

Repositório ISCTE-IUL

Deposited in Repositório ISCTE-IUL:
2021-12-10

Deposited version:
Accepted Version

Peer-review status of attached file:
Peer-reviewed

Citation for published item:
Bunga, R., Batista, F. & Ribeiro, R. (2021). From implicit preferences to ratings: Video games
recommendation based on collaborative filtering. In Cucchiara, R., Fred, A., & Filipe, J. (Ed.),
Proceedings of the 13th International Joint Conference on Knowledge Discovery, Knowledge
Engineering and Knowledge Management. (pp. 209-216).: SCITEPRESS – Science and Technology
Publications, Lda.

Further information on publisher's website:
10.5220/0010655900003064

Publisher's copyright statement:
This is the peer reviewed version of the following article: Bunga, R., Batista, F. & Ribeiro, R. (2021).
From implicit preferences to ratings: Video games recommendation based on collaborative filtering.
In Cucchiara, R., Fred, A., & Filipe, J. (Ed.), Proceedings of the 13th International Joint
Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management. (pp. 209-
216).: SCITEPRESS – Science and Technology Publications, Lda., which has been published in final
form at https://dx.doi.org/10.5220/0010655900003064. This article may be used for non-commercial
purposes in accordance with the Publisher's Terms and Conditions for self-archiving.

Use policy

Creative Commons CC BY 4.0
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in the Repository

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Serviços de Informação e Documentação, Instituto Universitário de Lisboa (ISCTE-IUL)
Av. das Forças Armadas, Edifício II, 1649-026 Lisboa Portugal

Phone: +(351) 217 903 024 | e-mail: administrador.repositorio@iscte-iul.pt
https://repositorio.iscte-iul.pt

https://dx.doi.org/10.5220/0010655900003064

From Implicit Preferences to Ratings: Video Games Recommendation
based on Collaborative Filtering

Rosária Bunga1, Fernando Batista1,2 a and Ricardo Ribeiro1,2 b

1Iscte - Instituto Universitário de Lisboa, Av. das Forças Armadas, Portugal
2INESC-ID Lisboa, Portugal

{Rosaria Patricia Bunga, fernando.batista, ricardo.ribeiro}@iscte-iul.pt

Keywords: Recommendation System, Collaborative Filtering, Implicit Feedback

Abstract: This work studies and compares the performance of collaborative filtering algorithms, with the intent of
proposing a videogame-oriented recommendation system. This system uses information from the video game
platform Steam, which contains information about the game usage, corresponding to the implicit feedback that
was later transformed into explicit feedback. These algorithms were implemented using the Surprise library,
that allows to create and evaluate recommender systems that deal with explicit data. The algorithms are eval-
uated and compared with each other using metrics such as RSME, MAE, Precision@k, Recall@k and F1@k.
We have concluded that computationally low demanding approaches can still obtain suitable results.

1 Introduction

There has been a rapid growth of content, products,
and services provided by sites like Google, Youtube,
Amazon, Netflix, Steam, among others. The great di-
versity of information available in the Internet eas-
ily began to overwhelm users, leaving them indeci-
sive and thus hindering the decision-making process.
This large amount of information, instead of gener-
ating a benefit, became a problem for users. While
choice is good, more choice is not always better (Ricci
et al., 2011). Then, as this phenomenon intensified,
the more important became to help users filtering the
relevant items from a whole range of available alter-
natives, in order to facilitate the choice of products
or services that best suited them. To minimize or
solve this information filtering problem, recommen-
dation systems emerged and started to assist the de-
cision making process by providing personalized rec-
ommendations to users (Jannach et al., 2011).

Recommendation is something we are all famil-
iar with, whether a friend recommends a new book to
read or a movie to watch, it is all about giving good
options and helping you make a choice. These rec-
ommendations are usually given based on knowledge
about what we like. Recommendation systems work
in exactly the same way: the system tries to use the

a https://orcid.org/0000-0002-1075-0177
b https://orcid.org/0000-0002-2058-693X

users history or profile to predict which products or
services to recommend. All of the platforms men-
tioned above have started implementing some sort of
recommendation system that caters to the needs of
their users, providing personalized content with the
goal of providing the user with a better experience,
thereby increasing user loyalty, selling more and di-
verse products, and ultimately, improving the revenue
of these companies (Ricci et al., 2011).

