
T E A C H I N G Y O U R W I R E L E S S C A R D N E W T R I C K S :
S M A RT P H O N E P E R F O R M A N C E A N D S E C U R I T Y E N H A N C E M E N T S

T H R O U G H W I - F I F I R M WA R E M O D I F I C AT I O N S

Am Fachbereich Informatik
der Technische Universität Darmstadt

zur Erlangung des akademischen Grades eines
Doktor-Ingenieurs (Dr.-Ing.)

genehmigte Dissertationsschrift

von

matthias thomas schulz , m . sc .

Geboren am 15. November 1987
in Wiesbaden-Dotzheim, Deutschland

Erstgutachter: Prof. Dr.-Ing. Matthias Hollick
Zweitgutachter: Prof. Guevara Noubir (Ph.D.)

Tag der Einreichung: 12. Januar 2018
Tag der Disputation: 26. Februar 2018

Darmstadt, 2018
Hochschulkennziffer D17

Verfasser: Schulz, Matthias Thomas
Titel: Teaching Your Wireless Card New Tricks: Smartphone Performance and Security En-
hancements Through Wi-Fi Firmware Modifications
Dissertationsort: Darmstadt, Technische Universität Darmstadt
Jahr der Veröffentlichung der Dissertation auf TUprints: 2018
URN: urn:nbn:de:tuda-tuprints-72438
URL: https://tuprints.ulb.tu-darmstadt.de/id/eprint/7243
Tag der mündlichen Prüfung: 26. Februar 2018

Veröffentlicht unter CC BY-NC-ND 4.0 International
(Namensnennung – Keine kommerzielle Nutzung – Keine Bearbeitung)
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.de

Licensed under CC BY-NC-ND 4.0 International
(Attribution – NonCommercial – NoDerivatives)
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

https://tuprints.ulb.tu-darmstadt.de/id/eprint/7243
https://creativecommons.org/licenses/by-nc-nd/4.0/deed
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.de
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

A B S T R A C T

Smartphones come with a variety of sensors and communication interfaces, which make
them perfect candidates for mobile communication testbeds. Nevertheless, proprietary
firmwares hinder us from accessing the full capabilities of the underlying hardware plat-
form which impedes innovation. Focusing on FullMAC Wi-Fi chips, we present Nexmon,
a C-based firmware modification framework. It gives access to raw Wi-Fi frames and
advanced capabilities that we found by reverse engineering chips and their firmware.
As firmware modifications pose security risks, we discuss how to secure firmware han-
dling without impeding experimentation on Wi-Fi chips. To present and evaluate our
findings in the field, we developed the following applications. We start by presenting a
ping-offloading application that handles ping requests in the firmware instead of the op-
erating system. It significantly reduces energy consumption and processing delays. Then,
we present a software-defined wireless networking application that enhances scalable
video streaming by setting flow-based requirements on physical-layer parameters. As se-
curity application, we present a reactive Wi-Fi jammer that analyzes incoming frames
during reception and transmits arbitrary jamming waveforms by operating Wi-Fi chips
as software-defined radios (SDRs). We further introduce an acknowledging jammer to
ensure the flow of non-targeted frames and an adaptive power-control jammer to adjust
transmission powers based on measured jamming successes. Additionally, we discovered
how to extract channel state information (CSI) on a per-frame basis. Using both SDR
and CSI-extraction capabilities, we present a physical-layer covert channel. It hides covert
symbols in phase changes of selected OFDM subcarriers. Those manipulations can be ex-
tracted from CSI measurements at a receiver. To ease the analysis of firmware binaries,
we created a debugging application that supports single stepping and runs as firmware
patch on the Wi-Fi chip. We published the source code of our framework and our appli-
cations to ensure reproducibility of our results and to enable other researchers to extend
our work. Our framework and the applications emphasize the need for freely modifiable
firmware and detailed hardware documentation to create novel and exciting applications
on commercial off-the-shelf devices.

iii

Z U S A M M E N FA S S U N G

Smartphones sind mit einer Vielzahl an Sensoren und Kommunikationsschnittstellen aus-
gestattet, wodurch sie optimal für den Einsatz in mobilen Testumgebungen im Kom-
munikationsbereich geeignet sind. Allerdings hindert uns proprietäre Firmware die vol-
len Fähigkeiten der zugrunde liegenden Hardwareplattform auszureizen, was Innova-
tionen behindert. Speziell für FullMAC-WLAN-Chips präsentieren wir Nexmon – ein
C-basiertes Firmware-Modifikations-Framework. Es ermöglicht den direkten Zugriff auf
WLAN-Pakete und spezielle Hardwarefähigkeiten, die wir durch die Analyse von Chips
und ihrer Firmware herausfanden. Da Änderungen an der Firmware Sicherheitsfragen
aufwerfen, diskutieren wir die Absicherung der Firmwarehandhabung, ohne dabei das
Experimentieren mit WLAN-Chips zu beeinträchtigen. Zum Präsentieren und prakti-
schen Evaluieren unserer Forschungsergebnisse, entwickelten wir die folgenden Anwen-
dungen. Die erste behandelt Ping-Anfragen in der Firmware statt sie im Betriebssystem
zu beantwortet. Sie reduziert den Energieverbrauch und die Verarbeitungszeit signifikant.
Danach präsentieren wir eine Anwendung, die Techniken aus dem Bereich softwarede-
finierte drahtlose Netzwerke einsetzt, um skalierbares Videostreaming zu verbessern, in-
dem Datenströme mit Anforderungen an Parameter der Bitübertragungsschicht versehen
werden. Als Sicherheitsanwendung präsentieren wir einen reaktiven WLAN-Störsender,
der eingehende Pakete während des Empfangs analysiert und beliebig geformte Stör-
signale aussendet. Dazu verwenden wir den WLAN-Chip als Software Defined Radio
(SDR) mit freiem Zugriff auf Basisbandsignale. Des weiteren stellen wir einen Störsender
vor, der Empfangsbestätigungen an den Sender der gestörten Pakete schickt, damit der
Durchsatz von ungestörten Paketübertragungen nicht einbricht. Eine zusätzliche Erwei-
terung passt adaptiv die Sendeleistung an, je nachdem wie erfolgreich ein Empfänger
gestört wurde. Darüber hinaus können wir für jedes empfangene Paket extrahieren, zu
welchen Amplituden- und Phasenverschiebungen die drahtlose Übertragung eines Pakets
geführt hat. Durch Nutzung dieser Informationen und der Fähigkeit zum Ändern von
Basisbandsignalen haben wir einen verdeckten Kanal auf der Bitübertragungsschicht ent-
wickelt. Er versteckt Daten in Phasenänderungen von ausgewählten OFDM-Unterträgern.
Diese Manipulationen können am Empfänger extrahiert werden. Zudem entwickelten wir
einen Debugger, um die Analyse von Firmwaredateien zu vereinfachen. Er läuft als Soft-
ware auf dem WLAN-Chip und kann Firmwarecode in Einzelschritten ausführen. Um
die Reproduzierbarkeit unserer Ergebnisse sicherzustellen und es anderen zu ermögli-
chen unsere Arbeit zu erweitern, stellen wir den Quellcode von Framework und Anwen-
dungen zur Verfügung. Basierend auf unseren Ergebnissen sehen wir den Bedarf nach frei
konfigurierbarer Firmware und detaillierter Dokumentation der Hardware, um zukünftig
einfacher neue Anwendungen für WLAN-Chips handelsüblicher Geräte zu entwickeln.

iv

A C K N O W L E D G M E N T S

I thank my supervisor, Prof. Matthias Hollick, for
providing a working environment that encourages

creativity, for giving me the freedom to choose interesting
research topics, and for advising me during the work that

resulted in this dissertation.

I thank my co-supervisor, Prof. Guevara Noubir, for
accepting my request to review my work.

I thank my collaborators and the students I supervised for
their hard work on implementing ideas that finally ended
up in this document. Only by collaborating we were able

to achieve our targeted goals.

I thank my family, especially my parents, my wife, my
sister, and my grandmother for continuously supporting

me during my studies.

I thank my colleagues for a positive working atmosphere,
their support, their humor, their friendship, and all the

social events we enjoyed together.

I thank our secretary and our admins for their
administrative support and the technical infrastructure.

I thank both the German Research Foundation (DFG) for
funding my work through the Collaborative Research

Center (SFB) 1053 MAKI and the Hessian Ministry of
Science and Art for funding my work through the

LOEWE Research Cluster NICER.

v

C O N T E N T S

I introduction 1
1 motivation and goals 3

1.1 Problem statement . 3
1.2 Our approach . 4
1.3 Our goals and challenges . 5

2 contribution 7
2.1 Analysis and security enhancement . 7
2.2 Framework and toolset . 7

2.2.1 JTAG-less debugging . 8
2.2.2 Real-time MAC access . 8
2.2.3 Operating Wi-Fi chips as software-defined radios 8
2.2.4 Channel state information extraction 10
2.2.5 Position-independent code generation 10

2.3 Applications . 10
2.3.1 Ping-offloading . 10
2.3.2 Software-defined wireless networking 11
2.3.3 Reactive jamming with arbitrary waveforms 11
2.3.4 Covert channels by prefiltering outgoing frames 11

3 related work 13
3.1 Work related to modifying FullMAC firmwares 13
3.2 Work related to modifying real-time firmwares 14
3.3 Conclusion . 14

II chip internals and firmware handling 15
4 broadcom’s wi-fi chips 17

4.1 SoftMAC vs. FullMAC chips . 17
4.2 Transmit path . 19

4.2.1 Physical layer components . 19
4.2.2 Arbitrary signal transmissions . 20
4.2.3 Advanced raw signal transmissions 20

4.3 Receive path . 21
4.3.1 Collecting raw samples . 22
4.3.2 Demodulating Wi-Fi frames . 22
4.3.3 Frame processing on the receive path 23

4.4 Programmable state machine (PSM) . 23
4.4.1 Programming the PSM . 23

4.5 Embedded ARM processor . 24
4.5.1 Flash patching unit . 24
4.5.2 Debugging core . 24

4.6 Conclusion . 25
5 firmware analysis and security improvements 27

vii

viii contents

5.1 Analyzing the current state of firmware handling 28
5.1.1 Limitations of the design decisions 28

5.2 Improving security in future chip models . 29
5.2.1 Limiting access to chip internals and memory 30
5.2.2 Avoiding flashpatches and restructuring memory 30
5.2.3 Restricting debugging of production code 30
5.2.4 Hindering static code analysis . 31
5.2.5 Downsides of delivering encrypted firmware 31
5.2.6 Making the signature verification key exchangeable 32
5.2.7 The problem with software vulnerabilities 32
5.2.8 Randomizing memory allocation on the heap 33
5.2.9 Avoiding code execution in data memory 33
5.2.10 Handling vulnerability incidents . 33

5.3 Conclusion . 34
5.4 My contribution and acknowledgements . 34

III firmware patching framework 35
6 nexmon firmware patching framework 37

6.1 Introducing Nexmon . 38
6.1.1 How to write patches? . 40
6.1.2 Where to embed the patch code? . 41
6.1.3 How to patch read-only memory? . 41
6.1.4 How to side-load functionality into a running chip 42
6.1.5 How to analyze the firmware? . 43
6.1.6 How do dynamically analyze the firmware? 44
6.1.7 How to adapt to new firmware files? 45

6.2 Achieving testbed goals . 45
6.2.1 How to handle receptions? . 45
6.2.2 How to perform transmissions? . 46
6.2.3 How are frames stored in the firmware? 47
6.2.4 How to handle retransmissions? . 47
6.2.5 How to set transmit powers? . 47
6.2.6 What are the internal structures? . 48
6.2.7 How to set channel specifications? . 48
6.2.8 How to use timers? . 49
6.2.9 How to transmit arbitrary waveforms? 50
6.2.10 How to modulate information onto arbitrary waveforms? 51
6.2.11 How to transmit raw signals from Template RAM? 52
6.2.12 How to extract channel state information (CSI)? 52
6.2.13 How to talk to the firmware? . 53
6.2.14 How to modify the real-time firmware? 54
6.2.15 How to handle SoftMAC chips . 55

6.3 Discussion . 55
6.4 Conclusion . 56
6.5 My contribution and acknowledgements . 56

7 programmable firmware debugger 57

contents ix

7.1 Accessing debugging core registers . 59
7.2 Implementation . 59

7.2.1 Initializing the debugger . 60
7.2.2 Preparing to handle breakpoints and watchpoints 60
7.2.3 Handling breakpoints . 61
7.2.4 Handling watchpoints . 62

7.3 Example application . 62
7.4 Discussion . 63
7.5 Conclusion . 64
7.6 My contribution . 65

8 channel state information extractor 67
8.1 Implementation . 67

8.1.1 The size of channel state information 68
8.1.2 Pushing channel state information out of the D11 core 68

8.2 Experimental evaluation . 69
8.2.1 Experimental setup . 69
8.2.2 Analyzing the CSI dumps . 70

8.3 Discussion . 71
8.4 Related work . 72
8.5 Conclusion . 73
8.6 My contribution and acknowledgements . 73

9 software-defined radios on wi-fi chips 75
9.1 Implementation . 76

9.1.1 Raw sample transmission methodology 76
9.2 Experiments . 77

9.2.1 Experimental setup . 77
9.2.2 Experimental evaluation . 78

9.3 Discussion . 79
9.4 Future work . 79

9.4.1 Controlling Wi-Fi chips from MATLAB 79
9.4.2 Comparing Nexmon SDRs to WARP SDRs 80
9.4.3 Implementing continuous transmissions and receptions 80
9.4.4 New applications on Wi-Fi chips . 81

9.5 Related work . 81
9.6 Conclusion . 82
9.7 My contribution and acknowledgements . 83

IV applications 85
10 ping offloading 87

10.1 Implementation . 87
10.2 Experimental evaluation . 88

10.2.1 Power consumption . 89
10.2.2 Number of actually transmitted ping requests 90
10.2.3 Round-trip times (RTTs) . 91

10.3 Discussion . 91
10.4 Related work . 92

x contents

10.5 Conclusion . 93
10.6 My contribution . 93

11 sdwns with flow-based phy control 95
11.1 Designing a SDWN system for smartphones 97

11.1.1 System overview . 97
11.1.2 Overview of the system components 98
11.1.3 Enhancing SVC-video streaming . 98
11.1.4 Complete system overview . 99
11.1.5 Isolating the application from physical-layer settings 99
11.1.6 Interfacing SDRs from smartphones 102
11.1.7 Offering enhanced features at the receiver 102
11.1.8 Robust scalable-video transmission 103

11.2 Implementation . 104
11.2.1 Implementing the scalable-video codec 104
11.2.2 Implementing the WARP “VPN” Service 105
11.2.3 A Nexmon-based implementation using internal Wi-Fi chips 106

11.3 Evaluation . 108
11.3.1 Experiment definition . 108
11.3.2 Evaluation of transmit rate variations 109
11.3.3 Evaluation of transmit power variations 110

11.4 Discussion . 112
11.5 Future work . 113
11.6 Related work . 113
11.7 Conclusion . 114
11.8 My contribution and acknowledgements . 115

12 reactive wi-fi jamming on smartphones 117
12.1 Design . 119

12.1.1 Reactive jammer . 119
12.1.2 Acknowledging jammer . 120
12.1.3 Adaptive power-control jammer . 120
12.1.4 Jamming signal generation . 122
12.1.5 Signal amplification . 122
12.1.6 Power consumption . 123

12.2 Implementation . 125
12.2.1 Jamming app . 126
12.2.2 Implementation in the D11 core . 128
12.2.3 Implementing the reactive jammer . 128
12.2.4 Implementing the acknowledging jammer 129
12.2.5 Implementing the adaptive power-control jammer 129

12.3 Experimental evaluation . 130
12.3.1 Experimental setup . 130
12.3.2 Evaluating our reactive jammer . 132
12.3.3 Reactively jamming non-compliant 802.11ac transmissions 134
12.3.4 Multi-node jamming analysis . 135
12.3.5 Flow-selective jamming . 136
12.3.6 Power consumption analysis . 138

contents xi

12.4 Discussion . 139
12.5 Related work . 140
12.6 Future work . 142
12.7 Conclusion . 143
12.8 My contribution and acknowledgements . 143

13 wi-fi-based covert channels 145
13.1 Covert channel design . 145
13.2 Implementation . 147

13.2.1 Generating and sending acknowledgements with covert information 148
13.2.2 Choosing covert symbols . 149

13.3 Experimental evaluation . 150
13.3.1 Covert channel experiment in line-of-sight setup 150
13.3.2 Evaluating the influence on normal Wi-Fi receivers 151
13.3.3 Reception performance at the covert channel receiver 152
13.3.4 Choosing suitable symbols . 153
13.3.5 Real-time experiments involving the D11 core 153
13.3.6 Evaluating the experimental results 154

13.4 Discussion . 155
13.5 Related work . 155

13.5.1 Data-link-layer approaches . 155
13.5.2 Physical-layer approaches . 156

13.6 Future work . 156
13.7 Conclusion . 157
13.8 My contribution and acknowledgements . 157

14 projects using nexmon 159
14.1 Nexmon for Qualcomm’s 802.11ad Wi-Fi chip 159

14.1.1 Porting Nexmon to ARC600 cores . 159
14.1.2 Simplifying debugging of the QCA9500 firmware 160

14.2 Nexmon for Fitbit activity trackers . 161
14.3 Security analyses based on Nexmon’s results 161
14.4 Nexmon for Qualcomm’s LTE modem firmware 161
14.5 Conclusion . 162

V discussion and conclusions 163
15 discussion 165
16 conclusions 169

VI appendix 173
a software releases 175

a.1 Nexmon firmware patching framework . 175
a.2 Ping-offloading application . 176
a.3 Nexmon Debugger . 176
a.4 Nexmon Jammer . 176
a.5 Nexmon SDR . 177
a.6 Nexmon CSI Extractor . 177
a.7 Nexmon Covert Channel . 178

xii contents

a.8 No-LTE kernel for Nexus 5 . 178
bibliography 179
curriculum vitæ 187
author’s publications 191
erklärung zur dissertationsschrift 199

L I S T O F F I G U R E S

Figure 1 Nexmon framework and application overview 9
Figure 2 Architecture of a FullMAC Broadcom Wi-Fi chip 18
Figure 3 Internals of Broadcom and Cypress FullMAC Wi-Fi chips 21
Figure 4 Workflow of Nexmon’s build system 39
Figure 5 Experimental setup for CSI measurements 70
Figure 6 Waterfall diagrams of CSI measurements 71
Figure 7 Experimental setup for SDR experiments 77
Figure 8 Capture of Nexmon generated raw transmissions 78
Figure 9 Experimental setup of ping-offloading application 88
Figure 10 Power consumption for handling pings 89
Figure 11 Achievable number of ping requests per second 90
Figure 12 Round trip time for answering pings 91
Figure 13 Abstract SDWN system overview . 98
Figure 14 Overview of SVC-based flow-controlled SDWN transmitter 100
Figure 15 Overview of SVC-based flow-controlled SDWN receiver 101
Figure 16 H.264/SVC cube model . 103
Figure 17 Experimental video streaming setup 107
Figure 18 Smartphone to WARP connection setup 107
Figure 19 Frame reception rates of SVC base layer 109
Figure 20 Video qualities for fixed transmit powers 110
Figure 21 Frame reception rates when keeping the transmit rates fixed 111
Figure 22 Video qualities when keeping the transmit rates fixed 112
Figure 23 State machine of the adaptive power-control jammer 121
Figure 24 PAPR and average power analysis 123
Figure 25 PGA and BBMULT settings by index 124
Figure 26 Power consumption for different channel specifications 125
Figure 27 Power consumption for continuous test tone transmissions 125
Figure 28 User interface of the Nexmon jammer app 127
Figure 29 Experimental setup in our office building 131
Figure 30 Jamming frames at different rates . 133
Figure 31 Jamming rogue 802.11ac transmissions 135
Figure 32 UDP throughputs with eiter one or two active nodes 136
Figure 33 UDP throughputs with two streams sent by one node 137
Figure 34 Operation of the acknowledging jammer 137
Figure 35 Total power consumption of the jammer 138
Figure 36 Covert channel system design overview. 147
Figure 37 Experimental setup for covert channel evaluation 150
Figure 38 Frame reception at regular Wi-Fi receivers 151
Figure 39 Covert symbol detection rates . 152
Figure 40 Covert message reception evaluation 154
Figure 41 QCA9500 802.11ad Wi-Fi chip’s memory layout 160

xiii

L I S T O F TA B L E S

Table 2 802.11g data rates achievable on WARP 108

L I S T I N G S

Listing 1 Output of our debugger example application. 64

xiv

A C R O N Y M S

ADB Android Debug Bridge

AWGN Additive White Gaussian Noise

CFO Carrier Frequency Offset

CSI Channel State Information

DAC Digital-to-Analog Converter

DCT Discrete Cosine Transform

DPI Deep Packet Inspection

DSSS Direct Sequence Spread Spectrum

FCS Frame Check Sequence

FEC Forward Error Correction

FHSS Frequency Hopping Spread Spectrum

FPGA Field-Programmable Gate Array

FSK Frequency Shift Keying

GOT Global Offset Table

IDCT Inverse Discrete Cosine Transform

IDFT Inverse Discrete Fourier Transform

IFFT Inverse Fast Fourier Transform

IMD Implantable Medical Device

IP Internet Protocol

ISI Inter-Symbol Interference

IV Initialization Vector

JTAG Joint Test Action Group

LAN Local Area Network

LTE Long-Term Evolution

LTF Long-Training Field

MAC Medium Access Control

xv

xvi acronyms

MCS Modulation Coding Scheme

MLME MAC Sublayer Management Entity

OFDM Orthogonal Frequency-Division Multiplexing

PCIE Peripheral Component Interconnect Express

PDR Packet Delivery Ratio

PLCP Physical Layer Convergence Procedure

PSK Phase Shift Keying

PSM Programmable State Machine

PSR Packet Send Ratio

QAM Quadrature Amplitude Modulation

QoE Quality of Experience

RAM Random-Access Memory

RF Radio Frequency

ROM Read-Only Memory

RSS Received Signal Strength

SDIO Secure Digital Input Output

SDN Software-Defined Networking

SDR Software-Defined Radio

SDWN Software-Defined Wireless Networking

SHVC Scalable High-Efficient Video Coding

SSIM Structural Similarity

STF Short-Training Field

SVC Scalable Video Codec/Coding

TCP Transmission Control Protocol

UDP User Datagram Protocol

UI User Interface

VoD Video on Demand

VPN Virtual Private Network

WARP Wireless Open-Access Research Platform

acronyms xvii

WEP Wired Equivalent Privacy

WLAN Wireless Local Area Network

WSN Wireless Sensor Network

Part I

I N T R O D U C T I O N

We first motivate this thesis and present goals and chal-
lenges in Chapter 1. Followed by Chapter 2, where we
give an overview of the contributions of this work. In
Chapter 3, we present related work.

1
M O T I VAT I O N A N D G O A L S

Since Wi-Fi systems emerged at the end of the 20th century, devices
using this technology have conquered the world. Today, smartphones
and Internet-of-things devices are omni-present. Their success is
likely due to their easy, interoperable and free-off-charge wireless ac- Today, almost

anyone carries a
Wi-Fi enabled
smartphone.

cess technology to connect to networks—in particular the Internet.
Smartphones have definitely changed our lives: they changed how
we communicate, how we navigate, how we consume and produce
multi media. Using augmented reality, they will also change how we
observe our environment. Coupled with Internet-of-things devices
that swamp our homes with intelligent light bulbs and other control
systems, smartphones become our central remote control and moni-
toring device, that everyone carries in their pocket.

1.1 problem statement

For both Internet-of-things devices and smartphones, wireless net-
works are essential. Depending on the application, they either need to
cope with high device densities in residential areas or high through- While demands on

wireless networks
grow, standards
ensure the
compatibility of
legacy devices.

put requirements, for example, to stream video contents. To reduce
interference, standards are required that provide backwards compat-
ibility to support legacy devices but also keep up with current state-
of-the-art technology. It is important to increase throughput while
simultaneously becoming more efficient regarding shared resource
usage such as spectral bandwidth and time.

While the commitment to standards is important to ensure com-
patibility and fairness between wireless devices, it also restricts re-
search to boundaries laid out by standard committees. Researchers
who intend to explore the full capabilities of their devices to, for ex-
ample, optimize access to the wireless medium or to integrate new
functionalities, generally have to use custom hardware. For wire- To evaluate new

physical-layer
schemes, researchers
often use
software-defined
radios that are
flexible development
platforms but
limited in mobility.

less systems, this could be software-defined radios. They offer direct
access to baseband signals so that researchers can implement new
physical layers or enhance reference implementations of standards.
Due to field-programmable gate arrays (FPGAs) and exchangeable
radio front-ends, software-defined radios offer the highest flexibility
for modifying the physical layer. Nevertheless, those devices are gen-
erally larger, more expensive and more energy consuming than inte-
grated chips. This limits their applicability in mobile testbeds. Espe-
cially in scenarios that focus on cross-layer evaluations, where new

3

4 motivation and goals

physical layers should be tested in real-world environments with real
applications and user interaction.

For many scenarios, however, researchers could enhance wireless
communication protocols on the lower layers by simply exhausting
the capabilities of a communication device beyond the restrictions
imposed by communication standards or the device’s firmware. For
example, smartphones can be operated as client in a network (man-
aged mode), span an access point (AP mode) or directly communi-Why not use

whatever the
hardware offers?

cate with other stations (direct or ad hoc mode). However, they lack
the ability to span mesh networks between devices, which would of-
fer decentralized communication capabilities over a large area which
could be helpful in emergency situations. To evaluate those mesh net-
works in practice, researchers are generally limited to devices that al-
low modifications of data-link layer implementations. Those devices
either implement the MAC sublayer management entity (MLME) in
open-source drivers (SoftMAC approach) or offer direct access to rawFullMAC Wi-Fi

chips in
smartphones are

hard to adopt to new
communication

approaches due to
the lack of

open-source
firmwares.

Wi-Fi frames so that they can be received and injected by the op-
erating system or a user-space application. Unfortunately, most (as
of today maybe all) smartphone Wi-Fi chips follow the FullMAC ap-
proach. Those chips encapsulate all Wi-Fi processing functions in a
proprietary firmware file and act like an Ethernet-to-Wi-Fi bridge to
the host. Hence, it is normally not possible to change the Wi-Fi frame
handling and implement new communication schemes, without ac-
cess to the firmware source code to rebuild the Wi-Fi firmware file.

1.2 our approach

To circumvent this limitation, we reverse engineered essential parts
of the firmware running on Broadcom Wi-Fi chips. Those are used in
a high number of smartphones. As a result of this process, we found
and named functions according to their tasks. This is the basis for an-
alyzing how frames are handled by the firmware, how they enter andFirmware reverse

engineering provides
the foundation for

generating firmware
patches.

leave the chip and what processing steps are performed in between.
The gained knowledge allowed us to modify firmware operations by
writing patches in Assembler and to apply them to the firmware file.
The lack of signature checks allowed us to execute modified firmware
files on smartphone Wi-Fi chips. Writing patches in Assembler soon
became tedious and error prone especially to implement more com-
plex projects. Additionally, the portability of written code to other
firmware and chip versions was limited. Hence, we started working
on a way to write patches in C, compile them and patch the resulting
binary blobs into the firmware file. The outcome was our NexmonThe name Nexmon

refers to monitor
mode for Nexus 5

smartphones.

firmware patching framework. The name is composed of the two
syllables “Nex” and “mon”, where the first refers to Nexus 5 smart-
phones on which we started our research and the second refers to the
ability to enable monitor mode on this platform. The framework is

1.3 our goals and challenges 5

the foundation for any of the advanced firmware patches we present Our firmware
patches even
demonstrate the use
of undocumented
chip capabilities.

in this thesis. They extend beyond simple frame processing modifica-
tions in the firmware to completely new applications that use undoc-
umented physical-layer and MAC-layer features of Broadcom Wi-Fi
chips that we first had to discover.

1.3 our goals and challenges

The main goals of our work are:

• To design and develop innovative physical-layer supported ap-
plications for smartphones that demonstrate Wi-Fi chip capabil-
ities that exceed regular Wi-Fi operation.

• To provide means for analyzing and manipulating proprietary
Wi-Fi firmwares.

• To discuss potential security risks of unrestricted firmware ma-
nipulations and how to cope with them.

To achieve these goals, we had to tackle various challenges. A ma-
jor handicap for our research was the lack of freely available source
code for rebuilding the firmware running on Broadcom’s Wi-Fi chips. The lack of source

code forced us into
time-consuming
reverse engineering
of the firmware
binary.

Without it, we first had to elaborately reverse engineer the firmware
binaries to understand how the firmware operates. Then, we had to
find means to patch the firmware in a way that even supports com-
plex firmware patches. To this end, we decided for writing patches
in C and automating the patching process which required a thorough
understanding of the linking process and resulted in our patching
framework. Without it, we might not have reached the level of build-
ing advanced applications into the the Wi-Fi firmware. Another im-
pediment for discovering capabilities that exceed regular Wi-Fi oper- Proper and available

chip documentation
would have boosted
our innovative
outcome.

ation was the lack of hardware documentation. All openly available
datasheets only contain superficial information about the Wi-Fi chip
and lack a proper description of the available components, their reg-
ister maps and functions. In the following chapter we give a short
overview of the components built around the Nexmon framework.

2
C O N T R I B U T I O N

As groundwork for developing new applications running on Wi-Fi
chips, we first had to understand the chip internals and discuss how
to handle the risks of running modified firmware binaries (see Sec- After presenting

chip internal and
discussing firmware
handling, we present
our firmware
patching framework
and exemplary
applications.

tion 2.1). The fundamental contribution of this thesis is the Nex-
mon firmware patching framework that comes with a toolset that
is reusable by various applications. We present an overview of this
work in Figure 1. The toolset consists of exemplary firmware patches
that either demonstrate how to use undocumented capabilities we
discovered during our research of the Wi-Fi chip, or tools we devel-
oped to enhance firmware analysis and operation. We present our
toolset together with our framework in Section 2.2. Based on our dis-
coveries, we developed applications to demonstrate and evaluate the
capabilities of modern Wi-Fi chips in the field. In Section 2.3, we give
an overview of these applications.

2.1 analysis and security enhancement

Before modifying firmware binaries, a basic understanding of the un-
derlying hardware is required. We present our findings on the chip
internals in Chapter 4. The presented information exceeds the level Our chip internals

provide the
background for
firmware patching.

of detail found in official datasheets such as [84]. We especially focus
on the frame processing paths in the transmit and receive directions
and present hardware components we use for our toolset and the ex-
emplary applications that we present below. As firmware running
on Wi-Fi chips has full control over the hardware and the exchanged
data streams, users need to trust their device’s manufacturer to act in
their best interest and avoid including any malicious code. In Chap-
ter 5, we discuss security implications and propose improvements to
the way Broadcom does firmware handling.

2.2 framework and toolset

Research into proprietary firmware requires tools to modify and ex-
tend firmware binaries. Those tools should let developers focus on Using our

framework,
developers build
firmware patches in
C and easily
integrate them into
the firmware binary.

the application in mind and abstract from patching details. To this
end, we developed the Nexmon firmware patching framework we
present in Chapter 6. It consists of a toolchain that compiles patch
code written in C into binaries that are automatically integrated into
the original firmware file according to annotations in the C code.
While this approach works for various hardware platforms (as de-

7

8 contribution

scribed in Chapter 14), we focus on Broadcom’s FullMAC Wi-Fi chips.
For most of the supported chips of our publicly accessible repositoryWe provide monitor

mode and frame
injection patches for
most of our targeted

chips.

(see Appendix A), we at least provide a patch to activate monitor
mode and frame injection. This is a good base for more advanced
firmware patches. In the sections below, we present our toolset that
eases the analysis of firmware binaries and the development of more
complex applications.

2.2.1 JTAG-less debugging

Analysing code is often simplified by dynamic observations of the
processor state and traces of command executions. To this end, de-
buggers are used. Most embedded systems offer a JTAG port to con-
nect an external debugger. However, off-the-shelf devices often lackDynamic debugging

helps to understand
disassembled code

and is not only
available through

JTAG.

a way to connect to this port. This is especially the case for space con-
strained devices such as smartphones. To cope without JTAG access,
we developed a firmware patch that implements a debugger directly
in software. It uses the same ARM debugging core also accessed over
JTAG, but triggers debug exceptions that can be handled in firmware
instead of completely halting the chip. We present our debugger in
Chapter 7. Its support for single-step debugging helped us to gener-
ate traces during runtime and thereby understand how the firmware
works internally.

2.2.2 Real-time MAC access

FullMAC Wi-Fi chips consist of two processors. The first one is an
ARM processor that performs tasks that are not time critical. On Soft-Modifications of the

Wi-Fi chips
real-time behaviour

are essential for
various advanced

applications.

MAC chips, those tasks are implemented in the driver. Nexmon’s
C-based patches only modify the firmware running on this ARM pro-
cessor. The second processor implements a programmable state ma-
chine (PSM). It runs in the D11 core that is responsible to quickly
process MAC-layer events. The core decides which frames should be
dropped or which should by answered by acknowledgements. Means
to modify the code in Assembler already existed for SoftMAC chips
and we integrated them into the Nexmon framework for FullMACFirmware

compression makes
space for new patch

code.

chips, as presented in Chapter 6. As the D11 firmware is stored in
the ARM firmware binary, extensions require additional free space
that we gain by introducing firmware compression. Modifications
to the real-time code are essential for applications such as reactive
jamming that we present below.

2.2.3 Operating Wi-Fi chips as software-defined radios

Most modern communication devices use digital baseband signals for
signal modulation and demodulation. Nevertheless, only software-

2.2 framework and toolset 9

C-based Firmware Patching Framework

Software-Defined
Radio (SDR)

Channel State
Information Extractor

JTAG-less
Debugger

Position-Independent
Code Generator

Real-Time
MAC Access

Reactive Wi-Fi
Jammer

Physical-Layer
Covert Channel

FRAMEWORK
AND TOOLSET

APPLICATIONS

Patch
Side-Loader

Shellcode for
Exploits

Ping
Offloading

Software-Defined
Wireless Networks

Monitormode
and Frame
Injection

Figure 1: Toolset and applications based on the Nexmon framework that are
addressed in this work.

defined radios (SDRs) are designed to give users access to the raw
baseband samples. On the one side, this maximizes the flexibility for While Wi-Fi chips

generally contain
dedicated
modulation
hardware, we found
ways to operate on
raw samples.

modulating signals. On the other side, it is less energy efficient than
specialized modulation hardware. Hence, Wi-Fi chips generally con-
tain dedicated hardware modulators. During our research, we found
two possibilities to get access to raw baseband signals which lets us
operate Wi-Fi chips as software-defined radios. The first approach
uses an up to 512 samples large buffer for storing tones used for cali-
bration purposes. We use this buffer to transmit arbitrary waveforms
in our reactive jamming application presented below. The second
approach allows capturing and transmitting samples from a larger
memory using 802.11ac capable Wi-Fi chips. On BCM4358 devices,
the memory can hold more than 130 000 samples. In Chapter 9, we 130 000 samples at

40 MSps sampling
rate equal 3.25 ms of
signal.

present a firmware patch that demonstrates the transmission of Wi-Fi
frames from raw samples. Additionally, we use SDR-based transmis-
sions to implement our covert channel transmitter presented below.

10 contribution

2.2.4 Channel state information extraction

In the last couple of years, research into different applications was ig-
nited by gaining the ability to extract channel state information (CSI)
using Wi-Fi cards. The information describes how the wireless chan-Channel state

information is
required by various

applications.

nel influences phases and amplitudes of symbols transmitted on each
subcarrier of an OFDM system. So far, tools to extract CSI existed
only for Wi-Fi cards installed in laptops, desktop computers or access
points. In Chapter 8, we present the first CSI extractor for smartphone
Wi-Fi chips and describe how to extract CSI from physical-layer tables
on a per-frame basis. We use the CSI extraction capabilities to imple-
ment our covert channel receiver presented below.

2.2.5 Position-independent code generation

For some application scenarios, we need to load code into a Wi-Fi
chip after it loaded the firmware file. One reason could be SDWN ap-We can side-load

code into a running
firmware by using a
custom interface or

by exploiting
security

vulnerabilities.

plications that need to change the firmware’s behaviour on demand,
for example, by adding frame processing steps. Another reason is
the generation of shellcode that could be used in exploits. After
finding a vulnerability that allows remote code execution, we need
to pack our desired functionalities into a binary that can be loaded
to and executed from arbitrary memory locations. To this end, we
extended our Nexmon framework to compile single C-files into self-
contained binary blobs that use branch instructions relative to the
program counter for calling functions within the C-files. For calling
external functions at fixed locations, we branch to addresses stored
in an offset table. We provide more details on the side-loading code
in Chapter 6.

2.3 applications

Based on our firmware patching framework, we developed and eval-
uated more complex applications in the field. We use them to demon-Our applications

demonstrate what is
doable in the field.

strate what could be achieved by modifying Wi-Fi firmwares and
gaining access to undocumented capabilities. By providing the source
code of our applications, we ensure reproducibility and let other re-
searchers build on our work.

2.3.1 Ping-offloading

A simple firmware patch is our ping-offloading application that we
present in Chapter 10. We use it to evaluate energy consumption andMesh applications

should profit from
firmware

implementations.

delay for receiving, processing, and transmitting frames in the Wi-
Fi chip compared to handing frames to the smartphone’s operating
system for processing. A similar functionality is required in mesh sys-

2.3 applications 11

tems on nodes that have to forward frames. Our results show, that the
firmware implementation significantly reduces energy consumption
and has deterministically low processing delays.

2.3.2 Software-defined wireless networking

Extending the ping-offloading idea, we propose to realize software-
defined wireless networks (SDWNs) using smartphones. Therefore,
we consider a scalable-video streaming application that profits from We evaluate

physical-layer
supported
scalable-video
streaming with flow
filters.

controlling physical-layer parameters. We describe this application
in Chapter 11. Our custom video codec splits videos into three qual-
ity layers. The first layer has to be received to decode the video, the
other two layers increase the image quality. Hence, it makes sense to
enforce robust transmissions of the base layer and high-throughput
transmissions for the upper layers. In our software-defined network-
ing approach, we consider the three video streams as flows with re-
quirements that we can map to physical-layer parameters. To this
end, we implement flow filters either in the user space of a smart-
phone that is connected to an external SDR or in the Wi-Fi chip.

2.3.3 Reactive jamming with arbitrary waveforms

The purpose of the reactive jammer, presented in Chapter 12, is hin-
dering a receiver from successfully decoding selected frames. To this Our reactive jammer

avoids correct frame
receptions of selected
frames.

end, we first need to start receiving frames ourselves and analyze
them during reception (real-time MAC access) to check whether a
jamming condition matches. In the case it does, we quickly need to
switch from receiving to transmitting a jamming signal. While re-
lated work uses Wi-Fi frames as jamming signal, we create arbitrary
waveforms and trigger their transmission on demand. To achieve
this, we use one of our discoveries—the software-defined radio capa-
bilities. Additionally, we extended our jammer to transmit acknowl-
edgements after jamming a frame to trick its transmitter into believ- We offer two novel

extensions: the
acknowledging
jammer and the
adaptive
power-control
jammer.

ing that its transmission was correctly received. This avoids throt-
tling the transmissions we do not jam. In a second extension, we
regularly check whether jamming was successful, by listening for ac-
knowledgement transmissions. In case none are received, we reduce
the jamming power to minimize energy consumption of our mobile
jammer.

2.3.4 Covert channels by prefiltering outgoing frames

Our second security application is a physical-layer covert channel for Covert channels hide
the existence of a
communication
between two nodes.

Wi-Fi systems. It secretly embeds covert information into outgoing
Wi-Fi frames and, thereby, offers a communication channel between
two stations that is not visible on first sight. Only if an attacker knows

12 contribution

how the channel is implemented, he can detect and possibly decode
it if no encryption is used to protect the confidentiality of the pay-
load. Researching covert channels helps both individuals who need a
covert link to exchange sensible information and victims of espionage
that want to uncover such links. Our covert channel, presented inWe need SDR

transmission and
CSI extraction

capabilities.

Chapter 13, encodes symbols into phase changes on selected subcar-
riers of outgoing OFDM-based Wi-Fi frames. By extracting channel
state information at a receiver, one can decode the covert symbols.
In the following chapter, we continue with the presentation of work
related to firmware patching in general.

3
R E L AT E D W O R K

This thesis has a focus on modifying Wi-Fi firmwares of FullMAC
chips that we mainly find in smartphones. Additionally, we present
various tools and applications that emerged from the ability to mod-
ify those firmwares. To keep related work close to the topics it relates This thesis has

separate related work
sections for each of
the discussed topics.

to, each tool and application chapter has its own related work section.
In Chapter 8, we present work related to the extraction of channel
state information (CSI) with commercial Wi-Fi cards and its appli-
cations. In Chapter 9, we present work related to software-defined
radios (SDRs) and the reuse of regular devices as SDRs, for example,
DVB-T dongles. In Chapter 10, we present work related to offload-
ing tasks such as TCP checksum calculations into network interface
cards. In Chapter 11, we present work related to software-defined net-
working and scalable-video coding. In Chapter 12, we present work
related to jammers. Especially focusing on jamming strategies, appli-
cations and implementations on off-the-shelf devices. In Chapter 13,
we present work related to data-link-layer and physical-layer covert
channels. In Chapter 14, we present projects built on the Nemxon In this global related

work chapter, we
focus on changes to
FullMAC firmwares
and modifications to
real-time firmwares.

firmware patching framework, which are, thereby, all related. In this
chapter, we focus only on work that relates to Wi-Fi firmware mod-
ifications in general. We can group it into two categories: (1) work
that applies firmware modifications to FullMAC Wi-Fi chips, and (2)
work that focuses on modifying the real-time code running on all of
Broadcom’s Wi-Fi chips.

3.1 work related to modifying fullmac firmwares

Back in 2012, A. Blanco and M. Eissler presented the first firmware
patches for FullMAC Wi-Fi chips at the Ekoparty [11] and Hack.lu
security conferences. They were the first to analyze and patch the
ARM firmware of smartphone Wi-Fi chips. To communicate with Monmob and bcmon

were the first
projects to bring
monitor mode and
frame injection to
smartphone Wi-Fi
chips.

the firmware on iOS devices, they used ioctl messages. Their tools
to communicate with the firmware, extract the firmware binary and
patch it are available in the monmob repository [10]. At a similar time,
O. Ildis, Y. Ofir and R. Feinstein developed the bcmon [43] firmware
patch focusing on Android devices. They presented their work at
Recon 2013 [44]. There, they introduced the idea of hooking system
calls to imitate a monitor interface to applications. This allows us-
ing bcmon’s monitor mode capabilities with unmodified applications
running on a system with unmodified Wi-Fi drivers. Nevertheless,
both approaches have in common that patches are build based on

13

14 related work

Assembly code, which is tedious and error prone to write. Except
of an Assembly listing of the monitor mode hook in Blanco’s paper,
both patches are closed source and the authors only published tools
to apply binary patches or already patched firmware binaries. In
contrast, we publish all of our firmware patches as portable C code
and also make our patching framework freely accessible so that other
researchers can easily start working on their own firmware exten-In 2015 we started

working on Nexmon
and introduced

firmware patches
based on C code.

sions. In 2015, we introduced a preliminary version of our Nexmon
framework in [79]. It already contained the ability to write firmware
patches in C, but was limited to the BCM4339 Wi-Fi chip of Nexus 5
smartphones.

3.2 work related to modifying real-time firmwares

Orthogonal to the development of FullMAC firmware patches, F. Grin-
goli and L. Nava worked on reverse engineering the firmware run-
ning on the real-time processors of Broadcom Wi-Fi chips. In 2009,F. Gringoli shed

some light on how
Broadcom’s real-time

processor works.

they published a first version of the OpenFWWF project [33] for
Broadcom’s SoftMAC Wi-Fi cards. It consists of an annotated As-
sembler source code that implements basic Wi-Fi operations. The
knowledge about Broadcom’s Wi-Fi platforms collected for the devel-
opment of the b43 Wi-Fi driver in the bcm-v4 wiki1 helped Gringoli
et al. to understand the operation of the real-time firmware. Based
on the OpenFWWF project, various applications emerged. In 2010,
Han et al. published their work on partial packet recovering in [35].
In 2012, Tinnirello et al. developed a wireless MAC processor imple-
mented in the real-time firmware in [87]. In 2014 and 2016, Berger
et al. published their work on implementing a reactive Wi-Fi jammer
using off-the-shelf routers in [8, 9]. During our work on Nexmon, we
realized that FullMAC chips contain the same real-time MAC proces-
sor as SoftMAC chips. With the help of F. Gringoli, we discoveredWe cooperated with

F. Gringoli to bring
modifications of the
real-time firmware

to smartphones.

the location of this firmware within the ARM firmware binary and
integrated means into the Nexmon framework to automate the ex-
traction and repacking of this firmware. As a result, all the advanced
firmware modifications for SoftMAC chips are now also possible on
FullMAC chips.

3.3 conclusion

Nexmon extends the idea of bringing monitor mode and frame injec-Nexmon integrates
capabilities of

existing projects and
makes them

accessible and
extendable.

tion to smartphone Wi-Fi chips to an open source firmware patching
framework that is extendable and that allows researchers to build on
each others results. By integrating the ability to modify real-time
code, we make it possible to bring advanced SoftMAC-based firm-
ware modifications to smartphones.

1 bcm-v4 Specifications: https://bcm-v4.sipsolutions.net/

https://bcm-v4.sipsolutions.net/

Part II

C H I P I N T E R N A L S A N D F I R M WA R E
H A N D L I N G

We first present internals of Broadcom Wi-Fi chips in Chap-
ter 4. Then, we analyze the security of Broadcom’s ap-
proach to handle firmware and we propose how to en-
hance firmware handling in Chapter 5.

4
B R O A D C O M ’ S W I - F I C H I P S

Before modifying the firmware running on a chip, we should get an
understanding of the underlying hardware platform. First, to under-
stand how frames traverse the chip from the host’s operating system An understanding of

the chip architecture
is required to create
advanced firmware
patches.

to the Wi-Fi antenna as well as the other way round. Second, to
learn about the hardware components we can use to even exceed
the capabilities one would expect from a Wi-Fi chip. In this chapter,
we mainly concentrate on BCM4339 Wi-Fi chips installed in Nexus 5
smartphones on which we began our research. We illustrate the chip
architecture in Figure 2. On other Broadcom1 Wi-Fi chips, we find
similar components that mainly differ in the processor models and
version numbers, as well as the number of signal processing chains
in case we have a multi-antenna device. Any Wi-Fi chip has at least Every Broadcom

Wi-Fi chip contains
similar components
for frame and signal
processing.

physical-layer components to process baseband signals and an ana-
log front end to convert those to radio frequency. For real-time MAC
processing, there is the D11 core and to exchange frames with the
host, there are interfaces such as SDIO or PCIE. FullMAC chips ad-
ditionally employ an ARM microcontroller that runs a firmware that
implements an Ethernet-to-Wi-Fi bridge. During the research of the
hardware, we had to face the following challenges: (1) datasheets
on the Wi-Fi chips (such as [84]) only contain superficial information
about the available hardware components, and (2) the existence of
some capabilities is not even mentioned in the datasheets. Hence,
we had to reverse engineer the chips and their firmware to gain the
knowledge presented in this chapter.

In the following section, we present the difference between Soft- We present the
different hardware
components in
detail.

MAC and FullMAC chips, followed by the operation of the trans-
mitter in Section 4.2, the operation of the receiver in Section 4.3, the
programmable state machine in Section 4.4, and the embedded ARM
processor in Section 4.5. Then, we conclude in Section 4.6.

4.1 softmac vs . fullmac chips

There are two classes of Wi-Fi chips: FullMAC chips and SoftMAC
chips. While SoftMAC chips handle non-time-critical tasks in the Wi- FullMAC chips

contain ARM
microcontrollers.

Fi driver running on the host system, FullMAC chips move these re-
sponsibilities to an embedded processor in the Wi-Fi chip. In the case
of Broadcom chips, it is either an ARM Cortex-M3 or Cortex-R4 core.

1 In this thesis, we generally refer to Broadcom Wi-Fi chips, even though some of them
are now managed and sold by Cypress that acquired Broadcom’s Internet-of-things
business in 2016.

17

18 broadcom’s wi-fi chips

TX

TX

RX

RX

I

Q

Q

I

RXLPF RXAM
~~~//ADC

A-LNA
11

A-LNA
12

RXLPF RXGM
~~~//ADC

SLNAG-LNA
12

BB
MULT

TXLPF TXAM A-
PGA

~~~//DAC
A-
PA

A-
PAD

BB
MULT

TXLPF TXGM PGA

Analog Front End and Radio

~~~//DAC

Ext. Components

2.4 GHz
Switch

5 GHz
Switch

Diplex

D11 Core for Real-Time Processing

PAPAD

M
U

X

Baseband

DSSS
Baseband

OFDM
Baseband

Sample
Play

Buffer

Sample
Collect

SDIO/PCIE
Interface

BCMDHD or
brcmfmac DriverOperating System DMA

Host

HeapRAM
RX/TX Frame
Processing
D11/PHY
Control

Embedded Processor

ARM
Microcontroller

ROM

Debugging Core

DMA

DMA

DMA

DMA

DMARX FIFO and
Background TX FIFO

Best-Effort TX FIFO

Video TX FIFO

Voice TX FIFO

Events IOCTLs Firmware loading

Crypto
Engine

Transmit
Modification

Engine

Transmit
Engine

Receive Engine

Timer

Template RAM

Special Purpose
Registers

Condition
Registers

ControlReport
State

Programmable
State Machine

(PSM)

Object Memory
Ucode Memory
Shared Memory
PSM Registers

D11 Registers
Object Memory
PHY Registers

Special Purpose Regs.
Template RAM

Flash Patching Unit

Figure 2: Architecture of a FullMAC Broadcom single-stream Wi-Fi chip,
such as the BCM4339 of the Nexus 5. (based on [74, 77])

4.2 transmit path 19

By offloading tasks such as management and control frame handling
into the Wi-Fi chip, energy consumption of the whole device can be
reduced. The host processor can stay in a sleep state until the Wi-Fi While SoftMAC

chips give full access
to Wi-Fi frames,
FullMAC chips act
as Ethernet-to-Wi-Fi
bridges, abstracting
from details of
wireless systems.

chip sends application traffic. The frames exchanged with the host
are Ethernet frames so that we can consider the firmware running
on the Wi-Fi chip as an Ethernet-to-Wi-Fi bridge. Though, FullMAC
chips have many benefits, they also restrict direct access to raw Wi-
Fi frame processing by design and abstract from MAC and physical
layer implementations in the chip. This limits the researchers’ abil-
ities to experiment with the full capabilities of Wi-Fi chips. In this
work, we focus on working with FullMAC chips and still access their
full capabilities by patching the Wi-Fi firmware.

4.2 transmit path

To exchange Ethernet frames with the host, the Wi-Fi chip uses direct
memory access (DMA) controllers. After receiving a frame from the
host, the Wi-Fi chip is responsible for forwarding the frame’s pay-
load over the wireless interface using Wi-Fi headers and correct phys-
ical layer settings to reach the destination node. To this end, the
ARM firmware fetches the frames from DMA ring buffers and pro- All outgoing frames

pass the ARM
microcontroller to be
prepared for a
transmission
scheduled by the
programmable state
machine in the D11
core.

cesses them, for example, by removing Ethernet and adding Wi-Fi
headers. Then, the firmware places the processed frames into DMA
ring buffers intended for communication with the D11 core. Trigger-
ing DMA transfers results in moving the buffered frames into FIFO
buffers of the D11 core. There, a programmable state machine (PSM)
takes over to control specialized frame processing hardware such as
the transmit engine that is responsible for passing frames from the
FIFOs to the physical layer. Encryption is employed in the crypto
engine and frame headers are quickly rewritten in the transmit mod-
ification engine. To control these processing steps, the PSM accesses
special purpose registers that influence the engines’ behaviors.

4.2.1 Physical layer components

Overall, the D11 core handles all the time-critical Wi-Fi MAC layer
tasks. The physical layer consists of mainly three groups of compo-
nents: the baseband, the analog front end and radio, and the external
components. The baseband is responsible for taking the bits from
the MAC layer and modulating them into a complex baseband sig-
nal. This step is independent of the transmission frequency and only The baseband

performs the digital
modulations and
demodulations.

designs the waveforms within the transmission bandwidth, which
is either 20, 40, 80 or 160 MHz for 802.11ac systems. Two modu-
lations are available in the baseband, either direct sequence spread
spectrum (DSSS) used for legacy 802.11b/g transmissions or orthog-
onal frequency-division multiplexing (OFDM) used from 802.11a/g

20 broadcom’s wi-fi chips

onwards. The output is always a quantized and sampled digital sig-
nal that needs conversion into an analog signal by using the digital
to analog converters (DACs) of the analog front end.

The resulting analog signal has a certain maximum amplitude that
is limited by the DACs specifications. To amplify the analog signal,
the chip offers a baseband multiplier that linearly increases the sig-
nal’s amplitude according to the multiplication factor BBMULT. Then
the signal is low-pass filtered (in the TXLPF) and injected into quadra-
ture modulators (TXGM for the 2.4 GHz band and TXAM for the
5 GHz band). Those modulators perform a direct conversion to theUp and down

conversion to and
from the

transmission
frequency is

performed by direct
conversion

transceivers.

transmission frequency defined by the selected Wi-Fi channel num-
bers. Then the chip uses a series of variable gain amplifiers ((A-)PGA,
(A-)PAD, and (A-)PA) to increase the signal power before passing the
signal to the external components. Those components pass the 2.4
and 5 GHz signals into a Diplexer to connect both bands to a dual-
band antenna. To avoid having separate transmit and receive anten-
nas, switches are used in each signal path to switch between trans-
mission and reception. Arriving at the antenna, frames generated in
the operating system finally reach the air and are transmitted to other
stations.

4.2.2 Arbitrary signal transmissions

Besides generating Wi-Fi frames in the baseband, Broadcom’s Wi-
Fi chips also contain a so called sample-play buffer. It can hold a
limited number of either 256 or 512 IQ-samples depending on the
chip version. The samples are directly injectable into the analog front
end’s digital-to-analog converters (DACs). During regular operation,The Wi-Fi chip can

play arbitrary
signals from small
IQ-sample buffers.

the sample-play buffer is used for calibration purposes. To this end,
the ARM firmware uses a CORDIC function generator to place sine
and cosine functions at variable frequencies in the sample-play buffer.
Then the firmware triggers a playback. The playback loop is either
limited in number of repetitions or it may continue indefinitely. Nor-
mally, the played signals are supposed to stay in the chip in a loop-
back setup. However, by disabling clipping detection, we observed
that played signals are sent to the antenna and thereby broadcasted.
We use this feature for our reactive jammer implementation in Chap-
ter 12.

