmxn ∈ Z matrix called M1, where the
rows determine the m users (u1, u2, ..., um) and the columns
the n implementation components (p1, p2, ..., pn). Each cell
rij ∈ {1...5} represents the rating provided by the user ui
to the implementation component pj, where 1 represents the
worst rating and 5 the best rating. With a similar structure,
we represent the features required by each implementation
component. In this case we have a matrix Nnxk ∈ [0, 1]
called M2, that relates the n implementation components
(p1, p2, ..., pn) of the matrix M1, with a set (f1, f2, ...fk) of
k features. Where bij determines the presence (1) or not (0)
of a feature fj in the component pi .

FIGURE 4. Example of matrices M1 and M2.

Fig. 4 shows the representation of thematrices in a scenario
with ratings of five stakeholders on four plugins for the con-
figuration of a WordPress-based website. Also, the relation-
ship of each plugin with a set of five features. In this example,
it can be seen that it is not necessary for all the plugins to have
ratings (see rij = 0 in M1, e.g. Web Developer 1 did not rate
plugins 1 and 4). Moreover, a plugin does not require all the
features (see bij = 0 inM2).

B. RECOMMENDATION GENERATOR
In section III, we introduce three common scenarios to guide
users configuring components. In this section, we will ana-
lyze how RESDEC, depending on the specific needs of the
stakeholder or user, addresses these scenarios for the con-
figuration of a product in the domain of an SPL through
the selection of optimal implementation components. Next,
we present the goal pursued in each scenario and determine
which recommender algorithms can be used.

1) COLD START
This scenario occurs when a user starts configuring a product
from scratch and need to know what components could be
used to implement each feature of a particular configuration.

Note that in this case, the user has no experience in the domain
of the application and therefore the system does not have
information associated with his profile, this is the reason why
the system identifies this as a cold start and suggests the most
commonly used implementation components best rated by
the community.

For example, a user wants to set up a website to organize
family memories. For this, it is necessary to implement a
series of functionalities on the site. In this case, the sys-
tem makes the recommendations based on the most popu-
lar plugins used to implement the features of the site. For
another example, suppose the user wants to implement the
video viewer feature, in this case the approach will filter only
those implementation components (plugins) that implement
the selected feature. Also, if the user wants to implement the
features: search engine, video and photo viewer, management
of albums and social media, we will use a cold start approach
in which we filter the most popular implementation compo-
nents that suits better the set of selected features.
Goal: Find the set of most suitable implementation com-

ponents to implement functionalities to the features of new
products in an SPL based on popularity level.

Notice that the features will be selected and deselected
based on the set of chosen components.
Recommender Process: For the recommender pro-

cess carried out in this scenario, we implement the
Non-Personalized algorithm presented in Section II-B.1 by
using as input ratings matrix M1 to find the most popular
implementation components. Table 1 briefly explains the
operation of this algorithm.

TABLE 1. Cold start algorithm.

2) RECOMMENDATIONS OF IMPLEMENTATION
COMPONENTS BASED ON RATINGS
This scenario occurs when the user wants to evolve the imple-
mentation components and wants to get recommendations on
the better options. Note that in this case, the user already has
information associated with his profile, so the recommenda-
tions are made based on the user’s historical information and
its similarity within the community. For example, in custom
website developments, it is common to use a series of plu-
gins, which usually have information associated with them
(i.e., ratings). This information is what allows the system to
identify which plugins similar to those implemented have
been used by users in other developments and that could be
of interest to the web developer.
Goal: Find implementation components of an SPL based

on the ratings and profiles of similar users.
Recommender process: For the recommender process

that is carried out in this scenario, we have implemented
in RESDEC three recommender collaborative-based filtering

VOLUME 7, 2019 69233

J. Rodas-Silva et al.: Selection of SPL Implementation Components Using Recommender Systems

algorithms (CF): user-user KNN, item-item KNN, and SVD
(Singular Value Decomposition) presented in Section II-B.1.
The proposed collaborative filtering algorithms use as input
the matrix M1 described in Section IV-A, a user profile
(which contains the history of the implementation compo-
nents installedwith the ratingsmade in the past), and a value k
that defines the number of elements to recommend. From this
information, the algorithm uses ameasure of similarity (in our
case, we used Pearson correlation coefficient) from which
a recommendation list of k implementation components is
obtained.

In Section V, we present a comparative study of the three
collaborative filtering algorithms to determine which algo-
rithm is most suitable for recommending implementation
components in the evaluated scenarios. Table 2 shows a gen-
eral outline of the recommendation strategy used in this case.

TABLE 2. General scheme of the collaborative-based filtering algorithms:
A) neighborhood-based recommender, and B) model-based
recommender.

3) RECOMMENDATIONS OF IMPLEMENTATION
COMPONENTS BASED ON FEATURES
This scenario, similar to the previous one, occurs when the
user has previous experience in the implementation of com-
ponents to an SPL configuration environment (i.e., there is
already information associated with his profile). The differ-
ence with the previous scenario is that here the recommenda-
tions are computed considering the feature associated with
the implementation components (i.e., content information
that allows enriching the recommendations). Specifically,
we consider the relationship between features and implemen-
tation components associated with the user profile.

For example, supposed that we implemented an eCom-
merce website in which we incorporated the plugin payments
with credit cards to implement the online payments feature.
However, we do not want to replace this functionality but
know if there are better implantation alternatives from the
existing plugins. In this case, we would use the plugins’ tags
(i.e., features associated with each component). The idea of
using the tags is to allow finding plugins that are different
from those already installed but still share certain functional-
ities. In the aforementioned case, the system could recom-
mend plugins to make payments through PayPal or some
other means of payment.
Goal: Find components that work as effective imple-

mentation solutions to enrich features functionalities in the
configuration of an SPL based on component features.
Recommender Process: For the recommender process

that is carried out in this scenario, we have implemented

in RESDEC the content-based recommender algorithm TF-
IDF, described in Section II-B.2. We focus exclusively on the
cosine similarity based on TF-IDF due to its simplicity and
robustness to work with descriptive information.

In addition, as the information of the implementation
components is presented in the form of tags, this algorithm
was easy to adapt in configuration environments of an SPL
allowing to find the relevance between components according
to the content. However, in the literature, there are other
algorithmic proposals used in content-based recommender
systems, which we have considered as future work.

This algorithm uses as input the matrices M1 and M2
described in Section IV-A (which contains the history of the
features and implementation components that the user has
used in the past), and a value k that defines the number of
elements to recommend. Thus, from matrix M1 we obtain
the profile of the user uk , and from matrix M2 we obtain the
features associated with each component. Given this process,
the system calculates the w weighting for each feature f and
then establishes the similarity between the features f of the
selected p component and the features of all the components
associated with the user profile.

Finally, a recommendation list of k implementation com-
ponents p is returned to user uk . Table 3 shows the general
scheme for making recommendations in this scenario using
content-based algorithms.

TABLE 3. General scheme of the contend-based algorithm.

V. EVALUATING RESDEC
Developers and configurators who creates Wordpress sites
face the challenge of choosing the plugins that best suits their
needs. In this context, RESDEC aims to assist them in the
decision making process.

