5,134 research outputs found

    Concepts for design of an energy management system incorporating dispersed storage and generation

    Get PDF
    New forms of generation based on renewable resources must be managed as part of existing power systems in order to be utilized with maximum effectiveness. Many of these generators are by their very nature dispersed or small, so that they will be connected to the distribution part of the power system. This situation poses new questions of control and protection, and the intermittent nature of some of the energy sources poses problems of scheduling and dispatch. Under the assumption that the general objectives of energy management will remain unchanged, the impact of dispersed storage and generation on some of the specific functions of power system control and its hardware are discussed

    Survey and documentation of emerging technologies for the Satellite Power System (SPS)

    Get PDF
    The genesis of the solar power satellite (SPS) concept is reviewed historically and the original assumptions and guidelines which led to development of the SPS reference system design concept are discussed. Some guidelines are applicable to almost any SPS design, but others can be changed, leading to new and perhaps preferable systems. In order to stimulate new SPS concepts and to facilitate comparative assessment of emerging SPS technologies, one useful approach is to break the overall system into functional parts. The system functions which must be performed by any SPS concept and the interrelations between them are discussed and a systematic framework is presented for assessing the wide variety of system concepts and subsystem technologies which have been proposed. About 80 alternative SPS technologies are reviewed

    Development of a methodology to optimize the integration of photovoltaic plants coupled with energy storage systems in advanced electrical grids

    Full text link
    [ES] La integración de las tecnologías de energía renovable es un gran componente para alcanzar los serios objetivos medioambientales de diferentes gobiernos e instituciones a nivel mundial. Sin embargo, hay varios desafíos a lo largo de su camino para seguir aumentando en capacidad. La mayor penetración de estas tecnologías surge la necesidad de que proporcionen la misma fiabilidad y servicios que los generadores convencionales han hecho en la red eléctrica. El almacenamiento de energía proporciona una de las soluciones. La propuesta del trabajo fin de master era desarrollar una metodología que permita modelar y simular sistemas de almacenamiento de energía acoplado a campos fotovoltaicos, para optimizar su integración en las redes eléctricas. La metodología puede modelar cualquier ubicación y cualquier condición que requiera un proyecto de este tipo y calcular su dimensionamiento óptimo. Los parámetros que se puede variar son los siguientes: potencia, ratio DC/AC, ubicación, precios de la electricidad, mecanismos de fijación de precios de tarifas (existentes y propuestos), y finalmente costes de capital. En este modelo, además, se propuso una nueva configuración para beneficiarse de los excesos fotovoltaicos producidos a partir de un campo fotovoltaico sobredimensionado, mediante la conexión del sistema de baterías a un convertidor DC/DC de relativamente alta potencia. Se analizó diferentes casos de estudio, con el fin de mostrar como este tipo de sistema puede ayudar a reemplazar los generadores convencionales y asegurar la fiabilidad y calidad de la red eléctrica. Los casos que se estudia son: (i.) almacenamiento de excesos por “clipping”, (ii.) power-shifting, (iii.) regulación primaria y secundaria, y (iv.) acoplamiento de respuesta de demanda mediante vehículos eléctricos.