4.2.3 Advanced raw signal transmissions

Besides transmitting samples using the sample-play buffer, Broad-802.11ac Wi-Fi
chips can transmit

large portions of IQ
samples from

Template RAM.

com chips with support for 802.11ac operation also allow transmit-
ting raw IQ samples stored in Template RAM, as illustrated in Fig-
ure 3. This memory holds 131 072 IQ samples on a BCM4358, which
is sufficient for over 3 ms of raw signal. We can trigger the transmis-

4.3 receive path 21

Analog Front End

PHY-Tables
OFDM

Modulator
OFDM

Demodulator
to CSI
Table

SampleCollectStopPtr

SampleCollectStartPtr

SamplePlayStartPtr

SamplePlayStopPtr

ACK Template

Tr
an

sm
it

FI
FO

Re
ce

iv
e

FI
FO

Shared
Memory

Ucode
Memory

PSM

Ph
ys

ic
al

 L
ay

er
D

11
 M

A
C

 P
ro

ce
ss

or
Fu

llM
A

C
ARM Microcontroller RAMROM

Raw
IQ
RX

Raw
IQ
TX

from Sample
Play Buffer

RX TX

Kernel DriverUserspace

H
os

t

Te
m

pl
at

e
RA

M

Figure 3: Internals of Broadcom and Cypress FullMAC Wi-Fi chips illustrat-
ing regular frame transmit and receive paths as well as raw signal
handling capabilities. (based on [75])

sion of raw signals from Template RAM by writing to the D11 core’s
psm_phy_hdr_param register. Using the SamplePlayStart and StopPtr

registers, we can define where raw samples are stored for transmis-
sion. Using these registers, we can operate off-the-shelf smartphones
in a similar fashion as WARP SDRs [60] running WARPLab, where We could generate

wireless signals in
MATLAB and
transmit them using
Wi-Fi chips.

raw signals are processed in MATLAB on a computer and exchanged
through sample buffers on the SDR. We further explain the SDR func-
tionalities in an application example in Chapter 9. In Chapter 13, we
further implement a Wi-Fi-based physical-layer covert channel using
the SDR transmission features.

4.3 receive path

The receive path starts at the dual band antenna that receives signals
and passes them to the diplexer where they are separated by the cur-
rently selected reception band (2.4 or 5 GHz). Then, they pass the Down conversion in

the analog front end
consists of
amplification,
quadrature
demodulation and
analog-to-digital
conversion.

signal switches and enter the Wi-Fi chip at its receive ports. Here,
low noise amplifiers (SLNA, G-LNA 12, A-LNA 11 and A-LNA 12)
increase the powers of the very small received signals. Then, the sig-
nals are passed to quadrature demodulators (RXGM for the 2.4 GHz
band and RXAM for the 5 GHz band) for direct conversion into the
baseband, where they are split into inphase (I) and quadrature (Q)
components representing complex signals. Those are band limited by
low-pass filters (RXLPFs) to comply with the sampling rates of the

22 broadcom’s wi-fi chips

analog-to-digital converters (ADCs). The latter produce sampled and
quantized digital signals that are handled by the baseband.

4.3.1 Collecting raw samples

Analog to transmitting raw samples from Template RAM, we can
store received raw samples using the sample collect feature of the
Wi-Fi chip. It takes a limited number of samples and stores them inMainly for

debugging purposes,
raw signal samples

can be stored in
Template RAM.

the D11 core’s Template RAM, from where we can extract them using
the ARM core. Similarly to raw signal transmissions, we can trigger
the capture by writing to the D11 core’s psm_phy_hdr_param register.
Using the SampleCollectStart and StopPtr registers, we can define
where received raw samples are stored. This feature is most likely
meant for debugging purposes and it is questionable whether contin-
uous signal recordings are possible as direct read access to the Tem-
plate RAM from the ARM core is too slow to cope with the amount
of generated samples. Especially as the ADCs sample with twice the
channel bandwidth, for example, with 40 MSps when a bandwidth of
20 MHz is selected.

4.3.2 Demodulating Wi-Fi frames

Instead of collecting raw samples, the physical layer normally demod-
ulates Wi-Fi frames. In case of orthogonal frequency division multi-
plexing (OFDM)-based Wi-Fi systems, the physical layer first needs
to detect the presence of a frame and correlate with the long-training
field of the preamble to find the frame’s exact starting point. This isThe effect of the

wireless channel on
Wi-Fi signals is
reflected in the

channel state
information.

required to separate the received OFDM symbols. They are demodu-
lated by applying a fast Fourier transform (FFT) to extract quadrature
amplitude modulated (QAM) symbols for each Wi-Fi subcarrier. Due
to fading on the wireless channel, amplitudes and phases change be-
tween transmitted and received symbols for each subcarrier. To re-
verse this effect, the physical layer needs to estimate amplitude and
phase changes by dividing the received long-training field symbols by
their known transmitted equivalents for each subcarrier. The result
is called channel state information (CSI) that is inverted and applied
to the received data symbols to extract the transmitted symbols. The
CSI is stored in so called physical-layer tables, which are memory
regions in the physical-layer core accessible by a table identifier and
an offset (illustrated in Figure 3). We show how to extract CSI on a
per-frame basis in Chapter 8 and use the developed CSI extractor in
Chapter 13 as covert channel receiver. The physical layer demodu-
lates the extracted symbols and stores the resulting bytes in the RX
FIFOs where they can be processed in real time by the D11 core’s
firmware (ucode).

4.4 programmable state machine (psm) 23

4.3.3 Frame processing on the receive path

The receive engine controls the receive path and allows to, for exam-
ple, drop frames, if they are faulty or not required by a node. Ad- Under the control of

the programmable
state machine,
received frames are
stored in the receive
FIFO.

ditionally, it reports the state of the reception process to condition
registers that are, for example, set whenever a frame is detected, the
PLCP is completely received or the frame reception finishes. The PSM
is designed for quickly reacting to condition changes and controlling
the frame handling engines through special purpose registers. From
the receive FIFOs, the frames are picked up by direct memory access
controllers (DMAs) that perform transfers into the RAM of the em-
bedded ARM processor. There, the frames are stored in ring buffers.
The ARM firmware handles received management and control frames
internally and rewrites Wi-Fi with Ethernet headers. Frames destined
to the host are again stored in ring buffers for DMA transfers to the
SDIO controller or directly into the hosts memory when PCIE is used
to interface the Wi-Fi chip.

4.4 programmable state machine (psm)

The PSM is based on a Harvard architecture, where code and data
memory are split. The so-called ucode or microcode executed on the
PSM is stored in ucode memory. The data memory is also accessi-
ble by external components and, hence, called shared memory. Both The PSM uses

conditional jump
instructions to
implement the
behavior of a state
machine.

memories are externally accessible through the object memory inter-
face. It also gives access to the 64 PSM registers. The processor was
designed to quickly react to changing conditions and, hence, contains
many conditional jump instructions that may check a condition reg-
isters and jump to handling code in a single instruction. This design
allows to efficiently implement a state machine.

4.4.1 Programming the PSM

To change the real-time behavior of the Wi-Fi chip’s MAC layer, we
may change the code running on the PSM. For this purpose, we use
the open source b43 (dis-)assembler. It disassembles the ucode and
allows reassembly to exactly the same code or an extended respec-
tively changed version of the code. To understand the meaning of the We change the ucode

running on the
PSM by using the
b43 (dis-)assembler.

disassembled code, it is helpful to compare it with the code of the
OpenFWWF project [33]. Even though, this project is used for older
chip generations, the program structure is still similar in 802.11ac
chips. To analyze the ucode, we need access to the binary blob that is
loaded into the ucode memory during chip initialization. In SoftMAC
chips, the ucode is directly loaded by the driver running in the oper-
ating system. The ucode can either be included in the driver binary
itself or loaded from a file. In FullMAC chips, the ucode is included

24 broadcom’s wi-fi chips

in the firmware of the embedded ARM processor. Is is loaded during
initialization and then the memory is freed and used as heap of the
embedded processor. To access the object memory and thereby writeChanging the ucode

is essential to modify
the chip’s real-time

behavior.

the ucode, both driver and ARM firmware write to the D11 registers
that give access to ucode memory as well as other MAC and physical
layer registers. Changing the ucode is also an essential part of our
Nexmon framework described in Chapter 6.

4.5 embedded arm processor

In FullMAC chips, the embedded ARM processor performs all the
non time-critical MAC layer tasks of the Wi-Fi chip and overall actsRAM and ROM

contain the firmware
of the ARM

processor.

as an Ethernet-to-Wi-Fi bridge for the host. In each of Broadcom’s
chips, the ARM processor is accompanied by a ROM and a RAM.
The ROM contains one part of the firmware executed on the ARM
processor. It does not only contain basic C library functions such as
memcpy and printf but also functions required to interface with the
chips hardware, to control the timer, the power management unit,
frame allocations, encryption, and various reusable frame handling
functions. As the name states, the ROM contents are read only. The
RAM on the other hand is writable, even by the driver of the host’s
operating system. Whenever a Wi-Fi interface is set up, the driver
initializes the RAM with the contents of a firmware file and the Wi-FiWhile setting up the

Wi-Fi interface, the
driver loads a

firmware file into the
RAM.

chip starts execution directly from RAM. This allows to simply add
new functionalities to the Wi-Fi firmware. Some functions required
by the ROM code are only available in RAM. To find their locations
in each firmware file, the RAM code has a function pointer table at
a fixed location that is used by wrapper functions in ROM to call
functions that are part of this table.

4.5.1 Flash patching unit

For some firmwares, functions stored in ROM that are also called
directly by other functions in ROM need to be overwritten to ex-
tend them, make them compatible with extended structures or simplyThough, the ROM is

unmodifiable, flash
patches allow to read

arbitrary values
from arbitrary

memory locations.

patch security holes. As we cannot directly overwrite ROM contents,
the Wi-Fi chips offer a flash patching unit. It intercepts read instruc-
tions and either delivers up to eight bytes (most chips) or exactly
eight bytes (e.g., on the BCM43596a0) from selected RAM locations.
Using flash patches, we can change the program flow in ROM on a
limited number of locations. Generally, 256 patches are possible.

4.5.2 Debugging core

All Wi-Fi chips with ARM Cortex-R4 processors are also equipped
with a debugging core. It allows us to set breakpoints or watchpoints

4.6 conclusion 25

in the firmware running on the ARM processor. Configuration of the
debugging core is either possible through the JTAG interface or by
directly writing to memory mapped registers from the ARM core it-
self. As the JTAG pins are generally not accessible on Wi-Fi chips Even without a

JTAG interface,
hardware-supported
debugging is
possible.

in smartphones, the latter way to configure the debugger is prefer-
able. It also allows to handle debugging events directly in the Wi-Fi
firmware by triggering a debugging exception. We can handle it di-
rectly in the firmware using a separate stack to avoid overwriting the
original stack, which allows to return execution back to the original
firmware code that triggered a breakpoint or watchpoint. Using the
debugging core allows detailed analysis of the firmware during run-
time, especially by using single-step debugging for analyzing which
paths through the firmware are used. In Chapter 7 we present the
implementation of such a debugger in detail.

4.6 conclusion

In this chapter, we met our challenges of finding and presenting in-
formation missing in the official datasheets. Those findings are valu- Our findings help

modifying
firmwares.

able for implementing our firmware patching framework described
in Part III and applications based on it presented in Part IV. In the
next chapter, we analyze how firmware is handled and how to secure
this process.

5
F I R M WA R E A N A LY S I S A N D S E C U R I T Y
I M P R O V E M E N T S

The security of a device directly relies on the security of the software
executed on this device. In the case of embedded devices, this soft-
ware is called firmware and responsible for interacting with a driver
in an operating system and the hardware components of the chip. On Every Broadcom

Wi-Fi firmware
consists of two
parts—one in ROM
the other one
modifyable in RAM.

Broadcom Wi-Fi chips, the firmware is split into two parts. One part
resides in read-only memory (ROM) and is installed during produc-
tion of the chip. The other part is loaded into random-access memory
(RAM) by the driver. This is a common approach to allow easy up-
dates of the firmware to either fix security holes or change modes
of operation. Those are generally station or access point modes for
which separate firmware binaries exist that the driver loads on de-
mand.

As Broadcom’s Wi-Fi chips do not verify the validity of a firmware
file, we can apply modifications to the firmware binary and reload it
into the chip. This is both a blessing and a curse at the same time. Broadcom firmwares

are freely modifiable
by both researchers
and attackers.

As researchers, we like this open nature as it allows to run modified
firmwares on off-the-shelf devices. However, from a security point of
view it is very dangerous to load arbitrary code on communication
devices, as they could be reconfigured for malicious purposes. For
example, to manipulate or sniff network traffic or even execute phys-
ical attacks on the wireless channel. Additionally, the operation of
modified wireless hardware is generally illegal without a research or
an amateur radio license. Hence, in this chapter, we analyze Broad- Licenses are required

to perform wireless
experiments.

com’s current firmware handling approach and discuss how it can
be improved to both improve security for regular end users but also
allow low-level access to off-the-shelf devices for researchers.

Besides hindering users from running arbitrary codes on their chips,
Broadcom’s firmware binaries also lack various security mechanisms
that avoid or at least impede remote over-the-air attacks to succeed.
Those were demonstrated by G. Beniamini in [7] and by N. Artenstein
in [3]. Both projects allow attackers to remotely inject and execute ar- Nexmon helped

security researchers
to identify severe
code injection
vulnerabilities in
Broadcom’s
firmwares.

bitrary code on the Wi-Fi chip. In general, we have to assume that
every piece of software with a certain complexity always has secu-
rity issues. Deterministic memory allocations and disabled security
features in the compiler, however, allow to easily exploit those holes
to take over control of remote systems. In this work, we also anal-
yse the shortcomings of Broadcom’s firmware handling with respect
to security vulnerabilities and propose solutions to enhance security.

27

28 firmware analysis and security improvements

Those approaches go hand in hand with the verifications of firmware
binaries to avoid malicious code from being executed.

In the following section, we present an analysis of the current firm-
ware handling implementation, followed by Section 5.2 on how to
secure the firmware loading procedure and how to reduce risks of
remote exploitation.

5.1 analyzing the current state of firmware handling

As stated above, Broadcom allows to reload firmware binaries from
the driver. Depending on the chip model, the embedded processor
running the firmware is either an ARM Cortex-R4 or an ARM Cortex-
M3 microcontroller. Both contain vector tables at the beginning of the
ROM firmware to handle exceptions. Those can be interrupts, errorsBroadcom’s

FullMAC Wi-Fi
chips are either

equipped with ARM
Cortex-R4 or

Cortex-M3
microcontrollers.

or the chip’s reset. In any case, the table entries point to addresses
in RAM. This indicates, that Broadcom always redirects the program
flow into RAM, so that any code loaded there is always executed with-
out any further checks. The ROM, on the other side, contains code
that is valuable for different firmware implementations loaded into
RAM. For code running in RAM, calling functions in ROM is easy as
the code positions do not change. If ROM code, however, wants to
call RAM functions, it needs to know where they were placed by the
linker. To solve this problem, there is a global offset table (GOT) at
the beginning of the RAM, containing functions pointers. The GOT is
always placed at the same location so that its entries can be read and
jumped to by wrapper functions in ROM. Sometimes, those point-
ers also point at function implementations in ROM. If a function im-
plementation needs an update, one simply adds its code into RAM
and updates the GOT. For ROM functions not included in the GOT,
Broadcom uses a different patching mechanism. As the ROM con-The global offset

table (GOT)
contains function

pointers jumped to
by wrapper

functions in ROM.

tents cannot be overwritten, Broadcom employs a flashpatching unit.
It inspects every read operation on memory locations and allows to
replace the read-back value by up to eight arbitrary bytes. Though
the number of such patches is limited, it enables firmware develop-
ers to overwrite mainly beginnings of functions in ROM by branch
instructions into new function implementations in RAM. This also al-
lows fixing security vulnerabilities in ROM using a firmware update.

5.1.1 Limitations of the design decisions

Even though, the presented design decisions work in practice to offer
flexibility for updating firmwares, it also results in various securityUnsigned and

unencrypted
firmwares are prone

to analysis and
modifications.

implications. First of all, the loaded firmware is neither signed nor en-
crypted. That allows reverse engineering the firmware binary directly
with disassemblers and decompilers, modifying it and also running
the modified firmware. While this is helpful for researchers aiming

5.2 improving security in future chip models 29

at extending the firmware, it also allows malware developers—who
already gained access to the operating system interfacing the Wi-Fi
chip—to modify the chip’s behaviour. For example, by converting
it into a reactive jammer [74] that can create interference on a large
scale, if many devices were affected. Additionally, splitting the firm-
ware in a part running in ROM and another running in RAM may To avoid running

out of flashpatches
or abusing them, the
whole firmware
should fit into RAM
to make flashpatches
superfluous.

hamper security. As the number of flashpatches is limited, also the
number of security patches to ROM code is limited. As demonstrated
in [3, 7], security holes exist that even allow remote code execution.
The fact that such holes were found in the firmware implies that it is
likely that even more security holes exist. As soon as the number of
flash patches required for closing those holes exceeds the number of
available flash patches, certain holes will never be fixed which leads
to a high number of vulnerable devices that are still in use. In the
next section, we describe how to cope with the problems presented
above.

5.2 improving security in future chip models

To solve the presented security problem, a redesign of the firmware
loading mechanism and firmware storing implementation is required.
This is not possible to perform in the currently existing chips as their
architecture offers unrestricted memory access from the driver and
no abilities to perform a firmware validation in a secure environ- Execution needs to

begin from ROM
that contains trusted
code.

ment. To hinder adversaries from loading modified firmware bina-
ries, each firmware loaded into RAM should be digitally signed. The
chip needs to first verify the correctness of the signature, before ex-
ecuting the loaded firmware code. To avoid modifications to or by-
passing of the signature verification code, it has to be stored in the
chip’s ROM, which at least requires newly produced chips with dif-
ferent ROM contents. Additionally, the vector table entry used for
handling a chip reset must not point to a location in RAM. Instead,
it has to point at a bootloader code in ROM that is also responsible
for checking the validity of the loaded RAM firmware. Only after
validating the code in RAM, the program flow may be directed into
this code. The signature check itself must be based on an asymmetric The ROM should

only contain a
bootloader that
verifies firmwares
loaded into RAM.

cryptographic algorithm for which only the public key is stored in
memory. Any code executed on the Wi-Fi chip should never be able
to overwrite this key. A symmetric cryptographic algorithm is not suf-
ficient in this case, as it has to be assumed that an adversary is able
to extract the key stored in the chip. This would allow him to sign
his own firmwares which compromises the security of the firmware
validation.

30 firmware analysis and security improvements

5.2.1 Limiting access to chip internals and memory

To load the firmware into RAM, the host system needs direct access to
this memory. However, after loading and directly before verifying the
firmware, the host system must be locked out from any direct accessTo avoid firmware

modifications during
runtime, direct

memory access needs
restrictions.

to the chip internals. From this point on, only the verified firmware
should be able to read from and write to chip internal memory. Other-
wise, the host system could modify the firmware after being verified.
To exchange frames and control commands between Wi-Fi firmware
and host system, a direct memory access controller should be used
that checks memory access policies and, thereby, avoids unauthorized
memory access.

In addition, the host system also needs to be hindered from ac-
cessing any chip internal registers directly. Otherwise, an adversaryThe host should not

have direct access to
the MAC and PHY

layer registers.

could skip loading any Wi-Fi firmware and directly talk to the MAC
and PHY layer components to maliciously access the wireless channel.
Alternatively, an adversary could write to the flashpatching registers
to overwrite the public key used for signature verification to inject his
own key. In the current design, the host system has direct access to
the backbone bus that interconnects all the chip internal cores. Hence,
this security features requires a redesign of the chip to host interface.

5.2.2 Avoiding flashpatches and restructuring memory

As stated above, the flashpatching unit could be used to override
memory locations if access to its registers is not sufficiently secured.
Additionally, the flashpatching unit is only required to allow patch-
ing ROM code, but the numbers of patches is also limited. BothPlacing all firmware

code into RAM
renders the

flashpatching unit
superfluous.

problems, the ROM patching limitations and the flashpatching unit
itself, can be solved by simply reducing the ROM size to only hold
the bootloader for verifying code loaded into RAM and extending
the RAM size to hold the complete firmware code. This would allow
full flexibility for organizing memory and also reduce the available
functions to only those required by the currently loaded firmware.
For example, the firmware delivered to customers could be a release
build without any debugging outputs, while the firmware used dur-
ing development could be more open.

5.2.3 Restricting debugging of production code

Debugging features in general offer reverse engineers a wide attack
surface. Besides messages (including function names) written to a
chip internal console, Broadcom chips also contain a JTAG interface
and access to the ARM internal debugging registers. While the JTAG
pins are often not accessible in off-the-shelf systems, an adversary
may desolder a chip to connect to these pins to monitor the oper-

5.2 improving security in future chip models 31

ation of a firmware running on the chip. To avoid this attack, the
boot loader should make sure that the JTAG interface is disabled be- Besides over JTAG,

ARM chips also offer
direct access to the
debugging core from
within the firmware
to implement and
handle debugging
events.

fore starting to verify a firmware binary, at least on release builds.
To debug code by setting breakpoints and watchpoints, an adversary
can not only use the JTAG interface but also directly access debug-
ging registers from software. After enabling the internal ARM de-
bugger core on Cortex-R4 microcontrollers, debugging events can be
programmed to trigger an exception that is handled by a function
listed in the vector table. This allows to handle debugging events di-
rectly on the embedded processor and continues execution with low
delays after handling an event. For the BCM4339 we implemented an
example debugging application that enables automated single-step We developed an

example debugging
application running
in software.

debugging to analyze the behaviour of the firmware at runtime (see
Chapter 7). To hinder reverse engineers from using the internal de-
bugger, Broadcom should make sure that the debugger is disabled
and cannot be enabled by software anymore.

5.2.4 Hindering static code analysis

Disabling debugging options already hinders reverse engineers from
analyzing code during runtime, however, it does not avoid static code
analysis. To impede the latter, Broadcom should make sure that no
one may get direct access to the binary code executed on the Wi-Fi
chip. To achieve this, Broadcom could rely on firmware encryption. Static code analysis

can be impeded by
encrypted firmwares
until the decryption
key gets extracted.

The firmware could be encrypted using a symmetric cryptographic
algorithm. The key needs to be safely stored in the chip as the ex-
traction of this key would allow attackers to decrypt all firmware
binaries for this chip. An asymmetric key would not increase se-
curity in this case, as its extraction would as well allow firmware
decryptions. In the end, this protection only works until a key gets
extracted. The past has taught us, however, that even protected keys
are extractable by side-channel or chip-reverse-engineering attacks.
Additionally, firmware encryption can also be considered as security
by obscurity and it simplifies new attack vectors, we present below.

5.2.5 Downsides of delivering encrypted firmware

Trying to hide the code running on the Wi-Fi chip from analysis might
impede adversaries analyzing and manipulating firmwares, but it
also requires customers to trust Broadcom as well as their employ-
ees handling the firmware source code. Blindly trusting the firm- Open-source

firmwares are
required to impede
the shipment of
malware in stock
firmwares.

ware developers, however, should be avoided. Even if Broadcom has
only good intentions, a rogue employee—probably motivated by an
intelligence agency—has the ability to embed a malware into the Wi-
Fi firmware that may spy on the communication of millions of end
users. In case Broadcom wanted to proof that their firmwares were

32 firmware analysis and security improvements

clean, it could publish the source code required to compile each pub-
licly available firmware binary and also provide the toolchain to build
the byte-wise same firmware binary again. Then independent secu-
rity analysts could examine the source code, check for inconsistencies
and verify that compilation results in the provided binary firmware
files. Combined with signature checks in the Wi-Fi chip, Broadcom
could hinder users from executing self-build modified firmwares but
still offer transparency to the code running on their chips.

5.2.6 Making the signature verification key exchangeable

Certain individuals, such as researchers might like to modify the firm-
ware running on their own device to evaluate how future systems
could be improved performance-wise or security-wise by modifyingSigning any custom

firmware with
Broadcom’s private

key can mitigate
security on all chips.

Wi-Fi firmwares. Additionally, it would allow them to apply security
patches directly to the firmware source code when a Wi-Fi chip ex-
ceeds its planned end-of-life and does not get firmware updates any-
more from Broadcom. To be accepted by the bootloader, however, the
custom firmware requires a valid digital signature that only Broad-
com can produce. As it is not an option to share the private key for
signing firmware binaries, we propose to make the public key stored
in the Wi-Fi chip exchangeable. If an end user wants to run custom
firmwares he should be able to install his own public key and thenEnd users or

researchers might
want to experiment

with custom
firmwares on their

own devices.

load self-signed binaries. To avoid malicious apps or remote attacks
from changing the key, write access must not be granted through a
software interface, neither to the driver nor to the firmware. We pro-
pose to store the public key on the chip in a separate rewritable flash
memory that offers read-only access from the chip internal bus and
write access through a single-wire serial protocol on a free pin. This
pin, ground and the flash memory’s supply voltage should be acces-
sible at the edge of the Wi-Fi chip’s package so that reprogramming
is possible even if the chip was soldered to a printed circuit board.
This way, a developer needs physical access the device containing theWrite access to the

key should be
controlled by

physical proximity.

Wi-Fi chip to exchange the key. This requirement authorizes him to
change the key. To avoid an adversary who gains access to a device to
change the key without the knowledge of the device’s owner, the end
user should always have the ability to read and verify the installed
key using the Wi-Fi driver.

5.2.7 The problem with software vulnerabilities

Above, we propose a firmware handling mechanism based on signa-Unsigned code may
run on a protected

Wi-Fi chip after
exploiting a software

vulnerability.

ture verifications and physically restricted write-access to the public-
key memory to ensure that only valid firmwares from Broadcom or
self-signed firmwares can be loaded into the Wi-Fi chip. Unfortu-
nately, this security feature can be circumvented by code injection

5.2 improving security in future chip models 33

vulnerabilities in a Wi-Fi firmware. Hence, it is inevitable to se-
cure firmwares loaded into the Wi-Fi chip against such attacks. The
firmware itself runs without an operating system directly in the mi-
crocontroller of the Wi-Fi chip. Nevertheless, standard library func-
tions such as memcpy and malloc exist. Previous work such as [3, 7] Buffer overflows

should not lead to
code execution.

has demonstrated that Broadcom’s firmware developers, for example,
did not always verify the validity of the length parameter passed to
memcpy. This lead to simple buffer overflow vulnerabilities. As these
and similar vulnerabilities are unavoidable in large software projects
with a large number of developers, security precautions have to be
considered to hinder adversaries from exploiting those security holes.

5.2.8 Randomizing memory allocation on the heap

First of all, memory allocation on the heap is predictable and struc-
tures created in the initialization phase of the chip always end up at Deterministic

placement of
structures on the
heap should be
avoided.

the same position in memory, which simplifies exploits. This could
be avoided by placing structures at random addresses in memory but
would also lead to a less efficient memory utilization. A larger RAM
would compensate for that limitation. A simple form of memory ran-
domization could be employed by a firmware update.

5.2.9 Avoiding code execution in data memory

Additionally, memory regions containing code should be marked as
executable but without write permissions. Regions containing data
should have the no-execution bit set. This would hinder adversaries
to inject attack code into data memory and trigger its execution. Even Currently, there are

no restrictions where
executable code may
reside in memory.

though the Wi-Fi chip’s microcontrollers support the no-execution bit,
Broadcom does not employ this security feature. Rearranging the
RAMs memory layout and activating this feature should be possible
by employing a firmware update. Even though, the firmware would
still be vulnerable to return-oriented programming attacks, the attack
surface is heavily reduced.

5.2.10 Handling vulnerability incidents

Though vulnerabilities may be fixed by a firmware update, a down-
grade to a legacy firmware may open the vulnerability again that
allows the injection of code into an otherwise protected firmware. At- Restricting firmware

execution based on
version numbers
avoids downgrade
attacks.

tackers could use this feature to circumvent the protection offered
by firmware signatures and run their own code on the Wi-Fi chip.
To protect users who do not want to execute modified firmwares,
such downgrade attacks should be prohibited. One option to achieve
this goal is to always store the highest version number found in suc-
cessfully verified firmware binaries run on the Wi-Fi chip. Loading

34 firmware analysis and security improvements

firmwares with lower version numbers should fail. The version num-
ber checking should be implemented in the bootloader and only there
writable access to the memory location should be possible. Unfor-Hardware pins

should allow users
to reset version

counters.

tunately, this approach also restricts the execution of legacy Wi-Fi
firmwares that might be free of known vulnerabilities. To re-enable
the user to load these, the stored version number should be reset-
table, for example, by using an external pin on the chip as described
in Section 5.2.6.

5.3 conclusion

In this chapter, we discussed Broadcom’s firmware handling on Wi-Fi
chips and identified the loading of unverified firmware as well as the
lack of protection mechanisms against code injection attacks as majorExecuting arbitrary

firmwares is
beneficial for

researchers but also
poses security

problems.

security concerns. Simply shutting down the open access to the chip,
for example, by signing and encrypting firmwares is not a perfect
solution from a security perspective. As long as the firmware stays
closed source, end users may never verify that the stock firmware bi-
nary is free of any malware. Additionally, open firmwares would ease
the creation of security patches even after the estimated end-of-life of
a chip. To avoid the unintentional execution of modified firmwares,
the binaries should be signed and the signatures should be checked
in a bootloader running on the Wi-Fi chip. To allow researchers the
execution of modified firmware, we propose a replaceable verifica-
tion key writable through a hardware interface, that ensures physical
proximity before changing the key. Only verifying firmwares beforeFirmware

verification at boot
time alone is not

sufficient to create a
secure environment.

their execution is, however, not sufficient as vulnerabilities during
runtime may lead to code injection attacks whose exploitation should
at least be impeded. Overall, our solutions enhance the security of
firmware loaded onto Wi-Fi chips while still being open for security
analysis and research.

5.4 my contribution and acknowledgements

I thank Carsten Bruns for analysing the security architecture of Qual-
comm LTE chips and for providing attack vectors in his master thesisEvaluating attack

vectors on one
platform can help to

secure another.

[13]. Based on his findings for Qualcomm chips, I came up with
propositions for enhancing the security of Broadcom chips extended
by the ability to allow researchers to run custom firmware. Addi-
tionally, I thank Matthias Hollick for pointing out the needs to make
firmware running on end devices more transparent to users and re-
searchers by releasing the source code.

Part III

F I R M WA R E PAT C H I N G F R A M E W O R K

We introduce our Nexmon firmware patching framework
that allows to develop patches in C and embed them di-
rectly into the Wi-Fi firmware in Chapter 6. In the fol-
lowing chapters, we present our toolset. In Chapter 7, we
present a programmable debugger to ease program anal-
ysis. In Chapter 8, we present a firmware patch that ex-
tracts per-frame channel state information (CSI). In Chap-
ter 9, we present how to implement arbitrary waveform
transmissions using Wi-Fi chips. All developed tools are
reusable by other researchers.

6
N E X M O N F I R M WA R E PAT C H I N G F R A M E W O R K

The wide-spread availability of wireless infrastructure is one of the
major factors that lead to the success of smartphones. Their mobility
makes them a perfect candidate for mobile testbeds. Also, the Inter- FullMAC Wi-Fi

chips are widely
available, but their
capabilities are
limited by firmware
restrictions.

net of things (IoT) strongly relies on wireless communication for mon-
itoring and control applications. As a small and cheap Wi-Fi-enabled
platform, the Raspberry Pi is a good candidate for experimentation
in this domain. Both platforms seek for low-energy consumption to
enhance battery life. Hence, they use FullMAC Wi-Fi chips to han-
dle Wi-Fi-related tasks in an embedded processor that only wakes up
the device’s main processor if frames need handling by an applica-
tion. Unfortunately, FullMAC chips reduce the flexibility to modify
Wi-Fi’s behavior in testbeds and research applications. To circum-
vent this limitation, researchers often employ software-defined radios
(SDRs) to access lower layers. These modifications would also run
on off-the-shelf hardware, but the blackbox nature of FullMAC chips
forces researchers to either move to oversized experimental platforms
or limit themselves to the capabilities of proprietary Wi-Fi firmware.
For patching Wi-Fi firmware, we had to face the following challenges: There is a need for a

flexible framework to
analyze and modify
firmware.

(1) We needed a solution for implementing complex applications in
the firmware, (2) we needed a way to debug code during runtime,
(3) we needed to change code in read-only memory, (4) we needed to
make space for storing patches in the firmware file and (5) we needed
to control the firmware during runtime.

In this chapter, we introduce Nexmon [80], an open-source frame-
work to write firmware patches in C instead of Assembly with a spe-
cial focus on modifying Broadcom FullMAC Wi-Fi firmwares. Us-
ing C as programming language allows rapid prototyping and easy Nexmon is our

fimware patching
framework.

porting of existing algorithms to run on the Wi-Fi chip’s embedded
processor. By cleverly using linker scripts, we also manage to call
functions of the original firmware similar to library functions defined
in a header file. We further provide means to free multiple kilobytes
of space in the original firmware to place new functionalities.

In Section 6.1, we describe the design and development of the Nex- Chapter 4 contains
background
information on
Broadcom chip
internals required
for this chapter.

mon firmware patching framework and in Section 6.2, we explain
how testbed developers can achieve custom goals. To get a back-
ground on the Wi-Fi chip internals, we refer to Chapter 4. In the
following chapters we present various application examples based
on the Nexmon framework.

37

38 nexmon firmware patching framework

6.1 introducing nexmon

To create patches for embedded firmwares, we created Nexmon. It
follows the philosophy of collecting all the information required forWe use attributes

and pragmas to store
placement

information directly
in C code.

patching a firmware directly in the C files that also contain the patch
code. To define where functions and variables (in general symbols)
should be placed, we introduced a new at-attribute and targetregion-
pragma that we evaluate during compilation with our plugin for the
GNU compiler collection (GCC). This approach allows to reuse Nex-
mon for patching firmwares of other systems with GCC compiler
support. For example, for patching Qualcomm’s 802.11ad (millime-
ter wave) Wi-Fi chip firmwares as described in Section 14.1.

In Figure 4, we present the whole firmware handling workflow.
Every firmware analysis starts by extracting both RAM and ROMWe use IDA to

extract address
information from
binary firmware

blobs.

and analyzing them in IDA to extract address information (see Sec-
tion 6.1.5) that either ends up in our C patch files to place symbols or
in the definitions.mk file used to define addresses for patch place-
ment and the location of binary blobs. To make space for our own
patch code, we implemented ucode compression based on [49] to
roughly half the size of the ucode stored in the ARM firmware. Dur-
ing chip initialization we decompress the ucode directly into the D11
core’s ucode memory using an adaptation of Andrew Church’s tiny
inflate library1 (see Section 6.1.2). Between extraction and compres-We compress the

ucode firmware to
gain space for our

ARM firmware
patches.

sion of the ucode, we can disassemble and extend it. As the bi-
nary blob to initialize the template RAM is stored after the ucode,
we extract it and let the linker place it directly after the compressed
ucode. The space freed by ucode compression is used to store sym-
bols that we do not explicitly place by our at-attribute. Instead, we
let the linker collect them in a patch-region using our targetregion-
pragma.

During compilation, our GCC plugin extracts placement informa-Our Nexmon GCC
plugin extracts

attribute and
pragma information
during compilation.

tion and stores them into a nexmon.pre file that Nexmon re-sorts for
prioritization resulting in a nexmon2.pre file. Then, Nexmon creates
linker and makefiles used to produce and embed patch binaries into
the original firmware file. To call original firmware functions, we
insert their signatures with a dummy function stub and placement
information into the wrapper.c file. This file is compiled like any
other C file, but the resulting binary blobs are not embedded into
the patched firmware. Nevertheless, the linker knows where to findWe store function

stubs of original
firmware functions

in the wrapper.c file
to define their

locations for the
linker.

firmware functions and is able to call them from our patch code. To
avoid redefinitions of all function signatures in a header file, we use
the wrapper.h file that automatically removes the function stubs and
only keeps the signatures. Below, we present how to handle Nex-
mon in general and in Section 6.2 we explicitly focus on extending
Broadcom firmwares.

1 Original tinflate.c file: http://achurch.org/tinflate.c

http://achurch.org/tinflate.c

6.1 introducing nexmon 39

rom.clean.bin
ROM firmware dump
without flashpatches

fw_bcmdhd.orig.bin
original firmware file

rom.bin
ROM firmware dump
with flashpatches

complete_fw.bin
combined firmware
for analysis

merge

complete_fw.idb
disassembled fw.
as IDA database

IDA Pro

wrapper.c
placement
inform. and
func. stubs

structs.h
structures used
in firmware

extract addresses
and structures

definitions.mk
firmware specific
addresses

included in
wrapper.h
function
signatures

ucode.bin
extracted
original ucode

templateram.bin
extracted
templateram

flashpatches.c
extracted
flashpatches

templateram.c
extracted
templateram

ucode.*.patch
contain code changes
without original code

ucode.asm
disassembled ucode

ucode.modified.asm
modified ucode

ucode.new.bin
reassembled,
modified ucode

ucode_compressed.c
reassembled,
modified ucode

src/*.c
patch
specific
C files

nexmon.pre
extracted address
information

nexmon2.pre
prioritized and
sorted address
information

src_pic/*.c
PIC patch
specific
C files

obj/*.o
compiled
functions,
variables
and
unresolved
symbols

gen/*.ld
linker files to
place symbols
at defined
addresses

gen/*.mk
extract symbols
from *.elf files
and insert into
firmware

FIRMWARE ANALYSIS

BINARY BLOB EXTRACTION UCODE MODIFICATION

INFORMATION STORAGE

UCODE COMPRESSION

gen/*_pic_*.ld
linker files to
generate PIC
files

patch.elf
contains placed
and resolved
symbols

patch_pic_*.elf
contains placed
and resolved
symbols

fw_bcmdhd
.orig.bin
original
firmware file

fw_bcmdhd.bin
patched firmware
binary

pic_*.bin
PIC binary blobs

NEXMON PATCHING PROCESS

ORIGINAL FIRMWARE
(STARTING POINT)

Figure 4: Illustration of the whole Nexmon workflow. We start by ana-
lyzing the firmware in IDA to extract address and structure in-
formation. Using this information, we extract binary blobs for
replacement (templateram), modification (flashpatches) and com-
pression (ucode). We require the latter to attain space for firm-
ware patches. Before compression, we can modify the ucode to
change the chip’s real-time behavior. To modify the ARM firm-
ware, we write patches in C, link them against firmware functions
and merge the result into a new firmware. (based on [77])

40 nexmon firmware patching framework

6.1.1 How to write patches?

To place functions or variables at arbitrary positions, we can prepend
their definitions by our at-attribute:
at(0x100, "", CHIP_VER_BCM4339, FW_VER_ALL)

It takes four parameters. The first defines the target address (e.g.,
0x100), the second is a string that can be set to "flashpatch" or
"dummy". In wrapper.c, "dummy" is used to avoid placing functionOur at-attribute

describes where
functions and

variables should be
placed after linking.

stubs into the firmware. "flashpatch" tells Nexmon to create a flash-
patch that overwrites up to eight bytes in the ROM at the speci-
fied address (see Section 6.1.3). The other two parameters of the
at-attribute allow to condition the use of this attribute to certain
chip and firmware versions (e.g., CHIP_VER_BCM4339 for the BCM4339
and FW_VER_ALL used for symbols in ROM, whose addresses do not
change according to the firmware files loaded into RAM). By prepend-
ing multiple at-attributes with different version parameters, one can
write one C file and apply it to multiple platforms and firmware ver-
sions.

Besides simply overwriting a function with a patch function, we
supply a set of macros to create patches based on inline AssemblyWe use macros to

define commonly
used inline

Assembly patches.

code. They are defined in the patcher.h file. Each macro expects a
name as first parameter that influences how the generated symbol is
called in the linker scripts. Placement is done with the at-attribute.
Below, we introduce our macros:
BLPatch(name, func) and BPatch(name, func): Both create branch

instructions resulting in jumps to the target function func that can ei-Branch and
Branch-Link patches

bend the program
flow into hook

functions.

ther be a function name or an address. The addresses are calculated
relative to the program counter. During runtime, BLPatch addition-
ally sets the link register to the address after the created BL instruction
which allows to call functions that return.

HookPatch4(name, func, inst): Calls a hook function func before
calling the original function by overwriting the first four bytes of the
original function with a branch instruction to an intermediate func-
tion. The latter pushes the first four registers and the link registerHookPatch4 calls a

hook function and
then returns to the

original function.

to the stack to save them from being overwritten in the hook func-
tion func. After calling the hook function, this patch pops the saved
registers from the stack and executes the instruction inst before con-
tinuing to execute the original function. The parameter inst needs
to be the assembler instruction that was overwritten in the original
function.
GenericPatch1/2/4(name, val): Overwrites one, two or four bytes

with val in the original firmware. We can use the four-byte versionGeneric patches
simply replace bytes. to overwrite function pointers in a function table. The target function

address should be increased by one to indicate Thumb instruction
set.

6.1 introducing nexmon 41

All symbols, that we do not place explicitly using the at-attribute,
are collected by the linker and stored in the region defined by the The linker collects

unplaced symbols in
a region defined by
our pragma.

targetregion-pragma. For every code file, this should be set to the
patch-region that is located at the end of the original ucode blob
in the firmware that was freed by ucode compression. Below, we
describe how it works.

6.1.2 Where to embed the patch code?

Symbols that are not explicitly placed are collected in memory re-
gions that also need placement in the firmware file at a location
that is not overwritten during runtime. Most firmware files do not
have such empty spaces, hence, we needed to find a way to clear
space for our patches. Analysing the firmware at runtime, we re- Memory freed after

loading the ucode
from the ARM
firmware into the
PSM is assigned to
the heap.

alized that certain functions and data regions are only needed dur-
ing the initialization of the Wi-Fi chip. After using the data, the
hndrte_reclaim function is called to free the now unused space and
assign it to the heap. The largest chunk of memory is freed after
writing the ucode firmware into the memory of the programmable
state machine (PSM) responsible for real-time operations. Analyz-
ing this ucode binary reveals that it can be compressed by roughly
50 percent, reducing the size of 44.7 KiB to 22.4 KiB on a BCM4339.
This is free space that can be used for our firmware patch code.
Hence, we integrated a ucode compression mechanism based on the
deflate algorithm into our build toolchain. When the ucode should
be loaded into the code memory of the PSM, we decompress it on- We compress the

ucode to free space
for our patches and
avoid assignment of
this memory to the
heap.

the-fly as implemented in the ucode_compression_code.c file whose
wlc_ucode_write_compressed function we call by patching the call
to wlc_ucode_write in the wlc_ucode_download function. To finally
reserve the freed space for our patches, we reduced the amount of
memory assigned to the heap and placed our patch binaries at the
end of the former ucode region. As a side-effect, ucode compression
also allows to simply extend the ucode without the need to worry
about its size for storing it in the ARM firmware.

6.1.3 How to patch read-only memory?

Besides the firmware that is loaded by the driver into the RAM of the
Wi-Fi chip, the chip itself holds a part of the firmware in read-only Using flashpatches,

we can temporarily
“overwrite” small
locations in ROM.

memory (ROM). Even though, it is not possible to permanently over-
write this part, a flashpatching unit exists in most Broadcom chips. It
overlays a number of up to eight byte long memory chunks by data
defined in RAM. Reading from those patched locations delivers the
overlayed data. Hence, it is possible to redirect the program flow
from ROM to RAM by simply overlaying an instruction in ROM with
a branch instruction (e.g., by using a BLPatch or BPatch). Internally,

42 nexmon firmware patching framework

flashpatches are defined by creating an entry in the flashpatch con-
figuration array consisting of the target address, the length of theNexmon extracts

existing flashpatches
and extends them

with those defined in
the C patch files.

patch and a pointer to the patch data in RAM, which is also stored
in an array of eight byte long entries. As the original firmwares
do not reserve space to add new flashpatch configurations, we au-
tomatically extract all flashpatches and store them in a flashpatch.c
file using our fpext utility. During the firmware build, we reassem-
ble the flashpatches and place them into the space freed by ucode
compression. After firmware initialization this space is freed and as-
signed to the heap. To define a flashpatch in C code, one simply uses
the keyword “flashpatch” as second parameter of the “at”-attribute:
__attribute__((at(..., "flashpatch", ..., ...)))

6.1.4 How to side-load functionality into a running chip

Instead of patching the firmware binary once before loading, Nex-
mon also allows to dynamically reload code during firmware execu-
tion. Example applications are the dynamic extension of the firmwareWe need reloadable

code for extensions
during runtime and

security analyses.

according to application requirements (e.g., installing a packet filter
after starting tcpdump) or the generation of shellcode that we may
inject into a target device by exploiting a remote code execution vul-
nerability.

To simplify the compilation of such code, we developed the Nex-
mon PIC extension, where PIC stands for position independent code.
With this extension, we can write C files and compile them into sepa-
rate binary files that are loadable to arbitrary memory addresses from
where we can trigger their execution. These files all contain one mainPosition

independent code
(PIC) allows to call

local functions
relative to the

program counter and
external functions

through a global
offset table (GOT).

function that we always place directly at the beginning of our reload-
able file. To call the main function, we extended the base firmware
to simply branch into the newly loaded code. After the main func-
tion, we place additional functions and variables followed by a global
offset table (GOT). We need the latter to make the code position inde-
pendent. As we do not know where the binary blob is loaded during
runtime, the code within our blob needs to perform jumps relative
to the program counter to reach code within this blob, while existing
firmware functions need to be accessed by first loading the absolute
target address from the global offset table into a register and then
jump to the loaded address.

To load an executable binary blob, we created an ioctl which is
a control message sent from a user-space application or the kernelWe can load

firmware extension
code through ioctls

and make it
persistent on the

heap of the running
firmware.

to the firmware. During this call, the binary blob is loaded onto the
heap and stays there until the ioctl processing finishes. Hence, we can
directly execute the loaded code by creating a function pointer to its
starting address and calling it. If the binary blob should be executable
outside the ioctl, for example, in the procedure that processes incom-
ing frames, we first have to copy it into a newly allocated section at

6.1 introducing nexmon 43

the heap so that it is not overwritten after the ioctl processing finishes.
Then we can freely pass its starting pointer to other functions to call
the new code.

Allowing users to reload code into the Wi-Fi chip during runtime
bears potential security risks. If the loaded code is faulty or called as- Loading faulty code

likely crashes the
Wi-Fi chip requiring
a restart of the Wi-Fi
firmware.

suming incorrect function signatures, the Wi-Fi firmware will likely
crash. This is an inconvenience, but the Wi-Fi driver can recover the
chip by simply reloading the firmware file. Additionally, we could
store a hash of the main function’s signature in our binary blob and
verify it before branching to the main function. This avoids execut-
ing functions with the wrong signatures in case the binary blob is
not maliciously modified. By allowing users to inject code into the
running Wi-Fi firmware, they gain full control over the Wi-Fi chip.
Generally, Android requires users to have root privileges to change
the firmware file loaded by the Wi-Fi driver and to send ioctls to the
firmware. Hence, everyone able to inject code through ioctls could
also directly inject it into the main firmware. Hence, in the default Dynamic firmware

extensions are a
security risk that we
can handle by
validating function
signatures and only
executing signed
extension binaries.

configuration, no additional security risk is introduced. In case, we
also want unprivileged users to reload binary blobs, we have to con-
sider that they can gain full access over the Wi-Fi firmware. To limit
those users to a selected set of reloadable binary blobs, we can dig-
itally sign those blobs and check their signatures by our firmware
patch to ensure that only signed code can be side-loaded into a run-
ning Wi-Fi chip by unprivileged users.

6.1.5 How to analyze the firmware?

To analyze the whole firmware binary, the ROM of the Wi-Fi chip
needs to be extracted. To extract a clean ROM dump without applied
flashpatches, the extraction must take place before the configuration
of the latter started during runtime. To achieve this, we created firm- A clean ROM dump

without applied
flashpatches works
with any RAM
firmware file.

ware patches that copy the whole ROM content into the RAM di-
rectly after starting the chip (rom_extraction projects in the Nexmon
repository [80]). Then, we wait in an endless loop. To avoid stalling
the driver during normal interface setup, we use dhdutil’s download

function to reload the firmware on an already running Wi-Fi chip.
Then, we use dhdutil’s membytes function to dump the RAM content
and thereby dump the previously copied ROM contents. To analyze
this binary in conjunction with a RAM firmware file, flashpatches
should be applied manually to the ROM file using the fpext utility.

Equipped with RAM and ROM binaries, we can create a complete
binary of the Wi-Fi firmware. To analyze this firmware and find new We analyze the

combined RAM and
ROM firmware file
in IDA.

functions and data structures, we can use IDA Pro with the ARM De-
compiler plugin. The latter allows to create C-like code that helps to
understand the program flow and allows comparisons to other code
sources such as the brcmsmac driver that contains functions similar to

44 nexmon firmware patching framework

those in the firmware. In IDA, we first make sure that the code is inter-
preted as ARM Thumb code in little-endian byte order. Then we start
looking for strings that look like function names, find their references
and name the enclosing functions accordingly. Then we compare the
found function names with functions of the brcmsmac driver or bina-The decompiled code

can be compared to
other code source to

get a better
understanding of its

implementation.

ries of the wl driver including symbol names to label more functions
in the firmware binary. The brcmsmac code also helps to name func-
tion arguments and define their types as structures to make the code
more readable. Once functions are found and declared in one firm-
ware version, we can use zynamics’s bindiff plugin for IDA Pro to
find the same functions in other firmwares, even those of other chips.

6.1.6 How do dynamically analyze the firmware?

Static code analysis in IDA is a good way to find functions and com-
pare them to available C code. However, to analyze what functions
do internally, how they access variables and what values they expectStatic code analysis

is tedious when it
comes to

understanding what
functions do in

detail.

in those to avoid crashing the firmware, we should dynamically ana-
lyze the firmware. Using Nexmon, we can patch code for debugging
into the firmware. It may write register contents and other debug
information to the console using the printf function.

While this method easily works for hooking functions when they
are called, it is more complex when arbitrary instructions within a
function need hooks, as some instructions might even be shorter than
a branch instruction needed to call the debugging code. To circum-We use the ARM

debug core to
implement hardware

breakpoints and
memory watchpoints

that generate
exceptions that we

can handle.

vent this problem, we developed a debugger for ARM Cortex-R4 mi-
crocontrollers embedded in Broadcom Wi-Fi chips. The debugger
uses ARM’s debugging code, where we can set up to four break-
points and four memory watchpoints. As the Wi-Fi chip’s JTAG port
is generally hard to access in off-the-shelf devices, we decided to run
the debugger in monitor mode. That means, whenever a breakpoint
is triggered a prefetch abort exceptions is triggered and whenever
a watchpoint is triggered a data abort exceptions is triggered. In
the standard firmware implementation, the chip simply dumps reg-
ister contents and parts of the stack to the console and then stops
operation when these exceptions occur. In our debugger, we imple-
ment our own exception handlers to print debug information and
then continue with regular program operation. As we can implementUsing single

stepping, we can
analyze the exact
path through the

code during
execution.

arbitrary logic in those handlers, we end up with a programmable de-
bugger for the Wi-Fi chip’s firmware. It even supports single-step de-
bugging that is helpful to understand which path the program takes
using the given variable contents. We explain the debugger in more
detail in Chapter 7.

6.2 achieving testbed goals 45

6.1.7 How to adapt to new firmware files?

Each chip has a subdirectory (e.g., BCM4339) under the firmwares For each firmware,
we need to find
ucode, Template
RAM and function
addresses.

directory. Each firmware version has an individual subdirectory (e.g.,
6_37_34_43) in such a chip subdirectory. Besides the firmware file
(e.g., fw_bcmdhd.bin), it contains a definitions.mk file with firmware
specific addresses, such as the start address and size of the origi-
nal ucode. To adapt the definitions.mk file, we need to find those
addresses in the new firmware mainly by comparing disassembled
code pattern of an already analyzed firmware with those of the new
firmware. After updating the definitions, we need to find all func-
tions we want to call from our firmware patches. If we already have
an IDA file of another firmware version, we can find functions in new
firmwares by using IDA’s bindiff plugin. After that, we append new Bindiff helps to find

functions in new
firmware versions
again.

“at”-attributes to function stubs in the wrapper.c file containing the
addresses in the new firmware. To create a new patching project, it
is best to copy one of the nexmon projects from another firmware to
the newly added one and adjust all “at”-attributes to place patches at
the correct locations in the new firmware file. In the next section, we
present how researchers may use the extracted information to achieve
goals often required in a testbed but hard to reach with unmodified
FullMAC firmwares.

6.2 achieving testbed goals

Researchers often write firmware patches to accomplish higher goals
that are not achievable with unmodified Wi-Fi firmwares. This in-
cludes the activation of monitor mode and frame injection to imple- Monitor mode and

frame injection are
only the most basic
features enabled by
Nexmon.

ment custom low-layer communication protocols in the operating sys-
tem followed by a firmware implementation with reduced latencies
and lower power consumption. Besides regular frame processing,
Nexmon further offers direct access to the physical layer that, for ex-
ample, unleashes SDR-like features to transmit arbitrary signals as
used in Chapter 12, Chapter 9 and Chapter 13. Below, we present a
selected set of goals that can be achieved, mainly focusing on the ex-
tension of frame processing capabilities and more control over frame
transmission parameters.

6.2.1 How to handle receptions?

In the ARM processor, all frames received by the D11 core are han-
dled in the wlc_bmac_recv function that collects them from the DMA In monitor mode the

firmware calls
wl_monitor to send
raw frames to the
host.

ring buffers and passes them to the wlc_recv function. If monitor
mode is active (e.g., by calling nexutil -m1), this function calls the
wlc_monitor function that extracts receive statistics and writes them
into the wl_rxsts structure. Then it passes both the statistics and the

46 nexmon firmware patching framework

frame to the wl_monitor function. This is the function we hook to
implement monitor mode with radiotap headers. To pass frames to
the host, we call the xmit function pointer of the interface to the host.
On the BCM43430 of the Raspberry Pi, we can even select a separate
interface only for monitored frames after creating this interface in the
brcmfmac driver running on the host.

If the Wi-Fi chip is connected to a network, the wlc_recv function
also calls a chain of functions used to strip Wi-Fi headers and replace
them with Ethernet headers. At the end, wl_sendup is called to initi-The wl_sendup

function also calls
the xmit function

pointer.

ate the transfer of the received frames to the host’s operating system.
This makes wl_sendup the perfect place to implement mechanisms
with the benefits of running in the firmware without the need of han-
dling Wi-Fi headers. We use this function in our ping-offloading ex-
ample in Chapter 10.

6.2.2 How to perform transmissions?

If connected to a network, we can trigger the transmission of Ethernet
frames, for example, after processing a received frame in wl_sendup.
To this end, we call the wlc_sendpkt function. It strips the EthernetWe can change

per-frame
transmission

parameters by
editing the d11txhdr

struct prepended to
each frame.

headers, adds Wi-Fi headers and chooses physical-layer parameters
required to reach the destination. Responsible for actually setting
those parameters is the wlc_d11hdrs_ext function that appends a
d11txhdr structure to each frame before it is passed to the D11 core
for transmission. To this end, frames are first enqueued with the
wlc_prec_enq function and then transmitted by calling wlc_send_q.
To change transmission parameters, we can place a hook at the end
of the wlc_d11hdrs_ext function and change the d11txhdr structure
accordingly.