Figure 5 shows the process we performed to evaluate
our approach. First, we describe how we extracted the data
describing the available plugins at Wordpress and how we
build an example feature model describing a product line
of eCommerce wordpress sites. Later, we go through the
different experiments we developed to test different scenarios
where we envisioned RESDEC to be used.

A. EXPERIMENTATION DATA
1) WORDPRESS DATA
To obtain the data for these experiments we have created a
selenium based crawler2 that extract the different matrices
used in this paper. First, we extract the list of plugins from

2Selenium WebSite: https://www.seleniumhq.org/

69234 VOLUME 7, 2019

J. Rodas-Silva et al.: Selection of SPL Implementation Components Using Recommender Systems

FIGURE 5. Evaluation steps performed to evaluate RESDEC.

Wordpress,3 then, through the different plugins obtaining
its number of stars, downloads, version, last update date,
the wordPress version, the required PHP version, and asso-
ciated tags. Finally, we obtain the list of users that reviewed
the plugin and scores. This information is then stored in a Json
file which is later exploited to generate the required inputs for
RESDEC. Both the crawler and the used data can be found at
RESDEC website.4

2) WORDPRESS FEATURE MODEL
To build the feature model based on a software products
line of eCommerce sites on Wordpress, we have followed a
systematic process, ranging from searching for eCommerce
websites developed on this platform, the plugins that have
been implemented, identifying features and assigning the
plugins to each of them. The process consisted of five phases:

• Searching of eCommerce Websites: As a first step,
a search of the websites that have been developed on
Wordpress was made, specifically those of eCommerce
type, discarding the sites that do not correspond to this
category. For this process, we looked for success cases
of companies whose websites have been designed on
this platform. As the first searching criteria, we con-
sidered the showcase published on the official Word-
press site5 where we obtained a list of seven websites.
Then, we searched throughout the ranking of websites

3Wordpress plugins: https://wordpress.org/plugins/browse/popular/
4Selenium WebSite: http://resdec.com/
5Wordpress showcase: https://wordpress.org/showcase/

of the last four years (sites developed on Wordpress that
are currently working). As a final result of this search,
we obtained a total of 28 websites.

• Implemented Plugins Identification: Once the list of
websites was obtained, the next step was to identify
which Wordpress plugins are implemented to each one
of them. For this process, we used the Wptheme detec-
tor tools6 and Wordpress Plugin Checker7 where we
obtained a list of plugins for each site. In some cases,
we checked the source code of the site to identify plug-
ins that were not detected by the aforementioned tools.
From the list we obtained, we reviewed those that are
still valid for their use and discarded those that are no
longer supported.

• Construction of Features From Plugins: With the list
of plugins we obtained in the previous phase, we were
able to identify what the possible features of our model
would be. This process consisted in classifying each plu-
gin by category. For example, those used to implement
the product catalogue, shopping cart, online payments,
security controls, among others.

• Feature Model Development: We started to build the
feature model once the plugins were classified by cat-
egory. Each category became a parent feature of the
model, however, in some cases we had to unify cate-
gories to form a single parent feature and in other cases,
a category became a sub-feature of a parent feature.

6Wptheme site: https://www.wpthemedetector.com/
7Wordpress Plugin Checker site:http://wppluginchecker.earthpeople.se/

VOLUME 7, 2019 69235

J. Rodas-Silva et al.: Selection of SPL Implementation Components Using Recommender Systems

FIGURE 6. A feature model describing an eCommerce-based website on Wordpress.

Fig. 6 shows the feature model built from the results of
the steps described above. The model shows the rela-
tionship between each of the features, as noticed, some
relationships are mandatory and others optional; it also
shows some restrictions that are considered during the
configuration of an eCommerce website.

• Plugin mapping to feature model: With the feature
model built, the next step was to map the plugins, which
were previously classified by category. For this process,
we associate each feature to the plugins that could be
used to implement it. In this case, the same plugin could
implement more than one feature, so this association is
allowed.

B. EXPERIMENT 1: VALIDATION OF RECOMMENDATIONS
BASED ON RATINGS
In this first experiment, we want to understand if the recom-
mendations retrieves were accurate enough when using the
collaborative filtering approaches in RESDEC. To perform
the evaluation of the algorithms, we conducted an offline
evaluation [37]. We simulated the online process where
the system makes predictions by building the recommender
systems using a part of the knowledge-base (training set).
Then, we evaluate its performance with the rest of the data
(test set).

Particularly, we used a cross-validation approach to prevent
bias caused by the selection of the training and test sets
[38], [39]. Cross-validation consists on generating different
sets of data (one set per fold which is a parameter of the
validation procedure) later used as training and test inputs.
The procedure iteratively selects one fold as test and the rest
as training to evaluate an algorithm and provides amean of the
metrics obtained for each iteration. In our case, we performed
cross-validation with three, five and seven folds, repeated
five times and collected the mean accuracy (see metrics in
section V-B.1). Beyond the type of data we were analyz-
ing, we wanted to know the robustness of the algorithms
regarding the training/test distribution, which in a 10-fold CV
is 90/10%.

Using 3-, 5- and 7-fold CV we obtain results for training/
test data distributions of 66/33%, 80/20% and approximately
85/15% which gives us an idea of the models quality similar

to the 10-fold cross-validation but it brings the idea of how
stable the algorithms are regarding sudden changes in the data
distribution.

All parameters of the algorithms used in this experi-
ment were set to defaults in the Scikit-surprise library (see
Appendix VIII).

1) METRICS
Mean Absolute Error (MAE) and Root Mean Squared
Error (RMSE) are two of the most common metrics (see
Eq. 11 and 12, respectively) used to measure accuracy for
continuous variables [40]. In this experiment, collaborative-
based recommender systems provided an affinity score for
every pair of plugin and user. The affinity score is a continu-
ous variable later used for getting recommendations with the
best fit.

The algorithms used in this experiment started from the
experience of users with similar profiles and the ratings they
made on a set of plugins. As mentioned in Section II-B.1
these algorithms predict the ratings of users and from these
predictions, select the best plugins as recommendations.
In this context, we used MAE and RMSE [37] to measure the
goodness of fit when predicting ratings and determine how
close the score calculated by RESDECwas to the actual score
that a user gave to a plugin.

MAE =
1
ϒ

∑
(u,i)∈ϒ

∣∣r̂(u,i) − r(u,i)∣∣ (11)

RMSE =

√√√√ 1
ϒ

∑
(u,i)∈ϒ

(r̂(u,i) − r(u,i))2 (12)

For each pair of ratings r̂(u,i) (prediction by RESDEC) and
r(u,i) (real rating not used to train RESDEC), the accuracy
metrics are calculated as follows: MAE is computed as the
mean sum of the absolute errors from predictions of a test set
ϒ (never used to build the recommender) of ordered pairs
user-plugin (u, i). RMSE follows a similar equation but in
this case, it calculates the second sample moment of the
differences between predicted values and observed values.
MAE and RMSE are never negative, but the closer they are
to zero, the better performance is provided.

69236 VOLUME 7, 2019

J. Rodas-Silva et al.: Selection of SPL Implementation Components Using Recommender Systems

TABLE 4. Evaluation results applying collaborative-based recommender
systems under different training sizes. Numbers in bold indicate the best
results.