[CA] La integració de les tecnologies d'energia renovable és un gran component per a aconseguir els seriosos objectius mediambientals de diferents governs i institucions a nivell mundial. No obstant això, hi ha diversos desafiaments al llarg del seu camí per a continuar augmentant en capacitat. La major penetració d'estes tecnologies sorgix la necessitat que proporcionen la mateixa fiabilitat i servicis que els generadors convencionals han fet en la xarxa elèctrica. L'emmagatzemament d'energia proporciona una de les solucions. La proposta del treball fi de màster era desenrotllar una metodologia que permeta modelar i simular sistemes d'emmagatzemament d'energia acoblat a camps fotovoltaics, per a optimitzar la seua integració en les xarxes elèctriques. La metodologia pot modelar qualsevol ubicació i qualsevol condició que requerisca un projecte d'este tipus i calcular el seu dimensionamiento òptim. Els paràmetres que es pot variar són els següents: potència, ràtio DC/AC, ubicació, preus de l'electricitat, mecanismes de fixació de preus de tarifes (existents i proposats) , i finalment costos de capital. En este model, a més, es va proposar una nova configuració per a beneficiar-se dels excessos fotovoltaics produïts a partir d'un camp fotovoltaic sobredimensionat, per mitjà de la connexió del sistema de bateries a un convertidor DC/DC de relativament alta potència. Es va analitzar diferents casos d'estudi, a fi de mostrar com este tipus de sistema pot ajudar a reemplaçar els generadors convencionals i assegurar la fiabilitat i qualitat de la xarxa elèctrica. Els casos que s'estudia són: (i.) emmagatzemament d'excessos per “clipping”, (ii.) power- shifting, (iii.) regulació primària i secundària, i (iv.) adaptament de resposta de demanda per mitjà de vehicles elèctrics.[EN] The integration of renewable energy technologies is an important component to achieve the serious environmental objectives of different governments and institutions worldwide. However, there are several challenges along the way to continue increasing in capacity. The greater penetration of these technologies arises the need to provide the same reliability and services that conventional generators have made in the electricity grid. Energy storage provides one of the solutions. The purpose of the master's project was to develop a methodology that allows modeling and simulating energy storage systems coupled to photovoltaic fields, to optimize their integration in electricity networks. The methodology can model any location and any condition that a project of this type requires and calculate its optimal sizing. The parameters that can be varied are the following: power, DC / AC ratio, location, electricity prices, tariff pricing mechanisms (existing and proposed), and finally capital costs. In this model, in addition, a new configuration was proposed to benefit from the photovoltaic excesses produced from an oversized photovoltaic field, by connecting the battery system to a DC/DC converter of relatively high power. Different cases studies were analyzed, in order to show how this type of system can help to replace conventional generators and ensure the reliability and quality of the electrical network. The cases studies were: (i.) Storage of excesses by "clipping", (ii.) Power-shifting, (iii.) Primary and secondary regulation, and (iv.) Demand response coupling by electric vehicles.Ryan, KD. (2018). Development of a methodology to optimize the integration of photovoltaic plants coupled with energy storage systems in advanced electrical grids. Universitat Politècnica de València. http://hdl.handle.net/10251/108976TFG