In this work, we focus on the video games domain,
mainly due to the exponential growth of this market
and its particularities. As case study, we use the video
game platform Steam1. According to Steam’s web-
site, they currently provide 30,000 different games for
Windows, Mac, and Linux operating systems. In such
a fast-moving market, which has a large amount of
classic games, new releases, and indie games, dozens
of games are coming out every month. Given such
multitude of choice, users/players find it very difficult
to find new games they might be interested in.

With a market as diverse as that, there is clearly
a need to implement recommendation systems with
high accuracy that provide users with relevant un-
known games and/or new releases that cater to their
tastes. This becomes even more evident, when we
look at Steam’s 2014 records, where about 37% of
games purchased were never played by the users who
bought them. A user plays his favorite games often,

1https://store.steampowered.com

but also wants to discover new games that are relevant
to him. This presents itself as a form of challenge for
this market: the need for video games that encour-
age the user to come back and help users find new
games that will be consumed as much as the ones they
already liked. Recommendation systems can greatly
benefit the video game market by their ability to sug-
gest new games to users in a personalized way. Nev-
ertheless, there is still much to be explored about rec-
ommendation systems in the video game domain.

The goal of this work is to develop a recommen-
dation system that provides video game suggestions
to a user based on his gaming history and the tastes
of users similar to him. We will explore several ap-
proaches, based on different collaborative filtering al-
gorithms, using data from the Steam platform. The
major challenge is on understanding how to use im-
plicit data to infer explicit ratings of the users.

We aim to answer the following research ques-
tions with reference to the video game domain:

RQ1 What is the performance of different col-
laborative filtering recommendation approaches,
when we applied on implicit data?

RQ2 Can playing time of the users serve as an ad-
equate implicit representation of the users prefer-
ences?

This paper is organized as follows: Section 2
overviews the existing literature concerning collab-
orative filtering approaches and video game recom-
mendation. Section 3 presents the dataset. Sec-
tion 4 describes the process of obtaining explicit
ratings from the existing information. Section 5
overviews the the recommendation approaches used
in this work. Section 6 analyses and discusses the
obtained results. And, finally, Section 7 presents the
overall conclusions and pinpoints future work direc-
tions.

2 Related Work

Collaborative filtering based recommendation ap-
proaches are still an active topic in this research
area. Pérez-Marco et al. (Pérez-Marcos et al., 2020)
present a hybrid video game recommendation system,
through the use of collaborative filtering and content-
based filtering. The system takes as input a list of
ratings of a user, the communities of the games the
system contains, and the communities of the users
the system contains. Content-based filtering is ap-
plied first: for each item of the active user, the system
searches for the games that are in the closest com-
munity to that item. As a result, a list of the games

that are most similar to those of the active user is ob-
tained. Then, collaborative filtering is applied, re-
stricted to the items obtained in the previous step,
using ratings. In the end, a matrix with the recom-
mended games and their predicted ratings is returned.
In the case of content-based filtering, they use graph-
based techniques to find games similar to those of the
active player, reducing the computational load of the
system because recommendations are made on a sub-
set of items. Anwar et al. (Anwar et al., 2017) pro-
pose a recommendation system that uses a collabo-
rative filtering technique to suggest video games to
users. The recommendation system was implemented
using item-based collaborative filtering and Pearson
correlation to identify unrated games, finding similar-
ities between unrated and highly rated games by the
user. Next, the system employs user-based collabo-
rative filtering. However, the system was not able to
provide a better accuracy in the case of the cold boot
scenario.

Many traditional collaborative filtering algorithms
fail to consider that Users’ preferences often vary over
time. (Joorabloo. et al., 2019) proposes a recommen-
dation method that predicts the similarity between
users in the future, and forecasts their similarity trends
over time. Experimental results show that the pro-
posed method significantly outperforms classical and
state-of-the-art recommendation methods.