To inject arbitrary frames, Nexmon offers the sendframe helper
function. It can send raw 802.11 frames starting with Wi-Fi head-Our sendframe

function accepts
both frames with

and without
prepended d11txhdr

which allows easy
modifications of this

struct.

ers. For those frames, sendframe calls the light-weight wlc_sendctl
function discovered by Hoffmann in [41]. It takes raw frames, adds
the d11txhdr structure, enqueues frames and triggers their transmis-
sion. Additionally, sendframe can handle frames that already contain
the d11txhdr structure. Then sendframe only enqueues and sends
those frames. The latter option is useful to gain more control over the
transmission settings by manually calling the wlc_d11hdrs_ext func-
tion to create the d11txhdr structure and then modifying its contents
before calling sendframe. In any case, frames for injection either needThe pkt_buf_get_skb

function allocates
new frames in the

firmware.

to come from the host or need to be crafted from scratch in the firm-
ware. For the latter, we need to create an sk_buff structure by calling
pkt_buf_get_skb and fill its data section with the raw frame bytes.

6.2 achieving testbed goals 47

6.2.3 How are frames stored in the firmware?

In the firmware, each frame is stored in an sk_buff structure that
contains a pointer to the frame itself (data), the frame length (len)
and some flags (flags). The underlying data memory can be even The skb_push and

skb_pull functions
shift the beginning
of a frame payload
on the underlying
buffer.

larger and by calling the skb_push and skb_pull helper functions, we
can move the data pointer forward and backward by automatically
adjusting the len variable to prepend or remove headers. Generally,
it is more efficient to first create a sufficiently large buffer that can
hold all required headers and then shift the starting pointer to this
buffer, instead of copying the whole frame payload to a new buffer
whenever we are running out of space.

6.2.4 How to handle retransmissions?

Retransmissions are handled by the D11 core. Whenever a transmit-
ted frame requires an acknowledgment by the receiver, the frame is
retransmitted as often as defined by the short retry limit (SRL) re-
spectively the long retry limit (LRL). By default SRL is set to 6 and
LRL to 7. We can change the values by using the WLC_SET_SRL and SRL and LRL

globally define the
number of
retransmissions for
which we can define
up to four different
fallback rates.

WLC_SET_LRL ioctls either with nexutil from userspace, or within the
firmware by calling our set_intioctl helper function. For retrans-
missions, we can define up to four fallback rates on 802.11ac chips.
The first is used for the first three retransmissions, the second for the
fourth, the third for the fifth and the fourth for any other retransmis-
sion. To define those rates, we hooked the wlc_antsel_antcfg_get

function that is called during the preparation of the d11txhdr. Us-
ing this hook, we get access to an instance of the ratesel_txparams

structure that contains the rspec array to define the retransmission
rates.

6.2.5 How to set transmit powers?

To override the transmit power of all outgoing frames, Broadcom of-
fers the qtxpower iovar that can be set using the WLC_SET_VAR ioctl. By skipping over the

selection of
minimum powers set
by a user and the
regulatory limits, we
can freely set any
power index.

In FullMAC firmwares, this setting can only choose transmit powers
smaller than the regulatory limitations. To exceed these limitations, a
debugging firmware is required that checks the txpwroverride vari-
able that allows to override regulatory limits. As we also want to
enable arbitrary power settings in production firmwares, we simply
nop the call to the ppr_compare_min function that calculates the min-
imum between user targets and the regulatory limits. We need to
place the nops into the wlc_phy_txpower_recalc_target function.

The value set by qtxpower is first translated into a power index that
the hardware uses to set actual gains at the amplifiers automatically.
To also get full control over the amplifier values, we need to deactivate

48 nexmon firmware patching framework

hardware power control using the wlc_phy_txpwrctrl_enable_acphyWe can also
manually define all

amplifier values.
function and can then abuse the wlc_phy_txcal_cleanup_acphy func-
tion to set all gains manually according to the definitions in the
ac_txgain_settings structure.

6.2.6 What are the internal structures?

To handle the internal state of the firmware, a number of structure in-
stances are used and passed to functions. Most of these instances areWe should never

address structures
with absolute

addresses as their
locations on the heap

may change after
patching the

firmware binary.

created on the heap during the initialization of the firmware. Even
though, they are always placed at the same positions in one firmware
version, absolute references to these addresses should be avoided in
the patch code as firmware patches allocating space on the heap can
lead to address changes of these structures. If the location of one
of the main structures is known, we can derive the addresses of the
other structures. The wlc_info structure is the main structure han-
dling the state of the high-layer driver functionalities such as the as-
sociation state. It is mainly passed to functions starting with wlc_, but
not to those starting with wlc_bmac_. The latter normally expect the
wlc_hw_info structure managing hardware specific states such as ac-The registers of the

D11 core generally
start at 0x18001000.

cess to the physical layer. Even more specific is the phy_info structure
that controls the physical layer for each band and is passed to func-
tions modifying amplifications or sending raw signals. The d11regs

structure points to memory-mapped registers of the D11 core and
gives direct control over its operation.

The above mentioned structures are independent of the operat-
ing system. The osl_info structure keeps track of using operating
system resources such as those used for the creation of sk_buff in-
stances. Even though, no operating system is running on the Wi-FiEven FullMAC

firmwares use
operating system

specific structures.

chip, Broadcom offers a minimal library with functions required to
operate the Wi-Fi firmware. Another operating system specific struc-
ture is wl_info that is required by functions interacting with the oper-
ating system interface, for example, to pass frames from the firmware
to the Linux kernel.

6.2.7 How to set channel specifications?

For some experiments, researchers need to set restricted channel spec-
ifications (e.g., to use channel 14). On FullMAC chips, all availableBypassing checks for

valid channel
specifications allows

to select arbitrary
channel numbers
and bandwidths.

channels are defined in the firmware and only those allowed in the
regulatory domain are selectable. These channels are also reflected in
the operating system. Hence, by patching the firmware, we automati-
cally modify the channels selectable by the host system. When the list
of selectable channel specifications is generated at chip initialization
or when changing regulatory domains, the wlc_valid_chanspec_ext

function is called for all possible channel specifications. It returns

6.2 achieving testbed goals 49

1 for every valid selection. To activate more channels, we hook the
wlc_valid_chanspec_ext function and return 1 for any channel we in- We can use 80 MHz

bandwidth in the
2.4 GHz band.

tend to activate. This only allows to select channels that are standard-
ized. To further set arbitrary specifications (e.g., to activate 80 MHz
bandwidth in the 2.4 GHz band as used in Chapter 12), we need to
patch the wf_chspec_malformed function to always return 0 to disable
checking for a legal set of parameters.

Generally, the transmission frequency is selected according to the
chosen channel number. Nevertheless, we can select arbitrary carrier We can even choose

arbitrary carrier
frequencies.

frequencies. For every channel a chan_info structure exists in an
array. Every entry starts with the channel number, followed by the
frequency and various phase-locked loop (PLL), bandwidth, mixer
and amplifier settings. Varying these array entries for the currently
selected channel results in frequency shifts observable on a spectrum
analyzer.

According to the regulations, channel 14 should only be operated
in DSSS mode. To bypass this restriction, various firmware patches Switching channel

numbers in the
chan_info array
allows OFDM
operation on
channel 14.

are required to figure out whether channel 14 was set or not. To sim-
plify an unrestricted operation on this channel, we can overwrite the
chan_info structure of another channel with the parameters of chan-
nel 14. Whenever this other channel is selected, the transmission is
actually performed at the center frequency of channel 14 but without
additional restrictions. Even though, setting arbitrary frequencies is
possible, a licence is still required to operate a radio transmitter with
the selected modulation at a chosen carrier frequency.

6.2.8 How to use timers?

Timers are an essential tool on microcontrollers to schedule tasks for
periodic execution or execution at a later point in time. Whenever a
timer times out, an interrupt is thrown and handled by an interrupt Broadcom chips have

two timers accessible
by the ARM core.

dispatches that executes callback functions defined in a timer struc-
ture. On Broadcom Wi-Fi chips, two different timers exist. The first
one is part of the ARM core and counts in milliseconds. The second
one is part of the D11 core and runs synchronous to the MAC layer.
Its counts in microsecond steps. Even though, the second timer is
more accurate, it is only available when the D11 core is active (mini-
mum power consumption is deactivated). Hence, for regular schedul-
ing tasks on the ARM core, we generally use the first timer.

To schedule the execution of a callback function with a given delay,
the hndrte_schedule_work exists. It first initiates an hndrte_timer Various scheduler

functions exist to
execute a callback
function with a
delay or even
periodically.

structure by calling hndrte_init_timer and then starts the delayed
execution of the callback function by calling the hndrte_add_timer

function. To start a periodic task, we added the schedule_work func-
tion that periodically reschedules the task until we delete the timer
structure from the list of active timers by calling hndrte_del_timer.

50 nexmon firmware patching framework

Afterwards, we can free the assigned memory by calling the function
hndrte_free_timer. To delay the first execution of a delayed task,For each initialized

timer structure
separate callback

function arguments
are stored.

we offer the schedule_delayed_work function. All of these sched-
uler functions take a pointer to a callback function that expects the
hndrte_timer structure as first argument. Additionally, they take a
pointer to a data variable or structure that is referenced within the
timer structure and can be accessed by the callback function. This
way, arguments can be passed to the callback function.

To initialize the second timer, the wlc_hwtimer_allow_timeout func-
tion allocates a timeout structure. After creation, we can pass it to
the wlc_hwtimer_add_timeout function together with a delay in mi-
croseconds, a pointer to a callback function and a data pointer thatThe more exact timer

executes a callback
function whenever a

timeout finishes.

is passed as first argument to the callback function when the timeout
runs out. To periodically call a function, we have to call the add time-
out function again in our callback function. To delete a timeout, we
call the wlc_hwtimer_del_timeout function. Depending on the firm-
ware version, hwtimer in the function names might be abbreviated to
hrt.

6.2.9 How to transmit arbitrary waveforms?

As described in Chapter 4, there are two approaches to transmit arbi-
trary waveforms. For transmitting mainly repeatable signals from a
very short buffer (256 samples on a BCM43430 or 512 samples onWe can either

transmit raw signals
from the sample-play

buffer or from
Template RAM.

a BCM4339), we store IQ samples in the sample-play buffer. On
802.11ac-capable chips, we can transmit longer waveforms, whose
samples we store in the Template RAM. In both cases, we have to
activate our transmitter and trigger the transmission. To make sure
that the transmission path is active, we either have to send a Wi-Fi
frame first or simply set a gain in the transmit amplifiers manually as
described in Section 6.2.5.

The simplest signal we can transmit is a tone. To this end, we
can call the wlc_phy_tx_tone_acphy function to generate the IQ sam-
ples at a given frequency, store the result in the sample-play buffer
and start the playback. To generate and load IQ samples, this func-
tion calls the wlc_phy_gen_load_samples function and then it calls
the wlc_phy_runsamples_acphy function to trigger the transmission.Every firmware

contains functions to
generate tones at a

single frequencies for
calibration purposes.

To be able to separate the signal generation and loading from the
playback, we can call both functions individually. To generate the
complex waveform, wlc_phy_cordic is called. For writing to the
sample-play buffer, wlc_phy_loadsampletable_acphy is called. Those
two function calls are also separable. For example, to generate a
different waveform and load it into the sample-play buffer. The IQ
samples are stored as 10 bit numbers combined in one 32 bit Inte-
ger 000000000000iiiiiiiiiiqqqqqqqqqq2. During our experiments,
we realized that some waveforms break the correct transmission. To

6.2 achieving testbed goals 51

solve this problem, we need to deactivate clipping detection by calling
the wlc_phy_clip_det_acphy function, which is called by the function Clip detection

should be
deactivated for
arbitrary waveform
transmissions.

wlc_phy_stay_in_carriersearch_acphy. The latter, however, makes
the receiver deaf so that calling the it is not suitable for raw signal
transmitters that need to react to incoming frames, such as a reactive
jammer which we describe in Chapter 12.

To generate more complex signals than single tones, we offer vari-
ous helper functions. In case we intend to create a long signal from
the short signal stored in the sample-play buffer, we need to gen-
erate signals that have a periodicity that fits into the sample-play The IFFT is the

perfect function to
generate
continuously
repeatable signals
that fit into the
sample-play buffer.

buffer. Using the inverse Fourier transform (IFFT) we can create ex-
actly those signals. Multiples of the periods of each subcarrier fit
exactly into the chosen number of samples that can even be smaller
than the length of the sample-play buffer. To create these signals, we
offer the my_phy_tx_acphy_ext function. While calling the function
wlc_phy_runsamples_acphy, we can decide how often we want to play
back the buffer or decide to continuously play it back, until we call
wlc_phy_stopplayback_acphy to stop the continuous playback.

6.2.10 How to modulate information onto arbitrary waveforms?

The limited size of the sample-play buffer is a major downside of this
signal transmission approach. As long as an 802.11ac-capable chip
is used, we can bypass this limitation by using the Template RAM. Wi-Fi chips in non-

802.11ac-capable
hardware can
transmit more
advanced signals by
modulating the
analog baseband
signal.

However, the BCM43430 installed in Raspberry Pis cannot use this
feature. To still transmit more advanced signals on this platform, we
can use hardware components in the transmission path to modulate
information onto a signal. In the simplest setup, we store a tone in
the sample-play buffer and use it as carrier frequency for another
signal. As illustrated in Figure 2 on page 18, a baseband multiplier
can change the amplitude of the analog signal exiting the digital-to-
analog converters (DACs). By continuously changing the value of
the multiplication factor, we can perform an amplitude modulation
of the carrier stored in the sample-play buffer. This allows us to trans-
mit narrow band signals in the Wi-Fi bands. As both the inphase and
quadrature components of the signal are modified in the same way,
we end up with a double-sideband output signal. A quadrature mod-
ulation with a complex baseband signal could be possible as well by The baseband

multiplyer allows
amplitude
modulation, while
calibration
components might
support quadrature
modulation.

constantly modifying the inphase and quadrature calibration compo-
nents to generate single-sideband signals. Preliminary experiments
show, that modifying those calibration values has an effect on the im-
age frequency rejection of the transmitted signals. Last but not least,
we could try to modulate the carrier frequency directly by writing to
the PLL controlling registers as described in Section 6.2.7. We leave
the investigation of this approach as future work.

52 nexmon firmware patching framework

6.2.11 How to transmit raw signals from Template RAM?

For playing back samples from Template RAM, the steps of creat-
ing samples, loading them and playing them back are very simi-
lar to using the sample-play buffer. However, we are not restricted
to the small size of the sample-play buffer. Instead, we can use
up to the full Template RAM that can hold 49 152 samples on aOn a BCM4358 we

can store up to
3.2 ms of raw signal

in the Template
RAM at 40 MHz

sampling rate.

BCM4339 or 131 072 samples on a BCM4358. The IQ samples are
stored as 32 bit Integers consisting of two 16 bit numbers for I and
Q iiiiiiiiiiiiiiiiqqqqqqqqqqqqqqqq2. To write those samples into
the Template RAM, we use wlc_bmac_write_template_ram. As the
D11 core plays back those samples, we have to write the start and
stop pointers of our signal into the SamplePlayStart and StopPtr

registers, as mentioned in Section 4.2.3. We can access the two regis-
ters through the d11regs structure pointing at the D11 registers. To
start the playback, we also call wlc_phy_runsamples_acphy but set the
mac_based argument to 1, which prepares the transmit path to accept
signals from the D11 core. Unfortunately, on the BCM4339 the latterWe can decide for

continuous playback
or only transmitting
the samples stored in
Template RAM once.

function misses the instruction to trigger the transmission by the D11
core. To this end, we have to set some bits in the psm_phy_hdr_param

register. We set bit (1 << 1) to enable the physical-layer clock, set
bit (1 << 11) to enable signal playback and we can set bit (1 << 12)

to end playback after transmitting the buffer once. In any case, we
have to call wlc_phy_stopplayback_acphy after the transmission to
stop the transmitter and go back to receiving signals. According to
Jan Ruge, the psm_phy_hdr_param should be set to zero directly before
setting the bits to transmit signals to increase stability.

6.2.12 How to extract channel state information (CSI)?

A widely requested feature in the research community is the extrac-
tion of channel state information (CSI) on Wi-Fi chips. While it is
already possible on a selected number of Wi-Fi cards for notebooksChannel state

information is stored
in physical-layer

tables.

and desktop computers, it was so far not available on smartphones.
Extracting CSI on 802.11n/ac Broadcom chips requires to read from
physical-layer tables containing this information. For each receive
chain a separate table exists containing complex channel coefficients
for all subcarriers and spatial streams send by the transmitter. In
some firmwares or drivers a wlc_phydump_chanest function exists,
that reads the contents of the CSI tables and dumps them as string.
Unfortunately, it is not possible to dump CSI on a per-frame basis byTo extract per-frame

channel state
information, an

implementation in
the D11 core is

required.

using this approach. As soon as a new frame is received, the stored
CSI is overwritten. Hence, we would need to extract the CSI during
frame reception or make sure that the receiver is deaf while we ex-
tract the CSI. To this end, we cannot use the ARM processor as it only
gets informed about received frames after their reception. Instead, we

6.2 achieving testbed goals 53

have to implement the CSI extraction in the D11 core. In Chapter 8,
we present an application that implements a CSI extractor able to
extract CSI for each received frame. Nevertheless, after reading from
the CSI table the payload of the transmitted frame becomes corrupted.
Depending on the application, this downside may be negligible.

6.2.13 How to talk to the firmware?

For many applications, it is helpful to configure a firmware during
runtime or extract information for debugging purposes. Below, we Various ways exist

to communicate with
the firmware.

present means to directly access the chips memory (1), use the printf
function (2), extract data through tunnels using the user datagram
protocol (UDP) (3), use ioctls to control the firmware (4) and send
events from the firmware to the host (5).

To directly access the chip’s internal memory (1), we can use dhdutil
with its membytes option. It allows to read from and write to arbitrary Dhdutil gives direct

memory access and
dumps the chip’s
console buffer on
Android devices.

memory locations in the RAM and may also directly read the ROM
on some chips. Additionally, dhdutil offers the consoledump option
that dumps the internal console buffer of the firmware to which we
can write by calling the printf function (2). This allows to pass small
amounts of textual data to the user space.

To send more data, we can encapsulate it in a UDP frame (3) and
send it to the broadcast Internet protocol (IP) address 255.255.255.255.
Those frames are always accepted by the Linux kernel and passed On any platform, we

can send out
information by
encapsulating it in
UDP datagrams.

on into the user space, where they can even be received by apps
without root privileges. To implement this in the firmware, we first
create a new sk_buff buffer and fill it with the desired data and then
prepend Ethernet, IP and UDP headers using our helper function
prepend_ethernet_ipv4_udp_header (that uses UDP port 5500 by de-
fault). Then, we call the xmit function of the wl device to send the
frame to the host.

Alternatively, to initiate transfers from the firmware, a user-space
program such as nexutil can also initiate a synchronous data ex-
change with the firmware by calling ioctls in the firmware (4). Each Ioctls allow for

bi-directional data
exchange initiated
from the host.

ioctl contains a command number, a pointer to a buffer to exchange
data and the length of this buffer. Ioctls can either only set data or
set and get data back from the firmware. For the two directions set
and get, nexutil offers the two parameters -s<command_number> and
-g<command_number> and may either pass integers, strings, raw data
from the standard input or base64 encoded raw data to the firmware.
There, ioctls are handled in the wlc_ioctl function that we hooked Using argprintf, we

directly print into
an ioctl buffer.

to check for custom ioctl command numbers and handle them in
ioctl.c. To easily send back strings to the caller of a get-ioctl, we
offer the argprintf function, that writes strings into the ioctl buffer
and handles the remaining size automatically.

54 nexmon firmware patching framework

While ioctls are always initiated by the host, the Wi-Fi firmware can
also create an event (5) and send it as a message to the host, where
we can handle it in the driver. The previously described option to
send UDP datagrams can also be triggered by the firmware, but it
creates additional frames which might interfere with regular exper-Events originate in

the firmware and are
separately

transferred from the
data frames.

imental data. Hence, using the event messaging channel separates
the control information from the data path. Nevertheless, handling
events requires to recompile the driver or even the kernel, which is
not always a suitable option. Daniel Wegemer figured out that we
may create events by calling wlc_event_alloc, assign it to an inter-
face using wlc_event_if and finally send it to the target interface by
calling wlc_event_process. To handle frames in the brcmfmac driver
(e.g., on the Raspberry Pi), we register new event handlers by calling
brcmf_fweh_register in the brcmf_register_event_handlers func-Events require

handling in the
driver.

tion. In our git repository [80], we offer examples for all five ways of
communication as well as the sources to build firmware patches and
the used utilities.

6.2.14 How to modify the real-time firmware?

The real-time firmware is the ucode running in the programmable
state machine (PSM) in the D11 core. In FullMAC chips, the ARMThe ARM firmware

loads the real-time
firmware during

initialization.

firmware contains the ucode as binary blob and loads it into the
ucode memory of the D11 core. As only seven out of eight ucode
bytes are actually used, some firmwares store the ucode with the
eighth byte omitted. To extract those firmwares, we use our ucodeext
utility. For ucodes that contain the eighth byte, we simply use dd to
extract them from the ARM firmware.

After extraction, we use the b43-dasm disassembler contained in
the b43-tools2 to disassemble the ucode. As illustrated in Figure 2
on page 18, the PSM has access to condition registers and special pur-
pose registers (SPRs). To replace register numbers by speaking names
defined in the cond.inc and spr.inc, we use the b43-beautifier. As
it is still hard to understand the meaning of uncommented code, we
intended to analyze it to figure out its meaning. To this end, MichaelUsing the b43-tools

we can disassemble
the ucode for
analysis and
modification.

Koch found out in [51] that different ucodes have a very similar struc-
ture as the OpenFWWF firmware [33] created by Francesco Gringoli
et al. for older BCM4306/11/18/20 Wi-Fi chips. Hence, by compar-
ing code sections, we can get an understanding of how disassembled
firmwares work.

To change the real-time behaviour of the firmware, we need to mod-
ify the Assembler code or use a tool such as the Wireless MAC Pro-
cessor presented by Tinnirello et al. in [87] to graphically design state
machines representing the behavior of the firmware. After modify-
ing the ucode, we can reassemble it into a firmware binary and em-

2 b43-tools repository: https://github.com/mbuesch/b43-tools

https://github.com/mbuesch/b43-tools

6.3 discussion 55

bed it after compression in the ARM firmware file. To avoid sharing Ucode modifications
are required in
advanced
applications that
influence Wi-Fi’s
real-time operation.

the original ucode sources when publishing patches, we also provide
means to apply patches containing only new code to freshly disas-
sembled files. Overall, ucode modifications allow very advanced ap-
plications on off-the-shelf devices, such as partial packet recovery as
presented by Han et al. in [35], or reactive jamming as presented in
Chapter 12.

6.2.15 How to handle SoftMAC chips

Compared to FullMAC cards that implement the higher layer MAC
operations in the ARM microcontroller of the Wi-Fi chip, SoftMAC
cards implement those in the Wi-Fi driver running on the host’s op-
erating system. To modify the operation of those drivers, multiple
options exist. If the driver source code is available (e.g., the brcms- SoftMAC chips do

not contain an ARM
microcontroller to
handle MAC
operations in the
firmware.

mac driver or the b43 driver), one can change it and rebuild the whole
driver. If the driver is partially available as source code (e.g., for the
cfg80211 interface to the Linux kernel) and as object files (for device
specific implementations), one can replace or hook original driver
functions, by linking against object files that overwrite symbols of
the original driver. This is a valid option to patch the proprietary
broadcom-wl driver. If the driver is only available as binary (e.g., the
macOS version of the wl driver), one may use the Nexmon approach
to patch the driver as if it was a closed-source firmware running on a
Wi-Fi chip.

6.3 discussion

Our Nexmon framework meets the challenges stated in the introduc-
tion. Using C as high-level programming language, we are able to The Nexmon

framework meets the
challenges of
firmware patching.

write complex applications that can even be ported to different Wi-
Fi chips. For debugging, we can print to the chip’s console and by
optionally using the debugging core that allows single-stepping, we
are able to create detailed traces that allow for firmware analysis dur-
ing runtime. Flashpatches enable changes of read-only memory and
ucode compression frees space to place patches into firmware files.
Further, we presented various ways to control the firmware during
runtime and even extend it by side-loading code. Nevertheless, this
chapter only scratches the surface of what is possible by reprogram-
ming Wi-Fi firmwares. Especially in mobile wireless testbeds, Nex- Due to Nexmon, we

can expect new
wireless
applications.

mon permits to implement algorithms in a battery saving manner
with reaction times that were not achievable before. Because of its
open-source nature, everyone can use the Nexmon framework to ex-
tend firmwares. We encourage researchers to also publish the source
codes of their firmware extensions to enhance reproducibility of their
work.

56 nexmon firmware patching framework

6.4 conclusion

In this chapter, we introduced Nexmon—a tool to implement ad-
vanced applications in Wi-Fi firmware of FullMAC chips running on
smartphones and IoT platforms. Due to Nexmon’s open availability,Nexmon realizes

low-cost testbeds
and it enhances

reproducibility by
using off-the-shelf

devices.

everyone can use our framework to setup their own testbeds. By sup-
porting multiple wide-spread and low-cost platforms, we enhance
the reproducibility of experiments and help to extend existing works
to advance research. Unleashing the access to lower-layer capabilities
through our patching framework allows to create new applications
that run on off-the-shelf devices. This likely leads to a higher accept-
ability of results compared to SDR implementations.

6.5 my contribution and acknowledgements

While Daniel Wegemer was working on analysing and patching the
BCM4339 Wi-Fi firmware for his master thesis [90] using the tools
provided by [10, 11], I came up with the idea of writing patches in
C instead of Assembly and building a firmware patching framework
that simplifies the creation of new patches. Since then, I started work-While I developed

the Nexmon
framework, I was

supported by various
collaborators that

analyzed firmware
code and

implemented
applications for this

platform.

ing on this framework. I thank Daniel Wegemer for accepting the
challenge to start the research on Wi-Fi firmware reverse engineering
and continuously supporting me in building, testing and promoting
the Nexmon framework. In addition, I thank Francesco Gringoli for
his intensive collaboration on analyzing and modifying the ucode
running on the D11 core. I also thank Michael Koch for analysing the
BCM4339 ucode in [51], Jakob Link for figuring out the meaning of
CSI values [59], Justus Hoffmann for finding injection capabilities in
[41], Andrés Blanco for supporting us in the early development steps,
as well as Alexandr Potapov for his collaboration on reversing the
Wi-Fi firmware.

7
P R O G R A M M A B L E F I R M WA R E D E B U G G E R

To extend the functionality of a Wi-Fi firmware, we first have to re-
verse engineer the original firmware file. While finding functions by
looking at strings in debug messages embedded in the firmware is Static code analysis

abilities are limited
especially when the
state of hardware
components needs
consideration.

quite easy, figuring out how a function implementation works in de-
tail is more tedious. Especially, when no C code is available from
which the binary under analysis was built. Static code analysis al-
ready gives a first impression of the function internals, but it does
not consider the hardware’s state during runtime. Some branches in
the code might be unused on a certain platform. Additionally, the
information stored in nested structure variables is complex to keep
track of during static analysis.

Hence, we saw the need for dynamic debugging approaches. The
simplest approach is the creation of firmware patches that add debug-
ging messages to a firmware. We can print them to the chip’s internal To debug code, we

can overwrite
instructions to
branch into our
debugging
functions.

console. To use those patches, we need to overwrite the code we want
to monitor with a branch instruction that redirects the program flow
into our debugging function. Then we need to execute the overwrit-
ten instructions and return to regular code execution. This approach
works best by either overwriting the branch instruction that calls a
function (BPatch or BLPatch) or the first instruction within the target
function (HookPatch4). Overwriting arbitrary instructions is, however,
tedious and error prone as the state of the registers, in particular the Using this approach,

we need to carefully
handle the state of
registers and the
stack.

flag registers, and the state of the stack need to be considered to
avoid program crashes or modifications of the states that lead to dif-
ferent paths through the program. Additionally, branch instruction
are four bytes long while other instructions exist that are only two
bytes long. Overwriting those requires to also overwrite surrounding
instructions.

Additionally, this patching approach is limited when code in ROM
should be analyzed. To insert debugging hooks into ROM, we need
flashpatches. They allow to overlay the ROM memory with up to Analyzing ROM

code requires
flashpatches that are
not available on
every chip.

eight bytes long blocks that should contain the branch instructions
to the debugging code. The amount of flashpatches is, however,
limited. Especially recent firmware versions that contain updated
code sometimes have no free flashpatches left (e.g., firmware version
7.112.300.14 for the BCM4358) and some chips such as the BCM4335
do not even have a flashpatching unit.

Last but not least, replacing single instructions to branch to our de-
bugging functions only results in limited debugging features. To re-
ally follow the program flow and analyze which branches were taken

57

58 programmable firmware debugger

during program execution, single stepping is required that calls the
debugging handler after every instruction. While it is possible to im-Implementing

single-stepping
debuggers in

software is quite
complex.

plement such debuggers in software, they are quite complex as they
have to consider instruction lengths and the types of instructions. For
example, branch instructions can modify the program counter de-
pending on conditions. To find the next instruction to patch requires
to also evaluate the conditions manually.

A solution to all the problems described above are dedicated hard-
ware debugging cores. They can set a limited number of breakpoints
without overwriting any instruction. Whenever the processors loadsDedicated debugger

cores can halt the
processor at every

instruction.

an instruction that has a breakpoint set, the debugging core is trig-
gered and halts execution at this point. In most embedded develop-
ment setups, the debugging core would completely stop the program
execution on the processor and pass control over to an external de-
bugger that is connected over JTAG. As the JTAG pins of the Wi-Fi
chips in off-the-shelf devices are generally not accessible, we cannot
use this setup in our case.

On devices that run complex operating systems with user inter-
faces, it is more common to not rely on external debuggers, but han-Monitor-mode

debuggers handle
debugging events in

exception handlers
so that no external

debugger is required.

dle debugging events directly in software, which is called monitor-
mode debugging. To this end, the debugging core generates excep-
tions whenever debugging events occur. Those exceptions also halt
the execution of the currently running program but then redirect the
execution to continue in an exception handler. This approach is sim-
ilar to handling interrupt exceptions. The address of the exception
handler is stored in the vector table at the beginning of each RAM
firmware binary. A prefetch exception is triggered after hitting a
breakpoint, while a data exception is triggered after hitting a mem-Only dedicated

debugging cores
allow to break on

memory operations.

ory watchpoint. The latter is a feature that can only be implemented
using a dedicated debugging core. It triggers, whenever a program
reads from or writes to a particular memory address.

While developing the debugger, we faced the following challenges:
(1) we had to find a way to access the debugging core registers with-Handcrafting

debuggers requires a
thorough

understanding of
processor states.

out using a JTAG port, (2) we had to activate and unlock the debug-
ging core, (3) we had to understand processor modes and exception
handling on ARM microcontrollers, and (4) we had to reset a break-
point after executing the instruction that triggered the breakpoint.

For this chapter, we implemented such a hardware-supported moni-
tor-mode debugger for the ARM Cortex-R4 microcontrollers that ex-
ecute the Wi-Fi firmware on Broadcom Wi-Fi chips. We first explainWe present

challenges and
implemenation

details.

how to access the debugging core registers as well as the challenges
we had to do so on Wi-Fi chips in Section 7.1. Then, we describe the
implementation of our debugger in detail in Section 7.2, followed by
an example debugging application in Section 7.3. Then, we discuss
how our debugger helped us analyze Wi-Fi firmwares in Section 7.4
and conclude in Section 7.5.

7.1 accessing debugging core registers 59

7.1 accessing debugging core registers

The ARM Cortex-R4’s debugging registers are described in [21]. All
debugging related registers are mapped into the microcontrollers mem-
ory. To figure out, where those registers are located, we have to exe-
cute a coprocessor instruction to read the Debug ROM Address regis- We need to read the

base address of the
memory-mapped
debugging registers
from a coprocessor
register.

ter (DBGDRAR). To read from this register, we simply create a Nexmon
firmware patch that uses the MRC instruction that moves the contents
of a coprocessor register into an ARM core register from where we
can dump it to the chip’s console. On the BCM4339, the debug reg-
isters start at 0x18007000. We store this address as macro DBGBASE

in the debug.h file in the Nexmon framework to avoid reading the
coprocessor register during runtime.

The most important registers for setting breakpoints and watch-
points are the Breakpoint Control (DBGBCR), Breakpoint Value (DBGBVR),
Watchpoint Control (DBGWCR) and Watchpoint Value (DBGWVR) registers.
In the control registers, we set the conditions when a breakpoint or
watchpoint should be triggered. In the value registers, we set the Only a handful of

debugging core
registers is required
to setup breakpoints
and watchpoints.

address on which we want to trigger. To activate debugging itself
and set it to monitor-mode debugging, we need the Debug Status
and Control register (DBGDSCR). Last but not least, accidental access to
the debugging registers should be avoided. Hence, before accessing
those registers, we need to write a magic number (0xC5ACCE55) into
the Lock Access register (DBGLAR).

During our firsts attempts to read from the memory mapped de-
bugging registers, we realized that it is possible to read from them at
the beginning of the initialization phase. Whenever, we tried reading
them afterwards, the chip crashed. By trying to access the debug- During regular

firmware operation,
the debugging core
gets disabled in the
initialization phase.

ging registers at various instructions, we narrowed down a call to
si_update_chipcontrol_shm in the si_setup_cores function. Before
this call, accessing the debugging registers works, while afterwards
it crashes the chip. Hence, we inferred from this observation that
this write to the chip control shared memory disables the debug core
in the ARM chip—likely to save energy. By removing the call to
si_update_chipcontrol_shm we can keep the debugging core acces-
sible in any firmware state. In the next section, we explain how we
implemented our programmable debugger with the Nexmon frame-
work.

7.2 implementation

As all of our projects, we also published the source code of our de- Our example
debugger application
is publicly available
for download and
experimentation.

bugger application to make it reusable by the community (see Sec-
tion A.3). We use debugger_base.c to store initialization functions
and exceptions handlers required for every debugger implementa-
tion. We use debugger.c to set breakpoints and watchpoints and

60 programmable firmware debugger

implement the corresponding handlers. The debug.h header file is
included in the Nexmon framework to make it reusable by various
Nexmon based projects.

7.2.1 Initializing the debugger

To initialize the debugger, we hook the call to the c_main function
(which is the first C function called in the firmware) and prependDuring an abort

exception, the
processor changes its

mode and uses
banked stack pointer

and link registers.

a call to set_debug_registers. There, we first assign a memory
region for the stack in the processor’s abort mode. The microcon-
troller can run in various modes that have different privileges and
are also used as conditions to avoid triggering breakpoints and watch-
points. Generally, the firmware is executed in system mode but after
a prefetch abort or data abort exception occurs, the processor auto-
matically changes into abort mode. The original firmware directly
changes back into system mode to print a register and stack trace,
but we want to stay in abort mode as it gives us a separate stack as
well as link and stack pointer registers to run our debugging code. ByWe need to reserve

space in RAM for
the abort mode’s

stack.

doing this, we do not influence the state of the original stack by call-
ing functions in our debugging handler. Hence, we need to reserve
some space in the RAM for the abort-mode stack.

After adjusting the abort-mode stack, we unlock access to the de-
bugging registers, disable all breakpoints and activate monitor-mode
debugging. Then we define our breakpoints and watchpoints to trig-Regular breakpoints

and watchpoints
need to be set to

trigger on an
address match.

ger on an address match. That means, whenever the program counter
reaches a breakpoint address a prefetch-abort exception is triggered
and whenever a load or store instruction reads from or writes to a
watchpoint address a data-abort exception is triggered.

7.2.2 Preparing to handle breakpoints and watchpoints

To handle prefetch-abort and data-abort exceptions, we first overrideWe need to override
exception handlers

to stay in abort
mode.

the original handler functions tr_pref_abort and tr_data_abort as
they directly switch the processor mode back to system mode. In our
implementation, we stay in abort mode. Then we call the function
handle_exceptions that is called whenever an exception occurs. It
pushes all registers to the stack so that we can analyze them in ourAfter handling

breakpoints and
watchpoints, we

may continue
execution of the

original firmware.

handler functions. Then, it calls the choose_exception_handler that
dispatches the exception handlers. After returning to the function
handle_exceptions, the pushed registers are popped from the abort-
mode stack and the processor changes back to system mode, where
it continues to execute the firmware. This implementation allows us
to handle breakpoints and watchpoints and then continue with the
regular firmware operation.

Within the choose_exception_handler function, we either call the
function handle_pref_abort_exception to handle prefetch-abort ex-

7.2 implementation 61

ceptions or the function handle_data_abort_exception to handle data-
abort exceptions. In both handlers, we first need to fix the values for At the beginning of

our handler
functions, we push
the system mode link
and stack pointer
registers.

the link and stack pointer registers previously pushed to the stack
as they are set to the register values of the abort mode. For han-
dling debugging events, we are more interested in the link and stack
pointer registers of the system mode. To get those values, we call the
fix_sp_lr function. It disables monitor-mode debugging, switches
back into system mode, copies the values of the link and stack pointer
registers into register R1 and R2, switches back to abort mode and acti-
vates monitor-mode debugging again. Then, we override the link and
stack pointer registers on the stack with the values extracted through We interpret the

pushed registers as
trace structure in
which we may
modify register
contents before
continuing
execution.

registers R1 and R2. The address of the pushed register values on the
stack is passed as first function argument to our handler functions
and interpreted as a trace structure that contains the values of all
system-mode registers. Using this structure, we cannot only read the
register contents, but also modify them, as the handle_exceptions

function pops them from the stack before continuing regular firm-
ware execution. In the following two subsections, we describe the
handling of breakpoints and watchpoints in more detail.

7.2.3 Handling breakpoints

We handle breakpoints in the handle_pref_abort_exception func-
tion. To this end, we first check which of the four possible hardware
breakpoints is enabled. For each enabled breakpoint, we first check if
the program counter address in the trace structure equals the address
stored in the corresponding Breakpoint Value register. Now, we may If the current

system-mode
program counter
equals the address of
an active breakpoint,
we can execute our
breakpoint handling
code.

handle the breakpoint by checking or modifying register values or
writing debugging information to the console. Then, we either have
to disable the breakpoint to continue execution, or we have to change
it from an address match breakpoint into an address mismatch break-
point. Otherwise, we would end up in a continuous breakpoint loop,
as everytime we want to execute the instruction our breakpoint trig-
gers on, the breakpoint would be triggered again. By triggering on
an address mismatch, we can execute exactly this instruction and
then trigger another breakpoint on the next instruction that should
be executed. To know, to which breakpoint the next prefetch-abort
exception belongs, we mark the hardware breakpoint number in a
variable.

If the program counter does not match the breakpoint address, we We implement
single-stepping by
resetting address
mismatch
breakpoints to the
current program
counter address.

check if this variable marked the breakpoint and know that we now
have to handle the address mismatch breakpoint. In the simplest
case, we would reset the breakpoint to trigger on an address match
and continue execution to wait until the breakpoint triggers again.
As for handling the address match breakpoint, we can also output
some debug information. Alternatively, we could decide to set the

62 programmable firmware debugger

breakpoint again to trigger on an address mismatch at the current
program counter location. This allows us to implement a single-
stepping debugger that triggers on every instruction that should beOur programmable

debugger allows
creative debugging

implementations.

executed. Using it, we can programmatically analyze which paths
are taken through a program. To exit single-stepping mode, we can
either disable the breakpoint or set it to trigger on the original break-
point address again. As exit conditions can be programmed, we can
implement complex debugging scenarios. For example, we could exit
after a defined number of steps, or as soon as the return instruction is
executed, or as soon as a loop counter reaches a defined value. This
renders our debugger implementation very flexible.

7.2.4 Handling watchpoints

Handling watchpoints is a bit more complicated than handling break-
points. Unfortunately, there is no register pointing at the address thatFiguring out which

watchpoint triggered
an exception is more
complicated than for

breakpoints.

triggered the watchpoint. To find out which of the four watchpoints
was set, we would have to analyze the current instruction and ex-
tract which register holds the memory address for the current load
or store instructions. For simplicity, we do not differentiate between
different watchpoints and always assume that the first watchpoint
was triggered in our handle_data_abort_exception function. Then
we disable all watchpoints so that we are able to execute the load
or store instruction without triggering the data-abort exception over
and over. If we intend to reactivate the watchpoint, we have to cre-To reenable a

watchpoint, we have
to trigger a
breakpoint

mismatching the
current program
counter address.

ate a breakpoint mismatching the current program counter address
so that it triggers after the execution of the load or store instruc-
tion. For this operation, we reserved the fourth breakpoint. In the
handle_pref_abort_exception function, we handle this breakpoint
and enable the watchpoint again. As for breakpoints, we can also
modify memory locations and registers and print debug information
to the console when we handle watchpoints. In the following section,
we demonstrate the debugger abilities in an example.

7.3 example application

In our example application, we demonstrate the ability to set and han-
dle breakpoints and watchpoints, and perform single-step debugging.
We set our breakpoint at the first instruction of the printf function.In our example

application, we set a
breakpoint on the

printf function.

In the debugging handler handle_pref_abort_exception, we check if
the printf function’s second argument equals the string sdpcmd_dpc

and only then print a debug message. To print to the console, we
again use the printf function that has a breakpoint set. To avoid
triggering the breakpoint again, we make sure that the breakpoint
triggers in system mode but not in abort mode. This allows us to set
breakpoints on any function in the firmware without having to care

7.4 discussion 63

if it is used somewhere within the functions called by the debugging
handler. Nevertheless, we need to take care that handler functions do We can even call

functions that
include a breakpoint
from our debugging
handler without
triggering the
breakpoint again.

not scramble hardware registers required by the currently debugged
code. For example, we could generate events in our debugger and
handle them in the hosts driver as described in Section 6.2.13. The
transmission of these event messages, however, uses the DMA con-
trollers between Wi-Fi chip and host, so that we need to make sure
that the function we are debugging is currently not using those regis-
ters. By simply calling the printf function, we are generally on the
safe side as long as it only prints to an internal console buffer.

Besides printing a debug message, we also activate single stepping We activate
single-stepping to
print the program
counter of the next
four instructions.

only when the second printf function argument matches our target
string. Then we retrigger the breakpoint with address mismatches
again and again, until our step counter reaches four. Then we rearm
the breakpoint to trigger on the beginning of the printf function. In
each step, we print the current program counter address.

Regarding our watchpoint, we set it to trigger on the address of
the string %s: Broadcom SDPCMD CDC driver that gets printed at the We trigger based on

a string comparison.beginning of the initialization phase. After triggering the watchpoint
once, we rearm it up to 20 times using an address mismatch break-
point as described above. On every data-abort exception, we print the
address of the current program pointer.

In Listing 1, we illustrate the output of our debugger example appli-
cation. One can observe that the watchpoint WP0 was triggered three
times. The first two are load instructions in the vsnprintf function The watchpoint

triggers on load
instructions in the
function vsnprintf
and on a store
instruction in the
function memset.

called by printf. The third is a store instruction within the memset

function. As the string is only needed during initialization, it is stored
in a memory section that is first overwritten and then assigned to the
heap in the hndrte_reclaim function, whose output is printed di-
rectly after our watchpoint output. Then we see the output of the
first breakpoint BP0. In step 0, the breakpoint is triggered on the first
instruction of the printf function. In the following steps, the break-
point retriggers on address mismatches and the program counter pc

increases.

7.4 discussion

We mainly developed the debugger to analyze code during runtime
and understand how it works to build our patches. It helped us
tremendously to analyze which function is best to inject frames and The debugger helped

us understand the
injection of raw
Wi-Fi frames.

which arguments need to be passed at the function call to avoid crash-
ing the firmware. Before we discovered flashpatches, it was the only
way to debug code stored in ROM. Unfortunately, we realized during
our experiments, that setting breakpoints makes the firmware unsta-
ble, when it is using interrupts to react to external events. Still, the de-
bugger works sufficiently well to, for example, set a breakpoint, out-

64 programmable firmware debugger

put some debug messages during single-step debugging, dump theThe debugger is also
reusable on other
ARM Cortex-R4

platforms that
require debugging
but do not have an

accessible JTAG port.

console buffer for analysis and then simply reload the firmware for
the next debugging experiment. Overall, our implementation meets
the challenges described in the introduction. Last but not least, the
debugger implementation is not limited to Broadcom Wi-Fi chips, it
should be reusable to debug any ARM Cortex-R4 microcontroller in
embedded devices, even if the JTAG port is not accessible.

7.5 conclusion

In this chapter, we presented our integrated monitor-mode debugger
for Broadcom Wi-Fi chips. It accesses the debugging core of ARMOur debugger

implementation
solely relies on

default ARM
microcontroller

capabilities which
makes it portable to

other embedded
systems.

Cortex-R4 processors to set and handle hardware breakpoints and
memory watchpoints. To this end it uses the monitor debugging
mode that triggers an exception in the firmware to call debugging
handling functions. This way, we do not rely on a JTAG port to
dynamically debug the firmware running on a Wi-Fi chip. As our
implementation directly accesses features of ARM microcontrollers it
can also be ported to other systems where embedded firmwares need
to be analyzed but the JTAG port is not available. Additionally, it
allows to quickly react to debugging events and continue execution

Listing 1: Output of our debugger example application.

RTE (USB-SDIO-CDC) 6.37.32.RC23.34.43 (r639704) on BCM4339 r1 @

37.4/161.3/161.3MHz

000000.010 WP hit pc=00012b3a

000000.013 WP hit pc=00012b3a

000000.010 sdpcmdcdc0: Broadcom SDPCMD CDC driver

000000.141 reclaim section 0: Returned 31688 bytes to the heap

000000.189 nexmon_ver: 63fb-dirty-14

000000.192 wl_nd_ra_filter_init: Enter..

000000.196 TCAM: 256 used: 198 exceed:0

000000.200 WP hit pc=000126c2

000000.203 reclaim section 1: Returned 71844 bytes to the heap

000000.208 BP0 step 0: pc=000126f0 *r1=sdpcmd_dpc

000000.213 BP0 step 1: pc=000126f2

000000.216 BP0 step 2: pc=000126f4

000000.219 BP0 step 3: pc=000126f6

000000.223 BP0 step 4: pc=000126fa

000000.226 BP0 single-stepping done

000000.229 sdpcmd_dpc: Enable

000000.234 wl0: wlc_bmac_ucodembss_hwcap: Insuff mem for MBSS:

templ memblks 192 fifo memblks 259

000000.249 wl0: wlc_enable_probe_req: state down, deferring

setting of host flags

000000.295 wl0: wlc_enable_probe_req: state down, deferring

setting of host flags

7.6 my contribution 65

as soon as possible without the overhead of communicating with an
external debugger. In the next chapter we introduce our channel state
information extractor. It is a tool to dump advanced physical-layer
information on per-frame basis.

7.6 my contribution

When we had the need to dynamically analyze firmwares and the
ROM was not yet patchable, I came up with the idea of directly ac- There was a need for

dynamic debugging
capabilities.

cessing the ARM debug core of the Wi-Fi chip. I performed experi-
ments to understand when and how to access the debug registers and
implemented the debugger application in the form it currently has.

8
C H A N N E L S TAT E I N F O R M AT I O N E X T R A C T O R

During regular reception, every OFDM-based Wi-Fi receiver needs
to first extract channel state information (CSI) from the long-term
training field (LTF) of a frame’s preamble to cancel the effects of the Channel state

information
extraction on
commercial devices
already lead to
various new
applications.

wireless channel and to demodulate the transmitted data. In the last
few years, various applications based on extracted channel state in-
formation emerged. Most of them are based on the Intel CSI tool
created by Halperin et al. and presented in [34]. It allows to extract
CSI on Intel Wi-Fi chips installed in PCI-Express extension cards for
laptops and desktop computers. Though, their tool delivers the CSI
on a per-frame basis, laptops and desktop computers do not have
the mobility and omnipresence of smartphones. Hence, we decided
to develop a CSI Extractor application for BCM4339 Wi-Fi chips in- Up to now, no CSI

extraction platform
existed for
smartphones.

stalled in Nexus 5 smartphones. During the development, we faced
the following challenges: (1) We had to find and access the memory
that holds the CSI, (2) we had to extract the CSI before the next in-
coming frame overwrites the CSI memory, and (3) we had to interpret
the format of the stored numbers correctly.

By crawling through Broadcom driver source codes as well as the
wl driver running on macOS, we found the wlc_phydump_chanest

function. It is a debugging function, that reads and dumps values The
wlc_phydump_chanest
function revealed the
general ability to
dump channel state
information on
Broadcom chips.

from a physical-layer table (see Figure 3 on page 21). Unfortunately,
the function is implemented in the ARM firmware and a call to the
function does not make sure that no other frame reception corrupted
the stored CSI between receiving the last frame and calling the CSI
dumping function. Additionally, this function is not available in the
production releases of FullMAC firmwares such as the one for the
BCM4339 chip used in smartphones. At least we learned in which
memory the CSI can be found and how to extract it. In Section 8.1,
we describe how we use this information to extract CSI using the real-
time processor (D11 core) of the Wi-Fi chip. In Section 8.2 we use a To gain per-frame

CSI we need an
implementation in
the D11 core.

simple example setup to evaluate CSI dumps from two smartphones
communicating with each other. In Section 8.3 we discuss our results
and conclude with related work that might benefit from our imple-
mentation in Section 8.4, followed by our conclusion in Section 8.5.

8.1 implementation

The CSI contains the amplitude and phase changes on each subcarrier
introduced by the wireless channel. As this information is required
to equalize the channel’s effect on the transmitted symbols, the CSI

67

68 channel state information extractor

is available in all OFDM-based Wi-Fi receivers. On Broadcom and
Cypress cards, the physical layer extracts this information and stores
it in a physical-layer table. As the content of this table changes forThe CSI is stored in

a physical layer table
on Broadcom chips.

every received frame, we have to read it during frame reception. The
ARM microcontroller running the FullMAC firmware is not suitable
for this task, as it processes only complete frames. Hence, we need
to modify the code running on the D11 core’s programmable state
machine.

8.1.1 The size of channel state information

First, we analyze the maximum size of the CSI information data struc-
ture. The CSI itself consists of complex numbers Hsts,rx,sc indicat-The CSI contains

complex numbers for
each spatial stream,

each receive antenna
and each subcarrier.

ing phase and amplitude changes for each of the transmitted spacial
streams sts, each receive antenna rx and each subcarrier sc. As each
of the complex numbers is stored in 32-bit values, the total number
of CSI bits per frame equals 32 · sts · rx · sc, respectively, 4 · sts · rx · sc
bytes. Each 802.11ac node can have between one and eight antennas,
defining the range for sts and rx. The number of subcarriers de-
pends on the used channel bandwidth and equals {64, 128, 256, 512}The CSI of a Wi-Fi

frame can easily
exceed the length of
the frame’s payload.

for {20, 40, 80, 160}MHz bandwidth. Only considering non-zero sub-
carriers, these numbers reduce to {56, 114, 242, 484} used subcarriers.
Hence, the smallest CSI array consists of 4 · 1 · 1 · 56 = 224 bytes, while
the largest consists of 4 · 8 · 8 · 484 = 121KiB.

For our implementation, we use Nexus 5 smartphones. They fea-
ture a single Wi-Fi antenna and support 80 MHz bandwidth. Hence,
the largest CSI consists of 4 · 1 · 1 · 242 = 968 bytes, which is roughly 69On Nexus 5

smartphones, the
maximum CSI size

is limited to 968
bytes per frame.

times larger than a Wi-Fi acknowledgement frame (14 bytes including
FCS bytes). A key challenge for our system is to extract this amount
of control information for every received frame. For the extraction,
the D11 core needs to first copy the CSI from the physical-layer CSI
table into the D11 core’s shared memory, which is limited in size and
also stores variables that are required for regular Wi-Fi operation that
should not be overwritten. After copying the information, we face theTransferring CSI

from the D11 core to
the ARM core bears

another challenge.

problem of transferring it to the RAM of the ARM core. Even though
the ARM core can directly read from the shared memory, it is not
guaranteed that the ARM core handles a frame reception sufficiently
quick before the CSI in the shared memory is overwritten by the next
incoming frame.

8.1.2 Pushing channel state information out of the D11 core

The optimal way for transferring CSI from shared memory to the
ARM core’s RAM would be to trigger a DMA transfer on the whole
CSI containing memory region. To the best of our knowledge, the
DMA controllers do not support this operation. Nevertheless, the

8.2 experimental evaluation 69

D11 core prepends an additional header containing meta information
to each received frame. This header is normally 28 bytes long and The most efficient

way to transfer
information from
D11 core to ARM
core is using a DMA
controller.

read from the shared memory during DMA transfers that copy the
frame’s payload into the ARM core’s RAM. We realized that multiple
of these DMA transfers can be triggered in a row. In this case, the
transferred frames contain an empty payload, but the shared memory
contents are copied in each transfer. By adjusting the meta header’s
start pointer after each transfer, we can copy the complete CSI from
shared memory to the ARM core’s RAM. Additionally, we managed
to increase the size of those transfers from 28 to 64 bytes. Using four
bytes for a header, 17 transfers are required to copy the whole 80 MHz We need 17 DMA

transfers to copy the
whole CSI for one
transmit and one
receive antenna.

CSI information in single antenna systems. In the ARM core, we
detect CSI transfers according to this header and can either process
the received CSI directly or send it to the host using UDP frames. To
make this implementation reusable by the community, we published
its source code as described in Section A.6. In the following section,
we demonstrate what can be achieved with out implementation in
practice.

8.2 experimental evaluation

As environment we choose an apartment in a rural area with only
low amount of Wi-Fi traffic so that our experiments are not affected We perform our

experiments in an
apartment with low
Wi-Fi traffic.

by high levels of interference. For influencing the propagation charac-
teristics of the wireless channel in a repeatable fashion, we placed one
device into a microwave oven and continuously changed the opening
angle of the microwave door. We illustrate our setup in Figure 5.

8.2.1 Experimental setup

Extracting channel state information on off-the-shelf devices can lead
to various interesting applications. As evaluating our CSI extractor Our setup consists

of two Nexus 5
smartphones, one in
a microwave oven
the other one on a
kitchen countertop.

against all existing solutions is out of scope of this work, we consider
a simple example applications that demonstrates the performance of
our extractor. To this end, we setup two Nexus 5 smartphones in
the kitchen of an apartment. One goes into our microwave oven,
the other one on the kitchen countertop facing the microwave oven
as illustrated in Figure 5. Even with a closed microwave-oven door,
the two nodes can exchange Wi-Fi frames on the 80 MHz wide chan- We open and close

the microwave oven
door to influence the
propagation
characteristics.

nel 122 in the 5 GHz band. Nevertheless, the position of the oven
door heavily influences the propagation characteristics of the wire-
less channel between our two smartphones. We intend to illustrate
this effect, by extracting the channel state information on both of the
two nodes.

We configure the node outside the microwave oven to transmit
frames every 100 ms directly from the firmware. The node in the mi-

70 channel state information extractor

Scale: 1 : 85

Nexus 5 in
partially open
microwave on

cupboard

Nexus 5 smartphone
on kitchen countertop

changing
propagation
properties

Figure 5: Experimental setup in an apartment in a rural environment with
no other Wi-Fi traffic on channel 122 and 120. Placing the trans-
mitter in the partially open microwave increases multi-path effects.
All smartphones are installed on car mount holders to enhance the
antenna radiation characteristics. (based on [75])

crowave oven receives those frames, extracts the CSI in the D11 core
and sends it up to the ARM core. After the CSI is fully received, theCSI is extracted by

the D11 core,
forwarded to the

ARM core, packed
into UDP datagrams
and send to the host.