    Optimal design of a photovoltaic station using Markov and energy price modelling

    Get PDF
    As the fight against anthropogenic global warming increases, photovoltaic (PV) systems, which are a type of renewable energy, are increasingly being considered. In order to use PV systems, it is necessary to develop methods to optimize their configuration, that is, the optimal number of PV modules and inverters. The objectives are to examine the optimization of PVs subject to not only the operational constraints but also the failure and repair events of PV inverters up to 100 kW, while minimizing the effective levelized cost of energy. To achieve this, using Markov modelling, a new energy price model that considers the current prices of the PV inverters is developed as part of a new optimization framework. A case study considering six real PV inverters is developed to show the effectiveness of the framework. In addition, real data from a reference PV station in Germany is used to calculate the average hours per day that a panel generates its rated power to consider the geographical location, temperature and number of sunny days in the given region. Unlike previous work, local and global optimal solutions are found using PV inverters in the range of 15 kW to 100 kW. Therefore, the new findings of this study will be considered in the future, for example, when considering the failure and repair events of PV modules.Im Rahmen des Kampfes gegen die anthropogene Erderwärmung werden zunehmend Photovoltaikanlagen (PV-Anlagen) in Betracht gezogen, welche zu den erneuerbaren Energien zählen. Um PV-Anlagen nutzen zu können, müssen Methoden zur Optimierung ihrer Konfiguration, d. h. der optimalen Anzahl von PV-Modulen und Wechselrichtern, entwickelt werden. Ziel dieser Arbeit ist es, die Optimierung von PV-Anlagen zu untersuchen, wobei nicht nur die betrieblichen Randbedingungen, sondern auch die Ausfall- und Reparaturereignisse von PV-Wechselrichtern bis zu 100 kW berücksichtigt werden, um dabei die effektiven Stromgestehungskosten zu minimieren. Um dies zu erreichen, wird ein neues Energiepreismodell entwickelt, das die aktuellen Preise der PV-Wechselrichter, sowie die Markoff-Modellierung als Teil eines neuen Optimierungsrahmens berücksichtigt. Anhand einer Fallstudie unter Berücksichtigung von sechs realen PV-Wechselrichtern wird die Wirksamkeit des Rahmens aufgezeigt. Außerdem werden reale Daten einer Referenz-PV-Anlage in Deutschland verwendet, um die durchschnittlichen Stunden pro Tag zu berechnen, in denen ein Modul seine Nennleistung erzeugt. Dazu werden die geografische Lage, die Temperatur und die Anzahl der Sonnentage in der jeweiligen Region berücksichtigt. Im Gegensatz zu früheren Arbeiten werden lokal und global optimale Lösungen mit PV-Wechselrichtern im Bereich von 15 kW bis 100 kW gefunden. Daher können die neuen Erkenntnisse dieser Studie in Zukunft beispielsweise bei der Betrachtung von Ausfall- und Reparaturereignissen von PV-Modulen berücksichtigt werden.Ante la creciente lucha contra el calentamiento global antropogénico, los sistemas fotovoltaicos, que son un tipo de energía renovable, están siendo cada vez más considerados. Para usar sistemas fotovoltaicos, es necesario desarrollar métodos para optimizar su configuración, es decir, el número óptimo de módulos e inversores fotovoltaicos. Los objetivos de esta tesis son examinar la optimización de los sistemas fotovoltaicos sujetos, no sólo a las restricciones operativas, sino también a los eventos de falla y reparación de los inversores fotovoltaicos de hasta 100 kW, mientras se minimiza el costo efectivo nivelado de la energía. Para lograrlo, empleando el modelo de Márkov, se desarrolla un nuevo modelo del precio de la energía que considera los costos actuales de los inversores fotovoltaicos como parte de un nuevo esquema de optimización. Se desarrolla un caso de estudio considerando seis inversores fotovoltaicos reales para mostrar la efectividad del esquema. Asimismo, se utilizan datos reales de una estación fotovoltaica de referencia en Alemania para calcular el promedio de horas al día en que un panel genera su potencia nominal teniendo en cuenta la ubicación geográfica, la temperatura y el número de días soleados de la región. A diferencia de trabajos anteriores, se encuentran soluciones locales y globales óptimas empleando inversores fotovoltaicos en el rango de 15 kW a 100 kW. Por lo tanto, los nuevos hallazgos de este estudio se tomarán en cuenta en el futuro, por ejemplo, cuando se contemplen los eventos de falla y reparación de los módulos fotovoltaicos