Given its current popularity, artificial neural
networks-based approaches are also being explored
as recommendation methods. STEAMer (Wang et al.,
2020), a video game recommendation system for the
Steam platform, uses Steam user data in conjunc-
tion with a Deep Autoencoders learning model (a
specific type of neural network architecture that at-
tempts to force the network to learn a compressed
representation of the original input data). Cheuque
et al. (Cheuque et al., 2019) propose recommenda-
tion models based on Factorization Machines (FM),
Deep Neural Networks (DeepNN) and a combination
of both (DeepFM), chosen for their potential to re-
ceive multiple inputs as well as different types of in-
put variables. All algorithms achieve better results
than an ALS (Alternating Least Squares Model) base-
line. Despite being a simpler model than DeepFM,
DeepNN was found to be the best performing al-
gorithm: it was able to better exploit user-item re-
lationships, achieving consistent results on different
datasets. They also analyzed the effect of sentiment
extracted directly from game reviews and concluded
that it is not as relevant for recommendation as one
might expect.

Closer to our work, also exploring implicit feed-
back, Bertens et al. (Bertens et al., 2018) propose a

system that recommends video games to users based
on their experience and behavior, i.e., playing time
and frequency of activity. They explore two models:
Extremely Randomized Trees (ERTs) and DeepNNs.
The results show that the prediction performance of
DeepNNs and ERTs is similar, with the ERT model
achieving a marginally better performane and scaling
more easily in a production environment. Pathak et
al. (Pathak et al., 2017) proposed a recommendation
system based on latent factor models, in particular
Bayesian Personalized Ranking (BPR), that is trained
using implicit ranking (i.e., purchases vs. no pur-
chases), and that uses the trained features of an item
recommendation model to learn personalized rank-
ings over bundles. The authors showed that the model
is robust to cold bundles and that new bundles can be
generated effectively using a greedy algorithm. Their
main focus is on item-to-group compatibility, generat-
ing and evaluating custom package recommendation
on the Steam video game platform. Finally, Sifa et
al. (Sifa et al., 2015) present two approaches for Top-
N recommendation systems: a matrix factoring-based
model and a user-based neighborhood model operat-
ing in low dimensions. Both models are based on
archetypal analysis, a method similar to cluster anal-
ysis, thus grouping users into archetypes. The data
used for this analysis is composed of implicit feed-
back, specifically information about game ownership
and play times, with the ultimate goal of recommend-
ing games that have the longest predicted play time.
The authors compare their algorithm to several base-
lines and an item-based neighborhood model, which
they were able to outperform.

3 Dataset

In this work we use the “Steam Video Game and
Bundle Data”2 shared by Pathak et al. (Pathak et al.,
2017). The dataset consists of the purchase history of
Australian users of the Steam platform, indicating for
each one the list of items purchased with a small col-
lection of metadata related to game playing time. We
expanded each users item list or item bundle from the
original dataset, so that each record in the set could be
viewed as a user/item interaction.

Table 1 shows the attributes of the original dataset.
As it is possible to observe, there is no rating that can
be used as an explicit measure of users preference,
i.e., our dataset has no explicit ratings. Therefore, for
experimenting the recommendation algorithms we re-
sorted to implicit information.

2http://cseweb.ucsd.edu/j̃mcauley/datasets.html

For our experiments, we filtered the dataset: we
have removed all players with less than 30 games and
all games that were played by less than 10 players.
Only games that had a playing time of more than zero
minutes were considered. This data filtering step led
to a new dataset containing 33,307 unique users and
6,387 unique games, with about 2.8 million records.

4 From Implicit Preferences to
Ratings

As previously described, the dataset only provides in-
formation related to game playing time. However,
for collaborative filtering algorithms we need user rat-
ings. Most approaches to understanding user prefer-
ences are based on having explicit user ratings. How-
ever, in many real-life situations, we need to rely on
implicit ratings, such as how many times a user has
listened to a song or played a game. Considering the
importance mentioned in the literature on the relation-
ship between explicit and implicit ratings in recom-
mendation systems (Parra and Amatriain, 2011; Yi
et al., 2014), we chose the total playing time, “play-
time forever”, to infer the users explicit ratings, and
to understand the users preferences. Although im-
plicit ratings can be collected constantly and do not
require additional efforts from the user when inferring
the users preferences from their behavior, one cannot
be sure, if that behavior is interpreted correctly. Still,
Schafer et al. (Schafer et al., 2006) report that in some
domains, such as personalized online radio stations,
collecting implicit ratings can even result in more ac-
curate user profiles than what is achieved with explicit
ratings. Furthermore, it has also been discussed that
implicit preference data may actually be more objec-
tive, since there is no bias arising from users respond-
ing in a socially desirable way (Buder and Schwind,
2012). This also emphasizes that the proper interpre-
tation of implicit ratings can be highly dependent on
the domain.