ARM core stores it in a UDP datagram and forwards it to the user
space, where we dump it using tcpdump. Additionally, the ARM
core crafts a new frame and sends it back to the other smartphone,
which also extracts the CSI and forwards it to user space for dump-
ing. While the two nodes exchange frames and dump CSI values, we
open and close the microwave oven door three times. The first two
times rather slowly, the third time a bit faster.

8.2.2 Analyzing the CSI dumps

After running the experiments, we collect the frame dumps from theWe analyze the CSI
dumps in MATLAB

and plot their
magnitudes as

waterfall diagram.

two smartphones. Then, we analyze the per frame CSI information
in MATLAB and plot the magnitudes of the CSI for every subcar-
rier. We illustrate the result in Figure 6. At the top, we plot the CSI
of the first exchanged frame for both of the two nodes. Below, we
plot the magnitudes of the following CSI frames as a waterfall dia-
gram. Comparing the two waterfall diagrams as well as the single
plots clearly shows the similarity of the CSI measurements in both
directions. This lets us imply the reciprocity of the wireless channel,The results illustrate

the reciprocity of the
wireless channel and

the repeatable effect
of the door’s position

on the channel.

which is an expected result. Additionally, we can observe repeating
pattern in the waterfall diagrams. They repeat whenever we repeat
the action of opening and closing the oven door. Regarding both ac-
tions, the pattern during closing the door is mirrored into the pattern
of opening the door. Which indicates a very stable wireless environ-

8.3 discussion 71

−120−80 −40 0 40 80 120
0

250

500

750

1,000
C

SI
A

m
pl

it
ud

e

Nexus 5 in microwave

−120−80 −40 0 40 80 120
0

250

500

750

1,000

Nexus 5 outside microwave

-120 -80 -40 0 40 80 120

0

50

100

150

200

Subcarriers

Ti
m

e
in

se
co

nd
s

0 500 1,000 1,500

-120 -80 -40 0 40 80 120

Subcarriers

0 500 1,000 1,500

opening

closing

opening

closing

opening

closing

Figure 6: Continuous bi-directional channel state information (CSI) mea-
surement between two Nexus 5 smartphones, one in a microwave
oven, the other one outside, while opening and closing the mi-
crowave oven door three times. The measurement is taken at chan-
nel 122 with 80 MHz bandwidth in the 5 GHz band. At the top, we
illustrate the amplitudes of one CSI measurement, followed by a
waterfall diagram with 10 measurements per second. The channel
reciprocity is clearly observable. (based on [75])

ment, in which the wireless channel between the two smartphones is
mainly influenced by the position of the oven door.

8.3 discussion

The ability to dump uncompressed channel state information on a
per-frame basis with smartphones allows to either enhance already Our solution is the

first that supports
802.11ac chips.

existing solutions by adding mobility or even implement new appli-
cations. Compared to already available CSI extraction firmwares for
other off-the-shelf Wi-Fi chips, we support 802.11ac frames with cur-
rently 80 MHz bandwidth, which gives at least twice as much insight
into wireless propagation characteristics as existing solutions offer.
The open source nature of our firmware patch allows modifications
by other researchers. This results in the flexibility of using the Wi-Fi

72 channel state information extractor

chip as coprocessor that preprocesses CSI directly in the Wi-Fi chipsThe open source
nature allows for

easy extendability by
the community.

ARM processor and only delivers aggregated information to an app
running on the smartphone. The similarity of all Broadcom Wi-Fi
chips also allows to port our solutions to other devices that have more
antennas and offer even wider bandwidth of up to 160 MHz.

8.4 related work

While our CSI extractor is the first that runs on smartphones and sup-
ports 802.11ac transmissions, two other solutions existed for 802.11n
devices. The first was developed by Halperin et al. for Intel Wi-Fi
cards and presented in [34]. Unfortunately, the firmware patch1 isCSI extraction tools

already exist for
Intel, Atheros and

Broadcom cards but
none of them run on
802.11ac chips that

support 80 MHz
bandwidth and none

of them support
Wi-Fi chips in

smartphones.

closed source so that it is hard to port it to newer Intel Wi-Fi cards or
circumvent its limitations of only extracting every second CSI value
on 20 MHz channels or every fourth on 40 MHz channels. For Atheros
cards, Xie, Li, and Li developed a tool2 that they use in [94] to produce
precise power delay profiles. It can extract CSI at all subcarriers and
is open source to support various Atheros chips. Ricciato et al. devel-
oped another CSI extractor that is close to our implementation, but
it only supports 802.11n Broadcom SoftMAC chips that neither sup-
port 80 MHz bandwidth or operation in smartphones. They use their
tool in [72] to enhance position and velocity measurements based on
packet arrival times by using the extracted CSI.

Besides the tools themselves and the works these tools were first
used in, various other authors developed applications that require
channel state information. In [4], Bagci et al. use CSI to detect whetherOne can detect

device tampering
using CSI.

someone tampered with a device. For example, by moving or replac-
ing a wireless surveillance camera. To cope with dynamic environ-
ments with some movements, Bagci et al. take multiple CSI extrac-
tion nodes into consideration. In [47], Jiang et al. use CSI to detectOne can detect

spoofing attacks
using CSI.

spoofing attacks in Wi-Fi networks. While data frames are encrypted,
management frames are vulnerable to spoofing which allows denial-
of-service attacks by injecting deauthentication frames. As Jiang et al.
show, using CSI to detect spoofed frames is eight times more reliable
than using received-signal-strength measurements. In [1], Ali et al.One can detect

keystrokes using
CSI.

use CSI information to reconstruct keystrokes. Using Nexmon, one
could also try to extract user inputs from a smartphone. Besides [72]
(mentioned above), numerous localization schemes exist that use CSI.
In [56], Li et al. do not even require that a tracked person carries aOne can even track

persons that do not
carry devices

themselves using
CSI.

transmitting device. It is sufficient that people pass between a frame
transmitter and multiple receivers that estimate the CSI. Then, Li et
al. apply their Doppler-MUSIC and Doppler-AoA algorithms to esti-
mate the velocity and the location of a target. In [26], Fang et al. use
CSI to measure human activity and vital signs. To this end, they use a

1 Intel CSI tool: https://dhalperi.github.io/linux-80211n-csitool/
2 Atheros CSI tool: http://pdcc.ntu.edu.sg/wands/Atheros/

https://dhalperi.github.io/linux-80211n-csitool/
http://pdcc.ntu.edu.sg/wands/Atheros/

8.5 conclusion 73

wristband to transmit Wi-Fi frames that are captured by the Intel CSI One can monitor
vital signs and
human activity
using CSI.

tool attached to a small single-board computer that is worn by the
test person. Using our CSI extractor instead, one could replace the
single-board computer by a smartphone that people regularly carry
anyways. The presented work only gives a rough overview of pos-
sible CSI based applications that can likely be improved by using
smartphones for CSI measurements.

8.5 conclusion

In this chapter, we introduced our Nexmon CSI Extractor. It is the
first tool that allows dumping channel state information on Broad-
com FullMAC chips on a per-frame basis. We use the D11 core to Our tool is the first

to both dump
channel state
information on
smartphones and to
work with 802.11ac
hardware.

first copy the CSI from physical-layer tables into the shared mem-
ory and then trigger DMA transfers to copy the information into the
ARM core’s RAM. From there, we forward the CSI to the host encap-
sulated in UDP datagrams. This potentially gives access to channel
state information to any application running on a smartphone and
eases the development of new applications that require CSI. In Chap-
ter 13, we use our CSI Extractor to implement a covert channel that
hides information by prefiltering outgoing Wi-Fi frames. In the fol-
lowing chapter, we present another novel tool for Wi-Fi chips, that
turns off-the-shelf devices into software-defined radios.

8.6 my contribution and acknowledgements

Especially for the covert channel application presented in Chapter 13,
I saw the need for extracting channel state information on smart-
phones. I thank Francesco Gringoli for helping me with the D11 firm- Extracting and

interpreting CSI
was a joint work.

ware implementation, especially for providing the idea to transfer CSI
information from the shared memory to the ARM core by triggering
multiple DMA transfers in a sophisticated way, as also used in [72].
After implementing the extraction mechanism, we had to interpret
the CSI values correctly. For the latter, I thank Jakob Link, who fig-
ured out how real and imaginary parts of CSI dumps are encoded in
his bachelor thesis [59].

9
S O F T WA R E - D E F I N E D R A D I O S O N W I - F I C H I P S

Wi-Fi can be regarded as the de-facto standard for wireless local area
networking, and the installed base is in the billions. Adhering to Wi-Fi chips have

many undocumented
capabilities that
exceed the
requirements for
implementing a
standard conform
Wi-Fi transceiver.

the Wi-Fi standard provides for interoperability and serves the basic
communication needs such as Internet access. Most Wi-Fi chips inte-
grate more advanced features, which are usually neither documented
nor exposed to developers or end users. For example, we are able to
demonstrate how to turn off-the-shelf devices, such as smartphones,
into full-flegded software-defined radios (SDRs) by utilizing the afore-
mentioned undocumented features. This provides multiple benefits
over existing SDR platforms such as WARPs or USRPs. The latter Using Wi-Fi chips

as software-defined
radios allows to run
experiments on
hardware with
realistic properties of
commercial devices.

are built with full flexibility in mind, but do not run regular soft-
ware stacks and applications easily. Instead, converting off-the-shelf
devices into SDRs allows to easily scale up experiments to hundreds
of SDR-enabled nodes, while retaining the possibility to run regular
mobile apps and supporting device mobility. This also facilitates ex-
perimentation outside of lab environments. Furthermore, the device
specific transmit and receive characteristics are maintained.

To transmit arbitrary waveforms, we have to store IQ samples in
a buffer and then trigger a transmission. As already introduced in
Chapter 4, Broadcom Wi-Fi chips support two ways to implement
raw signal transmissions. The first one works on all devices and Broadcom chips can

transmit up to 512
samples from the
sample-play buffer
and up to 131 072
samples from
Template RAM.

stores samples in the small sample-play buffer that is normally filled
with samples of tones used for calibration purposes. As the buffer
can only hold up to 512 samples, we focus on the second approach
in this chapter. It allows to transmit up to 131 072 samples on a suit-
able Wi-Fi chip such as the BCM4358. In this approach, we store the
IQ samples in the Template RAM of the D11 core and trigger the
transmission by setting the corresponding D11 registers.

For implementing the SDR transmissions, we faced the following We had code that
only hinted us at the
SDR transmission
capabilities.

challenges: (1) We had to understand which registers need to be writ-
ten to setup and start a transmission, and (2) we had to choose the
correct number format to store the IQ samples.

Below, we first describe our implementation in Section 9.1. Then,
we document our experiments with our SDR implementation and an-
alyze the transmitted signals using a WARP SDR in Section 9.2. We We present the

implementation and
an evaluation of the
Nexmon SDR.

continue with a discussion in Section 9.3. As the SDR implementa-
tion has a lot of development potential, we propose future work in
Section 9.4 and present related work in Section 9.5. Then, we con-
clude in Section 9.6.

75

76 software-defined radios on wi-fi chips

9.1 implementation

During our analysis of various firmwares and drivers, we discov-
ered a sample collect functionality in 802.11ac Wi-Fi chips created by
Broadcom. It allows us to capture raw IQ samples of the digital-to-Transmitting raw

signals from
Template RAM

should work
analogous to

collecting samples.

analog converters (DACs) into the Template RAM. We describe this
functionality in Section 4.3.1 and illustrate the used system compo-
nents in Figure 3 on page 21. In the initialization functions of this
feature, we observed that the value of the macbasedDACPlay register
controls whether the whole Template RAM or only half of it is used
for sample collection. Hence, we concluded that these Wi-Fi chips
might also be able to transmit samples from Template RAM. A closer
inspection of the header files defining the registers of the D11 core
revealed that there are SamplePlayStartPtr and SamplePlayStopPtr

registers that likely define the sample-play address boundaries in theD11 registers define
where raw samples

start and stop in
Template RAM and

another register
controls the

playback.

Template RAM. To finally trigger a transmission, we considered an
operation analogous to triggering the collection of samples. To this
end, one bit needs to be set in the psm_phy_hdr_param register for
continuous sample collection and another bit can be set to stop af-
ter filling the assigned region in the Template RAM once. By trying
other bit combinations, we observed that triggering a transmission
from Template RAM works.

9.1.1 Raw sample transmission methodology

After experimentally verifying that raw transmissions work in gen-
eral, we developed the following methodology to ease the use of raw
transmissions. All steps shown below can either be called directlyAs raw signals are

too large to be part
of a firmware patch,

we load them during
runtime using an

ioctl.

from a firmware patch or by sending ioctl messages to the firmware.
We provide more information on communication with the firmware
in Section 6.2.13. To prepare the transmission, we copy raw IQ sam-
ples into an unused region of the Template RAM. Each sample con-
sists of two signed 16-bit values for the inphase (I) and quadrature
(Q) components. We can either generate the raw samples in the firm-
ware or create them in MATLAB and use an ioctl to copy them into
Template RAM during runtime. Especially for long signals, it is not
suitable to patch their samples into the firmware binary as they take
up too much space in the patch memory region.

In the second step, we set transmission gains to manual control and
store the boundary addresses of our signal in the SamplePlayStartAfter loading raw

samples into
Template RAM, we

need to trigger their
transmission.

and StopPtr registers. Then, we are ready to trigger the transmission
by activating macbasedDACPlay, initiating an RX-to-TX sequence and
starting to play back samples by writing into the psm_phy_hdr_param

register. This step can either be performed in the ARM core, or as
a reaction to a time critical event in the D11 core (e.g., as a quick
answer to receiving a frame). After finishing a transmission, the Wi-

9.2 experiments 77

Scale: 1 : 85

Nexus 5 smartphone

line-of-sight
scenario table

Laptop as
Wi-Fi

receiver

WARP
SDR

Figure 7: Experimental setup in an apartment in a rural environment with
no other Wi-Fi traffic on channel 122 and 120. (based on [75])

Fi chip continues to transmit a carrier wave and the D11 core is not
able to receive any new frames. To solve this problem, we have to To stop the

transmitter and
activate the receiver
after a transmission
finishes, we have to
perform a CCA
reset.

stop the transmitter and reset the clear channel assessment (CCA) in
the baseband. Implementing this in the D11 core allows us to inte-
grate our transmitter into regular Wi-Fi communications and react
to incoming frames. We published the source code as described in
Section A.5 so that other researchers may build applications based on
our implementation.

9.2 experiments

In our experimental evaluation, we study the performance of our raw-
signal transmitter and discuss the experimental results. As environ- We perform our

experiments in a
rural area to reduce
the risk of Wi-Fi
interferers.

ment, we choose an apartment in a rural area with only low amount
of Wi-Fi traffic so that our experiments are not affected by high levels
of interference. As we do not focus on multi-path propagation, we
simply stayed in one room. We illustrate our communication setups
in Figure 7.

9.2.1 Experimental setup

To evaluate the raw signal transmission capabilities, we measure how We first send a
Wi-Fi frame stored
in raw samples and
then inject a Wi-Fi
frame with the same
modulation coding
scheme.

well Wi-Fi frames transmitted from raw samples stored in the Tem-
plate RAM can be received by an off-the-shelf Wi-Fi node in compar-
ison to receiving the same frames transmitted through the regular
Wi-Fi modulation chain. To this end, we first generate acknowledge-
ment frames at all 802.11a/g rates in MATLAB and store the signals
in a format that we can directly load into the Template RAM by ex-

78 software-defined radios on wi-fi chips

12.6 12.8 13 13.2 13.4 13.6 13.8 14

−0.5

0

0.5

Time in milliseconds
A

m
pl

it
ud

e

Figure 8: Generally, raw transmissions play back the IQ samples from the
Template RAM resulting in the signal on the right. Especially, on
crowded channels, we observed that sometimes only a carrier is
transmitted but no other signal (left). (based on [75])

ecuting a script in the smartphone’s user space. Due to the size of
the raw signals, we cannot fit them directly into the firmware patch
and, hence, run our script after loading our patched Wi-Fi firmware.The interval for

sending raw samples
is 3 ms, followed by

a regular frame
transmission after

1 ms.

In the firmware, we trigger the transmission of the raw signals every
3 ms and after a short break of 1 ms, we directly inject an acknowl-
edgement frame through the regular frame transmission path. This
frame is encoded with the same modulation settings and contains a
similar content as our raw Wi-Fi frames.

9.2.2 Experimental evaluation

Our experimental results show that frames transmitted through raw
signal transmission have a similar reception performance as regularWi-Fi frames

transmitted from
raw samples can be

received with a
similar performance

as regular Wi-Fi
frames.

frames. In case of a crowded channel, it can happen that—instead
of the raw signal—only a carrier wave is being transmitted. This
effect happened very randomly in our experiments but seems to be
avoidable on rather unoccupied channels. We illustrate this effect
in Figure 8. On the left we show a transmission, where only the
carrier is observable and on the right we show a correctly transmitted
acknowledgement frame. Based on further investigations performed
by Jan Ruge, signal transmissions become more stable by first setting
the psm_phy_hdr_param to zero before setting the bits that trigger a
transmission. This seems to avoid failed transmissions that only leak
the carrier.

Additionally, in Figure 8 we can observe that a small carrier signal
is visible before and after the transmitted acknowledgement frames.Carrier

transmissions before
and after a raw

signal transmission
are avoidable by

carefully timing the
transmitter’s

activation.

This is due to the fact, that we first perform the RX-to-TX sequencing
and then start the sample playback from the Template RAM. By first
triggering the playback of a signal that starts with a suitable number
of zeros and then triggering the RX-to-TX sequencing, we can start
playing back samples as soon as the transmitter is ready. To get rid
of the small carrier after the signal transmission, we simply need to

9.3 discussion 79

initiate the CCA reset at the end of the sample transmission. This
directly turns of the carrier.

9.3 discussion

In this chapter, we demonstrated that off-the-shelf Wi-Fi chips have
much more capabilities than officially advertised by vendors. Using
Wi-Fi chips in a way only software-defined radios could be used be- Nexmon SDR turns

ubiquitously
avaialble
smartphones into
fully-fleched
software-defined
radios for the 2.4
and 5 GHz bands.

fore, we open new scenarios for researchers that can transform ubiq-
uitously available mobile devices such as smartphones into general
purpose radio transmitters in the 2.4 and 5 GHz bands. With the
ability to store raw IQ samples in a relatively large buffer it is now
possible to add physical layers from other standards or even test new
ones: this enhances cross-technology communication to an unprece-
dented degree of flexibility. The great availability of smartphones also
enables the creation of large software-defined radio testbeds built on
devices that are cheap, mobile, and always around the end users.

9.4 future work

Besides the transmitter, we should next focus on the reception of wire- The receive path still
requires
investigation
including automatic
gain control
features.

less signals, which is also possible on Broadcom chips using the sam-
ple collect feature. However, receptions are more complex as we have
to consider setting the correct gains or configuring the undocumented
automatic gain control hardware in the physical layer to receive sig-
nals with a usable dynamic range for the analog-to-digital converters
(ADC).

9.4.1 Controlling Wi-Fi chips from MATLAB

Another extension focuses on the use of smartphones as a replace-
ment for WARP SDRs that are operated by MATLAB running WARP-
LAB. In this setup, signals are generated in MATLAB and transferred
into a buffer in the software-defined radio. Then the transmission
is triggered on all sending nodes and the reception on the receiving
nodes is triggered at the same time. To exchange frames between
MATLAB and smartphones, we can connect smartphones over USB MATLAB can

communicate to a
smartphone using
UDP datagrams
tunneled over USB
to send ioctls to
control the firmware.

with a computer. Then, we activate USB tethering to exchange Ether-
net frames over USB with the phone. This setup allows to establish a
UDP or TCP based communication link between the connected smart-
phone and MATLAB so that frames and control commands can be ex-
changed. On the phone, a UDP-to-IOCTL proxy would receive ioctl
messages sent by MATLAB over UDP and send them to the Wi-Fi
chip.

80 software-defined radios on wi-fi chips

9.4.2 Comparing Nexmon SDRs to WARP SDRs

A smartphone-based SDR testbed would be much cheaper than us-
ing WARP SDRs and it would support 80 MHz bandwidth. However,
it lacks some of WARP’s advanced features. First, using Broadcom
Wi-Fi chips, only one antenna can be used for raw signal operation.Smartphones are

cheap SDRs with
80 MHz bandwidth.

Hence, no MIMO applications are supported. Second, Broadcom Wi-
Fi chips have no FPGAs included to optimize wireless implementa-
tions with hardware support. Third, the WARPLAB implementations
before release 7.5.0 were only able to hold up to 32 768 raw samples,Broadcom chips only

support
single-antenna

applications without
FPGA support.

which is less than the 49 152 samples we can store on BCM4339 chips.
However, we created a proof-of-concept implementation for WARP
SDRs that uses the 2 GiB DRAM on the WARPs to store samples.
With this extension, WARP SDRs can collect and transmit multiple
seconds of raw signals which exceeds the capabilities of Broadcom’s
Wi-Fi chips. Our implementation was the foundation for the 7.5.0
release of WARPLAB1 that also supports using the DRAM.

Our WARPLAB extension uses a ping-pong buffer approach that
splits the transmission buffer in two halves. We first fill the buffer
completely and start the transmission from the beginning. WheneverWe created a

ping-pong buffer
based WARPLAB

extension to
continuously refill
and read buffers in

the FPGA while
transmissoions and

receptions are
ongoing.

the end of the buffer is reached, we loop back to its beginning and
continue transmitting. During the transmission, we constantly check,
whether the transmission of one half of the buffer finished. Whenever
this is the case, we refill this half of the buffer with new samples while
the transmitter operates on the other half. As long as we can refill
the buffer faster than samples are transmitted, we can continuously
transmit samples. Continuous receptions work accordingly. On the
WARP SDRs we use this principle to fill the small buffers in the FPGA
with samples stored in DRAM. For a complete continuous operation,
we would also have to refill the DRAM with samples coming in over
Ethernet.

9.4.3 Implementing continuous transmissions and receptions

Under the assumption that the Template RAM can be read and writ-
ten at the same time, we could implement a similar ping-pong bufferFirst experiments

show that DMA
controllers could be

used to refill the
Template RAM

continuously during
a raw signal

transmission.

based system on Wi-Fi chips to transmit and receive signals continu-
ously. For transmissions, it would be most efficient to transfer sam-
ples either directly from the host’s RAM (on PCIE connected chips) or
the ARM’s RAM (on SDIO connected chips) into the Template RAM
by using a DMA controller. Somehow, in our experiments with the
DMA controller, only the first transmitted frames ended up in Tem-
plate RAM. As soon as this region is full, no more frames are stored
there until the D11 core restarts. By understanding how to transfer

1 WARPLAB 7.5.0 release notes: https://warpproject.org/trac/wiki/WARPLab/

Downloads?version=68

https://warpproject.org/trac/wiki/WARPLab/Downloads?version=68
https://warpproject.org/trac/wiki/WARPLab/Downloads?version=68

9.5 related work 81

arbitrary amounts of bytes into Template RAM, we could implement
a ping-pong buffer that can be refilled quickly enough for continuous
transmissions. For receptions, we did not find a way to initiate DMA
transfers from Template RAM, yet. Nevertheless, the D11 core can To collect received

samples, we could
first copy them into
the shared memory
and then trigger
DMA transfers to
the ARM’s RAM or
directly to the host.

trigger a quick copy of data from Template RAM into the shared mem-
ory, from where we can perform DMA transfers similar to the ones
we used to extract channel state information (CSI) in Section 8.1.2.
Using this approach, we could use the large internal memory of a
smartphone to store raw samples that exceed the amount storable
in the WARP SDRs DRAM. If we further managed to exchange data
sufficiently quick over USB, we could use smartphones as SDRs with
continuous transmission and reception capabilities that could be con-
nected to real-time capable SDR software such as GnuRadio.

9.4.4 New applications on Wi-Fi chips

Besides the ideas to extend the Nexmon SDR, it can also be used as ba-
sis for new applications on smartphones. Transmitting and receiving Cross-technology

communication and
covert channels are
only two out of
many applications
realizable using the
Nexmon SDR.

arbitrary signals with a Wi-Fi chip revolutionizes cross-technology
communication (CTC) schemes. We no longer need to generate wave-
forms for other communication standards by choosing Wi-Fi pay-
loads that result in a suitable waveform, for example, to transmit
ZigBee frames as done by Li and He in [57]. Instead, we can simply
create clean signals as IQ samples and transmit them in the Wi-Fi
bands or analyze incoming signals of other systems. Crawling driver
source files also revealed that Broadcom Wi-Fi chips could be used
as spectrum analyzers or for ultra low bandwidth (ULB) communica-
tions. Those use either 2.5, 5 or 10 MHz bandwidth which could sig- Spectrum analysis

and ultra low
bandwidth
capabilities still need
further
investigation.

nificantly reduce the throughput required to continuously exchange
IQ samples with the Wi-Fi chip. In Chapter 13, we present another
new application for smartphones. We use the raw signal transmission
capabilities to generate Wi-Fi frames with embedded secret informa-
tion to create a covert channel between two smartphones.

9.5 related work

To the best of our knowledge no other work exists that converts Wi-Fi
chips into software-defined radios (SDRs). The RTL-SDR project [67],
however, managed to convert DVB-T dongles into SDR receivers with RTL-SDR turns

commercial DVB-T
dongles into SDR
receivers.

a low bandwidth of up to 3.2 MHz but a very wide frequency range
that goes from 22 MHz up to 2.2 GHz depending on the device. In
the DVB-T dongle, the SDR mode was intentionally implemented to
receive FM radio around 100 MHz but could be extended to the full
frequency range supported by the hardware.

The first project that converted a Raspberry Pi into a radio trans-
mitter is PiFm [63]. It was initiated by Oliver Mattos and Oskar Weigl

82 software-defined radios on wi-fi chips

and allows to transmit frequency modulated signals through a wireBy abusing PLLs
connected to GPIO

pins in the
Raspberry Pi, one

can not only
generate frequency

modulated or
single-side-band
signals, but also

transmit IQ samples
at a carrier
frequency.

antenna connected to a GPIO pin. The pin is connected to a phase-
locked loop (PLL) and can be used to output a pulse-width modu-
lated (PWM) waveform that can mimic an FM signal transmitted be-
tween 1 and 250 MHz. The project was extended [40] by Richard Hirst
who introduced the use of a DMA controller to write signals quickly
and well timed into hardware registers. Dolle G. Ten introduced an-
other extension. Instead of transmitting FM signals, he managed to
create single-side-band (SSB) signals using the Raspberry Pi’s PLL.
To gain even more flexibility, Evariste Courjaud created a quadrature
modulator to transmit IQ samples and thereby support a variety of
modulations. His project RPiTX [22] can be operated between 5 kHz
and 500 MHz and thereby cover a lot of applications.

Besides the projects mentioned above, many commercial SDR plat-
forms exist, that beat the cheap platforms in bandwidth, frequency
range and MIMO capabilities. Additionally, dedicated SDRs often
contain an FPGA on which we can implement time-critical signal pro-Wide-spread SDR

platforms in the
research community

are, among others,
USRPs, WARPs and

HackRFs.

cessing steps in both the transmitter and the receiver. The most well
known platforms used by the research community are the universal
software radio peripherals (USRPs) and the wireless open access re-
search platforms (WARPs) that can be acquired at moderate prices.
All of them include an FPGA and come directly with MIMO support
or can be connected to synchronously operate with multiple antennas.
In the low price sector we can find the HackRF One which is limited
to 20 MHz bandwidth and has no FPGA.

Based on software-defined radios, many proprietary communica-
tion systems were reimplemented in an open fashion. GnuRadio isGnuRadio is the

basis for software
implementations of

various
communication

systems.

a wide-spread toolkit that collects many signal processing building
blocks that can be used to implement baseband processors in soft-
ware. Among the many projects, one can find implementations to
receive and decode GSM signals (GR-GSM, Airprobe), LTE signals
(GR-LTE), Wi-Fi signals (GR-IEEE802-11), and automatic dependent
surveillance – broadcast (ADS–B) signals (GR-ADSB). One can also
find projects for transmitters that support basic analog modulations
such as FM, AM, or SSB or even more complex system such as the
digital television standard DVB-T2 (GR-DVB). Based on those openOpen access to the

implementation
allows easy

extensions and
security analyses.

implementations, researchers can better understand how those stan-
dards work. They can develop improvements for the next generation
or find security vulnerabilities in the upper layers more easily. To this
end, it helps to be able to inject arbitrary bits with the correct physical
layer implementation.

9.6 conclusion

In this chapter, we presented how we turned Wi-Fi chips installed in
commercial off-the-shelf smartphones into arbitrary waveform trans-

9.7 my contribution and acknowledgements 83

mitters. This allows them to be operated in a similar way as software-
defined radios and directly interwork with other communication tech- The Nexmon SDR

turns Wi-Fi chips
into software-defined
radios that can
transmit arbitrary
waveforms.

nologies. In Chapter 13, we use our Nexmon SDR in a controlled envi-
ronment to transmit modified Wi-Fi frames into which we embedded
covert information by applying custom filters to the baseband sig-
nals. This chapter also concludes the part on tools and we continue
to present applications in the next part.

9.7 my contribution and acknowledgements

After detecting Broadcom’s sample collect feature and an initially not
working MAC-based sample-play option during joint experiments Perseverance made it

possible to get the
Nexmon SDR
working.

with Francesco Gringoli, I expected the existence of a way to trans-
mit IQ samples from Template RAM. Based on this expectation, I per-
formed experiments until I discovered how the MAC-based sample-
play feature worked. Subsequently, I implemented the Nexmon SDR
tool.

Part IV

A P P L I C AT I O N S

We create applications based on the Nexmon framework
presented in Part III. We start with a simple ping offload-
ing application to show the reduced energy consumption
and the reduced latencies of applications running on a Wi-
Fi chip in Chapter 10. Then, we propose how applications
can set requirements for physical layers to build wireless
software-defined networks in Chapter 11. Switching to
applications in the security domain, we present a reactive
jammer for Wi-Fi systems that illustrates real-time and ba-
sic software-defined radio capabilities in Chapter 12. An-
other advanced application is our covert channel presented
in Chapter 13. It hides information by prefiltering outgo-
ing Wi-Fi frames. It uses the Nexmon SDR (see Chap-
ter 9) to transmit frames and the Nexmon CSI Extractor
(see Chapter 8) to extract covert information. Last but not
least, we present applications using the Nexmon frame-
work on other platforms in Chapter 14.

10
P I N G O F F L O A D I N G

To demonstrate the benefits of modifying firmwares with Nexmon,
we chose a simple ping-offloading application whose source code we
published as described in Section A.2. Instead of answering ping re- Answering pings in

the firmware should
be faster and more
energy efficient than
in the kernel.

quests in the kernel, we do it in the firmware. We chose the ping
application as it receives a frame, analyzes its contents and then “for-
wards” it back to the transmitter. Instead of sending it back to the
transmitter, one could also forward it to another node in the net-
work. Hence, the performed operation is similar to a mesh node
that receives and forwards frames. As efficient mesh specific imple- The ping application

mimics a frame
forwarder.

mentations require changes to the kernel, we use the kernels ping
implementation to mimic the operation of receiving and forwarding
frames. This allows us to keep the experimental setup simple, but
still compare our firmware implementation to an efficient frame for-
warder available in every kernel.

Below, we first describe our implementation in Section 10.1 and
then continue with an experimental evaluation in Section 10.2, where
we focus on our implementations general operation, its energy con- We evaluate power

consumption and
processing delay.

sumption and its delay. At the end, we present a discussion in Sec-
tion 10.3, related work in Section 10.4 and a conclusion in Section 10.5.

10.1 implementation

To simply answer pings by the operating system’s kernel, we do not
need to perform any changes. To offload the operation to answer ping
requests into the Wi-Fi firmware, we have to insert a hook in a func-
tion that handles frames before they are sent to the host. There, we
can analyze the frames and answer incoming ping requests. To this We let the firmware

convert between
Wi-Fi and Ethernet
frames first before
handling the ping
frames to abstract
from the internal
state of the Wi-Fi
connection.

end, we hook the function that handles offloading the address reso-
lution protocol (ARP) in the wl_sendup function that is called after
replacing Wi-Fi headers by Ethernet headers, shortly before pushing
up frames to the host. Here, we check for ping requests and generate
ping responses encapsulated in Ethernet frames that we send using
the wlc_sendpkt function that creates the correct Wi-Fi headers and
transmits the frames. By using functions that handle Ethernet frames
in the Wi-Fi firmware, we can simply concentrate on our protocol im-
plementation and ignore details of the MAC and physical layers. This
includes the current state of the Wi-Fi connection as well as the topol-
ogy, so that our application works no matter we encrypt our traffic or
not and no matter we use an ad hoc or a mesh topology to directly

87

88 ping offloading

Scale: 1 : 85

two Nexus 5 smartphones
(backs facing each other)

line-of-sight
scenario table

power
monitor

Figure 9: Experimental setup in an apartment in a rural environment with
no other Wi-Fi traffic on channel 6. Both smartphones are installed
on car mount holders to enhance the antenna radiation character-
istics. (based on [75])

communicate with pairs of nodes. In the next section, we evaluate
this implementation.

10.2 experimental evaluation

We setup our experiments using two Nexus 5 smartphones. They
both run the rooted Android stock firmware version M4B30Z and
are located on a table one meter apart as illustrated in Figure 9. WeWe connect two

Nexus 5
smartphones in ad
hoc mode and start

sending ping
requests.

connected them using ad hoc mode on the otherwise unused chan-
nel 6 with 20 MHz bandwidth. They exchange 802.11ac frames with
MCS 8. This is normally not supported in the 2.4 GHz band, but still
available due to Nexmon. To send exactly only one frame per ping
request and reply, we disabled retransmissions and AMPDUs. The
latter would, otherwise, aggregate multiple ping packets into one Wi-
Fi frame. This would falsify our results as we intend to compare the
performance of handling single frames.

Using the Android debug bridge (ADB), we setup the first phone
to transmit ping requests with 1200 byte payload to the second phone.
For our experiments, we used ping intervals between 6 and 1000
pings per second. During our experiments, we can toggle this ping-We initiate between

6 and 1000 ping
requests per second.

offloading functionality by using an ioctl. To measure the power con-
sumption with disabled or enabled ping-offloading, we attached a
Monsoon Power Monitor to the battery ports of the second phone.
During our initial measurements, we observed high power consump-
tion peaks every 640 ms that even show up with disabled Wi-Fi chip
and that disturb our measurements. Further experiments revealed
that those peaks are generated by the LTE chip. By deactivating the

10.2 experimental evaluation 89

0 6 10.1 16.8 28 46.7 77.8 129.6 216 360 600 1000
250

300

350

400

450

500

550

Targeted Number of Pings per Second

Po
w

er
C

on
s.

[m
W

]

Ping handling in kernel
Ping handling in firmware
Idle in ad hoc mode

Figure 10: Operating ad hoc mode consumes 254 mW. Handling pings in
the firmware smoothly increases power consumption, while han-
dling frames in the kernel leads to a sudden increase with high
variations. (based on [77])

LTE driver in the kernel, we get rid of the peaks and, hence, cleaner By deactivating LTE,
we get clearer power
consumption traces.

power consumption traces. To rebuild the kernel we used, see Sec-
tion A.8.

For our evaluation, we performed three measurements always com-
paring the performance of our firmware ping-offloading implementa- We evaluate three

characteristics of our
ping-offloading
implementation.

tion to the standard kernel implementation. First, we analyze the
power consumption in Section 10.2.1, then we measure the number
of actually transmitted ping requests in Section 10.2.2 and finally, we
compare the round-trip times (RTTs) in Section 10.2.3.

10.2.1 Power consumption

In Figure 10, we present our power consumption results. The vertical
axis displays the number of pings we initiated at the transmitter. This
number can differ from the number of actually transmitted frames Waking up the host’s

processor for
handling pings
requires at least
116 mW more
energy than
handling pings in
firmware.

as well as the number of actually processed frames in the receiver,
as frames can be dropped at various places on the path when stor-
rage and processing queues overflow. The hozitontal axis shows the
power consumption in milliwatts. It starts slightly below the 254 mW
that the smartphone consumes by operating the Wi-Fi chip in ad hoc
mode. As long as the smartphone’s main processor is inactive, only
between 10 to 20 mW are consumed by components that are not Wi-
Fi related. The rest is mainly required to constantly listen for incom-
ming Wi-Fi frames. The amount of energy required to handle only a
few ping requests per second in firmware is negligible but increases
when more ping responses have to be transmitted. Handling frames

90 ping offloading

0 6 10.1 16.8 28 46.7 77.8 129.6 216 360 600 1000
0

100

200

300

400

500

600

700

Targeted Number of Pings Requests per Second

R
eq

ue
st

s
pe

r
Se

co
nd

Ping handling in firmware
Ping handling in kernel
Target rate

Figure 11: The numbers of actually transmitted ping requests stay below
their target numbers, especially when handling pings in the ker-
nel instead of the firmware. (based on [77])

in the kernel, on the other side, always requires to wake up the mainWe need to further
investigate, why the
power consumption

saturates for high
ping rates.

processor from its idle state. Hence, even for handling low numbers
of frames, it abruptly increases by 116 mW. This increase reaches up
to 194 mW for higher frame rates. Unexpectedly, the power consump-
tion saturates starting from roughly 216 requests per second. In the
following section, we investigates why this happens.

10.2.2 Number of actually transmitted ping requests

To analyze why the power consumption of handling frames in the ker-
nel stagnates for high frame rates, we analyzed the number of actu-Power consumption

stagnates as less
pings are exchanged

in the kernel
compared to the

firmware
implementation.

ally transmitted ping request frames as this number may differ from
the number we define in the ping program initiating the requests. We
realized that the number of transmitted frames stays below the tar-
geted number for both the firmware and the kernel operation when
more than 200 pings per second should be transmitted. We illustrated
our results in Figure 11. Due to the fact that every ping request is
transmitted in a separate Wi-Fi frames and the ping application waits
for a ping reply before transmitting the next ping request, the num-
ber of transmitted frames reduces when frames are dropped at the
receiver who can only handle a limited number of frames per second.The firmware can

handle 2.5 times
more ping frames

per second than the
kernel.

As processing frames consumes less energy than transmitting frames,
the power consumption stagnates when less frames are transmitted.
While the kernel implementation can only handle around 220 pings
per second, the firmware processes 2.5 times more (around 560). In
the next section, we analyze how quickly we can expect an answer by
either the kernel or the firmware.

10.3 discussion 91

0 6 10.1 16.8 28 46.7 77.8 129.6 216 360 600 1000
0

2

4

6

8

10

Targeted Number of Pings per Second

R
ou

nd
Tr

ip
Ti

m
e

[m
s]

Ping handling in kernel
Ping handling in firmware

Figure 12: The round trip time to answer pings in the firmware is determin-
istically low at 230µs, while it strongly varies and is much higher
in the kernel, likely due to waking up from energy-saving states.
(based on [77])

10.2.3 Round-trip times (RTTs)

Our firmware patch also outperforms the kernel implementation with
respect to round trip times (RTTs), as illustrated in Figure 12. To get Sleep cycles between

ping requests at low
rates hinder the
kernel
implementation to
react quickly.

more exact RTT measurement results, we ignored the path through
the Wi-Fi chip, kernel and user space to the ping application as sched-
uler implementations in the operating systems can have a high in-
fluence on when the ping application finally processes the received
frames. Instead, we measured RTTs by subtracting the timestamps
of ping requests and replies captured by a third node, in our case a
laptop running in monitormode. Our results show that the firmware
deterministically achieves 230µs RTTs, while the kernel has RTTs be- While the firmware

sends responses in
less than 230µs, the
kernel needs at least
2 ms.

tween 6 and 8 ms for handling less than 28 frames per second and
RTTs around 2 ms for higher frame rates. The high RTTs likely result
from the fact that the kernel may fall into energy-saving mode be-
tween processing pings at low frame rates. Hence, it needs to wake
up for every single ping request which takes extra time.

10.3 discussion

With our simple ping-offloading experiment, we demonstrated that
firmware implementations are not only more energy efficient than The firmware

implementation has
deterministic and
low latencies as well
as a low energy
consumption.

kernel implementations. Their response times are also lower and
deterministic, which results in higher frame handling rates. Those
are important for low-latency applications, for example, to control
machines. Having round trip times of 230µs allows to answer al-

92 ping offloading

most nine times faster than the kernel implementation at high frame
rates. Further improvements could be achieved by answering frames
directly from the D11 core, similar to sending acknowledgments from
the template RAM. Programming the D11 core in Assembler is, how-
ever, less comfortable than writing programs for the embedded ARM
processor.

10.4 related work

Most related to our application are applications that enhance network
performance by offloading simple but computation expensive opera-TCP offloading

engines are often
used to release the

main processor from
spending time on

calculating
checksums.

tions into specialized hardware or processors, such as TCP check-
sum computations. The survey in [15] created by Chase, Gallatin,
and Yocum states that TCP checksum offloading together with copy
avoidance yields roughly 70 percent in throughput improvements. In
our application, we were even able to increase the number of actually
transmitted and answered ping requests by 150 percent (factor 2.5),
as presented in Section 10.2.2. Also Broadcom Wi-Fi firmwares come
with installed TCP offloading engines (TOEs).

Besides TOEs, Broadcom firmwares also offer ARP offloading. In
[69], Peng et al. tackle the problem of broadcast frames in Wi-Fi sys-ARP offloading

engines avoid
waking up the main

processor from
energy-efficient idle
operation mode for

handling ARP
requests.

tems that wake up a phones operating system and increase power
consumption even though not all broadcast frames are important for
a receiver. They also show that many smartphones already employ
an ARP offloading engine in the Wi-Fi firmware that allows to handle
ARP requests directly in the firmware without waking up the main
processor. This also matches our results in Section 10.2.1 that handing
frames in the firmware is more energy efficient than handling them
in the main processor.

Even more optimized are frame processing solutions in FPGAs. In
[66], Mühlbach and Koch present the NetStage platform that employs
reconfigurable computing for high-throughput low-latency networkUsing FPGAs,

processing tasks can
be offloaded to

further enhance
security and reduce
power consumption.

processing. Based on this platform, they implemented a honeypot
whose performance exceeds that of many software solutions. Addi-
tionally, it is resilient against code injection attacks due to the lack
of software-executing processors, which is very beneficial for such
security critical applications. In [25], Engel and Koch focus on im-
plementing a reconfigurable computing unit into wireless sensor net-
work (WSN) nodes to support computationally-intensive distributed
applications on low-power devices.

Especially in industrial control applications, quality of service andDeterministic, low
round-trip times are

required by
industrial control

applications.

in particular low round-trip times are required to move control nodes
away from machines and place them into a network. Saifullah et
al. model the corresponding end-to-end delays in [73] for wireless
networks. With measured round-trip times of 230µs, our firmware

10.5 conclusion 93

implementation is able to meet sub-millisecond delay requirements
of control applications even in wireless multi-hop networks.

10.5 conclusion

In this chapter, we presented a ping-offloading implementation for
Broadcom Wi-Fi chips. Even though, it does not meet the require- Our ping-offloading

implementation is
energy efficient and
has high frame
processing rates at
low round-trip
times.

ments of a regular ping application that measures the whole network
path between to end stations including the delays in the communica-
tion stacks, it allows to mimic and compare frame forwarding applica-
tions without custom kernel extensions. We have shown that the firm-
ware implementation’s power consumption only slightly increases
with an increasing number of ping requests, while the main processor
abruptly consumes much more power as soon as the first ping pack-
ets require handling. Additionally, processing frames on the main
processor takes much longer than handling them in the firmware.
This leads to both lower frame processing rates and higher round-
trip times. In the next chapter, we present how more advanced video
streaming applications can be enhanced with a software-defined net-
working approach implemented in the firmware.

10.6 my contribution

The need for a simple application to evaluate the benefits of modify-
ing Wi-Fi firmwares made me come up with the ping-offloading ap-
plication. I also performed the implementation and the evaluation.

11
S O F T WA R E - D E F I N E D W I R E L E S S N E T W O R K S W I T H
F L O W- B A S E D P H Y C O N T R O L

We claim that various applications that communicate directly between
nodes could be improved by giving an application more control over Control over

physical-layer
parameters should be
beneficial to various
applications.

physical-layer parameters. The easiest would be the modification of
the modulation coding scheme used for broadcast transmissions. De-
pending on the intended receivers, it makes sense to either increase
the throughput but only reach close receivers, or enhance robust-
ness of the transmitted frames and reach larger areas. By, addition-
ally, adjusting transmission power and beamsteering, we could focus
our radio energy at our receivers and reduce interference with other
communication parties. This is especially important in dense envi-
ronments, where many nodes communicate simultaneously on the
sparse frequency spectrum.

Going one step further into reconfigurable radio transceivers, one
can not only modify parameters of one communication standard. In- Both parameter

modifications and
the ability to switch
between standards
together lead to
optimized energy
consumption and
performance.

stead, one can freely switch between various standards depending
on which one best fits the application requirements at hand. For
example, Bluetooth low-energy (BLE) or ZigBee can operate their
transceivers at very low power but they also offer only low through-
put. Wi-Fi, on the other side, offers the highest throughput we can
currently achieve in commercial wireless devices, but it consumes
significantly more energy, especially in ad hoc communication topolo-
gies, where the receiver is always active. As discussed in Section 10.2.1,
operating a Nexus 5 smartphone in ad hoc mode continuously con-
sumes at least 254 mW. For mobile applications with limited battery
capacities this is quite high, especially, as it only includes the power Low-power

communication
technologies could be
used to control ad
hoc connections,
while Wi-Fi is
turned on only for
transmitting large
chuncks of data.

for keeping the receiver active. Transmitting information requires ad-
ditional energy. It would be more efficient to use BLE or ZigBee to
manage the ad hoc connection and only turn Wi-Fi on, when data
should be exchanged. It would be most efficient to handle all these
communication standards in a single-chip solution. This allows to
pass information directly between the different physical-layer imple-
mentations without pulling the device’s main processor out of an
energy-saving idle mode. Doing the latter would be unfavorable as
presented in Section 10.2.1. Broadcom Wi-Fi chips at least already of-
fer single-chip solutions for Wi-Fi and Bluetooth for mobile systems.

Another growing application is video streaming. According to
[16], video data is expected to grow 14-fold between 2013 and 2018— Video streaming

traffic is constantly
growing.

outpacing the general data traffic growth—and amounting to close
to 70% of all mobile data traffic. This growth cannot be handled by

95

96 sdwns with flow-based phy control

advances in wireless network technology such as long-term evolution
(LTE) or LTE-Advanced alone. Especially, for device-to-device video
streaming broadcasts, it can be beneficial to optimize physical-layerPhysical-layer

control can help to
optimize the

transmission of
videos that were

encoded into
multiple quality

layers.

parameters. In case one video stream should be broadcasted to many
receivers, we could apply scalable video coding (SVC) to generate
multiple video streams at different quality levels. To deliver the base
quality to every receiver in range, one could use a robust transmis-
sion at high power. Due to the low throughput of this mode, not all
layers can be distributed using this setting. Instead, we could focus
on broadcasting higher quality layers only to stations that are able
to receive less robust signals and use the lowest transmission power
possible to achieve this goal.

To implement those applications, we need to gain access to lower
communication layers. We realized this line of work before Nex-We can gain access

to physical-layer
parameters and even

more flexibility by
attaching

software-defined
radios to Android

smartphones.

mon by connecting software-defined radios to our smartphones and
using them as communication interfaces. The FPGA included in
the WARP SDR allows to efficiently implement various communi-
cation standards directly in hardware so that the device can act as
an Ethernet-to-(almost)-Anything bridge. This is very similar to the
Broadcom Wi-Fi chips installed in smartphones, as they also exchange
Ethernet frames with the host’s operating system and create valid Wi-
Fi frames on the MAC and PHY layers internally.

The WARP-to-Android solution motivated our work on Nexmon,
as the former solution is not suitable for realistic usage scenariosUsing Nexmon, we

gain access to
various

physical-layer
parameters.

of smartphones that also require mobility. As Nexmon enables fine
grained access to physical-layer parameters, we also consider it for
handling simple per-frame or per-flow parameter adjustments and
further enhance energy-consumption and performance by offloading
the filtering of flows and choosing of the desired physical-layer pa-
rameters into the Wi-Fi firmware.

As example application for using those features, we implement a
simple MJPEG-based scalable-video codec that supports streaming
layered video on Android. As all frame transmissions of each videoUsing flows instead

of per-frame control
reduces complexity

and enhances
portability.

layer have the same physical-layer requirements, it is useful to bun-
dle them in flows and then define requirements for those flows. The
requirements do not directly define the physical-layer parameters. In-
stead, they only define the flows’ properties and the flow filter sepa-
rately decides which physical-layer settings best fit the needs to ful-
fill those requirements. This way, the application designer does not
need to know the details of all physical layers his application can run
with. The resulting system brings software-defined wireless network-
ing (SDWN) to a widely available platform—namely smartphones.

Developing our physical-layer supported scalable-video streamingFast scalable-video
coding and access to

PHY parameters
was required.

system, we faced the following challenges: (1) We needed a work-
ing scalable-video codec for Android that gives easy access to the
generated quality layers, (2) we had to get access to physical-layer

11.1 designing a sdwn system for smartphones 97

parameters when transmitting frames, and (3) our solution had to be
real-time capable.

In the following sections, we first present the design of our flow-
based control system that allows to change physical-layer parame-
ters according to application requirements—in particular our scalable- We present both an

implementation
using WARP SDRs
as well as one based
on Nexmon, but
focus our evaluation
on the SDR setup.

video codec—in Section 11.1. We continue with the description of our
practical implementation in Section 11.2, where we focus both on the
existing WARP-based implementation as well as our current work-in-
progress solution that uses Nexmon. In Section 11.3, we evaluate our
WARP-based implementation and continue with a discussion in Sec-
tion 11.4. In Section 11.5, we first present future work, followed by
related work in Section 11.6. Then, we conclude in Section 11.7.

11.1 designing a sdwn system for smartphones

In this section, we present the design of our software-defined wireless We implement our
flow-based SDWN
system by using
either WARP SDRs
or the internal Wi-Fi
chip of a
smartphone.

networking (SDWN) system using both the Android-to-WARP-based
solution and the Nexmon-based extension using the internal Wi-Fi
chip to gain control over physical-layer parameters. We also describe
how to implement flow filters for both approaches as well as the de-
sign decisions that lead to our custom scalable-video codec.

11.1.1 System overview

Regarding hardware, our system is designed for smartphones that
are either connected to WARP SDRs or that use a Nexmon-capable SDRs offer

capabilities that are
generally not
accessible in
off-the-shelf wireless
chips.

internal Wi-Fi chip. The smartphones represent mobile end-devices
running applications. The Wireless Open-Access Research Platforms
(WARPs) offer flexible physical-layer implementations that run in
real-time on field-programmable gate arrays (FPGAs). In our sys-
tem, we bring both devices together to allow applications the setup
of physical transmission requirements on a flow basis. This level of
flexibility is generally not provided by off-the-shelf wireless chips that Nexmon unleashes

capabilities that we
need for our
implementation.

implement standard-compliant communication mechanisms, leaving
little room for research outside the bounds of the standards. How-
ever, Nexmon tackles those limitations by modifying the proprietary
firmware that shields users form controlling detailed parameters for
Wi-Fi transmissions. Hence, we use Nexmon in this chapter as an
alternative to connecting SDRs to a smartphone.

A flexible physical-layer implementation can be controllable by ap-
plications that intend to optimize their data transmissions. However, We introduce an

abstraction layer
that hides
physical-layer details
from the application
behind selectable
requirements.

full control is infeasible when multiple applications require access to
the physical layer. Additionally, each application would need sepa-
rate optimization strategies for different physical layers. We, hence,
introduce an abstraction layer that takes control over setting physical
parameters according to the applications’ needs (see Figure 13).

98 sdwns with flow-based phy control

Application
e.g. Video Streaming

Application
e.g. Video Streaming

Transmitter Receiver

Network Stack and Physical Layer Control
according to Transmit Flow Tables

Physical Layer Implementation
either on WARP SDR

or Nexmon-capable Wi-Fi chip

Network Stack, Physical Layer Logging
and Receive Flow Table Control

Physical Layer Implementation
either on WARP SDR

or Nexmon-capable Wi-Fi chip

Figure 13: Abstract system overview. (based on [76])

To handle different connections, we take advantage of the concept
of flows. Flows can, for example, be differentiated according to TCP
or UDP ports. Applications can then define abstract properties perWe differentiate

flows by TCP and
UDP ports.

flow such as robust packet delivery or high throughput. Our inter-
mediary service translates these requirements to physical layer prop-
erties such as modulation scheme, transmit power or transmission
priority. This way, we can handle multiple applications and abstract
from lower-layer details. In the following, we describe our system in
more detail.

11.1.2 Overview of the system components

Depending on the used physical-layer components, the proposed sys-
tem consists of either two or four components. In case of connecting
a WARP SDR to the smartphone, we need: (1) a scalable video codec
(SVC)-based video streaming application as a practical example ap-The Nexmon-based

solution is simpler
to implement, as it

does not require
tunnelling frames to

an SDR.

plication, (2) the WARP “VPN” Service that allows to create tunneling
devices (TUN) under Android to tap and inject IP packets without
root privileges, (3) an Ethernet connection to the WARP to tunnel
packets to the lower layers, and (4) the physical and data link layer
implementations in the WARP. In case of using an internal Nexmon-
capable Wi-Fi chip, we can get rid of the WARP “VPN” Service as
no tunneling over Ethernet is required. We simply need: (1) the SVC-
based video streaming application, and (2) a patched Wi-Fi firmware
to gain access to all outgoing packets. In the following, we describe
the components in detail.

11.1.3 Enhancing SVC-video streaming

Motivating example for our application-centric physical layer is the
increasing demand for reliable, and network-efficient video stream-We focus on

scalable-video
coding.

ing. Due to requirements for flexibility and opportunistic delivery
coming from the heterogeneity of video formats, playback devices
and network throughput variations, we focus on scalable-video cod-
ing. Compared to other data streams, video streams do not rely on

11.1 designing a sdwn system for smartphones 99

error free transmission and can cope with a certain number of bit
errors and packet loss. The latter might lead to degradation of the Scalable-video codecs

encode videos into
different quality
layers that we
intend to transmit
with different
requirements on
robustness or
throughput.

image quality, but it still meets real-time requirements. SVC addition-
ally offers to encode video streams into multiple quality layers. The
base layer is always required to play the video. Higher layers that
lead to better image quality, resolution or frame rate, are optional.
If the physical layer can differentiate, which data streams are more
important for the application than others, it can allocate the appro-
priate amount of resources to fulfill the application’s requirements.
For example, by using more robust modulation schemes and differ-
ent transmit powers, the system can save energy at the transmitter,
while maximizing quality at the receivers.

