14 research outputs found

    Secure OFDM System Design for Wireless Communications

    Get PDF
    Wireless communications is widely employed in modern society and plays an increasingly important role in people\u27s daily life. The broadcast nature of radio propagation, however, causes wireless communications particularly vulnerable to malicious attacks, and leads to critical challenges in securing the wireless transmission. Motivated by the insufficiency of traditional approaches to secure wireless communications, physical layer security that is emerging as a complement to the traditional upper-layer security mechanisms is investigated in this dissertation. Five novel techniques toward the physical layer security of wireless communications are proposed. The first two techniques focus on the security risk assessment in wireless networks to enable a situation-awareness based transmission protection. The third and fourth techniques utilize wireless medium characteristics to enhance the built-in security of wireless communication systems, so as to prevent passive eavesdropping. The last technique provides an embedded confidential signaling link for secure transmitter-receiver interaction in OFDM systems

    Secure pre-coding and post-coding for OFDM systems along with hardware implementation

    Get PDF
    An effective and hardware-friendly physical layer security design, composed of a channel-based frequency pre-coder and a post-coder for OFDM-based systems, is proposed. The design is achieved by decomposing the diagonal matrix of the channel frequency amplitude of the legitimate receiver in order to obtain two unitary orthonormal matrices. The first matrix is used as a pre-coder just before the IFFT process at the transmitter, while the second matrix is used as a post-coder just after the FFT process at the receiver. Besides security, the presented design is interestingly found out to work as a shuffler or inter-leaver, which does not only provide secrecy, but also enhances the performance against burst errors. Moreover, a new channel calibration technique is developed to overcome the effect of channel reciprocity mismatch on the proposed scheme. The provided simulations and USRP hardware testbed implementation results validate the effectiveness of the proposed design in achieving practical and reliable secrecy with just minor modifications on the OFDM structure.Institute of Electrical and Electronics Engineers (IEEE)IEEE Spanish SectionPolytechnic University of Valenci

    Securing Wireless Communications of the Internet of Things from the Physical Layer, An Overview

    Get PDF
    The security of the Internet of Things (IoT) is receiving considerable interest as the low power constraints and complexity features of many IoT devices are limiting the use of conventional cryptographic techniques. This article provides an overview of recent research efforts on alternative approaches for securing IoT wireless communications at the physical layer, specifically the key topics of key generation and physical layer encryption. These schemes can be implemented and are lightweight, and thus offer practical solutions for providing effective IoT wireless security. Future research to make IoT-based physical layer security more robust and pervasive is also covered

    Jammer detection in M-QAM-OFDM by learning a dynamic Bayesian model for the cognitive radio

    Get PDF
    Communication and information field has witnessed recent developments in wireless technologies. Among such emerging technologies, the Internet of Things (IoT) is gaining a lot of popularity and attention in almost every field. IoT devices have to be equipped with cognitive capabilities to enhance spectrum utilization by sensing and learning the surrounding environment. IoT network is susceptible to the various jamming attacks which interrupt users communication. In this paper, two systems (Single and Bank-Parallel) have been proposed to implement a Dynamic Bayesian Network (DBN) Model to detect jammer in Orthogonal Frequency Division Multiplexing (OFDM) sub-carriers modulated with different M-QAM. The comparison of the two systems has been evaluated by simulation results after analyzing the effect of self-organizing map's (SOM) size on the performance of the proposed systems in relation to M-QAM modulation

    An Overview of Physical Layer Security with Finite-Alphabet Signaling

    Get PDF
    Providing secure communications over the physical layer with the objective of achieving perfect secrecy without requiring a secret key has been receiving growing attention within the past decade. The vast majority of the existing studies in the area of physical layer security focus exclusively on the scenarios where the channel inputs are Gaussian distributed. However, in practice, the signals employed for transmission are drawn from discrete signal constellations such as phase shift keying and quadrature amplitude modulation. Hence, understanding the impact of the finite-alphabet input constraints and designing secure transmission schemes under this assumption is a mandatory step towards a practical implementation of physical layer security. With this motivation, this article reviews recent developments on physical layer security with finite-alphabet inputs. We explore transmit signal design algorithms for single-antenna as well as multi-antenna wiretap channels under different assumptions on the channel state information at the transmitter. Moreover, we present a review of the recent results on secure transmission with discrete signaling for various scenarios including multi-carrier transmission systems, broadcast channels with confidential messages, cognitive multiple access and relay networks. Throughout the article, we stress the important behavioral differences of discrete versus Gaussian inputs in the context of the physical layer security. We also present an overview of practical code construction over Gaussian and fading wiretap channels, and we discuss some open problems and directions for future research.Comment: Submitted to IEEE Communications Surveys & Tutorials (1st Revision

    An advanced non-orthogonal multiple access security technique for future wireless communication networks