We focus on the total playing time, in minutes,
playtime forever, to quantify the relevance of an item
to a specific user. Our assumption is that if a user
plays a game for a long time, he likes that game. For
the task of converting implicit ratings into explicit rat-
ings, we applied the Python cut() function to group
the game times into five intervals. Then we applied
the rank() function to assign a rank – equal values
are assigned a rank that is the average of the ranks of
those values. Our ranking system uses a scale ranging
from 1 to 5. Table 2 contains an excerpt of the final
result, where pt 2weeks and pt forever correspond to
playtime 2weeks, and playtime forever, respectively.

Table 1: Dataset attributes.

Attribute Type Description
user id string User
steam id integer Steam user identification
user url string User URL
item id integer Game identification
item name string Game title
playtime 2weeks integer Number of minutes played in the last two weeks
playtime forever integer Total number of minutes played

Table 2: Excerpt of the final dataset, containing only the most relevant fields.

steam id item id item name pt 2weeks pt forever rating
2794716 ...5400 45770 Dead Rising 2: Off the Record 0 72 3
2794717 ...5400 46510 Syberia 2 0 40 2
2794718 ...5400 466500 35MM 0 19 1
2794719 ...5400 55230 Saints Row: The Third 0 1029 5
2794720 ...5400 6300 Dreamfall: The Longest Journey 57 68 2
2794721 ...5400 6310 The Longest Journey 42 42 2
2794722 ...5400 72850 The Elder Scrolls V: Skyrim 0 2842 5
2794723 ...5400 7670 BioShock 0 219 4
2794724 ...5400 8850 BioShock 2 0 131 3
2794725 ...5400 8870 BioShock Infinite 0 438 4

5 Approaches to Recommendation

There are three common methods for recommenda-
tion systems in the literature: content-based filtering,
collaborative filtering, and hybrid filtering. In this pa-
per, we focus on collaborative filtering. In collabora-
tive filtering, recommendations for each user are gen-
erated by making comparisons with their liking for
an alternative against other users who have rated the
product similarly (Shah et al., 2017). A common ap-
proach is to split the dataset into two sets: the train-
ing set and the test set. A recommendation model is
built with respect to the training set. And the test set,
in turn, is subdivided into two: the query set and the
target set. Based on the query set, the model sug-
gest items or predict ratings for the items in the target
set. For the implementation of the various recommen-
dation algorithms, we use Surprise, Simple Python
Recommendation System library (Hug, 2020). This
library provides several recommendation algorithms
and tools to evaluate, analyze, and compare algo-
rithms.

5.1 Nearest Neighbors-based
Algorithms

Neighborhood-based algorithms use user-user sim-
ilarity or item-item similarity to make recommen-
dations from a ratings matrix (Aggarwal, 2016).
KNNBasic is a neighborhood-based collaborative fil-

tering algorithm. The concept of neighborhood im-
plies that we need to determine similar users or sim-
ilar items to make predictions. The prediction r̂ui is
defined in Equation 1, where sim(u,v) can be calcu-
lated based on the cosine similarity, based on Pear-
son’s correlation coefficient, or based on the similar-
ity of the mean squared difference. r̂ui indicates a
predicted ranking, as opposed to one that has already
been observed in the original rank matrix. Nk

i (u) rep-
resents the set of k users closest to the target user u,
who specified ratings for item i.

r̂ui =

∑

v∈Nk
i (u)

sim(u,v) · rvi

∑

v∈Nk
i (u)

sim(u,v)
(1)

KNNWithMeans is identical to KNNBasic, but takes
into account the average ratings of each user. The
weighted average of the mean-centric rating of an
item in the top-k peer group of the target user u is used
to provide a mean-centric prediction. The average rat-
ing of the target user is then added back to this predic-
tion to provide a raw rating prediction r̂ui of the target
user u, for item i, as defined in Equation 2. There is
also an item-based version of this algorithm, in which
we check the k closest items rated by user u and use
their ratings and similarities to item i to predict the
rating of item i (Mittal and Subraveti, 2017).

r̂ui = µi +

∑
j∈Nk

u (i)
sim(i, j) · (ru j−µ j)

∑
j∈Nk

u (i)
sim(i, j)

(2)