11.1.4 Complete system overview

In Figures 14 and 15, we present our complete system. In Figure 14
we illustrate the transmitter that encodes a video stream and uses our
system to transmit it to the receiver illustrated in Figure 15, which de- Applications could

generate and inject
raw Wi-Fi frames to
gain control over the
lower layers.

codes and plays back the video stream. The encoder splits the video
stream into three different quality layers. In Figure 15, we show how
the videos would play back if only the base, the base and the first
layer or the base and both extra layers were received. To transmit
the data streams of each layer, the application could generate headers
for all layers up to the application layer on its own and could either
tunnel the resulting frames over Ethernet to the WARP (Option 1) This tight per-frame

control complicates
access to the
physical layer
especially when
multiple applications
run in parallel.

or inject them using Nexmon-capable Wi-Fi chips (Option 2). Even
though, this gives an application full control over the network stack
and allows frame-wise settings for the physical transmissions, it also
complicates the access control to the physical layer, especially if mul-
tiple services need access to it at the same time. Also, system-wide
services such as name and address resolution would be application
depended.

11.1.5 Isolating the application from physical-layer settings

To avoid these complications, we decided to use the existing Linux It is beneficial to use
the existing network
stack
implementations for
handling UDP or
TCP over IP.

kernel to handle transport and network layers. This gives all IP-based
applications access to our implementation and it allows to use exist-
ing transport layer protocol implementations such as UDP and TCP.
To get access to IP packets on Android devices, we consider two op-
tion. For the Nexmon-based approach, we can simply extend the
Wi-Fi firmware and inspect all outgoing frames to detect those we To gain access to the

generated IP packets,
we either need a
VPN service or a
modified Wi-Fi
firmware.

want to handle specifically. For the SDR-based approach, we instanti-
ate a virtual private network (VPN) service to get a file descriptor on
a TUN device. This VPN setup has the side effect that we can define
IP subnetworks that are handled by our application-centric physical

100 sdwns with flow-based phy control

block wise
8x8 DCT

Base Layer First Layer Second Layer

UDP/IP Stream
at port 2300

UDP/IP Stream
at port 2301

UDP/IP Stream
at port 2302

Linux
Stack

TUN
Device

WARP
“VPN”
Service

Flow Table
Filter:
UDP@2300
UDP@2301
UDP@2302

PHY Setup:
Robust
Normal
High Throughput

Filter Flows
and attach

WARP Header

Linux
Stack

UDP/IP/MAC Tunnel
to WARP over Ethernet

Transmitter

USB to
Ethernet
Adapter

Ethernet
Interface

Interpret WARP Header
Prepare Frame from Payload

WLAN or custom
Physical Layer

WARP (Software-defined Radio)

Application

File or Camera
as Video Source

O
pt

io
n

1:
 W

A
R

P
co

nn
ec

te
d

ov
er

 E
th

er
ne

t
O

pt
io

n
2:

 N
ex

m
on

-c
ap

ab
le

 W
i-F

i c
hi

p Linux KernelBCMDHD Wi-Fi Driver

Host to Wi-Fi InterfaceSDIO Interface with DMA Controller

Incoming
Transmit

Frame
Ring Buffer

Various
Frame

Processing
Functions

Outgoing
Transmit

Frame
Ring Buffer

ARM
Processor
in Wi-Fi

Chip

Flow-Filtering Function

Flow Table

Possible Implementation

MAC and
PHY Layers

D11 Real-Time Processor interprets Transmit Parameters

Physical Layer and Analog Front End

Spatial Domain Frequency Domain

Figure 14: System overview that shows the components of our transmit-
ter. At the top, we illustrate our example application—a scal-
able video codec. It uses regular user datagram protocol (UDP)
over Internet protocol (IP) communication offered by the Linux
kernel. Below, we either use the WARP “VPN” Service to setup
physical layer requirements according to application-controlled
flow tables and send frames using WARP SDRs or implement
flow tables into the firmware of Nexmon-capable Wi-Fi chips.

11.1 designing a sdwn system for smartphones 101

WLAN or
custom
Physical

Layer

Filter Flows and attach WARP Header

Ethernet
Interface

Fl
ow

 T
ab

le Filter:
UDP@2300
UDP@2301
UDP@2302

PHY Setup:
ignore FCS
accept
drop

Linux
Stack

UDP/IP/MAC Tunnel
to WARP over Ethernet

WARP
“VPN”
Service

Log
Node:
...:01
...:02
...:03

CSI:
Interpret

WARP Header
extract extra
Information

RSSI:
-60dBm
-72dBm
-48dBm

Rate:
24Mbps
11Mbps
54Mbps

block wise
8x8 IDCT

Application

Receiver

Used Layers

TUN
Device

Base Layer First Layer Second Layer

UDP/IP Stream
at port 2300

UDP/IP Stream
at port 2301

UDP/IP Stream
at port 2302

Linux
Stack

O
pt

io
n

1:
 W

A
R

P
co

nn
ec

te
d

ov
er

 E
th

er
ne

t
O

pt
io

n
2:

 N
ex

m
on

-c
ap

ab
le

 W
i-F

i c
hi

p
USB to

Ethernet
Adapter

Linux Kernel BCMDHD Wi-Fi Driver

Host to Wi-Fi Interface SDIO Interface with DMA Controller

Outgoing
Receive
Frame

Ring Buffer

Various
Frame

Processing
Functions

Incoming
Receive
Frame

Ring Buffer

ARM
Processor
in Wi-Fi
Chip

Flow-Filtering Function

Flow Table

Possible Implementation

MAC and
PHY Layers

D11 Real-Time Processor extracts PHY information

Physical Layer and Analog Front End

Figure 15: System overview that shows the components of our receiver.
Frames are received either by Nexmon-capable Wi-Fi chips at the
bottom or by WARP SDRs in the middle. Both can filter the in-
coming frames and extract additional information such as CSI.
To interface the WARPs, we use USB-to-Ethernet adapters similar
to the transmitter side and a VPN service to inject the received
frames into the Linux stack. The Nexmon-based firmware patch
does not require the VPN service. (based on [76])

102 sdwns with flow-based phy control

layer. All other packets are handled by the existing network inter-
faces.

On the transmitter side, this WARP “VPN” Service takes all IP pack-
ets coming from the TUN device and attaches physical and data linkDepending on the

flow, the WARP
“VPN” Service

prepends additional
MAC and PHY

headers to outgoing
frames that are

interpreted in the
SDR.

layer headers to them. Those are similar to RadioTap headers used for
injecting raw Wi-Fi frames with regular Wi-Fi chips. To decide which
physical-layer features are required by an application, we use flow ta-
bles. These tables contain filters that match bits in packet headers as
well as physical-layer settings that should be passed to the WARP. In
our example the different SVC layers are transmitted using different
UDP ports. Each of the three streams is considered a flow and can
have unique requirements on the physical layer. For our Nexmon-
based implementation, we could also rely on this VPN service to useUsing Nexmon we

can offload the flow
filters into the Wi-Fi
firmware to increase
the frame processing

performance.

the same system components as in the SDR-based implementation.
However, we realized that the performance for processing frames can
be increased by offloading the flow filters into the Wi-Fi firmware. As
long as the Wi-Fi chip is the only interface we use for communication,
getting rid of the VPN service is a suitable solution to optimize and
simplify our implementation.

11.1.6 Interfacing SDRs from smartphones

We considered multiple interfaces for connecting with the WARP.
To avoid interference during our wireless experiments, we decidedUsing a

USB-to-Ethernet
adapter seems to be
the simples way to
connect WARPs to

Android
smartphones.

against wireless interfaces. SDIO is not available on all smartphones.
Directly interfacing the WARP using USB On-The-Go is not possible
due to the lack of a USB interface at the WARP. However, we can use
USB-to-Ethernet adapters to connect to the WARP’s 1 Gbps Ethernet
ports. Over the Ethernet link, we tunnel our physical-layer frames to
the WARP for transmission.

11.1.7 Offering enhanced features at the receiver

As long as we only intend to get more control over Wi-Fi transmis-
sions and comply with the standard, we could use the smartphones’
regular Wi-Fi chips as receivers. Especially a Nexmon-capable Wi-Nexmon-capable

Wi-Fi chips can also
implement flow

filters at the receiver
and extract

additional
information about

the received frames.

Fi chip can provide interesting extensions at the receiver side. Flow
filters could be used to drop frames not required by currently run-
ning applications or to decide which frames should be received even
though the frame check sequence is wrong. A video application could
cope with some bit errors and use at least the undamaged parts of a
Wi-Fi frame. A firmware patch could also provide additional infor-
mation about the reception quality to tune the streaming implementa-
tion. For example, by extracting channel state information (CSI) and
feeding it back to the transmitter to apply beamsteering when broad-

11.1 designing a sdwn system for smartphones 103

casting video frames. As explained in Chapter 8, Nexmon provides
the CSI-extraction feature.

Nexmon also provides basic SDR capabilities to implement physi-
cal layers that differ from the Wi-Fi standard. However, in this case,
frames need to be encoded and decoded in software. This signif- SDRs with FPGAs

are able to decode
custom wireless
implementations in
real-time.

icantly reduces the throughput and increases energy consumption.
Hence, to evaluate new physical layers or non-standard compliant ex-
tensions, we need to use a full-fletched SDR at the receiver side that
is able to decode custom physical layers in an FPGA. Of course, SDRs
also allow to implement flow filters and to extract additional physical-
layer information. After reception, selected frames are tunneled to the
WARP “VPN” Service, that extracts the payload and passes IP pack-
ets on to the Linux kernel. The additional measurement information
gets logged and can be used to enhance future transmissions as men-
tioned above.

11.1.8 Robust scalable-video transmission

As a use case for our application-centric physical layer, we chose
video streaming. Videos have the advantage that their information We chose video

streaming as
example application,
because it can cope
with packet losses
and bit errors.

can be encoded and compressed in various qualities. Decoders can
cope with packet loss and bit errors which lead to image quality
degradation that users may tolerate in real-time applications. To meet
the requirements of heterogeneous end-devices as well as varying net-
work speeds, scalable-video coding offers to encode video material
into different layers. A low quality base layer is required by every
user. To improve video playback, users can request additional layers.
This principle is often illustrated by the SVC cube shown in Figure 16.

Quali
ty (S

NR)

Te
m

po
ra

l (
Fr

am
e

Ra
te

)

Spatial (Resolution)

Figure 16: The H.264/SVC cube model to split a video into multiple quality,
frame rate and resolution layers. We focus on varying the quality
in our scalable-video codec implementation. (based on [76])

104 sdwns with flow-based phy control

Currently, SVC extensions for existing video codecs such as H.264
and H.265 [86] exist in the form of H.264/SVC [81] and scalable high-Scalable-video codec

implementations
exist for H.264 and
H.265, but they are

very complex.

efficient video coding (SHVC) [37]. However, those codecs have a
high complexity, as they combine the idea of SVC with very efficient
video compression. To give researchers a smooth entrance into the
world of scalable video coding, we present a lightweight scalable
video codec that is based on the idea of Motion JPEG, where each
video frame is encoded separately using JPEG images. JPEG compres-
sion relies on the fact that high frequency components in a picture are
less important for the human visual system than low frequency com-
ponents. Our video codec uses this idea and only packs the lowestWe created our own

lightweight
scalable-video codec

based a
Motion-JPEG-like

compression.

frequency components into the base layer, which is required by all
receivers. Additional frequency components come with the first and
second layer and are used to increase video quality. The result is
illustrated in the upper right corner of Figure 15.

To get the frequency components, the video encoder applies the
discrete cosine transform (DCT) to each 8× 8 block in each video
frame on each of the three YCbCr color components. The receiver ofSimilar to JPEG, we

use the discrete
cosine transform to

convert between
spatial and

frequency domain.

the layered video stream converts the frequency components back to
the spatial domain using the inverse discrete cosine transform (IDCT).
The layers are required in the order base, first and second layer. If
parts of a layer are missing, for example, due to frame loss on the
physical layer, missing parts are replaced by parts from preceding
frames.

11.2 implementation

To implement the system described above, we used Nexus 5 smart-
phones. Their BCM4339 Wi-Fi chip is Nexmon-compatible and theirWe use

AX88179-based
USB-to-Ethernet

adapters to interface
WARP SDRs.

USB port can be configured as USB host interface to connect AX88179-
based USB-to-Ethernet adapters which interface WARP SDRs run-
ning the 802.11 reference design in ad hoc respectively IBSS mode.

11.2.1 Implementing the scalable-video codec

We implemented our scalable-video codec in C as this allows to op-
timize memory access much better than Java. To encode and decodeWe implement our

codec in C to cope
with the high

computational load
for encoding video

frames.

videos in real-time, we have to calculate 8×8 pixel DCT operations
on all 8×8 pixel block in each video frame. For a frame size of
only 800×480 pixels, we already need to calculate 6 000 of such DCTs.
Without using optimized processor instructions for image process-
ing, those operations already use up a significant amount of CPU
time. However, by placing precalculated DCT coefficients efficiently
in memory, we manged to optimize our C code sufficiently to encode
videos in real-time. To read in video frames, we use OpenCV with
buildin FFMPEG support. On all Android versions (at least between

11.2 implementation 105

4 and 6), we can read video frames from files. On Android 4, we
can even use the build-in camera to encode videos. In any case, the Though our

imlementation is not
the most efficient, it
transcodes videos in
real-time and also
works as a live demo.

video encoder produces three output streams containing frequency-
domain components as illustrated in Figure 14 to represent our three
quality layers. Color information is simply stored in an additional
layer. We can either directly send each layer over UDP using separate
UDP ports, or we can store the streams in a file and send them out
in a second step. The first option is best suited for live demos of our
app, while the second option helps to focus on networking aspects
while running repeatable experiments.

The receiver works similarly. Video streams, can be either loaded
from files or received over UDP. Then we apply the IDCT to generate The decoder directly

writes video frames
either to frame
buffers used by the
display or into files.

8×8 pixel matrices containing the image information represented by
the transmitted frequency components. We write the resulting images
either directly to frame buffers that are displayed on the screen or into
files. Again, the first option is used in live demos, while the second
options allows to archive the received video information and analyze
its quality separately. Overall, the implementation is independent of
the underlying communication infrastructure and thereby reusable in
other projects.

11.2.2 Implementing the WARP “VPN” Service

The WarpVPNService class is used to handle the data processing be-
tween the WARP board and the Android device. When started, IP
packets from applications running on the smartphone are captured We use the VPN

service to gain
access to IP packets
without requiring
root privileges on an
Android system.

with a TUN device. Access to the device is available without root priv-
ileges by implementing a VPN service. If desired, the service can also
be bypassed by applications that do not require physical-layer control,
by modifying the VPN’s subnet accordingly. The service is used to
filter frames and attach WARP configuration headers according to
flow table rules. During runtime, applications can send instructions
to configure those flow filters using the Messenger interface of the
service. This allows us to use a single service to map requirements Applications can

reconfigure the flow
filters in the VPN
service during
runtime.

of multiple applications running on a smartphone to physical-layer
parameters. After attaching WARP configuration headers, the frames
are packed into Ethernet frames and send over the USB-to-Ethernet
adapter to the WARP. There, we interpret the header to set physical-
layer parameters such as transmission power and modulation coding
scheme accordingly.

In the other direction, WARP nodes receive frames, add some meta
data and send them encapsulated into Ethernet frames back to the
smartphone. There, they are received by the VPN service. It extracts
the IP packets and can log the additional meta information. After
extraction, the IP packets are injected into the TUN device that hands
them over to Linux’s networking stack. The VPN service is build in

106 sdwns with flow-based phy control

a way, that it can both be used by different applications and interfaceReceived frames are
passed from the

WARP SDR to the
VPN service and
then injected into

the networking stack.

different physical-layer hardware. The WARP SDR is easily replaced
by a USRP, an external Wi-Fi card or an LTE interface. It is simply a
frame processing element that separates flows and attaches a set of
settings for their transmission depending on the requirements set for
each flow.

11.2.3 A Nexmon-based implementation using internal Wi-Fi chips

Our Nexmon-based implementation is currently a work in progress.
Florentin Putz first started to modify the WARP VPN Service to in-
terface a Nexmon firmware that supports monitor mode and frame
injection. Instead of exchanging frames with the WARP over Eth-
ernet, it directly interfaces the internal Wi-Fi chip. To set transmitIn a first step, we

connected the
WARP VPN Service

to a Nexmon-based
firmware with

monitor mode and
injection support.

parameters, we can prepend the transmitted frames with RadioTap
headers. In this case, we would first have to pack the IP packets into
Wi-Fi frames in the VPN service and then send them to the Wi-Fi chip.
While this approach works, it is unaware of the current state of the
Wi-Fi connection managed by the Wi-Fi firmware. A better approach
would be to simply pass Ethernet frames to the Wi-Fi firmware. The
firmware expects those anyways and repacks them into Wi-Fi frames
internally. We just have to pass the physical-layer parameters that
have to be used to the firmware.

In the case, where the Wi-Fi chip should handle all outgoing traffic
anyways, it would be much simpler to bypass the WARP VPN Ser-
vice and send all outgoing traffic directly to the Wi-Fi interface as it
is done by default. To manage flows, we simply move the flow filtersIt is more efficient to

ignore the VPN
service and instead

embed its
functionality

directly into the
Wi-Fi firmware.

from the WARP VPN Service into the firmware. Here, we can inspect
the payload of all outgoing frames after attaching Wi-Fi headers. If
frames are detected as part of a flow whose physical-layer settings
should be controlled, we can directly set the physical-layer parame-
ters in the d11txhdr structure prepended to each outgoing frame, as
described in Section 6.2.2.

We define flow filters and their effect in frame-processing functions.
There are various ways to implement them in the firmware. For staticFlow filter

implementations can
range from

hardcoded into the
firmware binary to

reprogrammable
during runtime

using
position-independent

code.

experiments, we can hardcode those filters into the firmware binary
and reload the firmware whenever our experimental setup changes.
To enhance this implementation, we can implement flow filters that
can be updated. We keep a list of conditions with corresponding
physical-layer settings. The code to check the conditions with the
processed frames and apply the settings is hardcoded, but the list
can be updated using an ioctl, as explained in Section 6.2.13. This
approach already reaches the flexibility of the WARP VPN Service.
To further enhance it, we can side-load the complete frame-processing
function during runtime. To this end, we define a clean interface for
passing frames through the function. As side-loaded functions have

11.2 implementation 107

3,98m 4,12m 4,05m 4,50m3,79m

5
4

3
2

1

Android + WARP Node

Figure 17: Experimental setup in our office environment. All phones are
hanging on movable hat stands in a height of roughly 170 cm.
Positions look random as the devices are placed around the tables
in our offices. (based on [76])

WARP Software-defined Radio

USB to Ethernet
Adapter

Ethernet, Antenna
and USB Cables

Nexus 5
Smartphone

PCB Antenna

Figure 18: To each Android node we attach a USB-to-Ethernet adapter with
a 5 m long cable to the WARP and a power supply. Using a low-
loss CS29 cable, we feed back the WARP’s radio frequency (RF)
output to a PCB antenna (3 dBi gain) that is fixed to the smart-
phone. (based on [76])

full access to the Wi-Fi chip, we have to take security precautions as
presented in Section 6.1.4. Having a set of side-loadable functions
that are digitally signed can limit security issues and keep the size SDR features could

be employed for
cross-technology
communication.

of the main firmware binary small while being able to load frame-
processing functions on demand. Those processing functions are also
not limited to filtering flows and defining physical-layer settings. We
could also define that some data should be transmitted by using the
SDR features of the Wi-Fi chip described in Chapter 9 to, for example,
perform cross-technology communication.

108 sdwns with flow-based phy control

11.3 evaluation

To evaluate the feasibility of our solution, we set up a testbed in
our office environment as illustrated in Figure 17. We used five
smartphones that are equipped with WARP software-defined radiosWe use five Nexus 5

smartphones
connected to WARP

SDRs whose
antennas are

attached to the backs
of the smartphones.

(SDRs), as illustrated in Figure 18. Each WARP SDR is connected to
a USB-to-Ethernet adapter that is connected to the USB port of the
smartphones. To transmit and receive signals from the smartphone’s
location, we attached PCB antennas to the backs of the smartphones
and connected them to the antenna ports of the WARP SDRs. To re-
duce interference by other Wi-Fi users, we performed experiments at
night and selected channel 14 in the 2.4 GHz band with 20 MHz band-
width. In Germany this channel is reserved for research purposes.

During our experiments, we used Node 1 as the transmitter that
generated a layered SVC video stream. We transmitted each of theNode 1 broadcasted

a three layered video
stream to the other
smartphones in ad

hoc mode.

three layers on a separate UDP port resulting in three different flows.
Depending on the experiment, we varied the used modulation scheme,
the amount of forward error correction (FEC) and the transmit power
for each flow. The transmitter fragmented all video frames into 5
(base layer), 23 (first layer) or 41 (second layer) Wi-Fi frames (with
1348 byte payload) that we broadcasted in Wi-Fi ad hoc mode without
retransmissions. Nodes 2 to 5 were receivers, on which we measured
the number of received Wi-Fi frames and the quality of the video
playback in terms of structural similarity (SSIM).

11.3.1 Experiment definition

Each of our experiments lasted 20 seconds (480 video frames at 24
frames per second). We measured video qualities on a per-frame
basis and frame reception rates per second and plotted the average
including 99 percent confidence intervals. As we do not focus on

Table 2: 802.11g data rates achievable on WARP

PHY Gross Rate Achievable Rate Modulation FEC Payload Air Time

6 Mbps 5.3 Mbps BPSK 1/2 1.979 ms

9 Mbps 7.6 Mbps BPSK 3/4 1.198 ms

12 Mbps 9.8 Mbps QPSK 1/2 0.899 ms

18 Mbps 13.6 Mbps QPSK 3/4 0.599 ms

24 Mbps 17.0 Mbps 16-QAM 1/2 0.449 ms

36 Mbps 22.2 Mbps 16-QAM 3/4 0.300 ms

48 Mbps 26.4 Mbps 64-QAM 2/3 0.225 ms

54 Mbps 28.1 Mbps 64-QAM 3/4 0.200 ms

11.3 evaluation 109

Node 2 Node 3 Node 4 Node 5
0%

20%

40%

60%

80%

100%

W
i-

Fi
fr

am
e

re
ce

pt
io

n
ra

te 6 Mbps
9 Mbps
12 Mbps
18 Mbps
24 Mbps
36 Mbps
48 Mbps
54 Mbps

Figure 19: Wi-Fi frame reception rates of base layer frames transmitted at
different gross data rates at 10 dBm transmit power. (based on
[76])

video compression, the bit rates per frame are comparably high. How- Due to the low but
lossy compression of
our simple
scalable-video codec,
we generate video
streams with high
data rates.

ever, this allows us to test our system under load requirements for
high-definition videos. For our frame size of 800× 480 pixels and
8× 8 pixel block size, we required 17.280 Mbps for all three grayscale
video layers (1.152 Mbps for the base, 5.760 Mbps for the first and
10.368 Mbps for the second layer).

According to [89] and considering 1348 payload bytes per Wi-Fi
frame, the achievable data rates lie below the gross data rates (see
Table 2). Hence, we needed to choose a data rate of 36 Mbps to have In our experiments,

we either fix the
transmit power and
vary the modulation
coding scheme
(MCS) or fix the
MCS and vary the
transmit power.

sufficient throughput for our 17.280 Mbps video stream. This 36 Mbps
setting acts also as the baseline for further experiments. To analyze
the video quality as well as energy efficiency, we defined two sets
of experiments: (1) We used a transmit power of 10 dBm and kept
the first and second layer’s bit rate fixed at 36 Mbps and changed the
rates of the base layer to all rates given in Table 2. (2) We fixed the
rates of the base, first and second layers to 6, 24 and 48 Mbps and
changed the transmit power between −12 dBm to 18 dBm in steps of
3 dB.

11.3.2 Evaluation of transmit rate variations

In the following, we present our results. In Figure 19, we show the
rates of successfully received Wi-Fi frames. Those have a correct
frame check sequence (FCS). With the given transmit power, Nodes 2
and 3 have almost no packet loss, while Node 4 only receives packets At higher distances

to the transmitter,
the reception rates
drop for less robust
modulation coding
schemes.

up to a rate of 36 Mbps. Node 5 is the most distant node from the
transmitter and receives well at rates of 6, 12 and 24 Mbps. Higher
rates result in almost no reception, while rates of 9 and 18 Mbps en-
dure higher frame loss than their neighboring higher rates. This effect
is most likely due to the fact that at 9 and 18 Mbps each three data bits
are protected by one FEC bit, while at 6, 12 and 24 Mbps, each data bit
is protected by one FEC bit. Under the assumption that the reference

110 sdwns with flow-based phy control

6 9 12 18 24 36 48 54

0

0.2

0.4

0.6

0.8

1

Gross transmit rate in Mbps

SS
IM

Node 2 Node 3
Node 4 Node 5

Figure 20: Video qualities measured as SSIM when the transmit power is
fixed at 10 dBm and the transmit rate of the base layer changes
while keeping the first and second layer fixed at 36 Mbps. (based
on [76])

design implementation for the WARP is correct, we conclude that
gaining throughput by increasing modulation orders is more efficient
than reducing FEC.

Regarding video quality (see Figure 20), we observe that Nodes
2, 3 and 4 have SSIM values close to one, which means that they
have very good video quality. Compared to Node 5, they receiveAs long as the base

layer is correctly
received, we get at

least acceptable
video qualities which

underlines the
requirements for

robust
transmissions.

the first and second layers in addition to the base layer as they have
low frame loss rates at 36 Mbps (at which the higher video layers are
transmitted). Node 5 does not receive the higher layers, therefore,
it only achieves an acceptable video quality around 0.7. As soon
as we increase the base layer’s transmit rate above the point of low
frame loss rates, we encounter very bad video qualities below 0.2,
even though the higher layers might still be receivable. We conclude
that video quality is highly correlated with frame loss rates and that
it is essential to ensure a good reception of the base layer which alone
gives acceptable video quality.

11.3.3 Evaluation of transmit power variations

In our second set of experiments we analyzed the influence of trans-
mit power on video reception. We selected a robust transmit rateThe higher the

transmit power, the
better high
throughput

transmissions can be
received as long as

too high
amplification does

not degrade the
signal qualities.

of 6 Mbps for the base layer and less robust rates of 24 Mbps and
48 Mbps for the first and second layers. Figure 21 illustrates that the
higher the transmit rate, the higher the transmit power requirements
to successfully receive the Wi-Fi frames. However, if the transmit
power gets too high, transmission at high transmit rates becomes im-
possible, which is most likely due to the errors introduced by high
and therefore non-linear amplification. The effect is observable in
Figure 21 (c) at a transmit power of 18 dBm. We also observe that
nodes closer to the transmitter are able to receive at lower powers

11.3 evaluation 111

−12 −9 −6 −3 0 3 6 9 12 15 18

0 %

20 %

40 %

60 %

80 %

100 %

Transmit power in dBm

W
i-

Fi
fr

am
e

re
ce

pt
io

n
ra

te

Node 2
Node 3
Node 4
Node 5

(a) Base layer at 6 Mbps

−12 −9 −6 −3 0 3 6 9 12 15 18

0 %

20 %

40 %

60 %

80 %

100 %

Transmit power in dBm

W
i-

Fi
fr

am
e

re
ce

pt
io

n
ra

te

Node 2
Node 3
Node 4
Node 5

(b) First layer at 24 Mbps

−12 −9 −6 −3 0 3 6 9 12 15 18

0 %

20 %

40 %

60 %

80 %

100 %

Transmit power in dBm

W
i-

Fi
fr

am
e

re
ce

pt
io

n
ra

te Node 2
Node 3
Node 4
Node 5

(c) Second layer at 48 Mbps

Figure 21: Wi-Fi frame reception rates when keeping the base, first and sec-
ond layer transmit rates fixed at 6, 24 and 48 Mbps, while varying
the transmit powers. (based on [76])

112 sdwns with flow-based phy control

−12 −9 −6 −3 0 3 6 9 12 15 18

0

0.2

0.4

0.6

0.8

1

Transmit power in dBm

SS
IM

Node 2 Node 3
Node 4 Node 5

Figure 22: Video qualities measured as SSIM when keeping the base, first
and second layer transmit rates fixed at 6, 24 and 48 Mbps, while
varying the transmit powers. (based on [76])

than nodes that are further away. Only at low transmit powers Node 3
has a better reception than Node 2. This is either due to different
WARP boards whose receiver sensitivities can vary from board to
board, or it is due to the direction the smartphones are facing in the
room. As the antenna of Node 2 faces away from the transmitter it
might receive noisier signals than Node 3.

Video qualities illustrated in Figure 22 reflect the observations of
the frame reception rates. At low transmit powers Nodes 2 and 3Video qualities

correlate with the
ability to receive

frames of different
quality layers.

already get medium video quality that increases to very good quality
as soon as transmit powers reach 6 dBm so that the second layer is
receivable. Video reception at Nodes 4 and 5 start at −3, respectively
−6 dBm with acceptable quality.

11.4 discussion

Our experiments show that allowing applications to change physical-
layer parameters by using flow tables is practical. Using a VPN ser-
vice to implement an abstraction layer has multiple benefits. First,The implementation

based on a VPN
service is

transparent to
IP-based

communication, it
abstracts compex

physical-layer
settings by
processing

requirements and
allows working with

flows.

existing IP-based applications can profit from physical-layer optimiza-
tions. Second, the service abstracts from complex physical-layer pa-
rameters by translating application requirements to physical-layer set-
tings that can vary between wireless technologies. Third, the flow-
based approach avoids an over-optimization on a per-frame basis. In-
stead, applications need to set requirements only once per flow and
our service is responsible to choose and adapt physical-layer settings
over time. Nevertheless, running the VPN service also generates an
overhead that can be avoided by offloading the flow filtering func-
tions directly into the communication hardware. To this end, we pro-
posed to modify the Wi-Fi firmware of a Nexmon-capable Wi-Fi chip.

In our evaluation, we demonstrated that our solution is suitable
to implement and optimize application-centric physical layers that

11.5 future work 113

are aware of application requirements. For video streaming, our re- Just by adjusting
transmit power and
modulation coding
schemes, we can
optimize video
transmissions.

sults show that adjusting transmit power and transmit rates already
allows optimizations that help to meet video quality requirements at
receivers. Our solution is further capable of adjusting more physical-
layer parameters or even exchange complete physical-layer implemen-
tations on the SDRs, depending on application requirements.

11.5 future work

While the current implementation can be considered as a proof-of-
concept, various extensions are possible. As mentioned above in Sec- We are working on a

Nexmon-based
implementation with
support for standard
video codecs and
other applications.

tion 11.2.3, connecting our application with Nexmon-capable Wi-Fi
chips is currently a work in progress. After this extension, we plan to
replace our custom scalable-video codec by a standard codec imple-
mentation. Either supporting scalable-video coding or other stream-
ing approaches such as DASH that support adjusting video quality
parameters during playback. Other applications that might benefit
from physical-layer control such as massive multi-player gaming or
emergency applications are also worth investigating.

Additionally, we did not use the full potential of software-defined
radios in our implementation. By switching between physical-layer Switching between

physical layers
allows to chose the
best implementation
for the application at
hand and can
combine the benefits
of different
communication
standards.

standards or using the SDR capabilities of Wi-Fi chips to perform
cross-technology communication (CTC), one could further enhance
the interoperability between various wireless standards, chose the
best standard for the type of data that should be transmitted or in-
vestigate how upcoming standard perform as physical layer in a live
video streaming scenario. By reverse engineering the operation of the
Bluetooth components build into Broadcom’s Wi-Fi chips, we could
at least switch between Wi-Fi and Bluetooth communication on de-
mand, for example to enhance energy consumption by only activat-
ing the Wi-Fi receiver as soon as a video transmitter is detected using
Bluetooth.

11.6 related work

Besides gaining lower-layer access on commercial off-the-shelf hard-
ware, which is offered by Nexmon, this work especially relates to
three main areas, flow-based networking approaches with focus on Our work relates to

flow-based
communication and
scalable-video
coding.

the wireless domain, and scalable-video-coding schemes.
To bundle and manage network frames that logically belong to-

gether, we rely on the concept of flows, an idea introduced in the
1960s [27]. Flows can either be extracted from header information,
for example ports and addresses, or they can be explicitly defined
by using flow labels as in IPv6 [71]. OpenFlow [64] is a project im-
plementing flows in network hardware to allow controllers direct ac-
cess to flow tables, for example, in switches to control how data is

114 sdwns with flow-based phy control

forwarded. It implements the concept of software-defined network-
ing (SDN). OpenRoads or OpenFlow Wireless [99] is the correspond-The concept of flows

exists since the
1960s and is used by

the SDN
applications

OpenFlow and
OpenRoads.

ing project for wireless systems. Its major purpose is to allow han-
dovers between wireless technologies and to manage wireless net-
works. OpenRadio [5] is a more application-centric solution that aims
at developing a platform that supports multiple physical layers that
can be adjusted to the needs of an application. However, it misses a
complete implementation and extensive evaluation.

Video streaming is already extensively evaluated in various works.
The authors of [45] focus on flow-based control for video streaming
services and significantly enhance the quality of experience (QoE) of
video on demand (VoD) services like YouTube. Therefore, they rely
on deep packet inspection (DPI) and application metrics. There are
also works like [46] that focus on optimizing physical-layer transmis-Flows are commonly

used for handling
video streams in a

network.

sion for video applications in multi-antenna systems. The physical
layer knows which bits are more important for a successful video
transmission and can adjust according to channel conditions. Last
but not least, SVC is another solution to cope with fluctuating net-
work throughput by encoding video into multiple quality layers that
have to arrive at receivers with different priorities. This makes SVC
streams ideal applications for SDN. In [53], the authors create flow
based routing protocols to cope with varying network conditions as
well as playback device properties. In practise, SVC extensions ex-
ist for the H.264 and H.265 codecs [37, 81]. However, the supportSVC is a well suited

application for
software-defined

networks.

for mobile playback devices is still very limited. The authors of [55]
offer at least a software-based player for Android devices. In this
work, we neither intend to reinvent scalable-video codecs, nor do we
want to compete against existing solutions. Our intention is to have a
lightweight video codec based on a simple implementation that runs
smoothly on mobile devices and is easily extensible so that we can
combine it with the concept of flows as well as physical-layer opti-
mizations.

11.7 conclusion

In this chapter, we presented a solution that allows mobile applica-
tions to take advantage of physical-layer properties when transmit-
ting data. Our framework relies on the concept of flows to avoid
over-optimizing the physical layer on a per-frame basis. For eachOur solution allows

mobile applications
to modify

physical-layer
parameters on a flow

basis by defining
requirements for the

transmissions.

flow, an application can define requirements on the physical transmis-
sion such as the use of robust modulation schemes and high power
transmissions if a flow should be received by as many receivers as
possible, or the combination of high throughput and low transmit
power to only serve nodes in close proximity. To abstract from the
complexity of the physical layer and to support multiple applications
per device, we introduce an intermediary layer that handles applica-

11.8 my contribution and acknowledgements 115

tion requirements and sets corresponding physical-layer parameters
according to flow tables. By implementing our solution as VPN ser-
vice on Android, it becomes transparent to existing applications that
rely on IP based communication.

As an example application to evaluate our solution’s performance,
we chose scalable-video coding on Android smartphones. We de- Our example

application is a
custom
implementation of a
lightweight
scalable-video codec.

signed and implemented a lightweight scalable-video codec that fo-
cuses only on offering multiple quality layers that can be transmit-
ted over separate flows. To be able to change physical-layer param-
eters on smartphones and to have flexibility for future research, we
used software-defined radios that currently implement the 802.11g
standard in an easily extensible way. To simplify the setup, we also
proposed to replace the SDR by a Nexmon-capable Wi-Fi chip that Either SDRs or

Nexmon-capable
Wi-Fi chips realize
the requirements set
by an application.

has control over various physical-layer parameters on off-the-shelf de-
vices. In our evaluation, we analyzed the effect of choosing different
modulation coding schemes and transmit powers on frame reception
rates and video quality. In the next chapter, we continue with more
security focused applications.

11.8 my contribution and acknowledgements

While looking into research topics related to the Multi-Mechanisms
Adaptation for the Future Internet (MAKI) project, I came up with the
idea to optimize the video-streaming scenario, often used in this This work is based

on a collaboration
within the MAKI
project.

project, by providing means that let applications control physical-
layer properties. To this end, I developed the scalable-video codec,
the interface to the WARP and the VPN service. When Nexmon en-
tered a production state, I had the idea to replace the WARP SDR by
a Nexmon-capable Wi-Fi chip. The adaptation is currently in process
and Florentin Putz is working on its implementation. I thank him for
his eager work and the interest in the continuation of this project. Ad-
ditionally, I thank Denny Stohr for collaborating on the first version
of the system with me.

12
R E A C T I V E W I - F I J A M M I N G O N S M A RT P H O N E S

Wireless radio communication jammers have been around for decades.
They are used for strategic advantages, hindering an opposing party
from exchanging information, for example, in a military conflict or Friendly jammers

are used to protect
unencrypted and
unauthenticated
wireless applications
against illegal signal
injections and
information leakage.

situations where remote trigger signals for explosive devices need to
be suppressed. They are also used to protect vulnerable legacy sys-
tems from malicious communication [12, 14, 31, 61, 83, 92, 95], for
example, pace makers that can be wirelessly reprogrammed without
encryption and no authentication. Reactively jamming all unautho-
rized communication with those devices can be a life saver and pro-
tect a patient’s privacy [31, 95].

Besides using jammers for friendly or public safety applications,
radio jammers are also subject to abuse. Whoever owns a jammer As dual-use

applications,
jammers may also be
abused to hinder the
placement of distress
calls or hamper
positioning systems.

for GSM and LTE bands can block cellular communication and in do-
ing so also hinder victims in distress situations from using phones to
make 9-1-1 calls to call for help. People tracked by the government
with GPS anklets may use jammers to leave their allowed living zone
but may additionally disturb other GPS applications in their vicin-
ity. While those applications are definitely illegal in most countries of
the world (see [20]), it is important to understand what malicious at-
tackers can achieve. Existing radio communication hardware carried
around by ordinary civilians can participate in attacks that we need
to prevent.

Smartphones, for instance, may be the most widespread radio trans-
mission enabled devices. They are carried around by billions of Attacks may turn

omni-present
communication
devices such as
smartphones into a
decentralized
network of mobile
jammers.

people every day and are densely distributed in metropolitan ar-
eas where people constantly communicate wirelessly. A malicious
attacker overtaking only a small fraction of these devices could create
a network of densely distributed highly capable radio jammers that
could trigger a wide-spread denial-of-service attack against wireless
communication. In addition, reactive jamming would allow to create
a mesh network of cooperative distributed jamming nodes that could
selectively jam any other communication while keeping an open con-
trol channel for their coordination.

In this chapter, we investigate the feasibility of smartphone-based
wireless jammers by implementing proof-of-concept firmwares for We use Nexmon to

create firmware
patches that
implement a reactive
jammer in the Wi-Fi
chip of a Nexus 5
smartphone.

the Nexus 5 smartphone. The goals are always friendly-jamming
applications to either hinder nodes from transmitting non-compliant
Wi-Fi signals, or to protect industrial resources by using large num-
bers of employee smartphones to defend against attacks on legacy
hardware. To this end, we implement a smartphone-based reactive

117

118 reactive wi-fi jamming on smartphones

jammer for Wi-Fi systems that can jam all receivable rates supported
by Nexus 5 smartphones (e.g., 80 MHz SISO 802.11ac frames). Dur-
ing our experiments, we realized that reactive Wi-Fi jammers might
target only single communication flows, but always hamper the com-
plete communication of a specific device as the physical layer in theTo avoid suppressing

all communication of
a node, we introduce

the concept of an
acknowledging

jammer with
adaptive

power-control
abilities.

transmitter does not differentiate to which flow a frame belongs. As
a solution for this problem, we enhance the reactive jammer by send-
ing acknowledgements to the frame transmitter. This avoids retrans-
missions and the blockage of non-targeted traffic. To optimize the
runtime of smartphone-based jammers, we further improve our jam-
mer by using an adaptive power-control algorithm to adjust the trans-
mission power depending on the jamming success. For each of the
three jamming approaches, we evaluate the jamming performance
and the energy consumption. All of our experiments are designed
with reproducibility in mind. Even though, our jammer would al-
low continuous-tone jamming, we solely focus on reactive jammers
as they are required for friendly jamming applications.

To implement the reactive jammer, we add a simple parser to the
programmable state machine running in the D11 core (see Section 4.2.2For our

implementation, we
use the D11 core to

analyze incoming
frames in real-time
and, then, trigger a

transmission of a
jamming waveform

stored in the
sample-play buffer.

and Section 4.4 for background information and Section 6.2.9 and
Section 6.2.14 for implementation information). It inspects a frame’s
header while the baseband is still receiving the frame data. If a jam-
ming condition matches (e.g., the destination UDP port), we start a
new transmission that interferes with the target frame at the receiver.
While Berger et al. [8, 9] request the baseband to immediately trans-
mit an 802.11 frame, we force the chip to transmit an arbitrary wave-
form that we previously stored in the sample-play buffer. It contains
up to 512 complex samples that are fed into the DACs for a config-
urable number of times. We can, hence, control the spectral shape
of the jamming signal, its duration and power. With respect to [8, 9],
our approach is more flexible as it allows a finer customization of the
jamming parameters. For instance, we can focus the jamming energyWe are the first to

present smartphone
based jamming that

even targets
802.11ac

transmissions.

on selected carriers like the pilots that are used at the receiver for
signal equalising [17, 36, 82]. All of this is actually possible thanks
to our discovery of new chip features, that were not available in the
“old” 802.11g chips used in [8, 9]. For the same reason, we are also re-
porting, for the first time, the performance of reactive jamming with
different settings of the channel bandwidth (40 MHz and 80 MHz) in-
troduced by the 802.11ac standard.

Developing our three jamming applications, we faced the followingAnalysing and
modifying ucode to
transmit arbitrary

signals in time was
challenging.

challenges: (1) We had to reverse engineer the ucode of the real-time
processor, (2) we had to understand how arbitrary signal transmis-
sions work, (3) we had to trigger those transmissions in time from
within the ucode, and (4) we had to understand how to unlock arbi-
trary modulation rates during transmission.

12.1 design 119

In the following, we first present the high-level design of our three
jammers in Section 12.1, continue with a detailed description of their After a high-level

design follows a
detailed
implementation and
an experimental
evaluation.

implementation in Section 12.2 and an experimental evaluation in
Section 12.3. In Section 12.4, we discuss smartphone-based jamming,
present related work in Section 12.5 and future work in Section 12.6.
Then, we conclude in Section 12.7.

12.1 design

In this section, we present the design of our three jammers. As contin-
uous jammers are too destructive for friendly-jamming scenarios, we
only build reactive jammers. The first type—called reactive jammer
(see Section 12.1.1)—transmits pilot tones whenever a jamming condi-
tion matches. The second type, the acknowledging jammer (see Sec-
tion 12.1.2), is a novel extension to reactive jammers and sends back
acknowledgements to the transmitter of a jammed frame. This avoids We describe the

design of the reactive
jammer, the
acknowledging
jammer and the
adaptive
power-control
jammer.

blocking non-targeted streams queued for transmission, as well as
fallback to more robust modulation and coding schemes (MCSs). To
reduce power consumption of our second jammer, we introduce the
adaptive power-control jammer (see Section 12.1.3) as third type. It
adjusts its transmission power according to an observed jamming suc-
cess indication. We also present how to generate jamming signals that
fit into the sample-play buffer (see Section 12.1.4) and describe how
to amplify them in the analog front end of the Wi-Fi chip (see Sec-
tion 12.1.5). At the end, we perform some basic energy consumption
measurements to get a feeling on how much power is consumed for
transmitting signals (see Section 12.1.6).

12.1.1 Reactive jammer

A sophisticated jamming approach is a reactive jammer that only jams
if a communication is detected and a jamming condition matches. Our reactive jammer

is similar to the one
implemented by
Berger et al. on
SoftMAC Wi-Fi
chips, but supports
the transmission of
arbitrary waveforms.

Our reactive jammer is similar to the one presented by Berger et al.
in [8, 9]. However, instead of using Broadcom’s SoftMAC chips of
wireless routers, we run our jammer in the FullMAC Wi-Fi chip of the
Nexus 5 smartphone. Besides an increased mobility, it also supports
802.11ac to analyze more frame types and allows the transmission of
arbitrary waveforms read from IQ buffers.

The jammer should work as follows. Whenever a Wi-Fi frame is
being detected, the programmable state machine implemented in the
D11 core waits until enough bytes are received to check our jammer If the D11 core

decides that a frame
matches a jamming
condition, it starts
the transmissions of
a jamming signal.

conditions. In our experiments, we compare the UDP port numbers
found in unencrypted Wi-Fi frames against a target port number. In
case the frame should be jammed, the D11 core switches from re-
ception to transmission and triggers the playback of the sample-play
buffer that contains the samples of our jamming signal, as described

120 reactive wi-fi jamming on smartphones

in Section 4.2.2. We chose to store the jamming signal in the sample-
play buffer, as transmission from the much larger Template RAM was
not discovered before finishing the jamming project. Additionally, weWe transmit

jamming signals
from the sample-play

buffer that we
discovered before

transmission
capabilities from
Template RAM.

only need simple waveforms to successfully jam Wi-Fi frames, that
easily fit into the sample-play buffer. After finishing the transmis-
sion of the jamming waveform, we have to reset the physical layer
into receive mode and wait for new frames to arrive. In case a frame
should not be jammed, we proceed as regular Wi-Fi stations do. Ei-
ther drop the frame or receive it and forward it to the ARM processor
for further processing.

12.1.2 Acknowledging jammer

During our pre-evaluation of Wi-Fi jamming scenarios, we realized
that nodes sending multiple parallel data flows throttle all of their
transmission, if only one flow gets jammed. This is due to the fact,While the reactive

jammer can target
single flows coming

from a node, it
always throttles any

communication of
this node.

that the MAC layer in the Wi-Fi chip does not differentiate between
flows. Those flows could be differentiated by protocols and ports
on the transport layer. Communication nodes may run different ser-
vices over different flows. For example, a video streaming application
sends data on a different flow than an audio conferencing system. In
case the jammer wants to block only selected network services but
ensure that other services continue to run on the jammed nodes, an
extension to our reactive jammer is required.

Transmissions throttle as the Wi-Fi chip expects acknowledgements
for every transmitted frame. If those are missing, it performs retrans-
mission with an ever growing backoff time until a retransmission
counter runs out. Hence, all other queued outgoing frames need toData can only

continue to flow,
when the transmitter

of jammed frames
thinks that its frame

was correctly
received.

wait. To circumvent this problem, without changing the operation
of regular Wi-Fi nodes, we need to fake acknowledgements with our
jammer. To this end, we need to schedule a new acknowledgement
in the transmit engine of the D11 core. Even though the jamming sig-
nal is transmitted over the frame that is currently being received, the
state machine of the D11 core anyways reacts at the end of a reception
to evaluate the correctness of an incoming frame. We use this event
to schedule the transmission of the fake acknowledgement with the
correct timing expected by the targeted frame’s transmitter.

12.1.3 Adaptive power-control jammer

The jammers presented above transmit at a fixed power that we con-
figure before the experiments. We usually choose a high power toWe can optimize the

jammer’s battery life
by minimizing the

jamming power.

ensure successful jamming results. In many scenarios, however, this
value exceeds the actually required minimum power to destroy frames
at the receivers. This choice is not only energy inefficient but may also

12.1 design 121

JAM-ACK:
jam and acknowledge

WJA frames

LEARNING:
jam WL frames
count received

acks: NA

CHECK:
jam WC frames
count received

acks: NA

P=P+ΔPL

NA ≥ TCP

P=P-ΔPC

P=P+2ΔPC

NA > TL

NA ≤ TL

yesno

NA = 0

NA = 1

NA > 1

Figure 23: State machine of the adaptive power-control jammer. (based on
[74])

disturb neighbouring communications. To address these two issues,
we improve our jammers by an adaptive power-control algorithm.

We illustrate this algorithm in the form of a state machine in Fig-
ure 23. It consists of the three states “LEARNING”, “JAM-ACK” In the

“LEARNING” state,
we jam frames and
check whether
acknowledgements
are transmitted by
the receiver.

and “CHECK”. In the initial state “LEARNING”, we jam every tar-
get frame in a window of WL received frames and count how many
acknowledgement frames NA come from the receiver. If NA exceeds
the targeted minimum TL, a new learning window starts. If NA is also
larger than TCP, the transmission power is increased by ∆PL. If NA is
below or equal to the targeted minimum TL, we enter the “JAM-ACK”
state.

In this state, we jam and acknowledge a window of WJA frames.
If the power determined before is sufficient, we keep jamming suc- In the “JAM-ACK”

state we are blind to
acknowledgements
as we send our own.

cessfully while sending correctly forged acknowledgements to the
transmitter. As a consequence, the transmitter keeps a high datarate
and a very short contention window that avoids throttling additional
data streams. At the end of each “JAM-ACK” window, we enter the
“CHECK” state.

Here, we tests whether a new learning phase is required by jam-
ming a window of WC frames without acknowledging them. Instead, Regularly, we test in

the “CHECK” state
whether our
jamming power
should be increased
or reduced.

we again count how many acknowledgements NA come back. In
case, NA is greater than one, a new learning phase is started. Other-
wise, we reenter the “JAM-ACK” state and either reduce the jamming
power by ∆PC if no acknowledgements were received (jamming was
perfect), or we increase the jamming power by 2 ·∆PC if exactly one
acknowledgement was received (meaning we are directly at the edge
of the minimum required jamming power). This state machine is by The state machine

has optimization
potential.

far not optimal and we did not consider convergence properties of
the algorithm. Instead, we only intent it to be a proof-of-concept for
demonstrating that it works in a practical setup.

122 reactive wi-fi jamming on smartphones

12.1.4 Jamming signal generation

For all three kinds of jammers, we need to generate a jamming signal
and store it in the sample-play buffer. The latter is limited to 512
samples that can be played back in a loop. To avoid discontinuities
at the end of a buffer, we only generate tones on frequencies whose
periods completely fit into the buffer. To this end, we use an inverseWe use the IDFT to

generate cyclically
repeatable

waveforms that fit
into the sample-play

buffer.

discrete Fourier transform (IDFT). While an inverse fast Fourier trans-
form (IFFT) is optimized for sizes that equal powers of two (1, 2, 4, . . . ,
512), the IDFT works with arbitrary numbers of samples to operate
on. This allows us to generate cyclic buffer contents with arbitrary
subcarrier spacing. For example, to generate tones with a spacing
of 1 MHz on a channel with 80 MHz bandwidth that is sampled at
160 MSps, we use a 160 samples long IDFT and can define an ampli-
tude and a phase for each subcarrier.

In the jamming scenario, the phase of the tones is of minor impor-
tance, but it helps to equally distribute the transmit power between
the in-phase (I) and quadrature (Q) components of the complex sam-Choosing

appropriate phases
helps to reduce the

PAPR of a signal
which simplifies

amplification.

ples. Cleverly applied, it reduces the peak-to-average-power ratio
(PAPR) of a signal. We calculate this value in dB of a signal s ac-
cording to PAPRdB(s) = 20 log10

max(|s|)
rms(s) . The PAPR is important, as

energy efficient jamming requires to send tones with high average
powers. Peaks in the baseband signal would require to reduce the
signal’s amplitudes to the dynamic range of the digital-to-analog con-
verters (DACs), which automatically reduces the power in the trans-
mitted signal.

Figure 24 shows a 160-sample window of cyclically repeating time-
and frequency-domain samples. An amplitude of one corresponds
to the unknown peak voltage V̂DAC generated by the DACs. For Fig-The more subcarriers

we use, the lower the
transmit power we

can assign per
subcarrier.

ure 24a we created a single tone by only setting one subcarrier leading
to minimal PAPR of 0 dB and maximum power of 0 dBr (measured rel-
atively to the output power of the DACs, i.e., before any amplification
of the analog signals). Figure 24b shows the same for a signal with
80 active subcarriers. Due to the high PAPR of 19.03 dB the average
power is only -19.03 dBr resulting in even less power per subcarrier.
As a conclusion, we aim for jamming signals with few but high power
subcarriers, similar to those used for jamming pilot tones.

12.1.5 Signal amplification

After signal generation, the DACs create an analog waveform that
needs amplification. The first step is a multiplication at the baseband
multiplier (BBMULT) to increase the analog amplitude before upcon-
version in the mixers. We illustrate a block diagram of the Wi-Fi chip
in Figure 2 on page 18. Then a chain of three adjustable amplifiers is
used to amplify the radio frequency (RF) signal: (1) power amplifier

12.1 design 123

−80 −60 −40 −20 0 20 40 60 80

−1

0

1

↑ Samples (Time Domain), ↓ Subcarriers (Frequency Domain)

A
m

pl
it

ud
e
[V̂

D
A

C
]

0

1

(a) Signal generated out of one subcarrier with normalized time-domain am-
plitudes leads to PAPR of 0 dB and average power of 0 dBr.

−80 −60 −40 −20 0 20 40 60 80

−1

0

1

↑ Samples (Time Domain), ↓ Subcarriers (Frequency Domain)

A
m

pl
it

ud
e
[V̂

D
A

C
]

0
1/80

(b) Signal generated out of 80 subcarriers with normalized time-domain ampli-
tudes leads to PAPR of 19.03 dB and average power of -19.03 dBr.

Figure 24: Peak-to-average-power ratio (PAPR) and average power analy-
sis of single- and multi-tone signals. Each plot shows IQ time-
domain samples at the top and the selected frequency-domain
subcarriers at the bottom. (based on [74])

(PA), (2) power amplifier driver (PAD), and (3) programmable gain The baseband signal
is amplified in the
baseband multiplier,
the RF signals
traverse a power
amplifier, a power
amplifier driver and
a programmable
gain amplifier for
amplification.

amplifier (PGA). To simplify gain selections, the firmware stores am-
plifier settings in a table addressable by an index. On the Nexus 5,
the gain is mainly modified by setting the PGA value and slightly by
setting BBMULT, while all other gains are set to maximum. Figure 25
shows gain settings for channel 7 (2.4 GHz band) and 106 (5 GHz
band). The lower the index, the higher the gain. The exact output
power of the smartphone is hard to measure without knowing the
antenna radiation pattern and measuring received powers in an ane-
choic chamber.

12.1.6 Power consumption

Especially on mobile devices, power consumption is of importance
and influences how long a jammer can operate on battery power.

124 reactive wi-fi jamming on smartphones

0 20 40 60 80 100 120
0

50

100

150

200

250

300

Power Index

G
ai

n
Se

tt
in

g

PGA CH7 BB Mult CH7
PGA CH106 BB Mult CH106

Figure 25: Programmable gain amplifier (PGA) and baseband multiplication
(BBMULT) settings by index. (based on [74])

Hence, we attached a Monsoon Power Monitor to the battery ports ofWe attach a
Monsoon Power

Monitor to measure
the power

consumption of our
smartphone.

a Nexus 5 smartphone to measure the instantaneous power consump-
tion with 5 kSps. Using this setup, we first measured the phones idle
power consumption. To this end, we turned off both the display and
the LTE modem using a custom kernel as described in Section A.8.
To minimize the activity of the Wi-Fi chip, we activate minimum
power consumption (MPC) mode. MPC allows the ARM controller
in the Wi-Fi chip to handle interrupts, while the radio, physical layer
and D11 cores are on standby—neither receiving nor transmitting. InWithout an active

Wi-Fi chip, the
Nexus 5 only

consumes 16 mW in
idle mode.

this mode, the phone consumes 16 mW. Turning MPC off enables the
lower-layer cores in the Wi-Fi chip and activates the reception of Wi-
Fi frames. As illustrated in Figure 26, this mode constantly consumes
between 239 and 447 mW without transmitting anything. The power
consumption increases with the channel bandwidth and by switching
from the 2.4 to the 5 GHz Wi-Fi band. To collect the measurement re-
sults, we run experiments for 60 seconds, split the middle 40 secondsPower consumption

of the Wi-Fi chip
depends on the

chosen Wi-Fi band
and the bandwidth.

into 200 millisecond intervals over which we calculated the median
after averaging to get an estimate of the power consumption. We use
the median to reduce outliers due to non-deterministic tasks running
on the CPU of the smartphone.