    Optimal design of a photovoltaic station using Markov and energy price modelling

    Get PDF
    As the fight against anthropogenic global warming increases, photovoltaic (PV) systems, which are a type of renewable energy, are increasingly being considered. In order to use PV systems, it is necessary to develop methods to optimize their configuration, that is, the optimal number of PV modules and inverters. The objectives are to examine the optimization of PVs subject to not only the operational constraints but also the failure and repair events of PV inverters up to 100 kW, while minimizing the effective levelized cost of energy. To achieve this, using Markov modelling, a new energy price model that considers the current prices of the PV inverters is developed as part of a new optimization framework. A case study considering six real PV inverters is developed to show the effectiveness of the framework. In addition, real data from a reference PV station in Germany is used to calculate the average hours per day that a panel generates its rated power to consider the geographical location, temperature and number of sunny days in the given region. Unlike previous work, local and global optimal solutions are found using PV inverters in the range of 15 kW to 100 kW. Therefore, the new findings of this study will be considered in the future, for example, when considering the failure and repair events of PV modules.Im Rahmen des Kampfes gegen die anthropogene Erderwärmung werden zunehmend Photovoltaikanlagen (PV-Anlagen) in Betracht gezogen, welche zu den erneuerbaren Energien zählen. Um PV-Anlagen nutzen zu können, müssen Methoden zur Optimierung ihrer Konfiguration, d. h. der optimalen Anzahl von PV-Modulen und Wechselrichtern, entwickelt werden. Ziel dieser Arbeit ist es, die Optimierung von PV-Anlagen zu untersuchen, wobei nicht nur die betrieblichen Randbedingungen, sondern auch die Ausfall- und Reparaturereignisse von PV-Wechselrichtern bis zu 100 kW berücksichtigt werden, um dabei die effektiven Stromgestehungskosten zu minimieren. Um dies zu erreichen, wird ein neues Energiepreismodell entwickelt, das die aktuellen Preise der PV-Wechselrichter, sowie die Markoff-Modellierung als Teil eines neuen Optimierungsrahmens berücksichtigt. Anhand einer Fallstudie unter Berücksichtigung von sechs realen PV-Wechselrichtern wird die Wirksamkeit des Rahmens aufgezeigt. Außerdem werden reale Daten einer Referenz-PV-Anlage in Deutschland verwendet, um die durchschnittlichen Stunden pro Tag zu berechnen, in denen ein Modul seine Nennleistung erzeugt. Dazu werden die geografische Lage, die Temperatur und die Anzahl der Sonnentage in der jeweiligen Region berücksichtigt. Im Gegensatz zu früheren Arbeiten werden lokal und global optimale Lösungen mit PV-Wechselrichtern im Bereich von 15 kW bis 100 kW gefunden. Daher können die neuen Erkenntnisse dieser Studie in Zukunft beispielsweise bei der Betrachtung von Ausfall- und Reparaturereignissen von PV-Modulen berücksichtigt werden.Ante la creciente lucha contra el calentamiento global antropogénico, los sistemas fotovoltaicos, que son un tipo de energía renovable, están siendo cada vez más considerados. Para usar sistemas fotovoltaicos, es necesario desarrollar métodos para optimizar su configuración, es decir, el número óptimo de módulos e inversores fotovoltaicos. Los objetivos de esta tesis son examinar la optimización de los sistemas fotovoltaicos sujetos, no sólo a las restricciones operativas, sino también a los eventos de falla y reparación de los inversores fotovoltaicos de hasta 100 kW, mientras se minimiza el costo efectivo nivelado de la energía. Para lograrlo, empleando el modelo de Márkov, se desarrolla un nuevo modelo del precio de la energía que considera los costos actuales de los inversores fotovoltaicos como parte de un nuevo esquema de optimización. Se desarrolla un caso de estudio considerando seis inversores fotovoltaicos reales para mostrar la efectividad del esquema. Asimismo, se utilizan datos reales de una estación fotovoltaica de referencia en Alemania para calcular el promedio de horas al día en que un panel genera su potencia nominal teniendo en cuenta la ubicación geográfica, la temperatura y el número de días soleados de la región. A diferencia de trabajos anteriores, se encuentran soluciones locales y globales óptimas empleando inversores fotovoltaicos en el rango de 15 kW a 100 kW. Por lo tanto, los nuevos hallazgos de este estudio se tomarán en cuenta en el futuro, por ejemplo, cuando se contemplen los eventos de falla y reparación de los módulos fotovoltaicos

    Dispersed storage and generation case studies

    Get PDF
    Three installations utilizing separate dispersed storage and generation (DSG) technologies were investigated. Each of the systems is described in costs and control. Selected institutional and environmental issues are discussed, including life cycle costs. No unresolved technical, environmental, or institutional problems were encountered in the installations. The wind and solar photovoltaic DSG were installed for test purposes, and appear to be presently uneconomical. However, a number of factors are decreasing the cost of DSG relative to conventional alternatives, and an increased DSG penetration level may be expected in the future

    Identifiability Evaluation of Crucial Parameters for Grid Connected Photovoltaic Power Plants Design Optimization