5.2 Algorithms based on Matrix
Factorization

In its basic form, matrix factorization characterizes
items and users by vectors of factors inferred from
item rating patterns. A high correspondence be-
tween item and user factors leads to a recommenda-
tion. These algorithms have become popular in recent
years, combining good scalability with predictive ac-
curacy. In addition, they offer a lot of flexibility to
model various real-life situations. Recommendation
systems rely on different types of input data, which
are usually placed in a matrix with one dimension rep-
resenting the users and the other dimension represent-
ing the items of interest. The most convenient data is
high quality explicit ratings, which includes explicit
input from users about their interest in products (Ko-
ren et al., 2009). The Singular Value Decomposition
(SVD) maps users and items to a common latent fac-
tor space of dimensionality f , so that user-item inter-
actions are modeled as inner products in that space.
The latent space attempts to explain ratings by char-
acterizing products and users into factors automati-
cally inferred from user feedback. Thus, each item
i is associated with a vector qi ∈ R f , and each user
u is associated with a vector pu ∈ R f . For a given
item i, the elements of qi measure the extent to which
the item has these factors, positive or negative. For
a given user u, the elements of pu measure the ex-
tent of interest the user has in items that are high in
the corresponding factors, again, they can be positive
or negative. The resulting scalar product, qT

i pu, cap-
tures the interaction between user u and item i, i.e., the
users overall interest in the features of the item. The
final rating is created by also adding baseline predic-
tors that depend only on the user or item. Equation 3
shows how the prediction is calculated, where µ is the
global average, bu is the user tendency, bi is the item
tendency, and qT

i pu is the interaction between the user
and the item (Koren et al., 2009).

r̂ui = µ+bu +bi +qT
i pu (3)

SVD++ is an extension of SVD that takes implicit rat-
ings into account. In cases where independent im-
plicit feedback is absent, a significant signal can be
captured by considering which items users rate, re-
gardless of their rating value. This has led to several
methods that model a users factor by the identity of

the items he rated. One of these is SVD++, which
has been shown to perform better than SVD. For this
purpose, a second set of item factors is added, relat-
ing each item i, to a vector of factors yi ∈ R f . These
new item factors are used to characterize users based
on the set of items they have rated. The prediction is
given by Equation 4, where Ru is the items evaluated
by user u, and u is modeled as pu + |Ru|−

1
2 ∑ j∈Ru y j.

pu is learned based on the provided explicit classifi-
cation.

r̂ui = µ+bu +bi +qT
i

(
pu + |Ru|−

1
2 ∑

j∈Ru

y j

)
(4)

Non-Negative Matrix Factorization (NMF) is a matrix
factorization algorithm, in which the user-item matrix
is decomposed into user and item factors, that have
non-negative values. The user and item factors are
initialized with random values and the optimization
is done by stochastic gradient descent (SGD). This
algorithm is highly dependent on the initialized val-
ues for the factors. User and item baselines can also
be incorporated, but the model becomes susceptible
to oversizing, which, however, can be controlled by
a good choice of the regularization parameter (Luo
et al., 2014). The prediction is given by Equation 5.

r̂ui = qT
i pu (5)

5.3 SlopeOne

It works on the intuitive principle of a popularity dif-
ferential between items for users. In pairs, it deter-
mines how much better one item is liked than an-
other. One way to measure this differential is to sim-
ply subtract the average rating of the two items (Jan-
nach et al., 2011). In turn, this difference can be used
to predict another users rating of one of these items,
given the rating of the other. Many such differen-
tials exist in a training set for each unknown classi-
fication and an average of these differentials can be
used. Thus, given a training set and any two items i
and j with ratings rui and ru j, respectively, in some
user evaluation u the average deviation of item i from
item j is given by Equation 6.

dev(i, j) =
1
|Ui j| ∑

u∈Ui j

rui− ru j (6)

The algorithm considers that each evaluation of user u
that does not contain rui and ru j will not be included in
the sum. Ui j is the set of all users that classified items
i and j. The prediction is given by Equation 7 (Lemire
and Maclachlan, 2005).

r̂ui = µu +
1

|Ri(u)| ∑
j∈Ri(u)

dev(i, j) (7)