Afterwards, we measured the additional power required for con-
tinuously transmitting a 4 MHz test tone used for transmit signal
strength indication (TSSI) measurements. We illustrate the results
in Figure 27. Even using the smallest gains (largest power index),Continuous

transmission of a
test tone jacks up

power consumption
leading to a fast
draining of the

jammer’s battery.

requires at least 556 mW in the 2.4 GHz band and 662 mW in the
5 GHz band. The difference is due to operating the analog front-end
at higher frequencies which increases power consumption. To save
power when operating the jammer, we focus our work on developing
reactive jammers that only transmit short signals when required to
destroy a frame. The power for operating the receiver is nevertheless
continuously consumed. In the next section, we focus on the imple-
mentation of the three jammers.

12.2 implementation 125

0 50 100 150 200 250 300 350 400 450

MPC

CH7 20MHz

CH7 40MHz

CH7 80MHz

CH106 20MHz

CH106 40MHz

CH106 80MHz

Power [mW]

Figure 26: Power consumption for different channel specifications vs. power
consumption with minimum power consumption (MPC) enabled.
(based on [74])

30 40 50 60 70 80 90 100 110 120

600

700

800

900

1,000

Power Index

Po
w

er
[m

W
]

CH7 20MHz CH106 20MHz
CH7 40MHz CH106 40MHz
CH7 80MHz CH106 80MHz

Figure 27: Power consumed by the smartphone for continuously transmit-
ting the 4 MHz TSSI test tone at different power indices (minus
the power consumption for operating the Wi-Fi chip with MPC
disabled). (based on [74])

12.2 implementation

To implement the jammers presented above, we, first, need to gener-
ate and load jamming signals into the sample-play buffer. To this end,
we modify the firmware running on the ARM microcontroller and ei- Our implementation

consists of code
modifying the PSM
in the D11 core,
signal generation
code for the ARM
microcontroller as
well as an optional
app to control the
firmware.

ther generate hardcoded jamming signals or make them modifiable
using settings passed through ioctls. We describe this generic oper-
ation in Section 6.2.9. The simplest way to design a jamming signal
on the smartphone itself, is our Nexmon Jamming app that offers an
equalizer-like interface to set amplitudes and phases per subcarrier
(see Section 12.2.1). After filling the sample-play buffer, we use the
D11 core to trigger the transmission of the stored samples. To this
end, the D11 core analyzes incoming Wi-Fi frames in real-time and
tries to match jamming conditions (see Section 12.2.2).

We published the source code of the jamming firmware used in our
experiments, as well as the source codes for both our jamming app

126 reactive wi-fi jamming on smartphones

and its firmware (see Section A.4). Publishing the codes enhances
reproducibility and eases reuse of our jammers in other projects. ToWe publish the code

of our tools to
simplify its reuse

and the
reproducibility of
our experiments.

avoid easy abuse, the jammer only targets frames with destination
MAC address “NEXMON” and source MAC address “JAMMER”. Of
course, this check can be disabled, but it requires an understanding of
the D11 core’s source code. Below, we first present how our jamming
app works and then go into detail of our jammer implementation in
the D11 core.

12.2.1 Jamming app

To get a better understanding of how a jammer operates, we created
an Android app that allows to perform jamming experiments in a
setup of at least three nodes. At least one acts as a transmitter thatThe jamming app

combines a
transmitter, a
receiver and a

jammer under one
user interface.

injects variable numbers of UDP streams with freely choosable mod-
ulation coding schemes. We offload the transmission of those frames
into the Wi-Fi firmware, so that we can unburden the host from this
task. To setup and control the transmission tasks, we use ioctls. An-
other node acts as a receiver. It runs the Wi-Fi chip in monitor mode
and counts frames that were injected by one of the transmitters. To
differentiate which frames were jammed, we assume that in our setup
only jammed frames are damaged. This implies the selection of a Wi-
Fi channel with a low probability of collisions. As the frame check se-The FCS helps to

differentiate which
frames are jammed.

quence (FCS) validation fails for damaged frames, we classify frames
with an incorrect FCS as being jammed. In the user interface of the
receiver, we create bar graphs for each UDP stream that illustrate how
many frames were jammed and how many were correctly received.

The most important component of our app is the jammer. It al-
lows to configure the firmware and design jamming signals that can
be transferred to the firmware using ioctls. As described in Sec-
tion 12.1.4, the jamming signals need to fit into the sample-play bufferThe jammer UI

offers sliders to set
amplitudes and

phases for the
subcarriers of our

jamming signal.

and they need to be repeatable without introducing disturbances.
Hence, we need to design our signals from tones whose periods fit
completely into the buffer. The IDFT creates exactly those signals.
For each of the subcarriers in the frequency domain, we can select an
amplitude and a phase. The amplitude selection is illustrated in Fig-
ure 28b. To directly analyze how the generated waveform looks in the
time-domain, we calculate the IDFT and plot the result showing the
inphase and quadrature waveforms in Figure 28c. As the sliders do
not give a good overview of the whole frequency band, we also plot
the power distribution in Figure 28d. A click on the “START” but-A clean and reusable

interface based on
ioctls is used to

configure the
jamming firmware.

ton in the menu bar (see Figure 28a), packs the amplitude and phase
values as well as other settings such as the transmission power into
a byte array and calls the nexutil binary to send it—encapsulated
in an ioctl—to the firmware. Using this interface, also other apps

12.2 implementation 127

(a) Menu bar of the jammer mode. Under VIEW, the user selects one or two of the
UI-elements shown below.

(b) In the Amplitude UI-element, the user sets the amplitudes per subcarrier of the
signal used for jamming.

(c) In the Time Domain Plot UI-element, we display the time-domain waveform result-
ing from the amplitude and phase settings. We also display the PAPR.

(d) In the Frequency Domain Plot UI-element, we display the power distribution of the
jamming signal.

Figure 28: The user interface (UI) of the jammer mode consists of a menu
bar and four UI-elements to design or analyze the jamming signal
(the Phase UI-element is not illustrated). (based on [78])

128 reactive wi-fi jamming on smartphones

and console applications running on the smartphone can control the
jammer as long as they have root permissions.

12.2.2 Implementation in the D11 core

The heart of the implementation of any jammer running on the Wi-
Fi chip is built into the ucode executed on the D11 core. While
adding new ioctl handlers and calling functions to load values intoModifying the ucode

running on the D11
core is more

complicated than
changing the

firmware of the
ARM core, as we

have to work with
Assembler code.

the sample-play buffer on the ARM core is straightforward, the modi-
fication of the ucode is more advanced. As mentioned in Section 6.2.14,
only a disassembler and an assembler exist to patch the ucode. To un-
derstand how the firmware works so that we can modify it, we first
need to understand the meaning of values and registers. Fortunately,
Gringoli and Nava published an open firmware for older Broadcom
chips in [33]. The open firmware gives an idea on the operation of the
ucode and parts of the code are similar to the disassembled version of
the ucode running on the BCM4339 Wi-Fi chip. Based on this finding
and the help of Francesco Gringoli, Michael Koch reverse engineered
the ucode of the BCM4339 for his masterthesis [51]. Based on the
reverse engineered ucode, we implemented our jammers.

12.2.3 Implementing the reactive jammer

We first present an overview of the code and point at areas in the
code we need to modify to implement the jammers. To follow theReading our

published source
code helps following
the implementation

description.

implementation description one should read the code referenced in
Section A.4. The execution of the ucode always starts at address 0 in
the code memory. One of the first instructions is always a jump to
the ..._init label that points to code for initializing the D11 core and
the shared memory to a well defined state (the ellipsis ... stands for
a label number that may vary). Shortly below the jump instruction,
we find code belonging to a state machine: ..._state_machine_....
According to the comments in the OpenFWWF firmware [33], the
state machine regularly checks conditions and jumps to labels of the
corresponding condition handler implementations. One of these con-
ditions is RX_PLCP. It is set as soon as a Wi-Fi frame is detected and
the PLCP header is correctly received. Directly after the PLCP headerAfter successfully

receiving the PLCP,
we check our

jamming condition
and, if it matches,

trigger a jamming
signal transmission.

start the bytes of a Wi-Fi frame beginning with the headers. As our
reactive jammer should check whether header bytes match a jam-
ming condition, the PLCP receive event handler is the optimal place
to implement the condition matching functionality. After the first
validation operations in the handler that should discard erroneous
frames, we first implement a loop that waits until enough bytes are
received to perform our condition matches. To this end, we check
the SPR_RXE_FRAMELEN register against the required number of bytes.
Then we start checking the conditions. If one matches, we directly call

12.2 implementation 129

the transmit_jamming_signal function that basically reimplements
the wlc_phy_runsamples_acphy function (see Section 6.2.9) from the
ARM code in the ucode. At the end, this function spin waits until the In the ucode, we

reimplement the
ARM firmware’s
function to start
transmissions.

RX-to-TX sequencing is done to set another register. To avoid block-
ing the other ucode execution while waiting, we check the spinning
condition every time we cycle through the state machine mentioned
above. As soon as spinning is done, we set the required register. This
fully implements the reactive jammer.

12.2.4 Implementing the acknowledging jammer

Implementing the acknowledging jammer is more advanced. Directly
activating the jamming signal in the PLCP handler would hinder us
from successfully scheduling an acknowledgement transmission dur- For the

acknowledging
jammer, we first
need to schedule an
acknowledgement
and then start
jamming.

ing frame reception. Hence, we have to first schedule the acknowl-
edgement for transmission and then activate the jammer. To this
end, we set the SENDACK shared memory variable in the PLCP han-
dler instead of calling transmit_jamming_signal. Then, we need
to make sure that an acknowledgement will be scheduled. To this
end, we skip to the last part of the PLCP handler until we jump
to a label we call ..._rx_data_plus. Here, the code spins until the
MAC header is fully received (i.e., SPR_RXE_FRAMELEN > 0x1C) and
then checks whether the frame contains our jammer’s MAC address
as receive address. Only if this is the case, it would jump to the
..._send_response label to schedule an acknowledgement. To also
send an acknowledgement after jamming a frame with a different
MAC address, we need to check whether the variable SENDACK was
set before. If this is the case, we jump to the ..._send_response label
ourselves. It prepares an acknowledgement with our frame’s source We need to force the

transmission of an
acknowledgement
even though the
jammer’s MAC
address differs from
the destination
address of the
jammed frame.

address. Almost at the end of the ..._send_response function, we
call the transmit_jamming_signal function to start jamming. After
this function gets called, the D11 core waits until the RX_COMPLETE

event occurs and jumps to the ..._rx_complete handler label. Its
code finalizes the reception of a frame and checks the FCS to decide
whether to send an acknowledgement or not. As we started jamming,
the FCS will be incorrect. Hence, we have to force a jump to the
label where execution continues if the COND_RX_FCS_GOOD condition
matches. To actually transmit the acknowledgement frame, we have
to enable FCS generation (0x4000) and enable the TX engine (0x1) by
writing 0x4001 into the SPR_TXE0_CTL register. This fully implements
the acknowledging jammer.

12.2.5 Implementing the adaptive power-control jammer

The adaptive power-control jammer basically extends the acknowl-
edging jammer by implementing the state machine illustrated in Fig-

130 reactive wi-fi jamming on smartphones

ure 23. We implemented this state machine in the PLCP handler
directly after checking whether the jamming condition matches. It
counts how many frames were jammed in a state and compares thoseThe adaptive

power-control
jammer only sends
acknowledgements

in the “JAM-ACK”
state, otherwise it

waits for
acknowledgements of

the target frame’s
receiver.

numbers against window lengths to decide whether to move to a new
state. Instead of triggering the transmission of an acknowledgement
after every jammed frame, we now check in the ..._rx_complete

handler whether we are in the “JAM-ACK” state or not. If we are,
we send an acknowledgement, otherwise we set the WAITACK shared
memory variable to mark that we are waiting for an acknowledge-
ment transmitted by the target frame’s receiver. To make sure that
we detect the correct acknowledgement corresponding to our target
frame, we check the time between finishing the reception of the target
frame and the arrival of the next acknowledgement. Only if it falls
within the bounds to expect acknowledgements, we count it as an in-Using a timer, we

check whether we
received the expected
acknowledgement to

increase a counter
checked while

changing states.

dicator for an unsuccessfully jammed frame. To this end, we first save
the value of the SPR_TSF_WORD0 timer register into the CLOCKACKTO

shared memory variable while we are in the ..._rx_complete han-
dler. We check this variable again against the timer register in the
PLCP handler. If the difference falls in the expected bounds and
we are in either the “LEARNING” or “CHECK” state, we increment
the ACKTRANSMITTED shared memory variable corresponding to NA

in Figure 23. When changing states, we check this variable to de-
cide on the next state and whether we should adjust the transmission
power or not. To change it, we update the PGA_NEXT shared mem-
ory variable. It indicates the new gain value of the programmableWe adjust the

transmit power by
changing the

programmable-gain-
amplifier value

before starting to
jam.

gain amplifier (PGA). As illustrated in Figure 25, it is the main value
changed by updating the power index. For simplicity, we only update
this value while leaving the other amplifier values untouched. When-
ever, we enter the transmit_jamming_signal function, we first write
the PGA_NEXT value into the physical-layer table controlling the gains.
This finalizes the implementation of our adaptive power-control jam-
mer. In the following section, we evaluate the performance of our
jammers.

12.3 experimental evaluation

In this section, we describe the experimental setup and the experi-
ments performed for the three different jammers directly followed
by experiment evaluations and discussions. We intentionally chose a
simple setup to ease reproducibility.

12.3.1 Experimental setup

In Figure 29, we illustrate our experimental setup. It consists of one
or two Nexus 5 smartphones used as frame transmitters and one
Nexus 5 smartphone as frame receiver. The transmitters are used

12.3 experimental evaluation 131

ADB

ADB

ETH

Receiver

Wi-Fi Frame Signal

+
-

Ack Frame
Signal

Jamming
Signal

Control

Wi-Fi Frame Signal

ADB

Power
Monitor Raspberry PiJammer

Transmitter

Transmitter

Laptop

Signal
Analyzer

Figure 29: Experimental setup in our office building. The two transmitters,
the receiver and the jammer are placed in the corners of an equi-
lateral triangle. (based on [74])

to inject Wi-Fi frames with UDP payload at a fixed rate directly from
the Wi-Fi firmware to avoid any jitter and additional queuing intro-
duced by the operating system. Nevertheless, the injection complies
to the 802.11 medium access control algorithms (i.e., CSMA). On the We use the FCS to

identify jammed
frames at the
receiver.

receiving node, we activate monitor mode and capture the received
frames using tcpdump. We make sure that frames with incorrect
frame check sequence (FCS) are also captured to be able to evaluate
how many frames were corrupted either by the jammer (if the head-
ers up to the UDP header are still correct) or by other effects that also
destroy the frame headers. In general, we receive all frames, as long
as the PLCP headers are correctly received.

As jammer, we also used a Nexus 5 smartphone with modified
firmware for our jamming experiments. To evaluate the power con-
sumption during jamming, we attached the Monsoon Power Moni-
tor1 to the battery ports of the jamming Nexus 5 and used a Laptop Using a power

monitor attached to
the jammer’s battery
port, we examine the
power consumption
while jamming.

running Windows to capture the energy traces. All smartphones are
controlled using the Android debugging bridge (ADB) over USB. We
use a Raspberry Pi 3 as the controlling node to coordinate the exper-
iments. After the measurement, USB is passed through the Power
Monitor to the Raspberry Pi. For all experiments, the two trans-
mitters, the receiver and the jammer are mounted using car mount
holders attached to plates and placed in the corners of an equilateral

1 Monsoon Power Monitor: http://msoon.github.io/powermonitor/

http://msoon.github.io/powermonitor/

132 reactive wi-fi jamming on smartphones

triangle with side length of 2.8 meters. For increased side lengths, theUsing a simple
line-of-sight setup

helps us to focus on
the operations of the

three jammer
implementations.

received signal powers of both the data frame and the jamming sig-
nal equally decrease with distance (assuming line-of-sight behavior),
hence, the jamming-to-signal ratios stay constant. Additionally, for
massive jamming scenarios, we can assume high densities of smart-
phones usable for jamming, so that distances of only a few meters
between nodes are likely.

Even though not required to perform the experiments, we used a
spectrum analyzer with 160 MHz real-time bandwidth and abilitiesA spectrum analyzer

helps us to identify
problems during

experiments.

to capture in the 2.4 and 5 GHz Wi-Fi bands to debug during devel-
opment and to verify that the jammer works correctly. In the next
subsection, we evaluate our reactive jammer.

12.3.2 Evaluating our reactive jammer

Our main intention in the evaluation of our reactive jammer is to
verify the reliability and effectiveness of jamming with respect to theAs the Nexus 5 does

not contain a
standardized

antenna port, we
focus on over-the-air

experiments.

percentage of jammed frames at the receiver. As the Nexus 5 does not
have a port for external antennas (that is matched to 50 Ohms used in
measurement equipment), we focus our experiments solely on over-
the-air jamming. This allows a realistic evaluation of the jamming
performance in an office room and also incorporates antenna effects.

For successful jamming, two requirements need to be fulfilled. First,
the jammer needs to correctly receive and decode the frames up to theSuccessfully

jamming requires a
correct reception of

the frame headers at
the jammer.

part checked in the jamming condition. Secondly, the jamming signal
needs to have sufficient power at the receiving node to interfere with
the jammed frame. In a pre-evaluation of our jamming setup, we re-
alized that direct communication between two Nexus 5 smartphones
is prone to reception errors for high MCS settings, even in the small
setup we used for our experiments.

To evaluate the jamming performance, we sent frames without re-
transmission at different MCS settings from the transmitting smart-
phone next to the wall to the receiver at the other end of the long
table (see Figure 29). In the first round, the jammer was deactivatedIn the first

experiment, we
deactivated the

jammer, in the others
we activated it with

high transmission
powers and run by

run decreased those
powers.

to evaluate how many frames can be correctly received. In the other
rounds, we started jamming at power index 50 (high power) and in-
creased it in steps of 10 to 120 (low power). As jamming signals, we
used pilot tones of 20 MHz bandwidth transmissions at subcarriers
{±7, ±21}. The results are illustrated in Figure 30. Each bar repre-
sents one round and shows the number of correctly received frames
(FCS correct) and damaged frames (FCS incorrect). Starting from the
legacy rate of 24 Mbps, the number of incorrectly received frames
was already more than 40 percent. Increasing the MCS to 36 Mbps or
MCS 4 for high-throughput rates, resulted only in erroneous frame
receptions.

12.3 experimental evaluation 133

off 70 100 off 70 100 off 70 100 off 70 100 off 70 100
0%

20%

40%

60%

80%

100%

FCS incorrect FCS correct

6 Mbps 9 Mbps 12 Mbps 18 Mbps 24 Mbps

(a) Legacy 802.11a/g rates.

off 70 100 off 70 100 off 70 100 off 70 100
0%

20%

40%

60%

80%

100%
MCS 0 MCS 0 LDPC MCS 1 MCS 1 LDPC

(b) First two 802.11n rates with and without LDPC.

off 70 100 off 70 100 off 70 100 off 70 100
0%

20%

40%

60%

80%

100%
MCS 2 MCS 2 LDPC MCS 3 MCS 3 LDPC

(c) Next two 802.11n rates with and without LDPC.

Figure 30: Jamming frames on channel 116 in the 5 GHz band with 20 MHz
bandwidth and different rates. The bars indicate correct frame
receptions, when performing experiments with no jamming (off)
and jamming at power index 50 (high power) to 120 (low power).
The jamming-tone length is fixed to 128 us and the frame length
to 1540 bytes. (based on [74])

134 reactive wi-fi jamming on smartphones

Starting the jammer at power index 50 allows to corrupt all frames
with deactivated low-density parity-check (LDPC) and even with the
latter, close to 100 percent of the frames are jammed. Reducing the
jamming power by setting higher power indices leads to the expectedThe use of power

index 50 leads to
successfully

jamming most of the
frames in our setup.

effect of a lower number of corrupted frames. 24 Mbps and MCS
3 transmissions are still very vulnerable to jamming even at these
low transmission powers. Only LDPC can decrease the impact of
jamming effects by providing better error-correction abilities. In the
next section, we present how our jammer can be used in a practical
friendly-jamming scenario.

12.3.3 Reactively jamming non-compliant 802.11ac transmissions

One application of friendly jamming is to counter the attack of mali-
cious nodes that might setup rogue access points or communicate in aReactive jammers

can be used to
enforce

standard-compliant
behaviour as long as

they can detect rogue
communication.

destructive way in a network environment. For example, a misbehav-
ing pair of Wi-Fi devices might use non-compliant 80 MHz wide chan-
nels in the 2.4 GHz band that interfere with other communications in
this shared band. Forcing the rogue nodes to switch to compliant
transmissions can be achieved by jamming their communications so
that their information exchange stops. Such a jammer, however, also
needs the ability to receive Wi-Fi transmissions on illegal channel se-
tups.

To evaluate this scenario, we deactivated the validation of channel
specifications in the Wi-Fi firmware to be able to use 80 MHz wide
channels in the 2.4 GHz band. Setting the carrier frequency to chan-
nel 9 (2452 MHz), covers the band from 2412 to 2492 MHz and, thus,
almost the whole 2.4 GHz band. Then we evaluated, whether ourAmplification needs

to be adjusted to
allow fair

comparisons when
jamming with

different bandwidths.

jammer can receive and jam 20in80, 40in80 and 80in80 MHz trans-
missions using VHT MCS 0. 20in80 MHz means transmitting at the
lowest of the four 20 MHz channels covered by the 80 MHz chan-
nel. 40in80 MHz means using the lower 40 MHz sideband, while the
transceiver is still tuned to Wi-Fi channel 9. As jamming signals we
used pilot tones at subcarriers {-117, -103, -98, -75} for 20in80 MHz,
{-117, -89, -75, -53, -39, -11} for 40in80 MHz and {±103, ±75, ±39,
±11} for 80in80 MHz transmissions. We adjusted BBMULT to achieve
an equal power of all tones in all bands and set the tone transmission
lengths to 128 us for 20in80 MHz, 64 us for 40in80 MHz and 32 us for
80in80 MHz transmissions.

We illustrate our results in Figure 31. Similar to Figure 30, the first
bar indicates experiments without jamming. We observe, that trans-Our reactive jammer

successfully destroys
frames at

bandwidths up to
80 MHz.

missions are reliably received. During the experiments, the 2.4 GHz
band in our office building was unused except for some beacon trans-
missions on channel 1. Starting the jammer at power index 50 (high
power, second bar), all frames are corrupted at the receiver. Using
lower transmission powers, the number of jamming successes reduce.

12.3 experimental evaluation 135

off 60 80 100 120 off 60 80 100 120 off 60 80 100 120
0%

20%

40%

60%

80%

100%

FCS incorrect FCS correct

20in80 MHz 40in80 MHz 80in80 MHz

Figure 31: Jamming rogue 802.11ac transmissions on channel 9 in the
2.4 GHz band using 80 MHz bandwidth and sending 20, 40 and
80 MHz frames at VHT MCS 0. The frame length is fixed to 1540
bytes and the jamming-tone length to 128, 64 and 32 us for 20, 40
and 80 MHz bandwidth. The bars represent experiments with no
jamming (off) and jamming at power index 50 (high power) to
120 (low power). (based on [74])

Most vulnerable are 80 MHz transmissions given our chosen jamming
pattern.

12.3.4 Multi-node jamming analysis

In the previous experiments, we focused on single link communica-
tions with only one active link and deactivated retransmissions. In
this section, we extend our scenario by using two nodes sending For our experiments

with multiple nodes
we activated
retransmissions and
set conservative
fallback rates.

frames in parallel on different UDP ports (3939 and 4040). Their MCS
settings were fixed to 24 Mbps (OFDM) with five retransmissions for
non-acknowledged frames. Starting from the third retransmission,
we used a fallback rate of 1 Mbps (DSSS). All experiments were per-
formed on channel 13 in the 2.4 GHz band. Additionally, we satu-
rated the transmit queues in the Wi-Fi chips to send as many frames
as possible.

At the receiving node, we again captured frames using tcpdump
in monitor mode including frames with bad FCS. In Figure 32 we
illustrate each experiment with one bar that represents the overall
achieved UDP payload bit rate (including retransmitted frames). The
bars are split to represent the bit rate dedicated to frames on port
3939 or 4040 additionally distinguishing between correct and incor- Our reactive jammer

selectively jams only
the targeted frames,
which can boost the
throughputs of other
nodes in a network.

rect frame check sums (FCSs). The first two bars show that transmis-
sions with only one active node reach 18.2 Mbps. If two nodes are
active at the same time, the throughput is split evenly and sums up
to 18.6 Mbps. By activating our reactive jammer, the throughput of
the jammed node vanishes, while the throughput of the second node

136 reactive wi-fi jamming on smartphones

0 2 4 6 8 10 12 14 16 18 20

2 nodes, reactive J.

2 nodes

only Node 2

only Node 1

UDP throughput [Mbps]

FCS 3939 incorrect FCS 3939 correct
FCS 4040 incorrect FCS 4040 correct

Figure 32: UDP throughputs in Mbps with either one or two active nodes
using different UDP ports (Node 1: 3939, Node 2: 4040). Without
jamming, the throughput splits evenly. Using the reactive jam-
mer the throughput of Node 2 increases, while the throughput
of Node 1 drops to a negligible rate of only incorrectly received
frames. The jamming-tone length is fixed to 460.8 us to cover the
complete remaining bytes of the 1540 bytes frame transmitted at
24 Mbps. (based on [74])

increases to 17.5 Mbps which is almost the rate a single transmitter
achieves. In the next section, we change the setup to transmitting
both streams with only one node.

12.3.5 Flow-selective jamming

Instead of using reactive jammers to hinder a node from communicat-
ing completely, one may intent to specifically jam the communication
of a certain service distinguishable by port numbers, while other ser-
vices should still be available. As a usage scenario, we assume anBy using multiple

network services at
the same time, the

throughputs
generally split

between services.

industrial mesh network with legacy nodes that cannot be updated.
The nodes offer multiple services of which one is vulnerable to re-
mote code execution attacks. To protect the nodes while still being
able to operate the non-vulnerable services, we employ our friendly
reactive jammer. To evaluate this setup, we send two UDP streams
on ports 3939 and 4040 from only one node. The results in Figure 33
show that the throughputs split evenly between the two streams, if
no jammer is active. Using the reactive jammer, however, the whole
throughput drops as the transmitter’s MAC layer applies its backoff
algorithm to all Wi-Fi frames—not differentiating between different
upper layer streams.

To overcome this problem and allow communication on ports that
are not jammed, we use the acknowledging jammer. Its operation is il-
lustrated in Figure 34. Whenever a frame is received and the jamming
condition matches, our jammer reactively jams it and also transmits
an acknowledgement to the frames transmitter. Assuming correct re-

12.3 experimental evaluation 137

0 2 4 6 8 10 12 14 16 18 20

Adaptive Power Control J.

Acknowledging Jammer

Reactive Jammer

no Jammer

UDP throughput [Mbps]

FCS 3939 incorrect FCS 3939 correct
FCS 4040 incorrect FCS 4040 correct

Figure 33: UDP throughputs with two streams sent by one node using UDP
ports 3939 and 4040. Without jamming, the throughput splits
evenly, using the reactive jammer kills the whole throughput,
while the Acknowledging and adaptive power-control jammers
still allow communication. The jamming-tone length is fixed to
460.8 us to cover the complete remaining bytes of the 1540 bytes
frame transmitted at 24 Mbps. (based on [74])

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1 Jamming Jamming Jamming

Ack Ack Ack

Time (ms)

Si
gn

al
am

pl
it

ud
e

Figure 34: Operation of the acknowledging jammer. After jamming a frame,
the jammer sends an acknowledgement to the transmitter indi-
cating correct frame reception at the destination node. It takes
roughly 20 us between receiving the UDP port number and send-
ing the jamming signal.

ception of the frame, the transmitter can continue transmitting frames. The acknowledging
jammer only hinders
the communication
of targeted flows,
while other data
transmissions of the
attacked node
continue to flow.

The results are illustrated in Figure 33. Using the acknowledging jam-
mer, frames to the jammed port 3939 are corrupted, while frames to
4040 are still correctly received and the throughput between jammed
and non-jammed frames splits evenly. In the next section, we con-
tinue with a power consumption analysis for the presented jamming
approaches.

138 reactive wi-fi jamming on smartphones

300 400 500 600 700 800

Adaptive Power Control J.

Acknowledging Jammer

Reactive Jammer

Total Power Consumption [mW]

Figure 35: Total power consumption of the jammer, measured when jam-
ming one transmitting node with two UDP streams (compare
Figure 33). (based on [74])

12.3.6 Power consumption analysis

To benefit from a smartphone’s mobility, users rely on a low power
consumption to maximize the time on battery power. Hence, we did aThe reactive jammer

can benefit from
backoffs between

retransmissions and,
thereby, consume

less power than the
acknowledging

jammer that avoids
retransmissions.

power-consumption analysis in parallel to the experiments described
in Section 12.3.5. We illustrate the results for operating the jammer in
our three implemented modes in Figure 35. As expected, the reactive
jammer has the lowest power consumption of only 285 mW (resp. 30.7
hours runtime2), while 238 mW are allotted to operating the receiver
with turned off MPC (see Figure 26). The low power consumption
can be explained by the low number of frames that had to be jammed
due to the increasing backoff at the transmitter for non-acknowledged
frames. The acknowledging jammer consumes 705 mW (resp. 12.4
hours runtime), which is 2.5 times more power than operating the
reactive jammer. The reasons for the higher consumption are twofold.
First, the jammer needs to transmit an acknowledgement in addi-
tion to jamming. Secondly, the jammer needs to jam more frames
as frames are transmitted at the highest rate without backoff delays.

The best option to reduce the power consumption would be to re-
duce the transmission power. This, however, may lead to jamming
misses, if the transmitter reduces its MCS settings to transmit moreThe adaptive

power-control
jammer can

significantly reduce
power consumption

at the cost of some
non-jammed frames

while adjusting
transmission powers.

robust frames that are harder to jam with low jamming powers. To
avoid this problem, we developed the adaptive power-control jammer,
described in Section 12.1.3. It adjusts its jamming power according to
the measured jamming success rate. In Figure 33, we observe that the
adaptive power-control jammer also leads to equally split through-
put for the two UDP streams. The total throughput is reduced to
16.3 Mbps and 2.8 percent of the targeted frames are not jammed. The
correct frame receptions are due to the power adjustments. Whenever
we reduce the power as a result of the “CHECK” state, a couple of
frames may not be jammed until we increase the power again in the
next iteration of the “CHECK” state. Nevertheless, the power con-

2 Runtime calculation is based on standard LG BL-T9 batteries for the Nexus 5 with a
typical energy of 8.74 Wh, respectively a capacity of 2.3 Ah.

12.4 discussion 139

sumption in our example setting reduces to 453 mW (resp. 19.3 hours
runtime), which is 64 percent of the power consumed by the acknowl-
edging jammer. As there is still room for improving the power adap-
tation algorithm, a user may optimize the jammer for either high
jamming accuracy or low power consumption.

12.4 discussion

Our evaluation shows that smartphone-based Wi-Fi jammers are prac-
tical. Using our jamming app, one can get a hands-on experience on We successfully

demonstrated that
smartphone-based
jammers are
practical.

jammers for research and teaching. Additionally, we implemented
advanced and new jamming methodologies such as the acknowledg-
ing jammer as well as the adaptive power-control jammer on a smart-
phone. The mobility requirements of smartphone users created the
need for optimizations in power consumption to prolong operation
on battery power.

During our experiments, we also came across a number of limita-
tions of using the Nexus 5 as a reactive jammer. First of all, this smart- Nexus 5

smartphones are
limited to SISO
operation which can
impede the reception
of frames originating
other SISO nodes.

phone has difficulties to correctly receive frames at high MCS indices,
if they are transmitted by another Nexus 5 smartphone. A correct re-
ception is, however, required to check jamming conditions based on
the frame’s payload. Without proper reception, jamming conditions
are limited to the information provided in the PLCP header that is
always transmitted at a robust rate. Additionally, the Nexus 5 has
only one Wi-Fi antenna limiting its reception abilities to single-stream
transmissions. Nevertheless, the Nexus 5 is sufficient for evaluating
our three jammers in the field and it is possible to port our code to
other more advanced Broadcom Wi-Fi chips as they are all based on
the same architecture.

Overall, our work proves that sophisticated Wi-Fi jammers can
be implemented in off-the-shelf smartphones. This allows to im-
plement and massively distribute reactive jammers, as almost every
one of us carries such a device around in daily life. Besides the The omni-presence

of Wi-Fi enabled
devices bears the risk
of massive jamming
attacks due to
malicious firmware
modifications that
may spread from
phone to phone in
the form of a
wireless worm.

friendly jamming applications proposed in this work to either block
non-compliant devices or protect industrial networks containing oth-
erwise vulnerable devices, omni-present jammers could also be used
to perform wide-spread malicious attacks on our wireless infrastruc-
ture. As firmware is generally proprietary, users need to trust the
firmware’s developers that their hardware is not affected by malware
that might transform somebody’s phone into a remotely controlled
jamming device. Only open firmwares and open specifications of ra-
dio devices would allow end users to verify by themselves that firm-
ware running on their devices exhibits only benign behaviour. We
present a thorough discussion of this aspect in Chapter 5. Know-
ing about the abilities of smartphone-based jammers at least allows
to discuss possible solutions and countermeasures to avoid massive

140 reactive wi-fi jamming on smartphones

attacks. These become more likely since the discovery of remote-code-Open firmwares are
required to fix

security issues after
manufacturers drop

support for their
devices.

injection vulnerabilities in Wi-Fi firmwares [7] that allow to remotely
transform regular phones into jammers. Especially on old phones,
these holes might never be fixed by manufacturers and due to the
lack of open-source firmwares also not by the community.

12.5 related work

Jamming comprises a wide range of attacks and methods to distort
wireless communication and prevent devices from either receiving
or sending valid packets. Applied methods range from simple tech-
niques (e.g., continuous transmission of interference) to more sophis-
ticated approaches that exploit properties of higher layer networkVarious types of

jammers are
discussed in

literature: (1) the
constant jammer, (2)

the deceptive
jammer, (3) the

random jammer, and
(4) the reactive

jammer.

protocols [68]. Proposed jamming attacks differ in terms of disrupt-
ing impact, implementation complexity, energy consumption, stealth-
iness, and anti-jamming resistance [68, 96]. The prevalent types of
jamming are (1) the constant jammer that transmits noise to corrupt
frames or make the receivers sense a busy channel, (2) the deceptive
jammer that is similar to the constant jammer but transmits arbitrary
but valid protocol frames, (3) the random jammer that pauses a ran-
dom time between transmissions to increase power efficiency, and (4)
the reactive jammer [91] that targets only selected frames on the fly
by detecting and corrupting them. All of these jamming strategies
have been shown to have a significant impact but exhibit limitations
in terms of efficiency, detectability, or resistance [68].

Designing effective and efficient jammers is challenging. Constant
and deceptive jamming have a high energy consumption that canVarious authors

present strategies to
enhance efficiency

and effectiveness by
targeting

modulation specific
signal

characteristics.

be decreased by random jamming at cost of effectivity. The reactive
jammer is efficient and effective but must handle strict real-time re-
quirements: it must detect and distort a packet during transmission.
A variety of research papers address efficiency aspects of jamming
and show that smart jamming strategies can improve performance
[70]. In [23], DeBruhl et al. apply game theory to develop energy-
efficient jamming and anti-jamming strategies. [6] investigate the
theoretical impacts of jamming IEEE 802.11 networks in [6]. Jam-
ming techniques that disturb the pilot tones used for channel esti-
mation and equalization have been shown to hinder receivers from
decoding data packets [17, 36, 82]. In [91], Wilhelm et al. demon-
strate the feasibility of reactive jamming on IEEE 802.15.4 networksJammers can exploit

synchronization
mechanisms such as

pilot symbols and
cheat the protective

mechanisms of
interleavers.

in software-defined radio (SDR) based experiments. In [42], Vo-Huu,
Vo-Huu, and Noubir demonstrate highly efficient reactive jamming
and construct a jamming pattern across multiple OFDM subcarriers
of IEEE 802.11a/g/n networks to be amplified by de-interleaving at
the receiver. Therewith, they completely block a Wi-Fi communica-
tions with a jamming power of less than 1 percent of the commu-
nication power in an SDR-based testbed. However, SDRs are rather

12.5 related work 141

expensive and cannot achieve performance results comparable to that
of practical low-cost commodity hardware. This leads researchers to
investigate jamming in common network devices.

In [88], Vanhoef and Piessens implemented a continuous and reac-
tive jammer on top of an open source Atheros firmware. Although, Jammers have

already been
implemented on
Atheros and
SoftMAC Broadcom
cards but only now
on FullMAC chips
available in
smartphones.

having limited access to the firmware, they show that jammers can be
implemented on commodity hardware. In [8, 9], Berger et al. inves-
tigated reactive jamming with off-the-shelf IEEE 802.11 access points.
To that end, they directly modified the ucode of a SoftMAC Broadcom
Wi-Fi chip. To this end, they extended the OpenFWWF firmware [33]
published by Gringoli and Nava. Nexmon allows similar modifica-
tions, but aims at FullMAC chips deployed in mobile phones. There-
with, it provides the ideal foundation to investigate mobile jammers
in practical networks.

Besides for malicious purposes, jamming is also applied as a de-
fense mechanism in the security context as “friendly jamming” or
“jamming for good”. Recent work in this area utilizes jamming to ei- “Friendly jamming”

focuses on defensive
applications to
secure transmissions
and block
unauthorized
communication.

ther (a) block unauthorized communication or (b) secure confidential
transmissions [8, 9]. To block unauthorized communication (a), reac-
tive jamming can interfere with undesired frame transmissions and
prevent them from being received at any receiver [12, 14, 31, 61, 83, 92,
95]. For example, in [31], Gollakota et al. protect implantable medical
devices (IMDs) by jamming unauthorized commands. In [92], Wil-
helm et al. propose a firewall for IEEE 802.15.4 networks that jams
according to an arbitrary rule set. In [61], Martinovic, Pichota, and
Schmitt develop message authentication mechanisms for wireless sen-
sor networks (WSNs).

To secure confidential transmissions (b), jamming can prevent po-
tential eavesdroppers from decoding a signal by causing artificial in-
terference. This effectively allows only selected nodes to receive a Artificial noise is

often used as a
means to enhance
the confidentiality of
communication.

confidential message. For example, Shen et al. control jamming sig-
nals with secret keys that only allow authenticated devices to recover
transmitted signals but cause unpredictable interference to others in
[83]. In [2], Anand, Lee, and Knightly induce interference into the
null-space of a MIMO transmission and therewith jam all but the
intended receiver. In [30], Gollakota and Katabi propose a physical-
layer key-exchange based on random jamming patterns that distort
parts of a transmission. In [50], Kim et al. use multiple jammers to
form a physical secure area around access points. They adjust the Jammers may even

collaborate to cover
wide areas.

jammers to jam everything outside to prevent information leakage.
In [48] by Jorgensen et al., access points also mutually jam their trans-
missions to cause decoding errors at eavesdroppers. All these appli-
cations outline the valuable gain of jamming for protecting wireless
networks.

Counter attacks on jamming are as vast as jamming itself. Metrics
such as packet send ratio (PSR), packet delivery ratio (PDR), carrier

142 reactive wi-fi jamming on smartphones

sensing time, and received signal strength (RSS) can indicate whether
jamming occurs or not [68, 96], but they cannot provide evidence
alone. In [96], Xu et al. combine these metrics with consistency checks
on the location and signal strength to reduce miss-detection rates. AEven though DSSS

and FHSS should be
hard to jam by

narrow band
interferers,

defending against
sophisticated

jammers remains a
hard challenge.

common method to overcome narrow-band jamming is the applica-
tion of direct sequence spread spectrum (DSSS) and frequency hop-
ping spread spectrum (FHSS) as presented in [65] by Mpitziopoulos
et al. Lin and Noubir propose enhanced coding schemes to prevent
jamming and establish jamming resilient communications in [58]. In
[97, 98], Yan et al. utilize techniques from interference cancellation
and signal processing to maintain MIMO-OFDM communications un-
der reactive jamming. To this end, they align the legitimate signal or-
thogonal to the jamming signal. Still, counter measures are costly, and
launching and defending jamming attacks remains an arms-race [68].

12.6 future work

While this work focuses on new jammer enhancements and their im-
plementation and evaluation on off-the-shelf smartphones, we by farFuture work could

enhance our
jammers to support

different jamming
waveforms or

simplify the adaptive
power-control

jammer’s state
machine by duplex

capable hardware.

do not cover all the possibilities smartphone-based jammers could
offer. Incremental improvements could be a better state machine to
further reduce power consumption and enhance stability. Duplex
capable Wi-Fi chips could even detect the presence of an acknowl-
edgement while transmitting a fake acknowledgement. This would
make “LEARNING” and “CHECK” states superfluous as they could
be performed in parallel to the “JAM-ACK” state. Additionally, the
effectiveness of other jamming waveforms should be evaluated, for
example, to support interleaving jamming [42] on smartphones. To
this end, different jamming patters need to be prepared to cope with
every possible scrambler seed. This demands for larger sample stor-
age memories such as the Template RAM from which we can also
transmit signals as presented in Chapter 9. The unleashed capa-
bility to cover 80 MHz bandwidth in the 2.4 GHz band also allowsThe use of other

Nexmon-based
technology such as

wide-band
transmission or CSI

extraction
capabilities could

lead to further
improvements and

new applications.

to target wide-band frequency hopping schemes such as Bluetooth
to create something like a cross-technology jammer. Additionally,
physical-layer information extracted from received frames may help
to enhance our jammer. As an example, the channel-state informa-
tion read by our Nexmon CSI extractor presented in Chapter 8 helps
to focus jamming power on subcarriers that best traverse the chan-
nel between jammer and intended receiver. For this application, we
would need to extract the CSI of a frame originating the intended re-
ceiver. Alternatively, CSI fingerprints could enhance reaction times of
reactive jammers as jamming conditions could be evaluated directly
after receiving the preamble containing the LTF used for CSI extrac-
tion. The examples above show, that a lot of research with jammers
on smartphone is still possible.

12.7 conclusion 143

12.7 conclusion

In this chapter, we proved that one can easily transform off-the-shelf
smartphones into efficient, mobile jamming devices. We demonstrated
that small modifications to the firmware running in the Wi-Fi chip al- With our work, we

demonstrated that
reactive jammers
that send arbitrary
waveforms no longer
rely on SDRs.

low us to quickly react on frame receptions to transmit jamming sig-
nals in time to destroy the frame during its transmission. We are,
thereby, not limited to predefined waveforms, but can design our
own signals as IQ samples that are directly injected into the base-
band. This opens the possibility to use such cheap devices in place
of more complex software-defined radio platforms. This flexibility
clearly poses a serious threat. If a malicious attacker manages to in-
ject a modified firmware into a large number of devices, he could
launch tremendous, distributed attacks against networks in the 2.4 With the

acknowledging
jammer we
introduced a novel
approach to allow
flow-based jamming
without throttling
all flows of a
targeted transmitter.

and 5 GHz bands. We, instead, used the flexibility for friendly jam-
ming applications and presented innovative jamming techniques that
involve the transmission of a forged, matching acknowledgement to
cheat the transmitter into believing that no transmission was actually
jammed. Together with a proof-of-concept prototype that automati-
cally determines the optimal transmission power, we presented the
first 802.11ac compliant and energy efficient personal jamming plat-
form.

12.8 my contribution and acknowledgements

I came up with the idea to port Francesco Gringoli’s jamming firm-
ware [8, 9] from legacy Wi-Fi chips to smartphones to support mobile
reactive jamming. I thank Michael Koch for working on this topic and
for reverse engineering the BCM4339 ucode in his masterthesis [51].
In parallel, I understood how to transmit signals from the sample- Only our

collaboration let us
achieve the greater
goal.

play buffer and had the idea to use this capability to generate arbi-
trary jamming signals. To work on this idea, I started a collaboration
with Francesco Gringoli. I thank him for this intensive collaboration
and especially for writing the D11 code that implements the three
jammers. During the implementation, I came up with the ideas of
the two advanced jamming types. For their implementation, I also
relied on Francesco Gringoli’s profound knowledge on Broadcom’s
ucode. Then I had the idea to extend the work and make it accessible
by providing a jamming app. I thank Efstathios Deligeorgopoulos for
implementing this app. Additionally, I thank Daniel Steinmetzer for
collecting related work and writing up the related work section.

13
W I - F I - B A S E D C O V E RT C H A N N E L S

As a proof-of-concept application that uses both SDR-like transmis-
sions and CSI extraction capabilities, we chose to implement a new
physical-layer-based covert channel. By means of this covert channel, Using the Nexmon

SDR, we transmit
modified Wi-Fi
frames with
embedded covert
information and use
the Nexmon CSI
Extractor to read
this information at a
receiver.

it is possible to stealthily embed additional information into Wi-Fi
frames. Ideally, this should not impact the reception of such frames
by normal receivers. Yet, it allows to covertly exchange information
between two devices Alice and Bob that can observe each others ra-
dio communications. Similar to most physical-layer covert channels,
this channel can be detected and decoded by an eavesdropper (Eve),
in case she knows the implementation details of the channel and has
access to similar SDR-like functionality or advanced signal analysis
capabilities on the physical layer. In contrast, this channel will be in-
discernible for unmodified off-the-shelf devices, which do not allow
for user access to physical-layer parameters. To demonstrate the ad-
vanced Wi-Fi capabilities of our solution, we introduce Shadow Wi-Fi,
a physical-layer-based covert channel over Wi-Fi. The covert channel
itself works by pre-filtering outgoing Wi-Fi frames and encoding se-
cret information into the filter. We can observe the filters’ effects Triggering

transmissions from
Template RAM in
the ucode was more
challenging than
expected.

at a receiver by evaluating the per-frame channel state information.
During the development, we faced the following challenges: (1) we
needed a way for prefiltering outgoing frames in the Wi-Fi chip, (2)
we had to extract per-frame channel state information, and (3) we had
to trigger transmissions from Template RAM from within the ucode.

In this chapter, we first describe the design of our covert channel
in Section 13.1, followed by its implementation in Section 13.2. We,
then, evaluate our implementation using two Nexus 5 smartphones
in Section 13.3, followed by a discussion in Section 13.4. Then, we
present related work in Section 13.5 and future work in Section 13.6
and finally conclude in Section 13.7.

13.1 covert channel design

Our covert channel relies on the ability of every Wi-Fi receiver to
cope with the fading effects of the wireless channel to reconstruct the Each Wi-Fi receiver

has to cope with
fading effects, that
we may extend to
embed secret
information into a
Wi-Fi frame.

originally transmitted data symbols plus noise introduced during the
transmission. To this end, every OFDM-based Wi-Fi receiver extracts
channel state information (CSI) that describes—for each subcarrier—
how the wireless channel changed amplitudes and phases. We de-
scribe this receive operation in more detail in Section 4.3.2. By intro-
ducing an additional fading-like effect using a transmit filter, we can

145

146 wi-fi-based covert channels

secretly embed additional information into each Wi-Fi frame without
destroying the ability of a regular Wi-Fi receiver to correctly receive
the frame. In what follows, we present in detail how our covert chan-
nel works. To get an overview of the system, we illustrate our covert
channel as a block diagram in Figure 36.

Looking at our covert channel more formally, the effect of the wire-The received symbol
on each subcarrier is
just the transmitted

symbol multiplied
by the channel

coefficient—one
entry in the CSI

vector.

less channel Hsc on a subcarrier sc can be linearly applied to the
transmitted QAM-symbol Xsc[k] of the k-th OFDM-symbol, resulting
in a received symbol Ysc[k] = Hsc ·Xsc[k]. Hsc is assumed to be con-
stant during the transmission of one Wi-Fi frame. Hence, receivers
extract it once per frame from the long-training field (LTF) resulting
in the CSI measurement. Instead of transmitting the Xsc[k] symbols
directly, we can apply a filter Fsc to all transmitted symbols first, in-
cluding those of the long-training field resulting in received symbols
Ysc[k] = Hsc · Fsc · Xsc[k]. As each Wi-Fi receiver estimates the CSIWe can multiply

each outgoing
symbol with a
transmit filter

coefficient to change
the CSI

measurement at a
receiver.

based on the channel effects applied to the LTF, it simply considers
the transmit filter as part of the wireless channel H ′

sc = Hsc · Fsc
and automatically cancels its effect when decoding data signals. To
simplify the equations, we combine variables depending on the sub-
carrier sc into column vectors, for example, H⃗ =

(
H0 · · · Hmax(sc)

)T ,
leading to Y⃗[k] = diag(H⃗) · diag(⃗F) · X⃗.

To build a covert channel that does not disturb the regular Wi-Fi
communication, we use differentiable filter vectors F⃗x as secret sym-
bols. Hence, we can embed one secret symbol per frame. In the fil-
ter vectors, we can change amplitudes and phases of all transmittedFilter coefficients

modifying only the
phase of an outgoing
symbol lead to signal

changes that are
harder to detect than

changes in the
amplitude.

symbols on all subcarriers. While changes in the amplitude are easily
observable using spectrum analyzers, the detection of phase changes
requires more thorough signal processing steps which impedes adver-
saries from easily detecting a covert transmission. Hence, we focus
on modifying only the phases of particular subcarriers in transmitted
frames. To mimic the behaviour of passing each Wi-Fi frame through
an additional wireless channel when we apply the filter to embed
covert symbols, we first convert our filter vector into the time-domain
to create the filter’s impulse response f(n) and then apply it by con-
volution with the Wi-Fi frame’s waveform x(n) ∗ f(n). This increases
the risk for inter-symbol interference (ISI), but it makes sure that thisWe filter in the time

domain to generate
inter-symbol

interference similar
to wireless channels.

additional signal processing effect does not end on OFDM-symbol
boundaries as it would be the case for filtering in the frequency do-
main. This hinders an adversary from gaining another feature he
may look for when searching for irregularities that may imply the
existence of a covert channel. In the next section, we focus on the
implementation of our covert channel in Wi-Fi chips and cope with
practical problems.

13.2 implementation 147

Covert Channel Transmitter

Covert Channel Receiver

Extract Meta-Info

Bits to Covert
Symbol Mapper

„Covert Message“

Convolution
with FIR Filter

Baseband OFDM
Modulator

IFFTRegular
Wi-Fi

Payload

Map
Symbol
to Filter
Vector

Waveform

Impulse
Response

Dump
Regular
Payload

Covert Channel
Demodulator

„Covert
Message“

Dump
CSI

Symbol 1 ... Symbol X No Symbol

Regular Wi-Fi Receiver

Regular
Wi-Fi

Payload

Frame
Detection

Counter Channel
Effects

Baseband
Demodulation

CSI
Extract CSI

Frame
Detection

Counter Channel
Effects

Baseband
Demodulation

CSI
Extract CSI

Wireless Channel

Figure 36: In our covert channel, the transmitter first maps message bits to
symbols that select filters that we apply to outgoing frames by
convolution in the time domain. A regular receiver estimates the
transmit filter as part of the wireless channel so that its effect
will be canceled. While a covert channel receiver may extract the
hidden message from the measured channel state information.
(based on [75])

13.2 implementation

Currently, we are not aware of a finite impulse response (FIR) filter in
the transmit chain, that we could easily adjust on a per-frame basis As we have no

knowledge of easily
accessible FIR filters
in the Wi-Fi chip,
we filter handcrafted
Wi-Fi frames
manually.

to filter all outgoing frames that are created in the Wi-Fi baseband
modulators. A possible solution to circumvent this very efficient im-
plementation option, is implementing the covert channel transmitter
by handcrafting the complete Wi-Fi raw signals, filtering them and
transmitting them with the Nexmon SDR presented in Chapter 9. As
this approach is very time consuming and does not support high

148 wi-fi-based covert channels

frame rates, we decided for an optimized implementation that also
works in real-time systems.

We assume that our covert channel transmitter is communicating
with another node, for example, an access point. Instead of embed-
ding the covert channel in the outgoing data frames—that are con-As handcrafting

every data frame is
computationally

expensive, we
exchange covert

symbols using
prefiltered

acknowledgement
frames whose

content is static.

stantly changing—we embed the covert channel into the outgoing ac-
knowledgements. As acknowledgements are always addressed to the
same communication partner (e.g., the access point), every frame con-
tains exactly the same payload. Hence, we can generate prefiltered
acknowledgement frame signals and store them in the Wi-Fi chips
Template RAM. The higher the number of differently prefiltered ac-
knowledgements we generate, the more covert symbols we can trans-
mit. To additionally reduce the time for extracting CSI information,
we can optimize our CSI extractor to only copy the CSI values of
subcarriers used by our covert channel implementation.

13.2.1 Generating and sending acknowledgements with covert information

For Wi-Fi frame generation, we use MATLAB’s WLAN System Tool-
box. It allows generating frames with arbitrary payload at all known
modulation coding schemes (MCSs) and bandwidths. We use thisWe use MATLAB to

generate raw
samples and

acknowledgement
frames and then load

them into Template
RAM for

transmission.

toolbox to generate our acknowledgement frames and then apply
various filters in the time domain to embed covert channel symbols.
Then, we load the generated symbols into the Wi-Fi chip’s Template
RAM and transmit them as a response to frames received by the com-
munication partner. To answer with raw-signal acknowledgements
from the D11 core, we have to intercept each frame reception after
receiving the PLCP header and spin wait until we complete the re-
ception of the MAC addresses. This implementation is similar to
the one of our jammer presented in Section 12.2.3. If we received a
frame for us sent by our communication partner, we skip scheduling
the transmission of a regular acknowledgement and set a variable
that indicates to transmit a raw-signal acknowledgement. Then we
wait until the frame is completely received, confirm that the frameTo trigger the

transmission from
Template RAM, we

extended the D11
ucode to trigger a
raw transmission

instead of the
regular

acknowledgement.

check sequence (FCS) is correct and trigger a raw-signal transmission
from Template RAM. To this end, we lookup start and end pointers
in shared memory that indicate where the raw samples are stored
in Template RAM and write them into the corresponding registers.
Then we trigger the playback of these samples and perform the RX-
to-TX sequencing to activate the transmitter. Then we spin wait until
the end of the transmission and reset the clear channel assessment to
stop the transmission and return the D11 core and the physical layer
to a state where they can receive the next frame.