2) RESULTS
Table 4 shows the mean results of the evaluations performed
as a function of the percentage of the knowledge base
reserved for training (66%, 80% and 85% in cross validation
with three, five and seven folds, respectively). Figures 7 and 8
show graphically the trend shown in the Table 4.

FIGURE 7. MAE Evaluation.

FIGURE 8. RMSE Evaluation.

We observe that as the training base decreases (and there-
fore the test base increases), errors increase. In the case of
SVD, the dependence on the size of the training set is higher.
It can also be observed that the results of the Item-Item kNN
algorithm has a clear advantage over the SVD algorithm, since
MAE and RMSE are significantly lower. However, the differ-
ence with User-User kNN is not so significant. To clarify this
point, we performed a statistical validation with the results
obtained for each fold and technique in three-, five- and
seven-fold cross–validation (15 partial results per technique-
i.e., 45 in total).

To validate the performance differences between multiple
algorithms of machine learning, it would be common to use

an ANOVA(Analysis of Variance) statistical test. The prob-
lem is that this type of parametric statistical tests has strong
assumptions regarding the data (normality, homoscedastic-
ity, etc.). Instead, it is possible to use nonparametric variants
such as the Friedman test. We applied the Aligned Friedman
test to study the statistical significance of the differences
among the average rankings obtained by each technique and
a Holm’s post-hoc procedure that allowed us to compare the
results of each technique by pairs, controlling the family-
wise error by means of the StatService tool [41]. A more
in-depth description of the statistical validation performed
can be found in [42].

TABLE 5. Mean rankings obtained after comparing the MAE results.

TABLE 6. Mean rankings obtained after comparing the RMSE results.

The aforementioned statistical procedure is based on the
generation of mean rankings for each technique. To this end,
we generated a ranking for each technique result. The ranking
varies from 1 (the best) to 45 (the worst ranking and also,
the number of total partial results registered). Table 5 and 6
show the mean rankings obtained for every algorithm regard-
ing MAE and RMSE as accuracy metric, respectively.

We set as null hypothesis for the Aligned Friedman test
that the differences between the mean rankings are not sig-
nificant. The p-value for Aligned Friedman test (see [42]
for further details) was lower than 0.007 regardless using
MAE or RMSE. The test rejected the null hypothesis with
a significance level of α = 0.05 for both MAE- and
RMSE-derived rankings.

The next step was a pairwise comparison to detect if there
was significant differences between the best recommender
(Item-Item kNN) and each of the other possible options. This
was done by relying on a Holm post-hoc test constraining α
on each run.We can see on Table 7 that there were significant
differences between Item-Item kNN and SVD but not regard-
ingUser-User kNN since the p-values could not reject the null
hypothesis (the p-value obtained was not equal or lower than
the corresponding Holm’s α).

Considering the previous analysis, we can observe that
kNN collaborative filtering algorithms presented better
results in RESDEC for the WordPress dataset scenario.
Taking into account that RESDEC obtained a MAE of 0.65
and that we had 5 possible scores we obtained a relative
error level of 13% (0.65/5). RMSE reported a higher error

VOLUME 7, 2019 69237

J. Rodas-Silva et al.: Selection of SPL Implementation Components Using Recommender Systems

TABLE 7. P-values of the statistical tests of Aligned Friedman between
the control recommender (Item-Item kNN) and the rest according to the
rankings obtained by MAE and RMSE.

since it follows a quadratic scoring rule that increase the
average magnitude of the error. Higher RMSE than MAE
involves eventual larger errors in the distribution. In other
words, the MAE-derived relative error can be around 13%,
RMSE shows that there can be cases where the error is much
higher.

C. EXPERIMENT 2: VALIDATION OF RECOMMENDATIONS
BASED ON FEATURES
In this second experiment, we wanted to understand how
well RESDEC retrieves configurations when using content-
based filtering. Again, to perform an evaluation of the algo-
rithm used, we conducted an offline evaluation simulating
the online process by a three-, five- and seven-fold cross-
validation approach repeated five times to reduce bias due to
random selection of test sets.

1) METRICS
To evaluate the quality of content-based algorithms, we used
Precision, Recall & F-score since they are metrics commonly
used in the literature (see [6], [43]) to describe a recom-
mender system accuracy regardless any rating given by users.
Equations 13, 14 and 15 show their calculation.

Precision(L) =
1
u

∑
uεU

|L(u) ∩ T (u)|
|L(u)|

(13)

Recall(L) =
1
u

∑
uεU

|L(u) ∩ T (u)|
|T (u)|

(14)

F-score(L) =
2 ∗ Recall(L) ∗ Precision(L)
Recall(L)+ Precision(L)

(15)

Precision for a user u is obtained by dividing the intersec-
tion set of the recommended L(u) and the relevant T (u) plu-
gins the user u, among the size of the total recommended set.
Recall, divides the same intersection by the total of relevant
plugins for that user. In both cases, the relevant plugins refer
to those that the user has rated in the test set, while the rec-
ommended ones correspond to those the system has provided
to a particular user after training the recommendation system
(but not including interactions from test sets). Precision and
Recall are in the interval [0, 1]. A score is considered perfect
when it is 1, while 0 is considered the worst possible value.
An important issue regarding Precision and Recall is that,
in general, Recall increases as the number of recommended
items do. On the contrary, Precision decreases when the

system provides a higher number of recommendations.
F-score combines both measures to mitigate both unwanted
effects.

2) RESULTS
In this evaluation, we used the metrics Precision, Recall and
F-score for recommendation of 5 and 10 plugins (usually the
numbers of recommendations in the literature) of the scenario
presented in IV-B.3. The results are shown in Table 8.

TABLE 8. Mean number of ratings by user and 3-fold (66% training set)
cross-validation results for our content-based recommender.

In the content-based scenario, RESDEC worked better
with smaller training databases (i.e., with a lower number
of folds in the cross-validation). This fact is due to a spe-
cific knowledge base (in our case, Wordpress dataset) and
dependence of Recall and Precision on the mean number
of ratings by user. In that case, the intersection between
recommended and relevant items is low while the number of
recommended items will be constant, which makes Precision
decrease. The same way, regarding Recall, its value will too
often depend on a one-item-only relevant set for a user which
may easily increase the number of users without any positive
recommendation. In fewwords, when we have users with few
interactions in test, Precision and Recallmaymislead conclu-
sions when recommending a fixed (usually 5 or 10) number
of plugins. In our Wordpress database, cross-validation with
more than 3 folds provided (on average) test sets with less
than 2 plugins rated by a user (the mean number of ratings
when using three, five and seven folds was 2.66, 1.6 and 1.21,
respectively). This fact made us discourage the inclusion of
results of 5- and 7-fold cross-validation for analysis.

From our results on 3-fold cross-validation, 82% and 87%
of most-suitable plugins recommended by RESDEC were
(on average) really interesting for users according to Recall at
5 and 10, respectively. We observed that precision was lower
than Recall. Again, a lowmean number of interactions on test
could be the reason. Precision depends more on the number
of relevant items since divisor in its formulation is constant.
As was expected, with a higher number of recommended
items, Precision decreased whilst Recall lightly increased.
Thus, F-score gave a better idea of what was really happening
on both previous measures and concluded that a lower num-
ber of items would better fit our dataset.