5.4 Co-Clustering

Clustering is an unsupervised learning technique that
seeks to group similar objects together. The main
idea of this algorithm is to simultaneously obtain user
and item neighborhoods by co-clustering and gener-
ate predictions based on the average ratings of the
co-clusters (user-item neighborhoods), taking into ac-
count individual user and item trends. Users and
items are assigned to clusters Cu and Ci, and co-
clusters Cui, and the prediction is given by Equation 8,
where Cui is the average classification of co-cluster
Cui, and Cu and Cu are the average classification of co-
clusters Cu and Ci, respectively (Lemire and Maclach-
lan, 2005).

r̂ui =Cui +(µu−Cu)+(µi−Ci) (8)

6 Analysis and Discussion of Results

The proposed algorithms were evaluated in terms of
MAE, RMSE, Precision@k, Recall@k and F1@k.
The dataset has a total of 2,794,726 records, each with
unique information about the user-item interactions.
This set was divided, in the proportion of 80/20. Be-
ing 80% for the training set (2,235,780) and 20% for
the test set (558,946). The test set was subdivided into
a query set of 10% and a target set of 10%.

6.1 Evaluation Metrics

Recommendation system research has used various
types of metrics to evaluate the quality of a recom-
mendation system. We use metrics that calculate the
error between the actual classification and the pre-
dicted user classification, such as MAE and RMSE.
From these metrics it is possible to infer how close
the predicted values are to the actual ratings given
by users. However, accuracy metrics are not suit-
able for measuring the classification performance of
recommendation systems. Therefore, the study also
conducted an evaluation based on Precision@k, Re-
call@k and F1@k ranking metrics. These metrics
take into account the number of true positives (TP),
false negatives (FN), false positives (FP) and true neg-
atives (TN) present in the recommendation list.

MAE The Mean Absolute Error is the average de-
viation of the recommendations from their actual
user-specified values. It is the average over the
test sample of the absolute differences between
the prediction and the actual observation, where
all individual differences have equal weight. The

Table 3: Results achieved for each one of the methods.

RMSE MAE
KNNBasic 1.2270 1.0159

KNNWithMeans 1.2483 1.0356
SVD 1.2386 1.0049

SVD++ 1.2179 0.9727
NMF 1.2229 1.0011

SlopeOne 1.1977 0.9831
CoClustering 1.2354 1.0212

smaller the MAE, the more accurately the recom-
mendation engine predicts the users ratings (Sar-
war et al., 1998);

RMSE The Root Mean Square Error is the square
root of the mean of the difference between pre-
dicted and actual ratings (Afoudi et al., 2019).

Precision@k is the proportion of recommended
items in the top-k set that are relevant. A high
precision@k score indicates that most of the rec-
ommendations are relevant;

Recall@k is the fraction of relevant items recom-
mended;

F1@k is a way to combine precision@k and re-
call@k of the model, and is defined as the har-
monic mean of the precision and recall of the
model.

6.2 Results

We calculated the RMSE and MAE to evaluate the
performance, for all the collaborative filtering algo-
rithms we set out to implement, using k-fold cross-
validation with k = 5.

Table 3 shows the results for each algorithm. We
find that for this dataset the algorithms have sim-
ilar performances. However, the best results were
achieved by SlopeOne and SVD++. Considering the
RMSE, SlopeOne exhibited the best result when com-
pared to the other algorithms, followed by SVD++.
With the predicted ranks deviating from the actual
ranks ≈ 1.1977 for SlopeOne and ≈ 1.2179 for
SVD++. Concerning the MAE, SVD++ showed the
lowest MAE value (≈ 0.9727) followed by SlopeOne
(≈ 0.9831). For these metrics, KKNWithMeans had
the worst results in both metrics. The distribution of
the predicted ratings on the test set is noticeably dif-
ferent for all algorithms, not reflecting the actual dis-
tribution of implicit ratings.