    Get PDF
    This paper aims to assess the impact of different key factors on the optimized design and performance of grid connected photovoltaic (PV) power plants, as such key factors can lead to re-design the PV plant and affect its optimum performance. The impact on the optimized design and performance of the PV plant is achieved by considering each factor individually. A comprehensive analysis is conducted on nine factors such as; three objectives are predefined, five recent optimization approaches, three different locations around the world, changes in solar irradiance, ambient temperature, and wind speed levels, variation in the available area, PV module type and inverters size. The performance of the PV plant is evaluated for each factor based on five performance parameters such as; energy yield, sizing ratio, performance ratio, ground cover ratio, and energy losses. The results show that the geographic location, a change in meteorological conditions levels, and an increase or decrease in the available area require the re-design of the PV plant. A change in inverter size and PV module type has a significant impact on the configuration of the PV plant leading to an increase in the cost of energy. The predefined objectives and proposed optimization methods can affect the PV plant design by producing completely different structures. Furthermore, most PV plant performance parameters are significantly changed due to the variation of these factors. The results also show the environmental benefit of the PV plant and the great potential to avoid green-house gas emissions from the atmosphere

    An Economical Model Development for a Hybrid System of Grid Connected Solar PV and Electrical Storage System

    Get PDF
    Energy sources management is one of the most important concern in the recent decades. There are finite amount of non-renewable energy sources and one day they will run out if they have been used as primary sources of energy. Renewable energy sources have been significantly reduced the environmental effects. For most of them the source of energy is non-depletable. One of the concerns associated with renewable resources is uncertainty or unavailability. Energy Storage Systems (ESSs) can help to have more reliable and more efficient systems by adjusting the charge and discharge time and rate. In this study, an economic model is developed for a hybrid system of grid-connected solar photovoltaic, Compressed Air Energy Storage (CAES), and batteries. PV generation depends on irradiance and it is intermittent in nature. CAES can store energy in larger amounts and for longer periods than other storage systems and can offer lower price for stored energy. Batteries are integrated with CAES in this model mainly for lower demand and shorter periods. The presented model is a non-linear model and it’s been transformed to a linear model in this study. Optimal planning for generation and storage is derived based on the developed model for each day by using operation research techniques to maximize the value of energy which carried over the time. The results are different for each period and are highly dependent on the load demand. The results show that using solar PV panels coupled with energy storage systems increase the efficiency and reliability of the system. In addition to that, efficient use of energy storage system have a great impact on the final prices of electricity since electricity prices in low peak demand periods is lower than high peak periods

    Floating solar panel park

    Get PDF
    Treball desenvolupat dins el marc del programa 'European Project Semester'.This Final Report is the culmination of a four month long design study on floating solar panel park feasibility in Vaasa, Finland. The Floating Ideas Team was tasked with coming up with a design that would not only work, but also make a profit. The team focused a lot of time on initial research, an iterative design process, and experiments to gather information that could not be found during the research phase. In this report, one can expect to find the major findings from research in many different areas such as location, panel design, flotation design, cooling techniques, and efficiency adding techniques. The first takeaway is that implementing floating solar parks in Finland would require adding efficiency techniques such as mirrors or concentrators. Second, how the panels are placed means a lot in a location so far north. Placing the panels far away from each other and horizontally will reduce the negative impact of shadows. And third, the rotation of the structure is important in increasing efficiency. Multiple axis tracking is not necessary, but tracking in the vertical axis can add a 50% increase in power generated. This research then lead into the defining of four initial designs which were eventually paired down into one. The largest factors leading to the change in design were the combination of rotation and anchoring methods, the flotation structure, and the structure required hold the panel modules together. In the end, the final design is a modular circular design with panels and mirrors to help add efficiency, approximately 37%. From there, an economic and environmental feasibility study was done and for both, this design was deemed feasible for Finland. With the design, detailed in this report, it would be possible to implement this and make a profit off of it, leading the team to believe that this should be implemented in places looking for alternatives for renewable energy production
    corecore