D. THREATS TO VALIDITY
Although the experiments presented in this document provide
evidence that the proposed solution is valid, there are some

69238 VOLUME 7, 2019

J. Rodas-Silva et al.: Selection of SPL Implementation Components Using Recommender Systems

TABLE 9. RESDEC vs. others proposals.

assumptions we have made that may affect its validity. In this
section, we discuss the different threats to validity that affect
evaluation.

• External Validity: The data used for the experiments
presented in this paper is based on a realistic feature
model based on a product line of eCommerce websites
in Wordpress. However, as it was developed following a
manual design process, it could have errors and could not
represent all the necessary features to configure a web-
site in this domain. To deal with this threat, we perform
a systematic search based on cases of website successes
created in Wordpress. Then, we filter those categorized
as eCommerce and analyze their structure to determine
the implemented features. Finally, we made sure that the
features of the model represent all the valid configura-
tions for an eCommerce website created in Wordpress.
Regarding the implementation components, represented
by plugins, which were associated with the features of
the model, we did not consider versions nor the validity
of them within the platform. To address this threat,
we identify which plugins have been installed on the
sites that were taken for the study. In some cases, tools
were used to detect plugins and in others the source code
was revised. Finally, wemap each of the plugins with the
features to guarantee the validity of the feature model.

• Internal Validity: A threat to internal validity is the
selection of recommender algorithms used for the eval-
uation. In this work, we have included recommendation
algorithms based on collaborative filtering and content
filtering. However, we have only used one technique of
filtering by content and has not been compared with oth-
ers, as we did with the techniques based in collaborative
filtering. To address this threat and support the process
of selecting components in the configuration of products
in an SPL, as part of our future work we plan to expand
our experiments with other types of algorithms based on
content filtering.
Another possible threat is the evaluation technique that
we have used in this work. Although it is true that cross-
validation was more precise to evaluate the recommen-
dations obtained from RESDEC, we left aside other
techniques that could be considered. Thus, there could
be other validations to demonstrate which of the algo-
rithms provide better results, precision and performance
in the proposed scenarios.

• Sensitivity Parameters: One of the important aspects
that we have not included in this work is the analysis
of the optimal values that should be introduced in the
algorithmic models when making the recommendations
of the implementation components.
In this context, for future work we hope to perform
a parametric sensitivity analysis as well as a detailed
study of the parameters that are introduced in each of
the proposed algorithms. The objective that we seekwith
this analysis is to know how each parameter influences
in the final results. For this purpose, we will carry out a
simulation by varying values in each parameter based on
a central value and analyze the effect that these changes
cause in the recommendations given by RESDEC.

VI. RELATED WORK
In this section we compare our proposal with existing liter-
ature. In Table 9 we summarize the main characteristics of
RESDEC and compare them with other proposals

The column Papers of Table 9 shows some works directly
related to our proposal. First, we will review in the litera-
ture proposals based on the selection of configurations, then,
address works related to recommender systems applied in an
SPL. All proposals presented use feature models.

The Features and Implementation Components columns
in Table 9 indicate whether the cited works employ features
and implementation components in their proposals. As it is
observed, only the proposals presented by Galindo et al. [12],
Al-Hajjaji et al. [44] and Pereira et al. [10], [13]–[15] make
use of features. On the other hand, none of the proposals use
implementation components.

In the Collaborative and Content columns of Table 9 we
refer to the recommendation algorithms we have used in
RESDEC, with which we determine whether the proposals
presented use some of them in the configuration selection
process; while the Algorithms column indicates the number
of algorithms implemented.

To learn more about the proposals presented in this section,
we briefly analyze each one of them:

In the work presented by Galindo et al. [12] the authors
present a solution to prioritize configurations for testing
based on value attributes, in this case the cost of testing. The
proposal incorporates a prototype tool that processes a set
of configuration rules for an SPL, given by the developer,
through the use of cost and value functions. The proposal

VOLUME 7, 2019 69239

J. Rodas-Silva et al.: Selection of SPL Implementation Components Using Recommender Systems

does not use any recommendation technique nor does it have a
dataset with historical data, since the information it processes
is generated manually and is not constantly updated.

Al-Hajjaji et al. [44] presents a proposal to prioritize con-
figurations based on the similarity between one or more con-
figurations. The hypothesis handled by the proposal supposes
that, if a configuration presents some failure, it is probable
that the similar ones also have it, having as a result more
possibilities to quickly detect errors.

The techniques used to prioritize configurations according
to similarity are not based on algorithms commonly used in
recommender systems. On the other hand, the data used in the
solution is derived from a model that is previously generated
manually; that is to say, like the previous proposal, there is
no mechanism that generates and automatically updates the
information that is processed.

The work of Mazo et al. [45] presents a proposal that
through a collection of heuristics and using programming
with restrictions, seeks to improve the process of configuring
a product to reduce the number of steps and the time to
prove the validity of the product line. This work is the first
one that introduces short-term recommendation techniques
since it uses six algorithms to solve each of the presented
heuristics. However, it is not determined whether the infor-
mation shown to the user for the configuration of a product is
actually known or useful, or based on the experience of other
users in similar configuration processes, for example, which
questions whether the final configuration of the product will
satisfy the user’s requirements.

In the proposal of Martinez et al. [46] the authors propose
the use of an interactive genetic algorithm for the selection
of a relevant set of configurations for users. The proposal
uses a dataset with information of configurations valued by
users that is exploited by data mining techniques. Although
it is true that the proposal contains all the elements that
a recommendation system needs (users, items and ratings),
the way how the algorithm operates in its entirety is not
presented in detail. By the use of the genetic algorithm and the
information that is used we could say that we are employing
recommendation techniques based on collaborative filtering.

In the work of Pereira et al. [10] the authors present the first
proposal in which a well-structured recommender system is
used to configure products in an SPL. The proposed solution
involves the user throughout the product configuration stage
guiding the selection of features that best suit their require-
ments. However, the information presented to users for the
configuration of the product does not come directly from
criteria given by users in the past; that is, the features shown
for the configuration do not have an indicator that determines
if those features have been evaluated positively or negatively
by the users, which makes it difficult to determine if a
selected feature has been implemented successfully in past
configurations.

Following the same approach as in the previous proposal,
Pereira et al. [13] show an extension of the work pre-
sented in [9] in which it is present a tool that improves the

visualization aspects for the configuration of products in an
SPL by means of a recommender system based on non-
functional properties (NFPs) of the features. The objective
of the proposal is to ensure the consistency of the configured
products and reduce the effort of those responsible for the
configuration thereof.

The same authors in the work [14] present a solution that
uses a recommender system to predict the features during the
configuration of products using contextual information of the
users, specifically, the requirements that the users define for a
product. In the first proposal the user defines the requirements
of the product to be configured, then the system performs
a search to include historical data based on the specified
requirements. Later, it creates a list of features that help the
user to identify those features relevant for the configuration of
the product and finally, the system checks the integrity of the
configuration verifying if there are some undefined features.
In case the system finds a partial configuration, it predicts
the features for said configuration, complements it and shows
them to the user, thus improving the general quality of the
recommendation.