Table 4 compares precision@k, recall@k, and f-
measure@k for different k on the target test set. Con-
cerning precision, SlopeOne achieved the best result
– when considering precision@5, 78% of the rec-
ommendations made by SlopeOne are relevant to the

Table 4: Values of precision@k, recall@k, and F1@k, with k = 5, 10, 20.

precision recall F1
@5 @10 @20 @5 @10 @20 @5 @10 @20

KNNBasic 0.7374 0.7144 0.7064 0.2866 0.3718 0.3954 0.4128 0.4891 0.5070
KNNWithMeans 0.7293 0.7043 0.6955 0.2767 0.3595 0.3841 0.4012 0.4760 0.4951
SVD 0.7619 0.7162 0.7003 0.3367 0.4609 0.5028 0.4670 0.5608 0.5854
SVD++ 0.7757 0.7309 0.7145 0.3397 0.4640 0.5095 0.4725 0.5677 0.5948
NMF 0.7525 0.7073 0.6920 0.3275 0.4470 0.4882 0.4564 0.5478 0.5725
SlopeOne 0.7840 0.7336 0.7183 0.3391 0.4535 0.4920 0.4735 0.5605 0.5840
Co-Clustering 0.7713 0.7288 0.7150 0.3174 0.4229 0.4558 0.4498 0.5352 0.5567

user (71% for precision@20). Concerning recall, we
found that SVD++ performed better (≈ 0.5 for re-
call@20), although there is not much difference with
SVD.

We observed that SlopeOne and SVD++ achieved
the best results for all metrics. Concerning the aver-
age running time for training and testing of the eval-
uated recommendation algorithms, SlopeOne takes
about 24 second to train, and takes about 77 sec-
onds for testing, in contrast with SVD++, which takes
about 4903.77 seconds for training, and 110 seconds
for testing.

7 Conclusions and
Recommendations

In this work, we addressed the topic of recommen-
dation systems in the video game domain, based on
implicit user information. We compared recommen-
dation algorithms based on collaborative filtering, us-
ing user data from the Steam platform. We performed
data pre-processing tasks before training the recom-
mendation algorithms and the conversion of implicit
information into explicit ratings. This conversion was
based on the use of total playing time as an implicit
rating, transforming it into an explicit rating, ranging
from 1 to 5.

We explored seven recommendation algorithms,
using the Surprise library, with k-fold, k = 5, cross-
validation. To assess the performance of the differ-
ent recommendation approaches, when using implicit
information, we used RMSE, MAE, precision@k,
recall@k and F1@k, common metrics used in the
evaluation of recommendation systems. The results
show that SlopeOne and SVD++ were the best per-
forming recommendation algorithms. Taking into ac-
count the computational cost of each recommendation
algorithm, SlopeOne seems to be the top contender.

RQ1 What is the performance of different collab-
orative filtering recommendation approaches, when

we applied on implicit data? The results show that for
the used dataset there is not a significant difference
between the explored algorithms.

RQ2 Can users playing time serve as an adequate
implicit representation of the users preferences? The
results show that it is possible to use playtime to in-
fer explicit ratings for making recommendations in
the video game domain and specifically on the Steam
platform.

The presented algorithms, besides being of easy
applicability and lower computational cost when
compared to more complex algorithms, can produce
good recommendations. For future work, it is impor-
tant to explore other methods of transforming play-
ing time into explicit ratings. Another possibility is
to explore other types of implicit expression of pref-
erences, assuming that they are available.

ACKNOWLEDGEMENTS

This work was supported by PT2020 project num-
ber 39703 (AppRecommender), and by national funds
through FCT – Fundação para a Ciência e a Tecnolo-
gia with reference UIDB/50021/2020.

REFERENCES

Afoudi, Y., Lazaar, M., and Al Achhab, M. (2019).
Collaborative filtering recommender system. In
Advances in Intelligent Systems and Computing,
volume 915, pages 332–345. Springer.

Aggarwal, C. C. (2016). Recommender Systems: The
Textbook. Springer Publishing Company, Incor-
porated, 1 edition.

Anwar, S. M., Shahzad, T., Sattar, Z., Khan, R.,
and Majid, M. (2017). A game recommender
system using collaborative filtering (GAMBIT).
Proceedings of 2017 14th International Bhurban

Conference on Applied Sciences and Technology,
IBCAST 2017, pages 328–332.

Bertens, P., Guitart, A., Chen, P. P., and Perianez,
A. (2018). A Machine-Learning Item Recom-
mendation System for Video Games. In IEEE
Conference on Computatonal Intelligence and
Games, CIG, volume 2018-Augus.

Buder, J. and Schwind, C. (2012). Learning with
personalized recommender systems: A psycho-
logical view. Computers in Human Behavior,
28(1):207–216.