At the covert channel receiver, we dump the CSI information of
all acknowledgement frames. Then, we analyze the CSI dumps to
extract the covert symbols. In a realistic setup the receiver has to

13.2 implementation 149

synchronize on the transmitted symbols to identify where a covert
channel transmission starts and where it ends. We implement a sim-
ple communication protocol for this purpose. We assume that our For receiving

messages that span
over multiple frames,
we use a simple
protocol indicating
the start and end of
each message.

secret information can be split into messages that contain exactly one
byte. To indicate the start and end of a covert byte, we use special
message start and stop symbols. On the transmitter side, we store
secret messages as sequences of start and stop pointers in the shared
memory that point to prefiltered acknowledgements containing dif-
ferent covert symbols. For each acknowledged frame that contains a
new sequence number, the transmitter iterates over the shared mem-
ory entries to transmit the stored messages.

Last but not least, we define how covert symbols are modulated. We can modulate
cover symbols by
changing
amplitudes, phases
or both.

We basically have three options to modulate symbols on each sub-
carrier: (1) changing the phase, (2) changing the amplitude, or (3)
changing both of them. By influencing the amplitude, we change
the average power on a limited number of subcarriers. Even though
a regular multi-path channel may have a similar effect, the spectral
shape of the transmitted frames may deviate from standard Wi-Fi
frames, so that the existence of the covert channel is easily detected
by looking at the power spectral density or the amplitude of the CSI Modulating only the

phase keeps the
power spectral
density of regular
Wi-Fi frames and is,
hence, harder to
detect.

on a line-of-sight channel. By modulating the phase, instead, we can
achieve a better covertness of our channel, as its detection requires
a look at phase changes in the CSI. Simply investigating transmitted
signals with a spectrum analyzer is not sufficient anymore to detect
the existence of this channel. Hence, we focus only on phase changes.

13.2.2 Choosing covert symbols

We generate 16 different covert symbols (00002, 00012 . . . 11112). Each
of them is a filter vector in the frequency domain that changes the
phases of the four subcarriers 8+ s, 11+ s, 54− s, and 58− s by 170◦, We generate 16

covert symbols that
changes phases on
selected subcarriers.

190◦, 170◦, and 190◦, where s ∈ [0, . . . , 15] is the symbol index. We
transform these vectors into the time domain by using an IFFT to
generate the filters’ impulse responses that we can apply to Wi-Fi
frame signals by convolution. Our frames are 802.11g modulated at
all eight modulation coding schemes (MCSs), resulting in the bit rates
from 6 Mbps to 54 Mbps. We generate those frames in MATLAB and We end up with 128

acknowledgement
frames at different
802.11g rates.

filter each of them with our 16 covert symbols, which results in 128
acknowledgement frames with embedded covert symbols that we use
for the experiments described below. To ease our analysis, we also
write a covert symbol identifier into the last two bytes of the frames’
MAC addresses. Obviously, for real covert channel operation, this
must be avoided.

150 wi-fi-based covert channels

Scale: 1 : 85

Nexus 5 in
partially open
microwave on

cupboard

two Nexus 5 smartphones
(backs facing each other)

fridge

non-direct-line-of-sight
but only few

multi-path effects

Nexus 5 smartphones
on kitchen countertop

changing
propagation
properties

line-of-sight
scenario

Figure 37: Experimental setup in an apartment in a rural environment with
no other Wi-Fi traffic on channel 122 and 120. Placing the trans-
mitter in the partially open microwave increases multi-path ef-
fects. All smartphones are installed on car mount holders to en-
hance the antenna radiation characteristics. (based on [75])

13.3 experimental evaluation

In our experimental evaluation, we study the performance of our
covert channel implementation and directly discuss the experimen-We perform our

experiments in an
apartment in a rural

area that has a low
amount of Wi-Fi

traffic.

tal results. As environment we choose an apartment in a rural area
with only low amount of Wi-Fi traffic so that our experiments are not
affected by high levels of interference. Even by communicating be-
tween rooms and shielding the line-of-sight paths with a refrigerator,
we only observed low multi-path effects in our CSI measurements.
For experiments that do not focus on multi-path propagation, we
simply stayed in one room. For influencing the propagation charac-
teristics of the wireless channel in a repeatable fashion, we placed one
device into a microwave oven and changed the opening angle of the
microwave door. We document our different communication setups
in Figure 37.

To evaluate the covert channel performance, we look at three dif-
ferent aspects. First, we evaluate how embedded covert symbols in-We evaluate three

different aspects. fluence the frame reception at normal Wi-Fi receivers. Second, we
measure covert symbol detection ratios at the covert channel receiver.
Third, we perform a realistic message exchange using our covert chan-
nel and demonstrate that it is practical.

13.3.1 Covert channel experiment in line-of-sight setup

In our first experimental setup, we place two Nexus 5 smartphones in
a distance of 1 m on a table top with the backs facing each other (see

13.3 experimental evaluation 151

0 1 2 3 4 5 6 7 8

·104

0001
1000
1101
0000
0101
1100
1010
0011
0110
1001
0111
1110
0010
1011
0100
1111
none

Correctly received frames

C
ov

er
t

sy
m

bo
ls

6 Mbps 9 Mbps 12 Mbps 18 Mbps
24 Mbps 36 Mbps 48 Mbps 54 Mbps

Figure 38: Frame reception rates at off-the-shelf Wi-Fi receiver with different
covert channel symbols that each flip the phases on four subcar-
riers. (based on [75])

Figure 37). We use the phone on the right as covert channel transmit-
ter. For each sub-experiment, we first load the raw samples of one of We first transmit all

generated
acknowledgements
10 000 times and
dump them
including their CSI
for further analysis.

the generated acknowledgement frames into the Template RAM and
then start a timer that triggers the transmission of 10 000 raw frames—
one per millisecond. We use the second Nexus 5 smartphone on the
left as both off-the-shelf Wi-Fi receiver and covert channel extractor
to simplify the setup by saving a third node. To this end, the phone
always dumps the received acknowledgement frame as well as the
channel state information into a pcap file. After repeating the experi-
ment for all 128 pre-generated frames, we analyze the pcap contents.

13.3.2 Evaluating the influence on normal Wi-Fi receivers

First, we analyze the effect of the embedded covert symbols to the
regular Wi-Fi receiver. We count frames per MAC address. As this
address contains an identifier of the embedded covert symbol, we Covert symbols that

have a low effect on
the reception
performance of a
regular Wi-Fi node
help us to stay
covert.

directly know which frames are modified and how they were pre-
filtered. In Figure 38, we present the results. Each row illustrates
the number of received frames during the eight experiments—one
for each MCS. The first row is the result without covert symbols.
Here, the maximum of 10 000 frames per sub-experiment was almost
reached. The next six rows belong to covert symbols that have no
measurable influence on the reception performance for MCSs of up
to 24 Mbps. They are, hence, a good choice for embedding covert
symbols without raising suspicions at covert channel detectors that

152 wi-fi-based covert channels

0 10 20 30 40 50 60 70 80 90 100

1011

1010

1111

1110

1101

1100

0101

0110

0111

1001

1000

0100

0011

0010

0001

0000

Detection Percentage

C
ov

er
t

sy
m

bo
ls

false positives true positives

Figure 39: Detection rates at the covert channel receiver. False positives oc-
cur when a covert symbol is detected in an unmodified frame.
True positives occur when the embedded symbol was detected.
(based on [75])

take frame error rates into account. For the other rows below, the
influence on regular Wi-Fi receivers increases which renders those
symbols inadequate for staying undiscovered.

13.3.3 Reception performance at the covert channel receiver

Secondly, we analyze how well the intended receiver of the covert
channel can detect and differentiate the symbols. To this end, we an-
alyze the CSI dumps and extract the phases at all subcarriers. As allThe embedded covert

symbols should be
extractable (true

positives), but
symbols should not

be found when none
were embedded (false

positives).

of our covert symbols are encoded by changing the phases at four
subcarriers by roughly 180◦, we search for jumps at the expected po-
sitions at the receiver’s CSI phases and calculate a likeliness value for
each symbol to be contained in the received frame. At the end, we
choose the symbol with the highest likeliness value as the one we ex-
tract for the corresponding frame. If the detected symbol equals the
embedded symbol we have a true positive. In Figure 39, we illustrate
the percentage of achieving true positives for each symbol. Here, we
realize that all different symbols achieve true positive rates reaching
100 percent. Which makes them all usable in a practical covert chan-
nel. Additionally, we also analyzed the percentage of false positives.
Those are symbols that we detect even though no symbols were em-

13.3 experimental evaluation 153

bedded in the frame. Some symbols are more likely to be detected in Symbols with low
false positive rates
are preferable to
avoid ambiguity
errors especially for
control symbols.

this case. In general, even these symbols are usable in practical covert
channels, but they should be used as data symbols rather than start
and stop symbols of a message. Otherwise, we risk detecting many
wrong message starts.

13.3.4 Choosing suitable symbols

Combining the results of the two measurements, we choose the six
symbols 11112, 10112, 01002, 00102, 11102 and 01112 as covert chan-
nel symbols. As 11112 does not result in false positives, we choose
it as message start symbol. 10112 is our message stop symbol and
the other four symbols are data symbols, each encoding two bits: 002,
012, 102 and 112. For our third experiment, we use the selected sym- We chose two

message control
(start and stop) and
four data symbols.

bols to transfer bytes over the covert channel. To signal the receiver
that a data transmission starts, we first send the message start symbol
and then encode our bits with data symbols followed by a stop mes-
sage symbol. We chose to place one byte per message, which results
in six symbols that need to be transmitted. Of course, the number of
bits can be varied to more efficiently use the covert channel as long as
both receiver and transmitter use and expect the same fixed number
of data symbols per message. To transmit the messages, we embed We embed the

chosen symbols into
acknowledgements
and store the
resulting samples in
Template RAM.

them in acknowledgement frames that we can generate for our com-
munication partner in advance. Then, we use our ucode modifica-
tions to trigger the transmission of the correct acknowledgement cor-
responding to the covert symbol that should be transmitted. The start
pointers for the acknowledgements are stored in the shared memory
and written by the ARM core after mapping the desired messages to
covert symbols.

13.3.5 Real-time experiments involving the D11 core

In general, our covert channel could communicate normally with a
regular Wi-Fi node and embed the covert symbols into the acknowl-
edgements for this node. The covert channel receiver could be an- Embedding covert

symbols in the
communication with
a third party hides
the intended covert
channel receiver.

other node that eavesdrops on the communication between the two
nodes to capture the acknowledgements and dump the CSIs to ex-
tract the covert symbols. Using this setup, the covertly communicat-
ing nodes could conceal the communication partners. For our ex-
periments, we simplify this setup by using the same node as com-
munication partner for the regular Wi-Fi transmissions and as covert
channel receiver. In this setup, the Wi-Fi communication partner sim-
ply injects frames to the covert channel transmitter. The latter checks
for an expected MAC address and transmits a raw acknowledgement
with an embedded covert symbol. The covert channel receiver cap-
tures this frame, dumps the CSI and extracts the covert symbol and

154 wi-fi-based covert channels

LOS NLOS Microwave
0

2,000

4,000

6,000

8,000

Experimental Setting

A
m

ou
nt

start, 4 data and stop sym. start and 4 data sym.
start and 3 data sym. start and 2 data sym.
start and 1 data sym. only start sym.

Figure 40: Results of transferring one byte in four covert symbols plus
start and stop symbols in a line-of-sight (LOS), non-line-of-sight
(NLOS) and microwave environment with changing wireless
channel characteristics. (based on [75])

then tries to reconstruct the covert messages, each consisting of one
byte.

We ran experiments on our covert channel implementation in three
indoor scenarios that we illustrate in Figure 37. First, we keep two
Nexus 5 smartphones close together in the line-of-sight setup on the
living room table. Then we evaluate a non-line-of-sight setup by keep-
ing one smartphone on the living room table and placing the otherIn the first two

experiments we
evaluate the
influence of

multi-path effects
and in the third, we
investigate quickly

changing
environments.

on the kitchen countertop so that a direct line-of-sight connection is
impeded by a fridge. Both setups simply evaluate the influences of
multi-path effects on our covert transmission. In the third setup, we
check whether our implementation can cope with quickly changing
wireless propagation characteristics, by placing one smartphone in a
microwave oven and another one on the kitchen countertop similar to
our CSI extraction experiment in Section 8.2. By quickly opening and
closing the microwave oven door, we constantly change the wireless
channel and thereby the measured CSI.

13.3.6 Evaluating the experimental results

In Figure 40, we illustrate the results of the three experiments. For
each experiment, we count how many correct symbols in a row weIn any of the three

setups we
successfully received
almost 80 percent of

the transmitted
covert messages,

each consisting of 6
acknowledgement

transmissions.

were able to extract leading to either completely correct message re-
ceptions, partially correct message receptions or wrong message re-
ceptions. In total, we transmitted 10 000 messages. The missing ac-
knowledgements at the receiver were either not correctly received or
not transmitted due to a reception problem of the ingoing Wi-Fi frame
at the covert channel transmitter. The first bar in Figure 40 shows how
many messages we extracted completely correct. In all three exper-
iments, most of the extracted covert symbols resulted in complete

13.4 discussion 155

messages. Only few messages were missing symbols to reconstruct
the full message. Overall, these results show that our covert chan-
nel is indeed practical even in non-line-of-sight environments as well
as those with constantly changing wireless propagation characteris-
tics due to movement in the environment (in this case the microwave To change wireless

propagation
characteristics over
time, we moved a
microwave oven
door.

oven door). Further error correction of the received messages is left
for upper layers that might even enhance confidentiality of the trans-
mitted covert symbols by applying cryptography with a shared key
between the covert channel communication partners. This would at
least hinder leaking the covertly transmitted information in case an
adversary discovers and decodes this covert channel.

13.4 discussion

To the best of our knowledge, we developed the first physical-layer
covert channel where both the transmitter and the receiver are imple-
mented on an off-the-shelf Wi-Fi chip that is even installed in smart- We developed the

first physical-layer
covert channel fully
implemented on
smartphones.

phones. Especially for people living in countries where information
flows are strictly regulated, covert channels such as ours can help to
exchange messages between wirelessly enabled users without even
revealing that a covert transmission is ongoing as well as who the
receiver of the messages is. On the other side, adversaries can also
use covert channels to secretly extract private information from a pro-
tected system. Even if intrusion detection systems may analyze the
regular Wi-Fi frame contents, they most likely miss irregularities on
the physical layer. To counter these information leakage attacks, secu-
rity experts need to know covert channel implementations to be able
to at least detect the existence of an information leak so that it can
be found and closed. Hence, for both applications, it is important to
discuss new ways of implementing covert channels.

13.5 related work

The idea of hiding information in wireless network traffic is not new.
Covert channels use properties of legitimate communication channels The term covert

channel exists since
1973.

to transmit additional data that is invisible to uninitiated receivers.
The term was first used by Lampson in 1973 [54].

13.5.1 Data-link-layer approaches

Most covert channels are designed for the data-link layer or higher
layers. They use reserved fields, time delays, or packet corruptions Most covert

channels on Wi-Fi’s
data-link layer
concentrate on
overwriting parts of
the Wi-Fi headers.

to embed covert information into a data stream. In [29, 93], Girling
and Wolf introduce covert channels for local area networks (LANs).
In [38], proposed an approach for transmitting data by corrupting
Wi-Fi frames. The covert information is either stored in the WEP ci-

156 wi-fi-based covert channels

pher’s initialization vectors (IVs), MAC addresses or the frame check
sequence (FCS). In [28], Frikha and Trabelsi additionally consider
the sequence control field in the Wi-Fi headers to store hidden bits.
In [62], Martins and Guyennet propose the use of reserved fields in
802.15.4 systems as covert channels. In [52], Krätzer et al. present an
analysis of campus traffic and evaluated utilizable fields for hiding
information based on randomness and occurrence of set bits.

13.5.2 Physical-layer approaches

Wireless physical-layer covert channels are rare, but they are more
generic as technologies such as OFDM are used in various wireless
standards. In [18], we present and evaluate four covert channels for
Wi-Fi systems in the field. Two were first presented in this work.Of the few existing

physical-layer covert
channels, even less

are evaluated in
practical setups.

The STF PSK covert channel shifts the phase of STF symbols which
are found at the beginning of a Wi-Fi frame’s preamble. The po-
sition makes this covert channel resistant against reactive jamming
that does not target all Wi-Fi traffic. The CFO FSK covert channel
introduces frequency offsets into each OFDM symbol imitating very
quickly changing Doppler effects on Wi-Fi frames. The Camouflage
Subcarrier covert channel was first presented in a similar form by Hi-
jaz and Frost in [39]. While they focus on adding covert-information-
carrying subcarriers to LTE and WiMAX systems in simulation, we
added those to Wi-Fi signals and evaluated the performance in prac-
tical experiments. The Cyclic Prefix Replacement covert channel from
[18] was previously proposed by Grabski and Szczypiorski in [32].
This channel places covert symbols into the cyclic prefix that is re-Covert channels for

OFDM-based
systems can be

reused in multiple
wireless

communication
standards.

quired to cope with inter-symbol interference (ISI) due to multi-path
propagation. While Grabski and Szczypiorski only simulated with
AWGN channels, we performed practical experiments and simula-
tions in multi-path environments. In [24], Dutta et al. present an
alternative approach called Dirty Constellations. It embeds covert
symbols by adding small IQ symbols to existing constellation points.
This is observed as additional noise and, therefore, only applicable to
links that do operate close to the channel capacity limits.

13.6 future work

Our filter-based covert channel is only one out of many covert chan-The flexibility of the
Nexmon SDR allows

implementations of
various practical

physical-layer covert
channels on mobile

devices.

nels implementable for Wi-Fi systems on the physical layer. Due to
the flexibility of the SDR-based transmission approach, we are very
flexible when it comes to modifying Wi-Fi frames. As long as real-
time operation is not an issue or frames with covert symbols can be
generated in advance, any of the covert channels from the related
work section should be implementable. In addition, also covert chan-
nels for other communications standards are possible. Leading to the

13.7 conclusion 157

new concept of cross-technology covert channels. As Broadcom chips
installed in smartphones generally integrate both a Wi-Fi and a Blue-
tooth transceiver connected to the same antenna, investigating covert
channels for Bluetooth becomes possible. With 80 MHz bandwidth
available in the 2.4 GHz band, we cover the complete Bluetooth band.

For various applications, it is sufficient to only implement the trans- Covert channel
receivers should use
existing hardware
components to
extract
physical-layer
properties whenever
possible to avoid
otherwise required
continuous raw
sample captures.

mitter of a covert channel in an off-the-shelf device. More flexible
equipment such as software-defined radios can be used to receive and
decode the covert frames. Nevertheless, the ability to also use Wi-Fi
chips to capture raw samples of radio transmissions allows us to cap-
ture most physical-layer covert channels in the Wi-Fi bands. However,
frame detection and synchronization, especially for non-Wi-Fi trans-
missions, are computationally expensive operations. The reception
of Wi-Fi-based covert channels could at least be triggered by existing
frame detection hardware build into the Wi-Fi chip to avoid captur-
ing raw samples all the time. In future work, we should investigate
physical-layer properties that can be extracted with off-the-shelf re-
ceivers to then build covert channels that use those properties to hide
information in Wi-Fi frames.

13.7 conclusion

In this chapter, we introduced a novel covert channel for Wi-Fi sys-
tems that imitates effects of fading channels to encode covert symbols
into Wi-Fi frames. To this end, we use transmit filters that modify
phases on selected subcarriers to represent covert symbols. A covert We demonstrated the

practicability of our
transmit-filter-based
covert channel under
real-time conditions
in realistic
environments with
changing wireless
channels.

channel receiver can extract those symbols by analyzing the channel
state information that regular receivers use to equalize the fading ef-
fects of the wireless channel. We implemented both our covert chan-
nel transmitter and the receiver in the Wi-Fi chip of Nexus 5 smart-
phones and evaluated their performance in an apartment. As we used
the Nexmon SDR presented in Chapter 9 to transmit frames with em-
bedded covert information, we focused on transmitting pre-generated
acknowledgement frames including different covert symbols to re-
duce delays in real-time communication systems. Our results show,
that regular receivers are only disturbed by embedded covert sym-
bols when high modulation coding schemes are in use. The covert
channel receiver has very good detection rates and can extract covert
messages that span over multiple Wi-Fi frames.

13.8 my contribution and acknowledgements

Implementing this covert channel on smartphones was my idea and
the initial motivation to even start reverse engineering Wi-Fi firmware.
I thank Francesco Gringoli for the intensive collaboration especially
for writing the ucode that implements the frame-triggered acknowl-

158 wi-fi-based covert channels

edgement transmissions. I also thank Jakob Link for implementingA Covert channel on
smartphones was the

spark that ignited
the interest in

modifying Wi-Fi
firmwares.

a first version of the presented covert channel for his bachelor thesis
[59] and extending it for this work. I also thank Jiska Classen for
collecting the related work on covert channels. With her, I started the
first investigations on Wi-Fi covert channels presented in [18].

14
P R O J E C T S U S I N G N E X M O N

We developed Nexmon as an open-source project, so that others may
not only benefit from our results, but also reuse our code in their
own projects. In this chapter, we present projects that are directly
based on Nexmon or that partially use information published in our
project. In many projects, we participated in either porting Nexmon
to a different platform or we performed reverse engineering tasks
required to achieve the goals of collaborating groups.

14.1 nexmon for qualcomm’s 802 .11ad wi-fi chip

Even though Nexmon focuses on Broadcom Wi-Fi chips, the frame-
work can generally be used for any microcontroller architecture that
is supported by the GNU Compiler Collection (GCC) with enabled
plugin support. An analysis by D. Steinmetzer and D. Wegemer With Nexmon we

support Qualcomm’s
first commercially
available 802.11ad
Wi-Fi chips installed
in home routers.

of Qualcomm’s QCA9500 802.11ad Wi-Fi chip revealed that the chip
contains two ARC600 processors. One used for real-time operations
(ucode processor) and another for interfacing the host system and
performing FullMAC operations (firmware processor). Based on their
findings, we started a collaboration to port the Nexmon framework
to support the QCA9500 chip.

14.1.1 Porting Nexmon to ARC600 cores

Compared to ARM processors, the ARC600 is based on a Harvard
architecture with separate instruction and data memory regions. As
illustrated in Figure 41, the individual instruction memory regions
seen by each of the two cores start at address 0x0 and are write pro-
tected. The data regions start at address 0x80000 and are writable.
Traditionally, the Nexmon approach requires that data and instruc- Obtaining write

access to code
memory on Harvard
architectures eases
the portation of
Nexmon to such
platforms.

tion regions are combined and, hence, both writable. To port the
framework, we had to either extend Nexmon to support separate in-
struction and data regions or to find a way to get write access to
the instruction regions. During our analysis, we realized that the
driver loads firmware binaries into the Wi-Fi chip by writing to ad-
dresses above 0x8c0000. From there, the memory regions are mapped
to the cores’ instruction and data address spaces as illustrated in Fig-
ure 41. As a check whether the internal cores could also write to
addresses above 0x8c0000 succeeded, we decided to modify the Nex-
mon framework to merge both instruction and data sections into the
code memory partitions above 0x8c0000. We instructed the linker to

159

160 projects using nexmon

0x00000000

0x008c0000

0x00900000

0x00920000

0x00940000

0x008f5000

0x00936000

0x00020000
0x00040000

mapped to 0x00920000
mapped to 0x008c0000

unused

ucode firmware

0x00080000
0x00084000
0x00088000

mapped to 0x00940000 mapped to 0x00900000
unused

firmware data partition0x00908000

ucode data partition
0x00944000

As seen by:

ucode code partition

firmware code partition
firmware patch (code+data)

ucode patch (code+data)

PC-relative jumps
between original
firmware and patch

Patch data is
accessed at high
addresses that
allow to write
into code regions

Figure 41: Memory layout of the QCA9500 802.11ad Wi-Fi chip with two
ARC600 processors (ucode and firmware) that have separate
write-protected code and writable data memories at low ad-
dresses. All four memory regions are remapped into high ad-
dresses, where they are writable and accessible from the host.
(based on [85])

assume that the code will be loaded into addresses starting from 0x0
during runtime, so that the linker produces program counter rela-
tive jump instructions to jump between patch and original firmware
code. For writing to data regions, we pointed the linker to addresses
above 0x8c0000 as they are writable by the internal ARC600 cores.
These changes to the Nexmon framework allowed us to use it with
the QCA9500 chip.

14.1.2 Simplifying debugging of the QCA9500 firmware

Compared to the Broadcom firmwares, the QCA9500 firmware was
much harder to reverse engineer. Especially, as the firmware doesAdding a printf

function to the
firmware simplified
runtime analyzes of

the firmware.

not come with an internal console to which the developers may print
debug messages that would have helped us to indicate the purpose
of the functions generating those messages. To dynamically analyze
the firmware during runtime, we created an internal console to which
strings may be written by calling a printf function. We also extended
the driver to dump this console into the user space of the host’s oper-
ating system.

Equipped with such tools, D. Steinmetzer and D. Wegemer were
able to analyze and extend the QCA9500 firmware to, for example,
enhance the sector selection algorithm required to optimally commu-
nicate between 802.11ad stations in the 60 GHz band. This work re-
sulted in the joint publication [85].

14.2 nexmon for fitbit activity trackers 161

14.2 nexmon for fitbit activity trackers

Even though Nexmon started as a patching framework for Wi-Fi
firmwares, it also allows to create modifications for other devices
such as Fitbit activity trackers. These devices are also based on ARM Porting Nexmon to

other ARM-based
devices is simple.

processors which simplifies the adaptation of our framework to this
platform. In [19], J. Classen and D. Wegemer demonstrate how to
use Nexmon to add new features to the Fitbit firmware to simplify
dynamic firmware analyses.

14.3 security analyses based on nexmon’s results

In the year 2017, two remote code execution vulnerabilities in Broad-
com Wi-Fi firmware have been discovered. The first, discovered by Multiple remote

code execution
vulnerabilities were
found in Broadcom
Wi-Fi firmwares.

G. Beniamini in [7], exploits a buffer overflow in a vendor extension
of the tunneled direct link setup (TDLS) protocol implementation and
can be triggered by any device that is connected to the same wireless
network as the target node. The second, discovered by N. Artenstein
in [3] exploits a buffer overflow in the code handling the wireless
multimedia extensions (WME) field in probe response frames. It can
be triggered by simply replying to a probe request frame sent by the
target node.

Both projects reference our Nexmon project [80] as one reference
to start the analysis of the firmware. Hence, our project helped in
finding and fixing new security vulnerabilities. Unfortunately, not Open source

firmwares would
simplify firmware
patches on legacy
devices.

all smartphone vendors offer Wi-Fi firmware updates for all their af-
fected devices, so that many devices will stay vulnerable. At least,
Nexmon allows to patch the discovered security holes even for legacy
devices. To enhance the security of wireless communication systems
in general, it would be helpful to force chip vendors by law to publish
their firmware source code so that security holes can be found and
patched more easily without having to rely on the support of the chip
vendor.

14.4 nexmon for qualcomm’s lte modem firmware

In his master thesis [13], C. Bruns analyzed LTE modem firmware
used in MSM8974 chips and created a patching framework based on
Nexmon’s firmware patching concept. Compared to Broadcom’s Wi- Qualcomm employs

a working firmware
verification solutions
that we can only
avoid on devices that
are misconfigured.

Fi firmwares, Qualcomm’s LTE modem firmwares are generally veri-
fied by the chip’s bootloader. Only correctly signed firmwares should
be executable. For development, however, special publicly available
certificates can be used to sign firmwares. Alternatively, the develop-
ers can also completely disable firmware verifications. Bruns found
the hint, that some vendors even sell devices with such developer

162 projects using nexmon

options enabled. Hence, he was able to modify the LTE firmware
running on the Asus PadFone Infinity 2.

To this end, he had to generate code for Qualcomm’s Hexagon digi-
tal signal processor that runs the firmware on the LTE chip. Similar toFirmware patches

lead to various new
applications running

in the LTE modem.

Nexmon’s approach, Bruns also stores additional placement informa-
tion into C files containing the patch code and can thereby overwrite
and extend existing code. His example applications include a sniffer
for data-link-layer frames, a channel state information (CSI) extractor
and an encryption key extractor. All these features are not officially
offered by the original firmware so that Bruns was the first to develop
these firmware extensions for the research community.

14.5 conclusion

The projects presented above are an example for the flexibility of the
Nexmon firmware patching approach. The idea of modifying firm-Nexmon is a

versatile approach to
comfortably modify
firmware of various

devices.

ware by writing C code is not limited to Broadcom chips, but can
be applied to many other platforms. Our results prove that Nexmon
has the capabilities to become the standard tool for modifying binary
firmware that consists of proprietary code running on integrated com-
munication chips, Internet-of-things devices or other embedded sys-
tems.

Part V

D I S C U S S I O N A N D C O N C L U S I O N S

We discuss our findings and applications in Chapter 15.
Then, we conclude this thesis in Chapter 16.

15
D I S C U S S I O N

Before we started working on Nexmon, we faced the problem of hav-
ing only limited control over Wi-Fi chips installed in smartphones.
Generally, those chips act as Ethernet-to-Wi-Fi bridges that handle
all frame processing steps and the interaction with the wireless in- Proprietary

firmware renders
Wi-Fi chips into
blackboxes that
bridge between
Ethernet interfaces
and Wi-Fi networks.

terface in a proprietary firmware—that equals a blackbox. In such
a system, only the chip’s manufacturer and maybe the manufactur-
ers of devices using such chips have access to the firmware source
code and are able to develop new applications. This gives companies
who can afford to cooperate with chip manufacturers a monopoly to
drive innovation. Apple, for example, performs distance bounding
as an option to unlock computers. The implementation relies on dis-
tance measurements collected by custom Wi-Fi firmware extensions.
The lack of freely available firmware source code and proper chip Creating

innovations can be
simplified by giving
researchers access to
firmware source code
and proper hardware
documentation.

documentation hampers researchers to present similar solutions and
make them available to a wider public. Additionally, end users heav-
ily rely on the manufacturers’ good will to fix security vulnerabilities
in firmwares. Access to firmware source code would allow trusted
third parties to update firmware even if the manufacturer drops sup-
port for a particular device.

While access to the source code would be the royal road to new
Wi-Fi based applications, it seems unlikely that manufacturers would
be that open. In the last decade they already moved back from rather Nexmon is only

required where
access to source code
is restricted—which
is often the case.

open SoftMAC Wi-Fi cards to FullMAC Wi-Fi cards running propri-
etary firmware. With Nexmon, we supply a solution, that might be-
come obsolete as soon as open firmware becomes available. Until
then, Nexmon is the only way to efficiently analyze, modify and ex-
tend Wi-Fi firmware of Broadcom’s FullMAC chips. And it is by
far not limited to such devices as Nexmon-based projects for Qual-
comm’s 802.11ad devices and FitBit’s activity trackers show. The abil-
ity to write firmware patches in C or even embed existing C code into While Nexmon

simplifies the
creation of patches,
reverse engineering
firmwares is a
required
groundwork.

firmware patches gives researchers a flexibility close to having direct
access to the firmware source code. Nevertheless, they still have to
reverse engineer the firmware binary first to find appropriate places
to branch execution into their new code. This is the challenge only a
few researchers are willing to face.

When we started our research on Broadcom Wi-Fi chips, our ambi-
tious goal was the implementation and evaluation of a physical-layer
covert channel on smartphones. To achieve this goal, we first had Nexmon was

initiated to build
covert channels.

to understand how the Wi-Fi firmware operates in general. The first
side product of this research was the implementation of a patch that

165

166 discussion

activates monitor mode and frame injection on various smartphones.
Based on what we learned about the Wi-Fi chip, we were able to
evaluate the energy-wise and delay-wise benefits of moving frame
processing steps into the firmware, which also helped us improvingOn the stony way to

covert channels, we
created side products
beneficial for various

applications.

software-defined wireless networking applications. After that, we
were still left with the tasks of embedding covert symbols into Wi-Fi
frames and extracting them on the receiver side. For the latter, we
already knew that it was possible to extract channel state informa-
tion (CSI) on various Wi-Fi chips, but we still had to understand how
to access and interpret this information on smartphone Wi-Fi chips.
The resulting channel state information extractor is a versatile tool
that can be reused by other researchers who require this information
especially on mobile devices. For embedding the covert symbols, we
first intended to use beam-steering capabilities of multi-antenna Wi-
Fi chips. But before spending time into this direction, we discoveredSDRs are very

flexible but also
require

computationally
expensive

generations of raw
signals.

software-defined radio (SDR) capabilities. They are not specialized
for specific operations and thereby less efficient. Nevertheless, SDR
capabilities offer maximum flexibility for transmitting arbitrary sig-
nals in the Wi-Fi bands. Discovering this feature is a breakthrough
for communicating in different communication standards using off-
the-shelf Wi-Fi devices. This feature also added the little extra to
our reactive Wi-Fi jammer as it is now possible to transmit arbitrary
jamming signals from a smartphone. Both SDR and CSI extraction ca-
pabilities allowed us to achieve our initial goal of implementing and
evaluating a physical-layer covert channel on smartphones. Reach-
ing this goal required perseverance and the urge to continuously dis-
cover some new functionality that could be used to implement ideas
of novel applications.

Our future work sections concluding various chapters show, that
the investigation into Wi-Fi chips is by far not finished and the possi-
bilities for developing novel Wi-Fi-based applications for smartphones
are not yet exhausted. Due to the open source mindset we propagateNexmon does not

require a deep
understanding of

Wi-Fi firmware to
get started, instead,

beginners can
simply use the tools

we created and
published.

in our projects, other researchers can easily get started with firmware
modifications to enhance their own projects and evaluate their solu-
tions in real-world testbeds with mobile end devices. Just using new
capabilities such as monitor mode, frame injection, reactive jamming,
CSI extraction or SDR-based transmissions, beginners do not even
need to understand the chip internals—not even how the firmware
works. They can use tools we provide and build their applications on
top. After getting started, they can dive into firmware patching and
generate first extensions on the frame processing path or adjust the
behavior of existing patches according to their requirements. Only
if functionalities are required that exceed the existing set of reverse
engineered functions, structures and hooking addresses, beginners
have to become advanced Nexmon users and look into the firmware
binary on their own to find the missing pieces. This opens the way of

discussion 167

finding and reverse engineering new capabilities such as beam steer- New exciting
applications based
on Nexmon will
emerge.

ing matrices that define how multiple spatial streams are transmitted
in multi-antenna systems. We are curious to know what others may
create based on Nexmon.

16
C O N C L U S I O N S

In this work, we evaluated how smartphone-based wireless systems
can be enhanced performance-wise and security-wise. To this end, we We reverse

engineered Wi-Fi
firmwares and
developed a patching
framework.

reverse engineered Broadcom’s FullMAC Wi-Fi firmware as well as
chip internals and developed a framework to write firmware patches
in C and automate the patching process. Of course, running modi-
fied firmware created by third parties entails risks. Malicious entities
could write firmware patches that spy on a user’s communication or
turn its device into a communication jammer. To protect users from
such attacks, we proposed to enhance Broadcom’s firmware loading
mechanism by one that verifies that firmwares are signed by a trusted
entity. In case researchers want to load custom firmwares onto their
own Wi-Fi chips, we proposed means to replace the public signature
verification key by having physical access to the Wi-Fi chip itself. To
make sure that users can verify that our released firmware patches are Firmware

modifications can
contain malicious
code that can
compromise the
security of a device.

free of—unintentional—malicious functionalities, we released their
source code. Users may verify our implementation, reproduce our ex-
periments and extend our code to use it in their own applications. To
demonstrate the capabilities of modern Wi-Fi chips, we created and
evaluated various example applications that even exceed the capabil-
ities one would expect from Wi-Fi chips in off-the-shelf smartphones.

The activation of monitor mode and frame injection on smartphone
Wi-Fi chips gives researchers easy access to raw frames. This allows
to evaluate prototypes of new communication paradigms within the Monitor mode and

frame injection is the
first step to get
better access to the
wireless channel.

host’s operating system. To reduce energy consumption and frame
processing delays, parts of such implementations can be offloaded
into the Wi-Fi chip. This is especially beneficial for frame forwarding
applications used in wireless mesh networks. Implementing those on
smartphones creates a versatile and realistic mobile evaluation plat-
form. We demonstrated the advantages of answering pings in the Wi-
Fi firmware compared to answering them in the operating system’s
kernel in our ping-offloading application—energy consumption and Offloading

functionalities into
the firmware can
save energy and
reduce the
processing delays.

round trip times are significantly reduced. Firmware implementa-
tions can even enhance software-defined wireless networks. While
we focused on controlling the physical-layer based on application re-
quirements using WARP software-defined radios connected to smart-
phones, a Nexmon-capable Wi-Fi chip can fulfill similar goals without
additional hardware components besides a smartphone. In our exam-
ple application, we evaluated how the performance of broadcasting
videos encoded by scalable-video codecs can be enhanced by adjust-
ing modulation coding schemes and transmission powers per video

169

170 conclusions

quality layer. Instead of directly defining those parameters within the
application, we used the concept of flows to which we assign trans-
mission requirements that are translated into physical-layer transmis-
sion settings in a service that has an overview over all flows on a
device.

Focusing on the security enhancements, we demonstrated that it
is possible to implement reactive Wi-Fi jammers on smartphones. ToFriendly jammers

can be used to
enhance the security

of a network by
destroying malicious

frames.

this end, we manipulated the firmware running on the chip’s real-
time processor. It can inspect frames during reception and trigger
the transmission of a jamming signal in case a jamming condition
matches. We even proposed and implemented two novel jamming en-
hancements. One enhancement makes sure that while destroying the
reception of targeted flows, transmitters of such flows continue their
non-targeted communication. The other enhancement evaluates jam-
ming successes to minimize the jammer’s power consumption. On
the one hand, we intend to use this jammer for friendly jamming pur-
poses. Those could be physical-layer firewalls that can destroy ma-
licious frames before they can be received by otherwise unprotectedUsing off-the-shelf

devices as jammers
can lead to

wide-spread
malicious attacks
against wireless

networks.

devices. On the other hand, we also want to make other researchers
aware of security implications that rise from the omni-presence of
wirelessly connected devices. Malicious attackers could take over a
significant number of smartphones to launch a massive reactive jam-
ming attack against our wireless infrastructure. While this attack can
never be completely avoided, the restriction to only loading signed
firmwares onto communication chips reduces the attack surface.

Our second security-related application focuses on the protectionOur physical-layer
covert channel

allows to exchange
information without

revealing to an
eavesdropper that a

communication link
exists.

of people who intend to exchange information without disclosing
that this exchange even occurred. To this end, we implemented a
physical-layer-based covert channel for Wi-Fi systems on smartphones.
It embeds covert symbols into phase changes on selected subcarriers
in OFDM-based Wi-Fi transmissions. To extract the embedded sym-
bols, we extract channel state information at a receiving smartphone.
It contains phase and amplitude changes introduced by the wireless
channel as well as those introduced by the transmitter. Similar to jam-
mers, also covert channels are dual-use applications. They can help
informants to share their information with journalists but they canResearch into covert

channel is a
double-edged sword

as disclosing how
they work likely

helps to detect and
uncover them.

also help spies to covertly extract information from computer systems.
The latter scenario requires the research on covert channel detection
and counter mechanisms. However, those developments would also
endanger the people in the first usage scenario. Nevertheless, only
by openly discussing possible covert channel implementations and
defenses against them, one can assess the risks of using them in prac-
tice.

We based the implementation of the presented applications on our
discoveries of undocumented capabilities of Wi-Fi chips. The first
is the extraction of channel state information on smartphones, the

conclusions 171

second is the Wi-Fi chip’s ability to transmit and capture raw base-
band signals. This way, off-the-shelf smartphones can be operated Software-defined

radio, CSI extraction
and debugging
projects give other
researchers a
starting point for
working with
Nexmon.

like software-defined radios. We offer tools to experiment with both
discoveries and use them for future research applications. To ad-
ditionally help researchers to find and understand currently unex-
plored parts of the Wi-Fi firmware, we also created a programmable
debugger that supports single stepping and directly integrates into
the firmware. We hope that the presented tools and applications in-
spired other researchers to further dive into firmware analyses to un-
leash the full potential of commercial off-the-shelf hardware.

Overall, this thesis proves that many applications previously re- Nexmon enhances
smartphone Wi-Fi
chips to benefit
large-scale, mobile,
communication
testbeds.

quiring software-defined radios for their implementation and evalua-
tion, can now be implemented on relatively cheap off-the-shelf smart-
phones. This allows for large-scale testbeds that support mobility and
already come with a set of example applications other researchers can
build on.

Part VI

A P P E N D I X

A
S O F T WA R E R E L E A S E S

Writing this thesis, we created various tools and applications as well
as the Nexmon framework itself. To maximize the benefits for the Open-source

software simplifies
reproducibility and
the extension of our
patches.

community, we published our developments as open-source software.
This simplifies other researchers to reproduce our results and develop
their own applications based on our tools. In the following sections,
we present our software releases.

a.1 nexmon firmware patching framework

The foundation for this work is the Nexmon firmware patching frame-
work. It contains tools for handling and patching firmware binaries.
We keep them in the buildtools directory in the repository men-
tioned below. It contains a precompiled GCC compiler toolchain The framework

contains everything
to build and install
firmware patches on
smartphones and
Raspberry Pis.

for ARM microcontrollers to compile C files into binaries. Our gcc-
nexmon plugin extends the GCC compiler to handle at-attributes and
targetregion-pragmas that allow to define where symbols should be
placed during patching. In the firmwares directory, we collect origi-
nal firmware binaries and store addresses required for the patching
workflow. The patches extending those firmwares are stored in the
patches directory. They consist of various C files containing code
and placement information and a Makefile that describes the process
of building patches and integrating them into the original firmware
binaries. For most firmwares, we supply a nexmon example project
that enables monitor mode with radiotap headers and frame injec-
tion capabilities. It is a good starting point for implementing new
patches. While most smartphones do not require driver modifica-
tions, the brcmfmac driver used on the Raspberry Pi misses some Besides firmware

patches, we supply
drivers and
command line
utilities for control
and penetration
testing.

essential functionality to communicate with the firmware. Hence, we
integrated it into the patch directories. On the target platforms, var-
ious command line utilities and libraries are required for controlling
the firmware (nexutil and dhdutil) and imitate a monitor interface
(libnexmon.so) to unmodified analysis and penetration testing appli-
cations (tcpdump or aircrack-ng) that we supply in the utilities

directory.

The repository of the Nexmon firmware patching framework is avail-
able at:
https://nexmon.org/

175

https://nexmon.org/

176 software releases

In the following sections, we present firmware patches that can be
copied into the framework’s patches directory for building.

a.2 ping-offloading application

Our ping-offloading application is a simple patch to demonstrate how
to handle Ethernet frames in the firmware. To this end, we hook theThe ping application

demonstrates how to
handle Ethernet

frames within the
firmware.

wl_arp_recv_proc function call in the ping.c file to intercept Ether-
net frames before sending them to the host and use the wlc_sendpkt

function to inject new Ethernet frames for transmission. To reproduce
the experiments described in Chapter 10, we supply Makefile.exp*
files. They initiate an ad hoc connection between two Nexus 5 smart-
phones and start the ping application.

The ping-offloading application is available at:
https://nexmon.org/ping_offloading

a.3 nexmon debugger

Our debugger application presented in Chapter 7, mainly consists of
the two files debugger.c and debugger_base.c. The first file is used
to set breakpoints and watchpoints and to handle their occurrence.The debugger

consists of a
common file for all

debugging
applications and an
application specific

file.

The second file contains all the patches required for activating the
debugging functionality in a firmware. It initializes a new stack for
handling debugging exceptions, saves the register state to this stack
when a debugging exception occurs and calls the corresponding han-
dlers. To use the debugger in another project, one simply needs to
copy the two files and adjust the debugger.c file according to the re-
quired debugging logic.

The debugger application is available at:
https://nexmon.org/debugger

a.4 nexmon jammer

More sophisticated is our reactive jamming application, as it requires
to change the ucode running on the real-time processor. To avoid
publishing the disassembled original code, we placed our changes inDue to ucode

changes, the
jamming application

is more complex
than the applications

presented above.

a patch file that can be applied to a freshly disassembled firmware
file. The Makefile extracts the ucode from the ARM firmware file
and applies the ucode patches automatically. To decide which of the
supplied ucode modifications should be loaded, one needs to pass
the UCODEFILE parameter when calling make. Examples are provided
in the Makefile.exp* files we used to start the experiments for gener-
ating the results presented in Chapter 12. We also provide the source
code for our Jamming app as well as the associated firmware, which

https://nexmon.org/ping_offloading
https://nexmon.org/debugger

A.5 nexmon sdr 177

is a clean starting point for new projects based on our reactive jammer.
To control the jammer and generate jamming signals using the app,
we use ioctls stating at command number 500. The file ioctl_5xx.c

contains the corresponding handlers.

The reactive jamming firmware used to create the presented results
is available at:
https://nexmon.org/jammer

The source code of the Jamming app is available at:
https://nexmon.org/jammer_demo_app

The corresponding firmware for the Jamming app is available at:
https://nexmon.org/jammer_demo_firmware

a.5 nexmon sdr

Our software-defined radio application demonstrates how to trigger
the transmission of a Wi-Fi acknowledgement frame stored as IQ sam-
ples in Template RAM. To generate the frames waveform, we use a We generate samples

of a Wi-Fi frame in
MATLAB, load
them into the Wi-Fi
chip’s Template
RAM and trigger a
transmission.

MATLAB script. It generates samples in a format expected for raw
transmissions with the Wi-Fi chip. To load those samples into the
Template RAM, we call ioctl 711 defined in ioctl_7xx.c. Our MAT-
LAB script generates a shell script that calls this ioctl using nexutil.
After copying this file to a smartphone and executing it, the samples
are loaded into the Wi-Fi chip. To start a continuous transmission of
the samples stored in Template RAM, we use ioctl 770 and to stop the
transmission, we use ioctl 771. Using a regular Wi-Fi receiver running
in monitor mode, we can capture the transmitted Wi-Fi frames (e.g.,
by using Wireshark).

The software-defined radio application is available at:
https://nexmon.org/sdr

a.6 nexmon csi extractor

Similar to our jamming application, also the channel state informa-
tion (CSI) extractor requires the modification of ucode. Again, we Our CSI extractor

targets only frames
with destination
MAC “CSIEXT”
and uses UDP
datagrams to pass
the extracted
information to
Android apps.

only included patch files that can be automatically applied to disas-
sembled ucode. As CSI extraction hinders our receiver from correctly
decoding the frame payload, we only trigger the CSI extraction if a
frame contains the destination MAC address “CSIEXT”. To change
this, one needs to modify the corresponding code in the ucode file
marked with the comment “MAC COMPARISON”. During extrac-
tion, CSI is first copied from physical-layer tables into shared mem-
ory and then pushed to the ARM’s RAM by using multiple DMA

https://nexmon.org/jammer
https://nexmon.org/jammer_demo_app
https://nexmon.org/jammer_demo_firmware
https://nexmon.org/sdr

178 software releases

transfers. A state machine in the csi_extraction.c file handles the
reassembly of the whole CSI and packs it into a UDP datagram sent
to port 5500 using the broadcast IP address 255.255.255.255. This
way, even Android apps can receive CSI dumps for implementing ad-
vanced applications.

The channel state information extraction application is available at:
https://nexmon.org/csi_extractor

a.7 nexmon covert channel

The covert channel application combines both the software-defined
radio and the CSI extractor applications. It uses SDR transmission
capabilities to send raw samples of Wi-Fi frames that have been pre-The transmitter

pre-filters outgoing
frames to embed

covert symbols and
the receiver extracts

them from CSI
dumps.

filtered in the time-domain to embed covert symbols. As described in
Chapter 13, we send whole bytes split over three frames. Two contain
start and stop symbols. The other four contain symbols representing
two bits each. At the receiver’s side, we use CSI dumps to detect
which symbols were embedded into the Wi-Fi frames. To this end,
we have a MATLAB script that compares the CSI dumps with the
embeddable symbols to find the most likely ones.

The channel state information extraction application is available at:
https://nexmon.org/covert_channel

a.8 no-lte kernel for nexus 5

For measuring energy consumption of Nexus 5 smartphones, we
used a Monsoon Power Monitor. It connects to the phone’s batteryTo avoid disturbing

peaks in power
measurements, we

disabled LTE-related
hardware.

ports to act as the only power source connected to the smartphone.
When measuring power consumption while the phone is idle, we
observed regularly reappearing peaks in the power measurements,
which may falsify our measurements. We realized that the peaks are
caused by LTE-related hardware that can be disabled by turning off
the CONFIG_MSM_SMD_PKT setting when building the kernel.

The kernel source code used in our experiments is available at:
https://nexmon.org/energy_measurement

https://nexmon.org/csi_extractor
https://nexmon.org/covert_channel
https://nexmon.org/energy_measurement

B I B L I O G R A P H Y

[1] K. Ali, A. X. Liu, W. Wang, and M. Shahzad. “Recognizing Keystrokes Using
WiFi Devices.” In: IEEE Journal on Selected Areas in Communications 35.5 (May 2017),
pp. 1175–1190.

[2] N. Anand, S.-J. Lee, and E. W. Knightly. “STROBE: Actively Securing Wireless Com-
munications using Zero-Forcing Beamforming.” In: Proc. of the 31st IEEE Interna-
tional Conference on Computer Communications. INFOCOM ’12. IEEE, 2012, pp. 720–
728.

[3] N. Artenstein. Broadpwn: Remotely compromizing Android and IOS via a Bug in Broad-
com’s Wi-Fi Chipsets. July 2017. url: https://blog.exodusintel.com/2017/07/26/
broadpwn/.

[4] I. E. Bagci, U. Roedig, I. Martinovic, M. Schulz, and M. Hollick. “Using Channel
State Information for Tamper Detection in the Internet of Things.” In: Proc. of the 31st
Annual Computer Security Applications Conference. ACSAC ’15. ACM, 2015, pp. 131–
140.

[5] M. Bansal, J. Mehlman, S. Katti, and P. Levis. “OpenRadio: A Programmable Wire-
less Dataplane.” In: Proc. of the First Workshop on Hot Topics in Software Defined Net-
works. HotSDN ’12. ACM, 2012, pp. 109–114.

[6] E. Bayraktaroglu, C. King, X. Liu, G. Noubir, R. Rajaraman, and B. Thapa. “On the
Performance of IEEE 802.11 under Jamming.” In: Proc. of the 27th IEEE International
Conference on Computer Communications. INFOCOM ’08. IEEE, 2008, pp. 1265–1273.

[7] G. Beniamini. Over The Air: Exploiting Broadcom’s Wi-Fi Stack (Part 1). 2017. url:
https : / / googleprojectzero . blogspot . de / 2017 / 04 / over - air - exploiting -

broadcoms-wi-fi_4.html.

[8] D. S. Berger, F. Gringoli, N. Facchi, and I. Martinovic. “Gaining Insight on Friendly
Jamming in a Real-world IEEE 802.11 Network.” In: Proc. of the 7th ACM Conference
on Security and Privacy in Wireless & Mobile Networks. WiSec ’14. ACM, 2014, pp. 105–
116.

[9] D. S. Berger, F. Gringoli, N. Facchi, I. Martinovic, and J. B. Schmitt. “Friendly Jam-
ming on Access Points: Analysis and Real-World Measurements.” In: IEEE Transac-
tions on Wireless Communications 15.9 (2016), pp. 6189–6202.

[10] A. Blanco and M. Eissler. MonMob project repository. 2012. url: https://github.
com/tuter/monmob.

[11] A. Blanco and M. Eissler. One firmware to monitor ’em all. 2012. url: http://www.
coresecurity.com/corelabs-research/publications/one-firmware-monitor-em-

all.

[12] J. Brown, I. E. Bagci, A. King, and U. Roedig. “Defend Your Home!: Jamming Un-
solicited Messages in the Smart Home.” In: Proceedings of the 2nd ACM Workshop on
Hot Topics on Wireless Network Security and Privacy. HotWiSec ’13. ACM, 2013, pp. 1–
6.

179

https://blog.exodusintel.com/2017/07/26/broadpwn/
https://blog.exodusintel.com/2017/07/26/broadpwn/
https://googleprojectzero.blogspot.de/2017/04/over-air-exploiting-broadcoms-wi-fi_4.html
https://googleprojectzero.blogspot.de/2017/04/over-air-exploiting-broadcoms-wi-fi_4.html
https://github.com/tuter/monmob
https://github.com/tuter/monmob
http://www.coresecurity.com/corelabs-research/publications/one-firmware-monitor-em-all
http://www.coresecurity.com/corelabs-research/publications/one-firmware-monitor-em-all
http://www.coresecurity.com/corelabs-research/publications/one-firmware-monitor-em-all

180 bibliography

[13] C. Bruns. “Modification of LTE Firmwares on Smartphones.” M.Sc. thesis. Technis-
che Universität Darmstadt, Germany, 2017.

[14] Y. Cai, K. Xu, Y. Mo, B. Wang, and M. Zhou. “Improving WLAN Throughput via
Reactive Jamming in the Presence of Hidden Terminals.” In: Proc. of the 2013 IEEE
Wireless Communications and Networking Conference. WCNC ’13. IEEE, 2013, pp. 1085–
1090.

[15] J. S. Chase, A. J. Gallatin, and K. G. Yocum. “End System Optimizations for High-
Speed TCP.” In: IEEE Communications Magazine 39.4 (Apr. 2001), pp. 68–74.

[16] Cisco Systems Inc. Cisco VNI: Forecast and Methodology. 2014. url: http : / / www .

cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/

white_paper_c11-481360.pdf.

[17] T. C. Clancy. “Efficient OFDM Denial: Pilot Jamming and Pilot Nulling.” In: Proc. of
the 2011 IEEE International Conference on Communications. ICC ’11. IEEE, 2011, pp. 1–
5.

[18] J. Classen, M. Schulz, and M. Hollick. “Practical Covert Channels for WiFi Systems.”
In: Proc. of the 2015 IEEE Conference on Communications and Network Security. CNS ’15.
IEEE, Sept. 2015, pp. 209–217.

[19] J. Classen and D. Wegemer. Leaking and Modifying Fitbit Data. 2017. url: https:
//cfp.mrmcd.net/2017/talk/3T9E8Y/.

[20] F. C. Commission. Jammer Enforcement. 2017. url: https://www.fcc.gov/general/
jammer-enforcement.

[21] CortexTM-R4 and Cortex-R4F - Technical Reference Manual. Revision: r1p4. ARM Lim-
ited. Apr. 2011.

[22] E. Courjaud. RF transmitter for Raspberry Pi. url: https://github.com/F5OEO/rpitx.

[23] B. DeBruhl, C. Kroer, A. Datta, T. Sandholm, and P. Tague. “Power Napping with
Loud Neighbors: Optimal Energy-constrained Jamming and Anti-jamming.” In:
Proc. of the 2014 ACM Conference on Security and Privacy in Wireless & Mobile Net-
works. WiSec ’14. ACM, 2014, pp. 117–128.

[24] A. Dutta, D. Saha, D. Grunwald, and D. Sicker. “Secret Agent Radio: Covert Com-
munication through Dirty Constellations.” In: Information Hiding. Vol. 7692. Lecture
Notes in Computer Science. Springer. 2013.