Finally, in the work [15] a new proposal for the configura-
tion of products is presented based on a recommender system
that uses contextual information of the users. In this case,
new analysis dimensions are introduced, which go beyond the
two typical dimensions, users and items, which are usually
used by a recommender system. For this purpose, the authors
introduce the technique of collaborative filtering Tensor Fac-
torization (TF) [47] to automatically prioritize the features
and auto-configure the SPL at execution time according to
the contextual information that it originates around users and
improve performance in the process of configuring a product.

All the proposals of Pereira et al. which have been men-
tioned above, employ a well-structured recommender system
whosemain elements are users, items and ratings. In addition,
they make use of a historical knowledge base that is con-
stantly updated. However, it can be perceived that the
obtained ratings do not come from opinions that common
users would give to a configuration of a product (such as
errors during operation, poor design, among others). On the
contrary, the information that is used is probably collected
from the opinions of expert users, since common users could
not accurately evaluate technical aspects related to the con-
figuration of a product. On the other hand, the proposals
only use collaborative-based recommender systems and focus
exclusively on the configuration of products, leaving aside the
components that implement the features during the configu-
ration of an SPL.

Comparing the works described above with RESDEC,
based on the characteristics of columns [4-7] of table 9,
we can say that one of the main advantages of our proposal
is the use of a knowledge base that feeds of information
that comes from the experience that ordinary users have had
when using products in an SPL domain. Specifically, in our
proposal this information is represented by the ratings that
users have made about the components used to implement

69240 VOLUME 7, 2019

J. Rodas-Silva et al.: Selection of SPL Implementation Components Using Recommender Systems

features in the configuration of a product. We believe that it
is more feasible and real, to obtain user evaluations about the
implementation components, rather than the features of the
product; since as mentioned before, a common user would
not have the experience to evaluate technical aspects related
to a product.

On the other hand, we are the first to introduce the concept
of Component-based Recommender Systems in the config-
uration of an SPL through the use of collaborative-based
filtering and content-based filtering techniques.

The column ‘‘Tool’’ in Table 9 indicates whether the
proposals include some prototype tool as part of con-
tributions. All the proposals, except those presented by
Pereira et al. [14], [15], propose a tool for configuring
products in an SPL. However, RESDEC is the only tool
that has been implemented using a well-defined scheme of
recommender systems; and besides, it is the only one that
incorporates a set of algorithms that are executed in three
different scenarios that validate the platform’s capacity in
terms of operationalization and scalability.

Finally, all proposals include an evaluation with informa-
tion obtained from various business sectors.

VII. FUTURE WORK
A. USE OF IMPLICIT INFORMATION
In the proposal presented in this paper, we have only consid-
ered recommender techniques that take into account explicit
information of the users (i.e., ratings). As future work, we aim
to include implicit information from events defined indirectly
by the user, such as, number of clicks, number of views,
etc. For example, in addition to including user ratings on
the plugins, we could also include implicit information as
the number of downloads, number of views and versions of
the plugins. Information that would allow the recommender
system to work in a more personalized way. In the literature,
there are several recommender algorithms that use implicit
information to make the recommendations [48], [49]. Our
future aim is to adapt this algorithms to enrich the recom-
mendations of implementation components in the domain of
SPL configuration.

B. USE OF CONTEXTUAL INFORMATION
We aim at recommending components based on contextual
information derived from the users, features and configura-
tions by adapting the algorithms proposed in Pereira et al.
[10] and which can be processed according to the RESDEC
components presented in figure 3.

The objective that we seek with the implementation of this
scenario is to guide the user during the process of configuring
a product. This way, as the user progresses in the configura-
tion of a product, RESDEC is able to automatically suggest
which feature can be selected to complement the partial
configuration based on associated descriptive information to
the features, users and configurations.

To face the handling of contextual information and offer a
personalized product to the user of better quality, we intend

to extend the benefits offered by the techniques of Factoring
Matrix by introducing the technique of collaborative filtering
Tensor Factorization (TF) [15] that allows an integration
of contextual data that does not focus only on information
from matrices of user and items. In our case, this technique
will allow us to explore beyond the contextual information
of the components of implementation of the features, and
will facilitate us to involve other dimensions of study such
as, for example, contextual information of the features and
configurations not considered in this work.

An approximation to this type of recommendation could
be the following, suppose that the user who set up a website
for tourism promotion also set up a website for travel; when
new users set up a tourism promotion website, it is likely for
the system to recommend the configuration of the website
for travel. Note that in this case we make use of contextual
information that is developed around a valid configuration of
a product.

C. RECOMMENDATION OF CONFIGURATIONS
FOR TESTING
The objective is for RESDEC to be able to recommend con-
figurations more susceptible to errors and therefore could be
candidates for testing. The aim is to provide to the person
in charge of supervising the quality of the SPL an auto-
mated mechanism that allows him to select the configurations
more error-prone. For this, we are based the hypothesis that,
the configurations with the lowest rating by the users are
those which tend to contain more errors. For example, if we
have designed a mobile application for tourist promotion,
the system should be able to recommend which configura-
tions of mobile devices testing should be performed. For this
purpose, mobile devices in which similar applications have
had unfavorable ratings will be recommended for testing.
To make this type of recommendations, we will use the
RESDEC recommendation elements and algorithms shown
in Figure 3.

VIII. CONCLUSION
Managing the SPL configuration process is a complex task
for the software developer, even more complex when there
is more than one possibility of implementation for a feature.
In this scenario of constantly evolving products, the selec-
tion of implementation components becomes a difficult task.
As wementioned in this paper, a common example is found in
the web development industry during the selection of plugins
among a wide variety of options to choose from; in such
a case, selecting empirically a plugin could not provide the
expected results and consequently provide a bad experience
for the users.

In this work, we have presented RESDEC as a proposal
to support the user to face the difficulties that occur when
selecting implementation components to configure an SPL.
To this end, we have identified three possible scenarios in
which we can make use of explicit information from the
users and the implementation components. The first scenario

VOLUME 7, 2019 69241

J. Rodas-Silva et al.: Selection of SPL Implementation Components Using Recommender Systems

called Cold start that recommends components when there
is no information associated with the user profile, that is,
when the user has not had experience and for the first time
is going to configure a product. The second scenario called
Recommendations of implementation components based on
ratings, which, based on the components linked to the user
profile, recommends components that other users have used
in past configurations. Finally, the scenario Recommenda-
tions of implementation components based on features, which
recommends implementation components based on the fea-
tures of the components associated with the user profile, that
is, in the descriptive information of the components.

The modeling of the problem for the implementation
components selection using collaborative-based and content-
based recommender systems algorithms and the design of
a prototype tool for RESDEC are the new contributions of
this research. The results obtained in the evaluation carried
out using a WordPress dataset show that RESDEC is capable
of making recommendations on implementation components
with an error lower than 13%.

As future work, we aim at addressing the following issues:
• Explore new recommender algorithms.
• Conduct user empirical study to identify the usability of
RESDEC.

• Explore other domains by using a knowledge base dif-
ferent from WordPress.