Cheuque, G., Guzmán, J., and Parra, D. (2019). Rec-
ommender systems for online video game plat-
forms: The case of steam. The Web Conference
2019 - Companion of the World Wide Web Con-
ference, WWW 2019, 2:763–771.

Hug, N. (2020). Surprise: A python library for recom-
mender systems. Journal of Open Source Soft-
ware, 5(52):2174.

Jannach, D., Zanker, M., Felfernig, A., and Friedrich,
G. (2011). Recommendation system: An In-
troduction, volume 91. Cambridge University
Press, New York.

Joorabloo., N., Jalili., M., and Ren., Y. (2019). A
new temporal recommendation system based on
users’ similarity prediction. In Proceedings
of the 11th International Joint Conference on
Knowledge Discovery, Knowledge Engineering
and Knowledge Management - KDIR,, pages
555–560. INSTICC, SciTePress.

Koren, Y., Bell, R., and Volinsky, C. (2009). Matrix
factorization techniques for recommender sys-
tems. Computer, 42(8):30–37.

Lemire, D. and Maclachlan, A. (2005). Slope one
predictors for online rating-based collaborative
filtering. Proceedings of the 2005 SIAM Interna-
tional Conference on Data Mining, SDM 2005,
pages 471–475.

Luo, X., Zhou, M., Xia, Y., and Zhu, Q. (2014).
An efficient non-negative matrix-factorization-
based approach to collaborative filtering for rec-
ommender systems. IEEE Transactions on In-
dustrial Informatics, 10(2):1273–1284.

Mittal, A. and Subraveti, S. (2017). Comparison of
Recommendation Models On the Amazon Auto-
motive Dataset. https://github.com/abhaymittal/
Recommendations-on-Amazon-Automotive-
Dataset.

Parra, D. and Amatriain, X. (2011). Walk the Talk:
Analyzing the relation between implicit and ex-
plicit feedback for preference elicitation. Proc.
of the 19th international conference on User

Modeling, Adaption, and Personalization, pages
255–268.

Pathak, A., Gupta, K., and McAuley, J. (2017). Gen-
erating and personalizing bundle recommenda-
tions on steam. SIGIR 2017 - Proceedings of the
40th International ACM SIGIR Conference on
Research and Development in Information Re-
trieval, pages 1073–1076.

Pérez-Marcos, J., Martı́n-Gómez, L., Jiménez-Bravo,
D. M., López, V. F., and Moreno-Garcı́a, M. N.
(2020). Hybrid system for video game recom-
mendation based on implicit ratings and social
networks. Journal of Ambient Intelligence and
Humanized Computing.

Ricci, F., Rokach, L., Shapira, B., and Kantor,
P. B. (2011). Recommender Systems Handbook.
Springer.

Sarwar, B. M., Konstan, J. A., Borchers, A., Her-
locker, J., Miller, B., and Riedl, J. (1998). Us-
ing filtering agents to improve prediction qual-
ity in the grouplens research collaborative filter-
ing system. In Proc. of the 1998 ACM Conf.
on Computer Supported Cooperative Work, page
345–354. ACM.

Schafer, B. J., Frankowski, D., Herlocker, J., and Sen,
S. (2006). Collaborative filtering recommender
systems. Research Journal of Applied Sciences,
Engineering and Technology, 5(16):4168–4182.

Shah, K., Salunke, A., Dongare, S., and Antala, K.
(2017). Recommender systems: An overview
of different approaches to recommendations. In
Proceedings of 2017 International Conference
on Innovations in Information, Embedded and
Communication Systems, ICIIECS 2017, pages
1–4.

Sifa, R., Drachen, A., and Bauckhage, C. (2015).
Large-scale cross-game player behavior analysis
on steam. Proceedings of the 11th AAAI Con-
ference on Artificial Intelligence and Interac-
tive Digital Entertainment, AIIDE 2015, 2015-
Novem:198–204.

Wang, D., Moh, M., and Moh, T. S. (2020). Us-
ing deep learning and steam user data for better
video game recommendations. ACMSE 2020 -
Proceedings of the 2020 ACM Southeast Confer-
ence, pages 154–159.

Yi, X., Hong, L., Zhong, E., Liu, N. N., and Rajan,
S. (2014). Beyond clicks: Dwell time for per-
sonalization. RecSys 2014 - Proceedings of the
8th ACM Conference on Recommender Systems,
pages 113–120.