[25] A. Engel and A. Koch. “Heterogeneous Wireless Sensor Nodes that Target the Inter-
net of Things.” In: IEEE Micro 36.6 (Nov. 2016), pp. 8–15.

[26] B. Fang, N. D. Lane, M. Zhang, A. Boran, and F. Kawsar. “BodyScan: Enabling
Radio-based Sensing on Wearable Devices for Contactless Activity and Vital Sign
Monitoring.” In: Proceedings of the 14th Annual International Conference on Mobile Sys-
tems, Applications, and Services. MobiSys ’16. ACM, 2016, pp. 97–110.

[27] L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University Press, 1962.

[28] L. Frikha and Z. Trabelsi. “A new Covert Channel in WIFI Networks.” In: Proc. of
the 3rd International Conference on Risks and Security of Internet and Systems. CRiSYS
’08. Oct. 2008, pp. 255–260.

http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360.pdf
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360.pdf
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360.pdf
https://cfp.mrmcd.net/2017/talk/3T9E8Y/
https://cfp.mrmcd.net/2017/talk/3T9E8Y/
https://www.fcc.gov/general/jammer-enforcement
https://www.fcc.gov/general/jammer-enforcement
https://github.com/F5OEO/rpitx

bibliography 181

[29] C. G. Girling. “Covert Channels in LAN’s.” In: IEEE Transactions on Software Engi-
neering SE-13.2 (1987), pp. 292–296.

[30] S. Gollakota and D. Katabi. “Physical Layer Wireless Security Made Fast and Chan-
nel Independent.” In: Proc. of the 30th IEEE International Conference on Computer Com-
munications. INFOCOM ’11. IEEE, Apr. 2011, pp. 1125–1133.

[31] S. Gollakota, H. Hassanieh, B. Ransford, D. Katabi, and K. Fu. “They Can Hear Your
Heartbeats: Non-invasive Security for Implantable Medical Devices.” In: Proc. of the
2011 ACM Conference of the Special Interest Group on Data Communication. SIGCOMM
’11. ACM, 2011, pp. 2–13.

[32] S. Grabski and K. Szczypiorski. “Steganography in OFDM Symbols of Fast IEEE
802.11n Networks.” In: Proc. of the 2013 IEEE Security and Privacy Workshops. SPW
’13. IEEE, May 2013, pp. 158–164.

[33] F. Gringoli and L. Nava. OpenFWWF: Open FirmWare for WiFi networks. 2009. url:
http://netweb.ing.unibs.it/~openfwwf/.

[34] D. Halperin, W. Hu, A. Sheth, and D. Wetherall. “Tool Release: Gathering 802.11n
Traces with Channel State Information.” In: ACM SIGCOMM CCR 41.1 (2011), p. 53.

[35] B. Han, A. Schulman, F. Gringoli, N. Spring, B. Bhattacharjee, L. Nava, L. Ji, S. Lee,
and R. R. Miller. “Maranello: Practical Partial Packet Recovery for 802.11.” In: Proc.
of the 14th USENIX Symposium on Networked Systems Design and Implementation. NSDI
’10. USENIX Association, 2010, pp. 205–218.

[36] M. Han, T. Yu, J. Kim, K. Kwak, and S. Lee. “OFDM Channel Estimation with
Jammed Pilot Detector under Narrow-Band Jamming.” In: IEEE Transactions on Ve-
hicular Technology 57.3 (2008), pp. 1934–1939.

[37] P. Helle, H. Lakshman, M. Siekmann, J. Stegemann, T. Hinz, H. Schwarz, D. Marpe,
and T. Wiegand. “A Scalable Video Coding Extension of HEVC.” In: Proc. of the 2013
Data Compression Conference. DCC ’13. Mar. 2013, pp. 201–210.

[38] “HICCUPS: Hidden Communication System for Corrupted Networks.” In: In Proc.
of the 10th International Multi-Conference on Advanced Computer Systems. ACS ’03. 2003,
pp. 31–40.

[39] Z. Hijaz and V. S. Frost. “Exploiting OFDM Systems for Covert Communication.” In:
Proc. of the 2010 Military Communications Conference. MILCOM ’10. IEEE, Oct. 2010,
pp. 2149–2155.

[40] R. Hirst. PiFmDma Repository. url: https://github.com/richardghirst/PiBits/
tree/master/PiFmDma.

[41] J. Hoffmann. Implementing a Mesh-Routing-Protokoll in the BCM4339 WiFi Chip. Dipl.
thesis. 2016.

[42] T. D. Vo-Huu, T. D. Vo-Huu, and G. Noubir. “Interleaving Jamming in Wi-Fi Net-
works.” In: Proceedings of the 9th ACM Conference on Security & Privacy in Wireless and
Mobile Networks. WiSec ’16. ACM, 2016, pp. 31–42.

[43] O. Ildis, Y. Ofir, and R. Feinstein. bcmon blog. 2012. url: http://bcmon.blogspot.
de/.

http://netweb.ing.unibs.it/~openfwwf/
https://github.com/richardghirst/PiBits/tree/master/PiFmDma
https://github.com/richardghirst/PiBits/tree/master/PiFmDma
http://bcmon.blogspot.de/
http://bcmon.blogspot.de/

182 bibliography

[44] O. Ildis, Y. Ofir, and R. Feinstein. Wardriving from your pocket — Using Wireshark
to Reverse Engineer Broadcom WiFi chipsets. 2013. url: https://recon.cx/2013/
schedule/events/7.html.

[45] M. Jarschel, F. Wamser, T. Hohn, T. Zinner, and P. Tran-Gia. “SDN-Based
Application-Aware Networking on the Example of YouTube Video Streaming.” In:
Proc. of the 2nd European Workshop on Software Defined Networks. EWSDN ’13. IEEE,
Oct. 2013, pp. 87–92.

[46] A. Jeyaraj and M. E. Zarki. “A Real-Time Cross-Layer Design of the Multimedia
Application Layer with a MIMO based Wireless Physical Layer.” In: Proc. of the 3rd
International Symposium on Wireless Pervasive Computing. ISWPC ’08. IEEE, May 2008,
pp. 455–458.

[47] Z. Jiang, J. Zhao, X. Y. Li, J. Han, and W. Xi. “Rejecting the Attack: Source Authen-
tication for Wi-Fi Management Frames using CSI Information.” In: Proc. of the 32nd
IEEE International Conference on Computer Communications. INFOCOM ’13. IEEE, Apr.
2013, pp. 2544–2552.

[48] M. L. Jorgensen, B. R. Yanakiev, G. E. Kirkelund, P. Popovski, H. Yomo, and T.
Larsen. “Shout to Secure: Physical-Layer Wireless Security with Known Interfer-
ence.” In: Proc. of the 2017 IEEE Global Telecommunications Conference. GLOBECOM
’07. IEEE, 2007, pp. 33–38.

[49] P. Katz. String searcher, and compressor using same. US Patent 5,051,745. Sept. 1991.

[50] Y. S. Kim, P. Tague, H. Lee, and H. Kim. “Carving Secure Wi-fi Zones with De-
fensive Jamming.” In: Proc. of the 7th ACM Symposium on Information, Computer and
Communications Security. ASIACCS ’12. ACM, 2012, pp. 53–54.

[51] M. Koch. “Reactive, Smartphone-based Jammer for IEEE 802.11 Networks.” M.Sc.
thesis. Technische Universität Darmstadt, Germany, 2016.

[52] C. Krätzer, J. Dittmann, A. Lang, and T. Kühne. “WLAN Steganography: A First
Practical Review.” In: Proc. of the 8th Workshop on Multimedia and Security. MM&Sec
’06. ACM, 2006, pp. 17–22.

[53] S. Laga, T. V. Cleemput, F. V. Raemdonck, F. Vanhoutte, N. Bouten, M. Claeys, and
F. D. Turck. “Optimizing Scalable Video Delivery through OpenFlow Layer-based
Routing.” In: Proc. of the 2014 IEEE Network Operations and Management Symposium.
NOMS ’14. IEEE, May 2014, pp. 1–4.

[54] B. W. Lampson. “A Note on the Confinement Problem.” In: Commun. ACM 16.10
(1973), pp. 613–615.

[55] Y.-S. Li, C.-C. Chen, T.-A. Lin, C.-H. Hsu, Y. Wang, and X. Liu. “An End-to-End
Testbed for Scalable Video Streaming to Mobile Devices over HTTP.” In: Proc. of the
2013 IEEE International Conference on Multimedia and Expo. ICME ’13. IEEE, July 2013,
pp. 1–6.

[56] X. Li, D. Zhang, Q. Lv, J. Xiong, S. Li, Y. Zhang, and H. Mei. “IndoTrack: Device-
Free Indoor Human Tracking with Commodity Wi-Fi.” In: Proc. ACM Interact. Mob.
Wearable Ubiquitous Technol. 1.3 (Sept. 2017), 72:1–72:22.

https://recon.cx/2013/schedule/events/7.html
https://recon.cx/2013/schedule/events/7.html

bibliography 183

[57] Z. Li and T. He. “WEBee: Physical-Layer Cross-Technology Communication via Em-
ulation.” In: Proc. of the 23rd ACM International Conference on Mobile Computing and
Networking. MobiCom ’17. ACM, Oct. 2017, pp. 2–14.

[58] G. Lin and G. Noubir. “On Link Layer Denial of Service in Data Wireless LANs:
Research Articles.” In: Wireless Communications & Mobile Computing 5.3 (May 2005),
pp. 273–284.

[59] J. Link. “Wi-Fi based Covert Channels on Android Smartphones.” B.Sc. thesis. Tech-
nische Universität Darmstadt, Germany, 2017.

[60] Mango Communications. WARP Project. 2017. url: http://warpproject.org.

[61] I. Martinovic, P. Pichota, and J. B. Schmitt. “Jamming for Good: A Fresh Approach to
Authentic Communication in WSNs.” In: Proc. of the 2nd ACM Conference on Wireless
Network Security. WiSec ’09. ACM, 2009, pp. 161–168.

[62] D. Martins and H. Guyennet. “Attacks with Steganography in PHY and MAC Lay-
ers of 802.15.4 Protocol.” In: Proc. of the 5th International Conference on Systems and
Networks Communications. ICSNC ’10. IEEE, Aug. 2010, pp. 31–36.

[63] O. Mattos and O. Weigl. Turning the Raspberry Pi Into an FM Transmitter. url: http:
//www.icrobotics.co.uk/wiki/index.php/Turning_the_Raspberry_Pi_Into_an_

FM_Transmitter.

[64] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, and J. Turner. “OpenFlow: Enabling Innovation in Campus Networks.”
In: ACM SIGCOMM Computer Communication Review 38.2 (2008).

[65] A. Mpitziopoulos, D. Gavalas, G. Pantziou, and C. Konstantopoulos. “Defending
Wireless Sensor Networks from Jamming Attacks.” In: Proc. of the 18th International
Symposium on Personal, Indoor and Mobile Radio Communications. PIMRC ’07. Sept.
2007, pp. 1–5.

[66] S. Mühlbach and A. Koch. “A Reconfigurable Platform and Programming Tools
for High-Level Network Applications Demonstrated as a Hardware Honeypot.” In:
IEEE Journal on Selected Areas in Communications 32.10 (Oct. 2014), pp. 1919–1932.

[67] Osmocom. rtl-sdr. url: https://osmocom.org/projects/sdr/wiki/rtl-sdr.

[68] K. Pelechrinis, M. Iliofotou, and S. V. Krishnamurthy. “Denial of Service Attacks
in Wireless Networks: The Case of Jammers.” In: IEEE Communications Surveys &
Tutorials 13.2 (2011), pp. 245–257.

[69] G. Peng, G. Zhou, D. T. Nguyen, and X. Qi. “All or None? The Dilemma of Han-
dling WiFi Broadcast Traffic in Smartphone Suspend Mode.” In: Proc. of the 34th In-
ternational Conference on Computer Communications. INFOCOM ’15. IEEE, Apr. 2015,
pp. 1212–1220.

[70] A. Proano and L. Lazos. “Selective Jamming Attacks in Wireless Networks.” In: Proc.
of the 2010 IEEE International Conference on Communications. ICC ’10. IEEE, May 2010,
pp. 1–6.

[71] J. Rajahalme, A. Conta, B. Carpenter, and S. Deering. IPv6 Flow Label Specification.
RFC 3697. 2004.

http://warpproject.org
http://www.icrobotics.co.uk/wiki/index.php/Turning_the_Raspberry_Pi_Into_an_FM_Transmitter
http://www.icrobotics.co.uk/wiki/index.php/Turning_the_Raspberry_Pi_Into_an_FM_Transmitter
http://www.icrobotics.co.uk/wiki/index.php/Turning_the_Raspberry_Pi_Into_an_FM_Transmitter
https://osmocom.org/projects/sdr/wiki/rtl-sdr

184 bibliography

[72] F. Ricciato, S. Sciancalepore, F. Gringoli, N. Facchi, and G. Boggia. “Position and Ve-
locity Estimation of a Non-cooperative Source From Asynchronous Packet Arrival
Time Measurements.” In: IEEE Transactions on Mobile Computing PP.99 (2018), p. 1.

[73] A. Saifullah, Y. Xu, C. Lu, and Y. Chen. “End-to-End Communication Delay Analysis
in Industrial Wireless Networks.” In: IEEE Transactions on Computers 64.5 (May 2015),
pp. 1361–1374.

[74] M. Schulz, F. Gringoli, D. Steinmetzer, M. Koch, and M. Hollick. “Massive Reac-
tive Smartphone-based Jamming Using Arbitrary Waveforms and Adaptive Power
Control.” In: Proc. of the 10th ACM Conference on Security and Privacy in Wireless and
Mobile Networks. WiSec ’17. ACM, 2017, pp. 111–121.

[75] M. Schulz, J. Link, F. Gringoli, and M. Hollick. “Shadow Wi-Fi: Teaching Smart-
phones to Transmit Raw Signals and to Extract Channel State Information to Im-
plement Practical Covert Channels over Wi-Fi.” Accepted to appear in Proc. of the
16th ACM International Conference on Mobile Systems, Applications, and Services.
2018.

[76] M. Schulz, D. Stohr, S. Wilk, B. Rudolph, W. Effelsberg, and M. Hollick. “APP and
PHY in Harmony: A Framework Enabling Flexible Physical Layer Processing to
Address Application Requirements.” In: Proc. of the 2015 International Conference and
Workshops on Networked Systems. NetSys ’15. IEEE, Mar. 2015, pp. 1–8.

[77] M. Schulz, D. Wegemer, and M. Hollick. “Nexmon: Build Your Own Wi-Fi Testbeds
With Low-Level MAC and PHY-Access Using Firmware Patches on Off-the-Shelf
Mobile Devices.” In: Proc. of the 11th Workshop on Wireless Network Testbeds, Experi-
mental Evaluation & CHaracterization. WiNTECH ’17. ACM, Oct. 2017, pp. 59–66.

[78] M. Schulz, E. Deligeorgopoulos, M. Hollick, and F. Gringoli. “DEMO: Demonstrat-
ing Reactive Smartphone-Based Jamming.” In: Proc. of the 10th ACM Conference on
Security and Privacy in Wireless and Mobile Networks. WiSec ’17. ACM, 2017, pp. 285–
287.

[79] M. Schulz, D. Wegemer, and M. Hollick. “NexMon: A Cookbook for Firmware Mod-
ifications on Smartphones to Enable Monitor Mode.” In: arXiv:1601.07077 (2015).

[80] M. Schulz, D. Wegemer, and M. Hollick. Nexmon: The C-based Firmware Patching
Framework. 2017. url: https://nexmon.org.

[81] H. Schwarz and M. Wien. “The Scalable Video Coding Extension of the H.264/AVC
Standard.” In: IEEE Signal Processing Magazine 25.2 (2008).

[82] C. Shahriar, S. Sodagari, R. McGwier, and T. C. Clancy. “Performance Impact of
Asynchronous Off-Tone Jamming Attacks against OFDM.” In: Proc. of the 2013 Inter-
national Conference on Communications. ICC ’13. IEEE, June 2013, pp. 2177–2182.

[83] W. Shen, P. Ning, X. He, and H. Dai. “Ally Friendly Jamming: How to Jam Your
Enemy and Maintain Your Own Wireless Connectivity at the Same Time.” In: Proc.
of the 2013 Symposium on Security and Privacy. S&P ’13. IEEE, May 2013, pp. 174–188.

[84] Single-Chip 5G WiFi IEEE 802.11ac MAC/Baseband/Radio with Integrated Bluetooth 4.1
and FM Receiver. CYW4339. Document No. 002-14784 Rev. *G. CYPRESS. Oct. 16.

https://nexmon.org

bibliography 185

[85] D. Steinmetzer, D. Wegemer, M. Schulz, J. Widmer, and M. Hollick. “Compressive
Millimeter-Wave Sector Selection in Off-the-Shelf IEEE 802.11ad Devices.” In: Proc.
of the 13th International Conference on Emerging Networking EXperiments and Technolo-
gies. CoNEXT ’17. ACM, 2017, pp. 414–425.

[86] G. Sullivan, J. Ohm, W.-J. Han, and T. Wiegand. “Overview of the High Efficiency
Video Coding (HEVC) Standard.” In: IEEE Transactions on Circuits and Systems for
Video Technology 22.12 (2012).

[87] I. Tinnirello, G. Bianchi, P. Gallo, D. Garlisi, F. Giuliano, and F. Gringoli. “Wireless
MAC Processors: Programming MAC Protocols on Commodity Hardware.” In: Proc.
of the 31st International Conference on Computer Communications. INFOCOM ’12. IEEE,
Mar. 2012, pp. 1269–1277.

[88] M. Vanhoef and F. Piessens. “Advanced Wi-Fi Attacks Using Commodity Hard-
ware.” In: Proc. of the 30th Annual Computer Security Applications Conference. ACSAC
’14. ACM, 2014, pp. 256–265.

[89] WARP Project – Throughput Benchmarks. 2014. url: http://warpproject.org/trac/
wiki/802.11/Benchmarks/Throughput.

[90] D. Wegemer. “Energy Efficient WiFi Analysis Framework on Smartphones.” M.Sc.
thesis. Technische Universität Darmstadt, Germany, 2016.

[91] M. Wilhelm, I. Martinovic, J. B. Schmitt, and V. Lenders. “Short Paper: Reactive
Jamming in Wireless Networks: How Realistic is the Threat?” In: Proc. of the 4th
ACM Conference on Wireless Network Security. WiSec ’11. ACM, 2011, pp. 47–52.

[92] M. Wilhelm, I. Martinovic, J. B. Schmitt, and V. Lenders. “WiFire: A Firewall for
Wireless Networks.” In: Proc. of the ACM Conference of the Special Interest Group on
Data Communication. SIGCOMM ’11. ACM, 2011, pp. 456–457.

[93] M. Wolf. “Covert Channels in LAN Protocols.” In: Local Area Network Security: Work-
shop LANSEC ’89. Ed. by T. A. Berson and T. Beth. Springer Berlin Heidelberg, 1989,
pp. 89–101.

[94] Y. Xie, Z. Li, and M. Li. “Precise Power Delay Profiling with Commodity WiFi.” In:
Proc. of the 21st Annual International Conference on Mobile Computing and Networking.
MobiCom ’15. ACM, 2015, pp. 53–64.

[95] F. Xu, Z. Qin, C. C. Tan, B. Wang, and Q. Li. “IMDGuard: Securing Implantable Med-
ical Devices with the External Wearable Guardian.” In: Proc. of 30th IEEE Conference
on Computer Communications. INFOCOM ’11. IEEE, Apr. 2011, pp. 1862–1870.

[96] W. Xu, W. Trappe, Y. Zhang, and T. Wood. “The Feasibility of Launching and Detect-
ing Jamming Attacks in Wireless Networks.” In: Proc. of the 6th ACM International
Symposium on Mobile Ad Hoc Networking and Computing. MobiHoc ’05. ACM, 2005,
pp. 46–57.

[97] Q. Yan, H. Zeng, T. Jiang, M. Li, W. Lou, and Y. T. Hou. “MIMO-based Jamming
Resilient Communication in Wireless Networks.” In: Proc. of the 33rd IEEE Conference
on Computer Communications. INFOCOM ’14. IEEE, Apr. 2014, pp. 2697–2706.

[98] Q. Yan, H. Zeng, T. Jiang, M. Li, W. Lou, and Y. T. Hou. “Jamming Resilient Commu-
nication using MIMO Interference Cancellation.” In: IEEE Transactions on Information
Forensics and Security 11.7 (July 2016).

http://warpproject.org/trac/wiki/802.11/Benchmarks/Throughput
http://warpproject.org/trac/wiki/802.11/Benchmarks/Throughput

186 bibliography

[99] K.-K. Yap, M. Kobayashi, D. Underhill, S. Seetharaman, P. Kazemian, and N. McKe-
own. “The Stanford OpenRoads Deployment.” In: Proc. of the 4th ACM International
Workshop on Experimental Evaluation and Characterization. WiNTECH ’09. ACM, 2009,
pp. 59–66.

C U R R I C U L U M V I TÆ

Personal Information

Name Matthias Thomas Schulz

Date of Birth November 15, 1987

Place of Birth Wiesbaden-Dotzheim, Germany

Nationality German

Education

since 05/2013 Doctoral candidate
Computer Science
Technische Universiät Darmstadt, Darmstadt, Germany

09/2010 – 05/2013 Master of Science
Electrical Engineering and Information Technology
(specialization: Computer Engineering)
Technische Universität Darmstadt, Darmstadt, Germany
Average Grade: 1.1

10/2007 – 08/2010 Bachelor of Science
Electrical Engineering and Information Technology
(specialization: Computer Engineering)
Technische Universität Darmstadt, Darmstadt, Germany
Average Grade: 1.4

08/1998 – 03/2007 General Higher Education Entrance Qualification
Intensive Courses: Mathematics, Physics, and English
Gymnasium am Kurfürstlichen Schloss in Mainz, Mainz, Germany
Average Grade: 1.5

Work Experience

05/2013 – 02/2018 Research Associate
Secure Mobile Networking Lab (SEEMOO)
Technische Universität Darmstadt, Darmstadt, Germany

01/2009 – 05/2016 Software Developer and Server Administrator
mlgraphics.de (projected ended), Mainz-Kastel, Germany

06/2011 – 10/2011 Intern during Master Studies
Rohde & Schwarz, Munich, Germany

06/2007 – 08/2007 Intern before Bachelor Studies
Eckelmann AG, Wiesbaden, Germany

187

188 curriculum vitæ

04/2007 – 05/2007 Intern before Bachelor Studies
Hilscher Gesellschaft für Systemautomation, Hattersheim, Germany

Awards

Publication Best Paper Award at ACM WiNTECH 2017
Paper title: “Nexmon: Build Your Own Wi-Fi Testbeds With Low-
Level MAC and PHY-Access Using Firmware Patches on Off-the-Shelf
Mobile Devices”

Publication Best Paper Award at ACM WiSec 2017
Paper title: “Massive Reactive Smartphone-Based Jamming using Ar-
bitrary Waveforms and Adaptive Power Control”

Teaching Athene Award for Good Teaching 2016
Special prize in the category study project for the research project in
the “Physical Layer Security in Wireless Systems” course

Publication Best Paper Award at ACM WiSec 2015
Paper title: “Lockpicking Physical Layer Key Exchange: Weak Adver-
sary Models Invite the Thief”

Publication Best Paper Award at IEEE NetSys 2015
Demo title: “APP and PHY in Harmony: A Framework Enabling Flex-
ible Physical Layer Processing to Address Application Requirements”

Thesis Datenlotsen Award 2014
For one of the top three Master theses in the fields of Computer Sci-
ence, Mathematics and Engineering Management at the TU Darm-
stadt offered by the Datenlotsen Informationssysteme GmbH

High School Award for Exemplary Attitude and Commitment in School 2007
Offered by Rhineland-Palatinate’s Ministry of Education, Economics,
Youth, and Culture

Supervised and on-going Diploma, Master, and Bachelor Theses

M.Sc. Thesis Markus Brandt “Acoustic Covert Channels for Mobile Phone Plat-
forms”

M.Sc. Thesis Abdullah Tahir “Eavesdropping and Packet Injection in Ethernet”

B.Sc. Thesis Benedikt Rudolph “CLICK2WARP – Integrating the click modular
router and the wireless open-access research platform for network-
scale experiments”

M.Sc. Thesis Daniel Steinmetzer “Security Analysis of Physical Layer Key Exchange
Mechanisms”

M.Sc. Thesis Patrick Thomas Michael Klapper “Infecting the Wire: Semi-Automatic
Wireless Eavesdropping, Packet Injection and Reactive Jamming on
Wired IEEE 802.3 Ethernet Networks”

curriculum vitæ 189

M.Sc. Thesis Daniel Wegemer “Energy Efficient WiFi Analysis Framework on Smart-
phones”

Dipl. Thesis Justus Hoffmann “Implementing a Mesh-Routing-Protokoll in the
BCM4339 WiFi Chip”

B.Sc. Thesis Victor Pecanins “Development of a Low-Cost Software-Defined Radio
with 2.4 GHz Tranceiver”

M.Sc. Thesis Michael Palm “Secure Localization and Distance Bounding with IEEE
802.11”

B.Sc. Thesis Florentin Putz “Probe request tracking in WiFi firmware”

M.Sc. Thesis Michael Koch “Reactive IEEE 802.11 Jammers on Mobile Smartphone
Platforms”

M.Sc. Thesis Fabian Knapp “Nexmon-based Wireless Penetration Testing Suite for
Android”

M.Sc. Thesis Carsten Bruns “Modification of LTE Firmwares on Smartphones”

M.Sc. Thesis Robin Morawetz “Self-Replicating Malwares for Wi-Fi Chips”

B.Sc. Thesis Jakob Link “Wi-Fi based Covert Channels on Android Smartphones”

B.Sc. Thesis Nicolas Schickert “Decompilation and Analysis of b43 Assembly Code
used in Broadcom WiFi Chips”

B.Sc. Thesis Filip Lüneberg “Implementing a WiFi Jammer on a Raspberry Pi”

B.Sc. Thesis Damir Mehmedovic “Wi-Fi based Key Exchange on Android Smart-
phones”

B.Sc. Thesis Dennis Mantz “Hacking Bluetooth Firmware of WiFi Combo Chips
in Smartphones”

Miscellaneous

Organization Organization of the Security & Privacy Week 2016, Darmstadt, Ger-
many

Organization Finance Chair and Local Organization Chair of the 9th ACM Confer-
ence on Security and Privacy in Wireless and Mobile Networks (WiSec
2016)

Organization Co-organization of the SEEMOO Signal Intelligence Challenge, 2016

Organization Co-organization of the 2nd IEEE Signal Intelligence Challenge, 2015

Teaching HDA Zertifikat Hochschullehre, 2015

Teaching Creation and teaching of “Physical Layer Security in Wireless Systems
(PhySec)” since winter semester 2013/14 (with teaching permit)

Teaching Co-teaching of “Drahtlose Netze zur Krisenbewältigung (CriCom)”
since winter semester 2014/15

190 curriculum vitæ

Teaching Offering and supervising topics and experiments of “Secure Mobile
Networking Lab and Project”, “Seminar on Networking, Security, Mo-
bility, and Wireless Communications”, “Seminar on Security in Ad
hoc, Sensor, and Mesh Networks (SWMN)”, and “Praktikum Kom-
munikationstechnik und Sensorsysteme (PKS)”

Kriftel, March 3, 2018

A U T H O R ’ S P U B L I C AT I O N S

primary and co-first author

Asterisks (*) indicate co-first authorship.

1. M. Schulz, D. Wegemer, and M. Hollick. The Nexmon Firmware Analysis and
Modification Framework: Empowering Researchers to Enhance Wi-Fi Devices,
accepted to appear in Elsevier’s Computer Communications Journal, 2018.

2. M. Schulz, J. Link, F. Gringoli, and M. Hollick. Shadow Wi-Fi: Teaching Smart-
phones to Transmit Raw Signals and to Extract Channel State Information to
Implement Practical Covert Channels over Wi-Fi, accepted to appear in Proceedings
of the 16th ACM International Conference on Mobile Systems, Applications, and Services
(MobiSys 2018), June 2018.

3. M. Schulz, D. Wegemer, M. Hollick. Nexmon: Build Your Own Wi-Fi Testbeds
With Low-Level MAC and PHY-Access Using Firmware Patches on Off-the-Shelf
Mobile Devices, in Proceedings of the 11th ACM International Workshop on Wireless
Network Testbeds, Experimental Evaluation & Characterization (WiNTECH 2017), Octo-
ber 2017.

4. M. Schulz, F. Knapp, E. Deligeorgopoulos, D. Wegemer, F. Gringoli, M. Hollick.
DEMO: Nexmon in Action: Advanced Applications Powered by the Nexmon
Firmware Patching Framework, in Proceedings of the 11th ACM International Work-
shop on Wireless Network Testbeds, Experimental Evaluation & Characterization (WiN-
TECH 2017), October 2017.

5. M. Schulz, F. Gringoli, D. Steinmetzer, M. Koch, M. Hollick. Massive Reactive
Smartphone-Based Jamming using Arbitrary Waveforms and Adaptive Power
Control, in Proceedings of the 10th ACM Conference on Security and Privacy in Wire-
less and Mobile Networks (WiSec 2017), July 2017.

6. M. Schulz, E. Deligeorgopoulos, M. Hollick, F. Gringoli. DEMO: Demonstrating
Reactive Smartphone-Based Jamming, in Proceedings of the 10th ACM Conference on
Security and Privacy in Wireless and Mobile Networks (WiSec 2017), July 2017.

7. M. Schulz, P. Klapper, M. Hollick, E. Tews and S. Katzenbeisser. Trust The Wire,
They Always Told Me! On Practical Non-Destructive Wire-Tap Attacks Against
Ethernet, in Proceedings of the 9th ACM Conference on Security and Privacy in Wireless
and Mobile Networks (WiSec 2016), July 2016.

8. M. Schulz, A. Loch, M. Hollick. DEMO: Demonstrating Practical Known-Plaintext
Attacks against Physical Layer Security in Wireless MIMO Systems, in Proceedings
of the 9th ACM Conference on Security and Privacy in Wireless and Mobile Networks
(WiSec 2016), July 2016.

191

192 author’s publications

9. M. Schulz, D. Wegemer, M. Hollick. DEMO: Using NexMon, the C-based WiFi
firmware modification framework, in Proceedings of the 9th ACM Conference on Secu-
rity and Privacy in Wireless and Mobile Networks (WiSec 2016), July 2016.

10. J. Classen*, M. Schulz*, and M. Hollick. Practical Covert Channels for WiFi Sys-
tems, in Proceedings of the IEEE Conference on Communications and Network Security
(CNS 2015), September 2015.

11. D. Stohr*, M. Schulz*, M. Hollick and W. Effelsberg. APP and PHY in Harmony:
Demonstrating Scalable Video Streaming Supported by Flexible Physical Layer
Control, in Proceedings of the International Symposium on a World of Wireless, Mobile
and Multimedia Networks (WoWMoM 2015), June 2015.

12. M. Schulz, D. Stohr, S. Wilk, B. Rudolph, W. Effelsberg and M. Hollick. APP and
PHY in Harmony: A Framework Enabling Flexible Physical Layer Processing to
Address Application Requirements, in Proceedings of the International Conference on
Networked Systems (NetSys 2015), March 2015.

13. Y. Zheng*, M. Schulz*, W. Lou, Y. T. Hou and M. Hollick. Highly Efficient Known-
Plaintext Attacks against Orthogonal Blinding based Physical Layer Security, IEEE
Wireless Communications Letters, vol. 4, no. 1, pp. 34-37, February 2015.

14. Matthias Schulz, Adrian Loch, and Matthias Hollick. Practical Known-Plaintext
Attacks against Physical Layer Security in Wireless MIMO Systems, in Proceedings
of the Network and Distributed System Security Symposium (NDSS 2014), February 2014.

co-author

15. D. Steinmetzer, D. Wegemer, M. Schulz, J. Widmer, M. Hollick. Compressive Milli-
meter-Wave Sector Selection in Off-the-Shelf IEEE 802.11ad Devices, in Proceed-
ings of the 13th International Conference on emerging Networking EXperiments and Tech-
nologies (CoNEXT 2017), December 2017.

16. Y. Zheng, M. Schulz, W. Lou, Y. T. Hou and M. Hollick. Profiling the Strength of
Physical-Layer Security: A Study in Orthogonal Blinding, in Proceedings of the 9th
ACM Conference on Security and Privacy in Wireless and Mobile Networks (WiSec 2016),
July 2016.

17. I. E. Bagci, U. Roedig, I. Martinovic, M. Schulz and M. Hollick. Using Channel
State Information for Tamper Detection in the Internet of Things, in Proceedings
of the 31st Annual Computer Security Applications Conference (ACSAC 2015), December
2015.

18. D. Steinmetzer, M. Schulz and M. Hollick. Lockpicking Physical Layer Key Ex-
change: Weak Adversary Models Invite the Thief, in Proceedings of the 8th ACM
Conference on Security and Privacy in Wireless and Mobile Networks (WiSec 2015), June
2015.

19. M. Maass, U. Müller, T. Schons, D. Wegemer and M. Schulz. NFCGate: An NFC
Relay Application for Android, in Proceedings of the 8th ACM Conference on Security
and Privacy in Wireless and Mobile Networks (WiSec 2015), June 2015.

author’s publications 193

20. A. Loch, M. Schulz, M. Hollick. Demo: WARP Drive - Accelerating Wireless Multi-
hop Cross-layer Experimentation on SDRs, in Proceedings of the ACM SIGCOMM
Software Radio Implementation Forum (SRIF 2014), August 2014.

21. I. E. Bagci, U. Roedig, M. Schulz and M. Hollick. Short Paper: Gathering Tamper-
Evidence in Wi-Fi Networks Based on Channel State Information, Ii Proceedings of
the 7th ACM Conference on Security and Privacy in Wireless and Mobile Networks (WiSec
2014), July 2014.

22. M. Wichtlhuber, J. Rückert, D. Stingl, M. Schulz and D. Hausheer. Energy-Efficient
Mobile P2P Video Streaming, in Proceedings of the 12th IEEE International Conference
on Peer-to-Peer Computing (P2P 2012), September 2012.

non-academic publications

23. M. Schulz. Nexmon – Wie man die eigene WLAN-Firmware hackt, c’t 26/2016, pp.
168, Heise Verlag, December 2016.

24. M. Schulz. Praktikumsübung zur Implementierung des Radio Data Systems
(RDS) auf Software Defined Radios, Virtuelle Instrumente in der Praxis 2014 – Be-
gleitband zum 19. VIP-Kongress, VDE Verlag, 2014.

P R E V I O U S LY P U B L I S H E D O R S U B M I T T E D M AT E R I A L

This thesis includes material previously published as peer-reviewed publications or cur-
rently accepted for publication. In accordance with the regulations of the Computer Sci-
ence department at the Technische Universität Darmstadt, below, we list the sections by
chapter which include verbatim fragments from these publications. The list was updated
on May 26, 2018 after receiving the last acceptance notification.

Chapter 1 – motivation and goals

Chapter 1 revises Section 1 from [6].

Chapter 3 – related work

The introduction of Chapter 3 and Sections 3.1 and 3.2 revise Section 2 from [6].

Chapter 4 – broadcom’s wi-fi chips

Section 4.1 revises Section 3.1 from [6]. Section 4.2 revises Section 2 from [5]. Section 4.2.1
revises Section 3.2.1 from [6]. Section 4.2.2 revises Section 3.2.2 from [6]. Section 4.2.3
revises Section 3.2 from [3]. Section 4.3 revises Section 3.3 from [6]. Section 4.3.1 re-
vises Section 3.2 from [3]. Section 4.3.2 revises Section 3.1 from [3]. Section 4.3.3 revises
Section 3.3.3 from [6]. Section 4.4 revises Section 3.4 from [6]. Section 4.4.1 revises Sec-
tion 3.4.1 from [6]. Section 4.5 revises Section 3.5 from [6]. Section 4.5.1 revises Sec-
tion 3.5.1 from [6]. Section 4.5.2 revises Section 3.5.2 from [6].

Chapter 5 – firmware analysis and security improvements

The introduction of Chapter 5 revises Section 4 from [6]. Section 5.1 revises Section 4.1
from [6]. Section 5.1.1 revises Section 4.1.1 from [6]. Section 5.2 revises Section 4.2 from
[6]. Section 5.2.1 revises Section 4.2.1 from [6]. Section 5.2.2 revises Section 4.2.2 from
[6]. Section 5.2.3 revises Section 4.2.3 from [6]. Section 5.2.4 revises Section 4.2.4 from
[6]. Section 5.2.5 revises Section 4.2.5 from [6]. Section 5.2.6 revises Section 4.2.6 from
[6]. Section 5.2.7 revises Section 4.2.7 from [6]. Section 5.2.8 revises Section 4.2.8 from [6].
Section 5.2.9 revises Section 4.2.9 from [6]. Section 5.2.10 revises Section 4.2.10 from [6].

Chapter 6 – nexmon firmware patching framework

The introduction of Chapter 6 revises Section 1 from [5]. Section 6.1 revises Section 3
from [5]. Section 6.1.1 revises Section 3.1 from [5]. Section 6.1.2 revises Section 3.2 from
[5]. Section 6.1.3 revises Section 3.3 from [5]. Section 6.1.4 revises Section 5.1.4 from [6].
Section 6.1.5 revises Section 3.4 from [5]. Section 6.1.6 revises Section 5.1.6 from [6]. Sec-

195

196 previously published or submitted material

tion 6.1.7 revises Section 3.5 from [5]. Section 6.2 revises Section 4 from [5]. Section 6.2.1
revises Section 4.1 from [5]. Section 6.2.2 revises Section 4.2 from [5]. Section 6.2.3 re-
vises Section 5.2.3 from [6]. Section 6.2.4 revises Section 4.3 from [5]. Section 6.2.5 revises
Section 4.4 from [5]. Section 6.2.6 revises Section 4.5 from [5]. Section 6.2.7 revises Sec-
tion 4.6 from [5] and Section 5.2.7 from [6]. Section 6.2.8 revises Section 5.2.8 from [6].
Section 6.2.9 revises Section 5.2.9 from [6]. Section 6.2.10 revises Section 5.2.10 from [6].
Section 6.2.11 revises Section 5.2.11 from [6]. Section 6.2.12 revises Section 5.2.12 from
[6]. Section 6.2.13 revises Section 4.7 from [5] and Section 5.2.13 from [6]. Section 6.2.14
revises Section 4.8 from [5]. Section 6.2.15 revises Section 4.9 from [5]. Section 6.3 revises
Section 6 from [5]. Section 6.4 revises Section 7 from [5].

Chapter 7 – programmable firmware debugger

The introduction of Chapter 7 revises Section 6 from [6]. Section 7.1 revises Section 6.1
from [6]. Section 7.2 revises Section 6.2 from [6]. Section 7.2.1 revises Section 6.2.1 from
[6]. Section 7.2.2 revises Section 6.2.2 from [6]. Section 7.2.3 revises Section 6.2.3 from [6].
Section 7.2.4 revises Section 6.2.4 from [6]. Sections 7.3, and 7.4 revise Section 6.3 from
[6].

Chapter 8 – channel state information extractor

Sections 8.1, 8.1.1, and 8.1.2 revise Section 5.2 from [3]. Section 8.2 revises Section 6 from
[3]. Sections 8.2.1, and 8.2.2 revise Section 6.3 from [3]. Section 8.3 revises Section 7 from
[3].

Chapter 9 – software-defined radios on wi-fi chips

The introduction of Chapter 9 revises Section 1, and Section 3.2 from [3]. Sections 9.1,
and 9.1.1 revise Sections 3.3, and 5.1 from [3]. Section 9.2 revises Section 6 from [3].
Sections 9.2.1, and 9.2.2 revise Section 6.1 from [3]. Section 9.3 revises Section 7 from [3].

Chapter 10 – ping offloading

The introduction of Chapter 10 revises Section 5 from [5]. Section 10.1 revises Section 5
from [5]. Section 10.2 revises Section 5 from [5]. Sections 10.2.1, 10.2.2, and 10.2.3 revise
Section 5 from [5]. Section 10.3 revises Section 6 from [5].

Chapter 11 – sdwns with flow-based phy control

The introduction of Chapter 11 revises Section 1 from [4]. Sections 11.1.1, 11.1.2, 11.1.3,
11.1.4, 11.1.5, 11.1.6, 11.1.7 revise Section 2 form [4]. Section 11.1.8 revises Section 3
from [4]. Section 11.2 revises Section 4 from [4]. Section 11.2.2 revises Section 3 from
[7]. Section 11.3 revises Section 4.A from [4]. Section 11.3.1 revises Section 4.B from [4].
Section 11.3.2 revises Section 4.C from [4]. Section 11.3.3 revises Section 4.D from [4].

previously published or submitted material 197

Section 11.4 revises Section 5 from [4]. Section 11.6 revises Section 6 from [4]. Section 11.7
revises Section 7 from [4].

Chapter 12 – reactive wi-fi jamming on smartphones

The introduction of Chapter 12 revises Section 1 and Section 3.1 from [2]. Section 12.1
revises Section 4 from [2]. Section 12.1.1 revises Section 4.1 from [2]. Section 12.1.2
revises Section 4.2 from [2]. Section 12.1.3 revises Section 4.3 from [2]. Section 12.1.4
revises Section 3.2 from [2]. Section 12.1.5 revises Section 3.3 from [2]. Section 12.1.6
revises Section 3.4 from [2]. Section 12.2 revises Footnote 3 from [2]. Section 12.3 revises
Section 5 from [2]. Section 12.3.1 revises Section 5.1 from [2]. Section 12.3.2 revises
Section 5.2 from [2]. Section 12.3.3 revises Section 5.3 from [2]. Section 12.3.4 revises
Section 5.4 from [2]. Section 12.3.5 revises Section 5.5 from [2]. Section 12.3.6 revises
Section 5.6 from [2]. Section 12.4 revises Section 6 from [2]. Section 12.5 revises Section 2
from [2]. Section 12.7 revises Section 7 from [2].

Chapter 13 – wi-fi-based covert channels

The introduction of Chapter 13 revises Section 1 from [3]. Section 13.1 revises Section 4
and Section 5.3 from [3]. Section 13.2, and 13.2.1 revise Section 5.3 from [3]. Section 13.2.2
revises Section 6.4 form [3]. Section 13.3 revises Section 6 and 6.4 from [3]. Sections 13.3.1,
13.3.2, 13.3.3, 13.3.4, 13.3.5, and 13.3.6 revise Section 6.4 from [3]. Section 13.4 revises
Section 7 from [3]. Section 13.5 revises Section 2 from [3] and Section 6 from [1]. Sec-
tions 13.5.1, and 13.5.2 revise Section 6 from [1].

text sources

[1] J. Classen, M. Schulz, and M. Hollick. “Practical Covert Channels for WiFi Systems.”
In: Proc. of the 2015 IEEE Conference on Communications and Network Security. CNS ’15.
IEEE, Sept. 2015, pp. 209–217.

[2] M. Schulz, F. Gringoli, D. Steinmetzer, M. Koch, and M. Hollick. “Massive Reac-
tive Smartphone-based Jamming Using Arbitrary Waveforms and Adaptive Power
Control.” In: Proc. of the 10th ACM Conference on Security and Privacy in Wireless and
Mobile Networks. WiSec ’17. ACM, 2017, pp. 111–121.

[3] M. Schulz, J. Link, F. Gringoli, and M. Hollick. “Shadow Wi-Fi: Teaching Smart-
phones to Transmit Raw Signals and to Extract Channel State Information to Im-
plement Practical Covert Channels over Wi-Fi.” Accepted to appear in Proc. of the
16th ACM International Conference on Mobile Systems, Applications, and Services.
2018.

[4] M. Schulz, D. Stohr, S. Wilk, B. Rudolph, W. Effelsberg, and M. Hollick. “APP and
PHY in Harmony: A Framework Enabling Flexible Physical Layer Processing to
Address Application Requirements.” In: Proc. of the 2015 International Conference and
Workshops on Networked Systems. NetSys ’15. IEEE, Mar. 2015, pp. 1–8.

198 previously published or submitted material

[5] M. Schulz, D. Wegemer, and M. Hollick. “Nexmon: Build Your Own Wi-Fi Testbeds
With Low-Level MAC and PHY-Access Using Firmware Patches on Off-the-Shelf
Mobile Devices.” In: Proc. of the 11th Workshop on Wireless Network Testbeds, Experi-
mental Evaluation & CHaracterization. WiNTECH ’17. ACM, Oct. 2017, pp. 59–66.

[6] M. Schulz, D. Wegemer, and M. Hollick. “The Nexmon Firmware Analysis and
Modification Framework: Empowering Researchers to Enhance Wi-Fi Devices.” Ac-
cepted to appear in Elsevier Computer Communications (COMCOM) Journal. 2018.

[7] D. Stohr, M. Schulz, M. Hollick, and W. Effelsberg. “APP and PHY in Harmony:
Demonstrating Scalable Video Streaming Supported by Flexible Physical Layer Con-
trol.” In: Proc. of the 2015 International Symposium on A World of Wireless, Mobile and
Multimedia Networks. WoWMoM ’15. IEEE, June 2015, pp. 1–3.

E R K L Ä R U N G Z U R D I S S E RTAT I O N S S C H R I F T

gemäß § 9 der Allgemeinen Bestimmungen der Promotionsordnung der
Technischen Universität Darmstadt vom 12. Januar 1990 (ABI. 1990, S. 658)

in der Fassung der VII. Änderung vom 28. September 2010

Hiermit versichere ich die vorliegende Dissertationsschrift ohne Hilfe Dritter und nur
mit den angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die
Quellen entnommen wurden, sind als solche kenntlich gemacht worden. Eigenzitate aus
vorausgehenden wissenschaftlichen Veröffentlichungen werden in Anlehnung an die Hin-
weise des Promotionsausschusses FB Informatik zum Thema „Eigenzitate in wissenschaft-
lichen Arbeiten“ (EZ-2014/10) in Kapitel „Previously Published or Submitted Material“
auf Seite 195 ff. gelistet. Diese Arbeit hat in gleicher oder ähnlicher Form noch keiner Prü-
fungsbehörde vorgelegen. In der abgegebenen Dissertationsschrift stimmen die schriftli-
che und die elektronische Fassung überein.

Darmstadt, 12. Januar 2018

Matthias Thomas Schulz

199

	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	Introduction
	1 Motivation and Goals
	1.1 Problem statement
	1.2 Our approach
	1.3 Our goals and challenges

	2 Contribution
	2.1 Analysis and security enhancement
	2.2 Framework and toolset
	2.2.1 JTAG-less debugging
	2.2.2 Real-time MAC access
	2.2.3 Operating Wi-Fi chips as software-defined radios
	2.2.4 Channel state information extraction
	2.2.5 Position-independent code generation

	2.3 Applications
	2.3.1 Ping-offloading
	2.3.2 Software-defined wireless networking
	2.3.3 Reactive jamming with arbitrary waveforms
	2.3.4 Covert channels by prefiltering outgoing frames

	3 Related Work
	3.1 Work related to modifying FullMAC firmwares
	3.2 Work related to modifying real-time firmwares
	3.3 Conclusion

	Chip Internals and Firmware Handling
	4 Broadcom's Wi-Fi Chips
	4.1 SoftMAC vs. FullMAC chips
	4.2 Transmit path
	4.2.1 Physical layer components
	4.2.2 Arbitrary signal transmissions
	4.2.3 Advanced raw signal transmissions

	4.3 Receive path
	4.3.1 Collecting raw samples
	4.3.2 Demodulating Wi-Fi frames
	4.3.3 Frame processing on the receive path

	4.4 Programmable state machine (PSM)
	4.4.1 Programming the PSM

	4.5 Embedded ARM processor
	4.5.1 Flash patching unit
	4.5.2 Debugging core

	4.6 Conclusion

	5 Firmware Analysis and Security Improvements
	5.1 Analyzing the current state of firmware handling
	5.1.1 Limitations of the design decisions

	5.2 Improving security in future chip models
	5.2.1 Limiting access to chip internals and memory
	5.2.2 Avoiding flashpatches and restructuring memory
	5.2.3 Restricting debugging of production code
	5.2.4 Hindering static code analysis
	5.2.5 Downsides of delivering encrypted firmware
	5.2.6 Making the signature verification key exchangeable
	5.2.7 The problem with software vulnerabilities
	5.2.8 Randomizing memory allocation on the heap
	5.2.9 Avoiding code execution in data memory
	5.2.10 Handling vulnerability incidents

	5.3 Conclusion
	5.4 My contribution and acknowledgements

	Firmware Patching Framework
	6 Nexmon Firmware Patching Framework
	6.1 Introducing Nexmon
	6.1.1 How to write patches?
	6.1.2 Where to embed the patch code?
	6.1.3 How to patch read-only memory?
	6.1.4 How to side-load functionality into a running chip
	6.1.5 How to analyze the firmware?
	6.1.6 How do dynamically analyze the firmware?
	6.1.7 How to adapt to new firmware files?

	6.2 Achieving testbed goals
	6.2.1 How to handle receptions?
	6.2.2 How to perform transmissions?
	6.2.3 How are frames stored in the firmware?
	6.2.4 How to handle retransmissions?
	6.2.5 How to set transmit powers?
	6.2.6 What are the internal structures?
	6.2.7 How to set channel specifications?
	6.2.8 How to use timers?
	6.2.9 How to transmit arbitrary waveforms?
	6.2.10 How to modulate information onto arbitrary waveforms?
	6.2.11 How to transmit raw signals from Template RAM?
	6.2.12 How to extract channel state information (CSI)?
	6.2.13 How to talk to the firmware?
	6.2.14 How to modify the real-time firmware?
	6.2.15 How to handle SoftMAC chips

	6.3 Discussion
	6.4 Conclusion
	6.5 My contribution and acknowledgements

	7 Programmable Firmware Debugger
	7.1 Accessing debugging core registers
	7.2 Implementation
	7.2.1 Initializing the debugger
	7.2.2 Preparing to handle breakpoints and watchpoints
	7.2.3 Handling breakpoints
	7.2.4 Handling watchpoints

	7.3 Example application
	7.4 Discussion
	7.5 Conclusion
	7.6 My contribution

	8 Channel State Information Extractor
	8.1 Implementation
	8.1.1 The size of channel state information
	8.1.2 Pushing channel state information out of the D11 core

	8.2 Experimental evaluation
	8.2.1 Experimental setup
	8.2.2 Analyzing the CSI dumps

	8.3 Discussion
	8.4 Related work
	8.5 Conclusion
	8.6 My contribution and acknowledgements

	9 Software-Defined Radios on Wi-Fi Chips
	9.1 Implementation
	9.1.1 Raw sample transmission methodology

	9.2 Experiments
	9.2.1 Experimental setup
	9.2.2 Experimental evaluation

	9.3 Discussion
	9.4 Future work
	9.4.1 Controlling Wi-Fi chips from MATLAB
	9.4.2 Comparing Nexmon SDRs to WARP SDRs
	9.4.3 Implementing continuous transmissions and receptions
	9.4.4 New applications on Wi-Fi chips

	9.5 Related work
	9.6 Conclusion
	9.7 My contribution and acknowledgements

	Applications
	10 Ping Offloading
	10.1 Implementation
	10.2 Experimental evaluation
	10.2.1 Power consumption
	10.2.2 Number of actually transmitted ping requests
	10.2.3 Round-trip times (RTTs)

	10.3 Discussion
	10.4 Related work
	10.5 Conclusion
	10.6 My contribution

	11 SDWNs with Flow-based PHY Control
	11.1 Designing a SDWN system for smartphones
	11.1.1 System overview
	11.1.2 Overview of the system components
	11.1.3 Enhancing SVC-video streaming
	11.1.4 Complete system overview
	11.1.5 Isolating the application from physical-layer settings
	11.1.6 Interfacing SDRs from smartphones
	11.1.7 Offering enhanced features at the receiver
	11.1.8 Robust scalable-video transmission

	11.2 Implementation
	11.2.1 Implementing the scalable-video codec
	11.2.2 Implementing the WARP ``VPN'' Service
	11.2.3 A Nexmon-based implementation using internal Wi-Fi chips

	11.3 Evaluation
	11.3.1 Experiment definition
	11.3.2 Evaluation of transmit rate variations
	11.3.3 Evaluation of transmit power variations

	11.4 Discussion
	11.5 Future work
	11.6 Related work
	11.7 Conclusion
	11.8 My contribution and acknowledgements

	12 Reactive Wi-Fi Jamming on Smartphones
	12.1 Design
	12.1.1 Reactive jammer
	12.1.2 Acknowledging jammer
	12.1.3 Adaptive power-control jammer
	12.1.4 Jamming signal generation
	12.1.5 Signal amplification
	12.1.6 Power consumption

	12.2 Implementation
	12.2.1 Jamming app
	12.2.2 Implementation in the D11 core
	12.2.3 Implementing the reactive jammer
	12.2.4 Implementing the acknowledging jammer
	12.2.5 Implementing the adaptive power-control jammer

	12.3 Experimental evaluation
	12.3.1 Experimental setup
	12.3.2 Evaluating our reactive jammer
	12.3.3 Reactively jamming non-compliant 802.11ac transmissions
	12.3.4 Multi-node jamming analysis
	12.3.5 Flow-selective jamming
	12.3.6 Power consumption analysis

	12.4 Discussion
	12.5 Related work
	12.6 Future work
	12.7 Conclusion
	12.8 My contribution and acknowledgements

	13 Wi-Fi-Based Covert Channels
	13.1 Covert channel design
	13.2 Implementation
	13.2.1 Generating and sending acknowledgements with covert information
	13.2.2 Choosing covert symbols

	13.3 Experimental evaluation
	13.3.1 Covert channel experiment in line-of-sight setup
	13.3.2 Evaluating the influence on normal Wi-Fi receivers
	13.3.3 Reception performance at the covert channel receiver
	13.3.4 Choosing suitable symbols
	13.3.5 Real-time experiments involving the D11 core
	13.3.6 Evaluating the experimental results

	13.4 Discussion
	13.5 Related work
	13.5.1 Data-link-layer approaches
	13.5.2 Physical-layer approaches

	13.6 Future work
	13.7 Conclusion
	13.8 My contribution and acknowledgements

	14 Projects using Nexmon
	14.1 Nexmon for Qualcomm's 802.11ad Wi-Fi chip
	14.1.1 Porting Nexmon to ARC600 cores
	14.1.2 Simplifying debugging of the QCA9500 firmware

	14.2 Nexmon for Fitbit activity trackers
	14.3 Security analyses based on Nexmon's results
	14.4 Nexmon for Qualcomm's LTE modem firmware
	14.5 Conclusion

	Discussion and Conclusions
	15 Discussion
	16 Conclusions

	Appendix
	A Software Releases
	A.1 Nexmon firmware patching framework
	A.2 Ping-offloading application
	A.3 Nexmon Debugger
	A.4 Nexmon Jammer
	A.5 Nexmon SDR
	A.6 Nexmon CSI Extractor
	A.7 Nexmon Covert Channel
	A.8 No-LTE kernel for Nexus 5

	Bibliography
	Curriculum Vitæ
	Author's Publications
	Previously Published or Submitted Material
	Erklärung zur Dissertationsschrift