• Extend RESDEC Tool to be able to make recommenda-
tions in real time.

This work present preliminary results to support the con-
figuration of implementation components in the domain of
SPL. Moreover, this proposal could be also applied to other
environments that face similar problems, such as, the selec-
tion of deployment environments for mobile applications.

MATERIAL
The RESDEC source code can be downloaded from the
project repository https://github.com/RESDEC. The tool
prototype using information extracted from WordPress is
available on the RESDEC website http://resdec.com/.

APPENDIX: RESDEC TOOL
RESDECTool (see Figure 9) is a prototype recommender tool
that provides real-time assistance in the selection of imple-
mentation components to configure the features of a product
belonging to a domain of an SPL. It is designed to provide
support and help stakeholders with or without information
associated to the user profile.

The recommender process takes place in two stages: 1) For
stakeholders that need to configure a new product, RESDEC
provides recommendations based on the trend of the most
ranked and used implementation components within the
community, 2) For stakeholders with previous experience,
RESDEC provides a list of recommendations on implemen-
tation components based, on the one hand, user profiles that
have used similar components and; on the other hand, based
on the features associated to the implementation components.

FIGURE 9. RESDEC recommender system.

For example, if the stakeholder wants to set up a website in
WordPress, RESDEC offers a list of plugin recommendations
based on the experience of users who have set up similar
websites in the past. These recommendations are carried out
through personalized searches through which the stakeholder
can find suggestions according to the popularity of the plug-
ins, or based on the tags of the plugins used by the community
and thus produce the desired result.

RESDEC uses as input data information from several data
sources, such as CSV’s, database, among others, which are
fed by information that is developed around the implemen-
tation components of a Feature Model. As mentioned in
section IV, the construction of these models is beyond the
scope of this proposal.

In this work we only use CSV files as a data source. The
data collected by these files correspond to users, ratings of
the implementation components and the features associated
to these components.

The recommendations are calculated by using information
from several mandatory fields provided by users, such as
the implementation components used in past developments,
the features of the implementation components and the num-
ber of recommendations that the system returns. With the
information given by the stakeholder, RESDEC runs rec-
ommender algorithms that use similarity functions to deter-
mine the similarity between the implementation components
used by the stakeholder and those used by the community.
Algorithms such as the similarity functions implemented in
RESDEC can be extended according to the stakeholder’s
needs.

As a final result, RESDEC shows the stakeholder a list of
recommendations that allows him to save time in the selection
of implementation components and at the same time provides
useful information not considered or not known as possible
to fit the goals of the product that is desired to be config-
ured or extended. Along with the list of recommendations,
RESDEC shows a tab called ‘‘You might also be interested’’
that shows other components that could be of the interest to
the stakeholder.

To sum up, RESDEC offers the following advantages:
(1) Information about users, implementation components and
ratings, used to build recommendations from feature models.

69242 VOLUME 7, 2019

J. Rodas-Silva et al.: Selection of SPL Implementation Components Using Recommender Systems

FIGURE 10. RESDEC architecture.

(2) It is easy to adapt to any application environment of an
SPL (3) It provides a set of recommendation algorithms that
can be extended and adapted in any of the three scenarios
presented in this paper. (4) It provides several data sources,
being these CSV’s, database, among others. (5) It offers a
search history of the last implementation components that the
stakeholder used to produce the recommendations.

A. RESDEC ARCHITECTURE
RESDECTool has 3 components (see Figure 10): a repository
manager, a recommender manager and an output manager.

The repository manager responds to the requests of the
stakeholders and structures the matrices M1 and M2 of
the Knowledge base presented in section IV-A through
CSV’s.

The recommender manager is in charge of processing the
recommendations based on the three scenarios presented in
section IV-B. It is developed in Python with a package of
libraries which contain the algorithms that the recommender
manager runs according to the scenario selected by the stake-
holder.

For the Cold Start scenario presented in section IV-B.1
RESDEC uses a classical popularity algorithm. While for
the algorithms which run in the scenario Recommendation
of implementation components based on ratings presented in
section IV-B.2, employs the Scikit-surprise library8; and for
the Recommendation of implementation components based
on features scenario presented in section IV-B.3, it uses the
Scikit-learn library.9

The recommender manager was designed to be scalable
over time, that is, it offers the possibility of extending the
benefits of RESDEC by allowing the adaptation of new sim-
ilarity metrics and new recommender algorithms for each of
the scenarios to which a stakeholder could face.

8Surprise website: http://surprise.readthedocs.io/en/stable/
9Scikit-learn website: http://scikit-learn.org/stable/index.html

The output manager interacts directly with the stakeholder
using the repository manager and the recommender manager
to generate the list of suggestions for the implementation
components. It is designed in HTML5 and JavaScript, sup-
ported by the Semantic UI framework10 used for the design
of the interfaces. The interaction between the stakeholder and
RESDEC is done through a web browser.

In general, the output manager is responsible for receiving
the requests of the stakeholders and informing the recom-
mender manager of the requirements so the appropriate algo-
rithm is run with the information that the repository manager
responds, it finally displays the generated recommendations
on the screen.

B. RESDEC WEB
To make our work accessible to the community, we present
a RESDEC web application that eases the generation of rec-
ommendations to stakeholders that require guided assistance
in the selection of plugins to configure a line of products
based on WordPress websites. The application is available at
http://www.resdec.com.

ACKNOWLEDGMENT
The authors would like to thank Mathieu Acher, Associate
Professor at Université of Rennes 1; and Juliana Alves
Pereira, Post-doctoral researcher at INRIA both members of
the DiverSE team (INRIA/IRISA) for their help reviewing
this paper that clearly helped us to improve it.

REFERENCES
[1] M. A. Babar, L. Chen, and F. Shull, ‘‘Managing variability in software

product lines,’’ IEEE Softw., vol. 27, no. 3, pp. 89–91, May/Jun. 2010.
[2] M. Lettner, J. Rodas, J. A. Galindo, and D. Benavides, ‘‘Automated anal-

ysis of two-layered feature models with feature attributes,’’ J. Comput.
Lang., vol. 51, pp. 154–172, Apr. 2019.

[3] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson,
‘‘Feature-oriented domain analysis (FODA) feasibility study,’’ DTIC,
Softw. Eng. Int., Pittsburgh, PA, USA, Tech. Rep. CMU/SEI-90-TR-021,
1990.

10Semantic website: https://semantic-ui.com/

VOLUME 7, 2019 69243

J. Rodas-Silva et al.: Selection of SPL Implementation Components Using Recommender Systems

[4] D. Benavides, S. Segura, and A. Ruiz-Cortés, ‘‘Automated analysis of
feature models 20 years later: A literature review,’’ Inf. Syst., vol. 35, no. 6,
pp. 615–636, 2010.

[5] J. A. Galindo, D. Benavides, P. Trinidad, and A.-M. Gutiérrez-Fernández,
and A. Ruiz-Cortés, ‘‘Automated analysis of feature models: Quo vadis?’’
Computing, vol. 101, no. 5, pp. 387–433, 2019.

[6] J. Bobadilla, F. Ortega, A. Hernando, and A. Gutiérrez, ‘‘Recommender
systems survey,’’ Knowl.-Based Syst., vol. 46, pp. 109–132, Jul. 2013.