    Get PDF
    The future wireless communication systems demand much more enhanced security and reliability compared to currently deployed systems. In this work, we propose a much simpler yet more efficient physical layer security (PLS) technique for achieving reliable and secure communication in the multiple-input single-output non-orthogonal multiple access (MISO-NOMA) systems. This system is capable of providing enhanced confidential communication as well as inter-user interference cancellation without using the successive interference cancellation (SIC) method. The conventional NOMA was previously adopted under the name of multi-user superposition transmission (MUST) in release 13 of 3GPP but recently excluded from 3GPP-release 17 due to its performance degradation. In this work, we analyze the drawbacks in conventional NOMA and present a new kind of NOMA with more improved performance metrics. The proposed algorithm combines the benefit of pre-coder matrices with simultaneous transmission using antenna diversity to provide simple, reliable, and secure communication without complex processing at the receivers in downlink scenarios. The effectiveness of the proposed algorithm is verified and proven by extensive analysis and numerical simulations.This work was supported in part by the Scientific and Technological Research Council of Turkey (TÜBİTAK), under project grant No. 119E39

    Secure Index and Data Symbol Modulation for OFDM-IM

    Get PDF
    In this paper, we propose a secure index and data symbol modulation scheme for orthogonal frequency division multiplexing with index modulation (OFDM-IM) systems. By exploiting the notion of the channel reciprocity in time division duplexing mode over wireless channels for shared channel state information as a secret key, we investigate randomized mapping rules for index modulation as well as data symbol modulation. Due to the randomized mapping rules for index and data symbol modulation in OFDM-IM, an eavesdropper is not able to correctly decide message bits even though active subcarriers and their symbols are correctly estimated. In particular, we exploit a characteristic of OFDM-IM which uses a fraction of subcarriers for transmissions to enhance security of data symbol modulation. In addition, to design a set of mapping rules for data symbol modulation, we investigate both a random-selection-based set and a bit-mismatch-based set. Through the analysis and simulation results, we demonstrate that the proposed scheme based on the randomized mapping rules for index modulation and data symbol modulation has a better performance than an existing scheme (modified for OFDM-IM) in terms of bit error rate (BER) and successful attack probability. In particular, we can show that the BER at an eavesdropper is much higher if the bit-mismatch-based set of mapping rules is used

    An Overview of Physical Layer Security with Finite Alphabet Signaling

    Get PDF
    Providing secure communications over the physical layer with the objective of achieving secrecy without requiring a secret key has been receiving growing attention within the past decade. The vast majority of the existing studies in the area of physical layer security focus exclusively on the scenarios where the channel inputs are Gaussian distributed. However, in practice, the signals employed for transmission are drawn from discrete signal constellations such as phase shift keying and quadrature amplitude modulation. Hence, understanding the impact of the finite-alphabet input constraints and designing secure transmission schemes under this assumption is a mandatory step towards a practical implementation of physical layer security. With this motivation, this article reviews recent developments on physical layer security with finite-alphabet inputs. We explore transmit signal design algorithms for single-antenna as well as multi-antenna wiretap channels under different assumptions on the channel state information at the transmitter. Moreover, we present a review of the recent results on secure transmission with discrete signaling for various scenarios including multi-carrier transmission systems, broadcast channels with confidential messages, cognitive multiple access and relay networks. Throughout the article, we stress the important behavioral differences of discrete versus Gaussian inputs in the context of the physical layer security. We also present an overview of practical code construction over Gaussian and fading wiretap channels, and discuss some open problems and directions for future research

    Adaptive modulation techniques for passive optical networks

    Get PDF
    Smart use of fiber networks to increase capacity to the hom

    Teaching Your Wireless Card New Tricks: Smartphone Performance and Security Enhancements Through Wi-Fi Firmware Modifications

    Get PDF
    Smartphones come with a variety of sensors and communication interfaces, which make them perfect candidates for mobile communication testbeds. Nevertheless, proprietary firmwares hinder us from accessing the full capabilities of the underlying hardware platform which impedes innovation. Focusing on FullMAC Wi-Fi chips, we present Nexmon, a C-based firmware modification framework. It gives access to raw Wi-Fi frames and advanced capabilities that we found by reverse engineering chips and their firmware. As firmware modifications pose security risks, we discuss how to secure firmware handling without impeding experimentation on Wi-Fi chips. To present and evaluate our findings in the field, we developed the following applications. We start by presenting a ping-offloading application that handles ping requests in the firmware instead of the operating system. It significantly reduces energy consumption and processing delays. Then, we present a software-defined wireless networking application that enhances scalable video streaming by setting flow-based requirements on physical-layer parameters. As security application, we present a reactive Wi-Fi jammer that analyses incoming frames during reception and transmits arbitrary jamming waveforms by operating Wi-Fi chips as software-defined radios (SDRs). We further introduce an acknowledging jammer to ensure the flow of non-targeted frames and an adaptive power-control jammer to adjust transmission powers based on measured jamming successes. Additionally, we discovered how to extract channel state information (CSI) on a per-frame basis. Using both SDR and CSI-extraction capabilities, we present a physical-layer covert channel. It hides covert symbols in phase changes of selected OFDM subcarriers. Those manipulations can be extracted from CSI measurements at a receiver. To ease the analysis of firmware binaries, we created a debugging application that supports single stepping and runs as firmware patch on the Wi-Fi chip. We published the source code of our framework and our applications to ensure reproducibility of our results and to enable other researchers to extend our work. Our framework and the applications emphasize the need for freely modifiable firmware and detailed hardware documentation to create novel and exciting applications on commercial off-the-shelf devices
    corecore