[7] Y. Gonzalez-Fernandez, S. Hamidi, S. Chen, and S. Liaskos, ‘‘Efficient
elicitation of software configurations using crowd preferences and domain
knowledge,’’ Automated Softw. Eng., vol. 26, no. 1, pp. 87–123, 2019.

[8] J. A. Pereira, ‘‘A collaborative-based recommender system for configu-
ration of extended product lines,’’ in Proc. 39th Int. Conf. Softw. Eng.
Companion, 2017, pp. 445–448.

[9] J. A. Pereira, P. Matuszyk, S. Krieter, M. Spiliopoulou, and G. Saake,
‘‘A feature-based personalized recommender system for product-line con-
figuration,’’ in Proc. ACM SIGPLAN Int. Conf. Generative Program.,
Concepts Exper., 2016, pp. 120–131.

[10] J. A. Pereira, P. Matuszyk, S. Krieter, M. Spiliopoulou, and G. Saake, ‘‘Per-
sonalized recommender systems for product-line configuration processes,’’
Comput. Lang., Syst. Struct., vol. 54, pp. 451–471, Dec. 2018.

[11] A. B. Sánchez, S. Segura, and A. Ruiz-Cortés, ‘‘The Drupal framework:
A case study to evaluate variability testing techniques,’’ in Proc. 8th Int.
Workshop Variability Modelling Softw.-Intensive Syst. (VAMOS), Nice,
France, Jan. 2014, Art. no. 11.

[12] J. A. Galindo, H. Turner, D. Benavides, and J. White, ‘‘Testing variability-
intensive systems using automated analysis: An application to android,’’
Softw. Qual. J., vol. 24, no. 2, pp. 365–405, 2016.

[13] J. A. Pereira, J. Martinez, H. K. Gurudu, S. Krieter, and G. Saake, ‘‘Visual
guidance for product line configuration using recommendations and non-
functional properties,’’ in Proc. 33rd Annu. Symp. Appl. Comput. (SAC),
Pau, France, Apr. 2018, pp. 2058–2065.

[14] J. A. Pereira, S. Schulze, S. Krieter, M. Ribeiro, and G. Saake, ‘‘A context-
aware recommender system for extended software product line configura-
tions,’’ in Proc. 12th Int. Workshop Variability Modelling Softw.-Intensive
Syst., 2018, pp. 97–104.

[15] J. A. Pereira, S. Schulze, E. Figueiredo, and G. Saake, ‘‘N-dimensional
tensor factorization for self-configuration of software product lines at
runtime,’’ in Proc. 22nd Int. Syst. Softw. Product Line Conf. (SPLC),
New York, NY, USA, vol. 1, 2018, pp. 87–97. [Online]. Available:
http://doi.acm.org/10.1145/3233027.3233039

[16] P. Clements and L. Northrop, Software Product Lines: Practices and
Patterns (The SEI series in software engineering). Boston, MA, USA:
Addison-Wesley, 2001.

[17] T. Thum, C. Kastner, S. Erdweg, and N. Siegmund, ‘‘Abstract features in
feature modeling,’’ in Proc. 15th Int. Softw. Product Line Conf. (SPLC),
2011, pp. 191–200.

[18] D. Batory, ‘‘Feature models, grammars, and propositional formulas,’’ in
Proc. Int. Conf. Softw. Product Lines. Berlin, Germany: Springer, 2005,
pp. 7–20.

[19] J. A. Pereira, K. Constantino, and E. Figueiredo, ‘‘A systematic literature
review of software product line management tools,’’ in Proc. Int. Conf.
Softw. Reuse. Cham, Switzerland: Springer, 2015, pp. 73–89.

[20] G. K. Narwane, J. A. Galindo, S. N. Krishna, D. Benavides, J.-V.Millo, and
S. Ramesh, ‘‘Traceability analyses between features and assets in software
product lines,’’ Entropy, vol. 18, no. 8, p. 269, 2016.

[21] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry, ‘‘Using collaborative
filtering to weave an information tapestry,’’Commun. ACM, vol. 35, no. 12,
pp. 61–70, 1992.

[22] G. Linden, B. Smith, and J. York, ‘‘Amazon. com recommendations: Item-
to-item collaborative filtering,’’ IEEE Internet Comput., vol. 7, no. 1,
pp. 76–80, Jan. 2003.

[23] A. Tuzhilin, Y. Koren, J. Bennett, C. Elkan, and D. Lemire, ‘‘Large-scale
recommender systems and the netflix prize competition,’’ in Proc. KDD,
2008, pp. 1–34.

[24] G. Adomavicius and A. Tuzhilin, ‘‘Toward the next generation of rec-
ommender systems: A survey of the state-of-the-art and possible exten-
sions,’’ IEEE Trans. Knowl. Data Eng., vol. 17, no. 6, pp. 734–749,
Jun. 2005.

[25] J. A. Konstan, B. N. Miller, D. Maltz, J. L. Herlocker, L. R. Gordon, and
J. Riedl, ‘‘GroupLens: Applying collaborative filtering to Usenet news,’’
Commun. ACM, vol. 40, no. 3, pp. 77–87, 1997.

[26] J. B. Schafer, J. Konstan, and J. Riedl, ‘‘Recommender systems in
e-commerce,’’ in Proc. 1st ACM Conf. Electron. Commerce, 1999,
pp. 158–166.

[27] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, ‘‘Item-based collaborative
filtering recommendation algorithms,’’ in Proc. 10th Int. Conf. World Wide
Web, 2001, pp. 285–295.

[28] P. Melville and V. Sindhwani, ‘‘Recommender systems,’’ in Encyclopedia
of Machine Learning. Boston, MA, USA: Springer, 2011, pp. 829–838.

[29] S. K. Lam and J. Riedl, ‘‘Shilling recommender systems for fun and profit,’’
in Proc. 13th Int. Conf. World Wide Web, 2004, pp. 393–402.

[30] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl, ‘‘Grou-
pLens: An open architecture for collaborative filtering of netnews,’’ in
Proc. ACM Conf. Comput. Supported Cooperat. Work, 1994, pp. 175–186.

[31] Y. Koren, R. Bell, and C. Volinsky, ‘‘Matrix factorization techniques
for recommender systems,’’ Computer, vol. 42, no. 8, pp. 30–37,
2009.

[32] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, ‘‘Application of dimension-
ality reduction in recommender system—A case study,’’ Dept. Comput.
Sci., Univ. Minnesota, Minneapolis, MN, USA, Tech. Rep., 2000.

[33] M. W. Berry, S. T. Dumais, and G. W. O’Brien, ‘‘Using linear algebra for
intelligent information retrieval,’’ SIAM Rev., vol. 37, no. 4, pp. 573–595,
1995.

[34] M. Pazzani and D. Billsus, ‘‘Learning and revising user profiles:
The identification of interesting Web sites,’’ Mach. Learn., vol. 27, no. 3,
pp. 313–331, 1997.

[35] M. J. Pazzani and D. Billsus, ‘‘Content-based recommendation systems,’’
in Adapt. Web. Berlin, Germany: Springer, 2007, pp. 325–341.

[36] S. K. Patel, V. R. Rathod, and S. Parikh, ‘‘Joomla, drupal and wordpress—
A statistical comparison of open source CMS,’’ in Proc. 3rd Int. Conf.
Trendz Inf. Sci. Comput. (TISC), 2011, pp. 182–187.

[37] A. Gunawardana and G. Shani, ‘‘Evaluating recommender systems,’’ in
Recommender Systems Handbook. Boston, MA, USA: Springer, 2015,
pp. 265–308.

[38] S. Geisser, Predictive Inference. Evanston, IL, USA: Routledge, 2017.
[39] R. Kohavi et al., ‘‘A study of cross-validation and bootstrap for accuracy

estimation and model selection,’’ in Proc. Int. Joint Conf. AI, Aug. 1995,
vol. 14. no. 2, pp. 1137–1145.

[40] L. Lü, M. Medo, C. H. Yeung, Y.-C. Zhang, Z.-K. Zhang, and T. Zhou,
‘‘Recommender systems,’’ Phys. Rep., vol. 519, no. 1, pp. 1–49,
2012.

[41] J. A. P. Maestre, J. García, A. Ruiz-Cortés, and J. C. Riquelme, ‘‘Statser-
vice: Herramienta de análisis estadístico como soporte para la investigación
con metaheurísticas,’’ Actas del VIII Congreso Expañol sobre Metaheurís-
ticas, Algoritmos Evolutivos y Bio-inspirados, vol. 2012, 2012. [Online].
Available: http://moses.us.es/statservice/

[42] S. García, A. Fernández, J. Luengo, and F. Herrera, ‘‘Advanced non-
parametric tests for multiple comparisons in the design of experiments
in computational intelligence and data mining: Experimental analysis of
power,’’ Inf. Sci., vol. 180, no. 10, pp. 2044–2064, 2010.

[43] R. Van Meteren and M. Van Someren, ‘‘Using content-based filtering for
recommendation,’’ inProc. Mach. Learn. New Inf. Age, MLnet/ECML2000
Workshop, 2000, pp. 47–56.

[44] M. Al-Hajjaji, T. Thüm, J. Meinicke, M. Lochau, and G. Saake,
‘‘Similarity-based prioritization in software product-line testing,’’ in Proc.
18th Int. Softw. Product Line Conf., vol. 1, 2014, pp. 197–206.

[45] R. Mazo, C. Dumitrescu, C. Salinesi, and D. Diaz, ‘‘Recommendation
heuristics for improving product line configuration processes,’’ in Recom-
mendation Systems in Software Engineering. Berlin, Germany: Springer,
2014, pp. 511–537.

[46] J. Martinez, G. Rossi, T. Ziadi, T. F. Bissyandé, J. Klein, and Y. Le Traon,
‘‘Estimating and predicting average likability on computer-generated art-
work variants,’’ inProc. Companion Publication Annu. Conf. Genetic Evol.
Comput., 2015, pp. 1431–1432.

[47] A. Karatzoglou, X. Amatriain, L. Baltrunas, and N. Oliver, ‘‘Multiverse
recommendation: N-dimensional tensor factorization for context-aware
collaborative filtering,’’ in Proc. 4th ACMConf. Recommender Syst., 2010,
pp. 79–86.

[48] Y. Koren, ‘‘Factorization meets the neighborhood: A multifaceted collab-
orative filtering model,’’ in Proc. 14th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, 2008, pp. 426–434.

[49] F. Ricci, L. Rokach, and B. Shapira, Introduction to Recommender Systems
Handbook. Boston, MA, USA: Springer, 2011.

69244 VOLUME 7, 2019

J. Rodas-Silva et al.: Selection of SPL Implementation Components Using Recommender Systems

JORGE RODAS-SILVA received the M.Sc. degree
in information and communication technology
from the University of Milagro, Ecuador, in 2010.
He is currently pursuing the Ph.D. degree in com-
puter engineering with the University of Seville,
Spain. He has been anAssociate Professor with the
University of Milagro, since 2012. He has a work
trajectory on development of enterprise informa-
tion systems for decision making. His primary
areas of interests are recommender systems, soft-

ware product lines, business intelligent, and development of technological
tools applied to software engineering.

JOSÉ A. GALINDO received the Ph.D. degree
(Hons.) from the University of Seville and the Uni-
versity of Rennes 1, in 2015, receiving the award
for the Best National Thesis by SISTEDES. He has
developed his post-doctoral research activity with
INRIA, France. He is currently a Juan de la Cierva
Researcher with the University of Seville, where
he continues his line of research on configuration,
testing, and the evolution of highly configurable
systems. He has developed his professional activ-

ity in USA, France, and Spain. His research areas are product lines software
and the configuration of such products.

JORGE GARCÍA-GUTIÉRREZ received the Ph.D.
degree in computer engineering from the Uni-
versity of Seville, Spain, in 2012. He has been
with the Department of Computer Science, Uni-
versity of Seville, since 2008, where he is cur-
rently a Lecturer Professor. His primary areas
of interests are machine learning techniques, big
data, remote sensing, data fusion, and evolutionary
computation.

DAVID BENAVIDES received the B.S. degree in
information systems from the Institute Superieur
d’Electronique de Paris, France, in 2000, theM.Sc.
degree in computer engineering from the Univer-
sity of Seville, Spain, in 2001, and the Ph.D. degree
in software engineering from the University of
Seville, in 2007, where he has been an Associate
Professor, since 2010. His main research interests
include software product line and artificial intelli-
gence applied to engineering education.

VOLUME 7, 2019 69245

	INTRODUCTION
	PRELIMINARIES
	SOFTWARE PRODUCT LINES
	RECOMMENDER SYSTEMS
	COLLABORATIVE-BASED RECOMMENDER SYSTEMS
	CONTENT-BASED RECOMMENDER SYSTEMS

	MOTIVATING SCENARIO
	THE RESDEC SOLUTION
	KNOWLEDGE BASE
	RECOMMENDATION GENERATOR
	COLD START
	RECOMMENDATIONS OF IMPLEMENTATION COMPONENTS BASED ON RATINGS
	RECOMMENDATIONS OF IMPLEMENTATION COMPONENTS BASED ON FEATURES

	EVALUATING RESDEC
	EXPERIMENTATION DATA
	WORDPRESS DATA
	WORDPRESS FEATURE MODEL

	EXPERIMENT 1: VALIDATION OF RECOMMENDATIONS BASED ON RATINGS
	METRICS
	RESULTS

	EXPERIMENT 2: VALIDATION OF RECOMMENDATIONS BASED ON FEATURES
	METRICS
	RESULTS

	THREATS TO VALIDITY

	RELATED WORK
	FUTURE WORK
	USE OF IMPLICIT INFORMATION
	USE OF CONTEXTUAL INFORMATION
	RECOMMENDATION OF CONFIGURATIONS FOR TESTING

	CONCLUSION
	RESDEC ARCHITECTURE
	RESDEC WEB

	REFERENCES
	Biographies
	JORGE RODAS-SILVA
	JOSÉ A. GALINDO
	JORGE GARCÍA-GUTIÉRREZ
	DAVID BENAVIDES

