36,852 research outputs found

    MRI-guided focused ultrasound surgery in musculoskeletal diseases: the hot topics

    Get PDF
    MRI-guided focused ultrasound surgery (MRgFUS) is a minimally invasive treatment guided by the most sophisticated imaging tool available in today's clinical practice. Both the imaging and therapeutic sides of the equipment are based on non-ionizing energy. This technique is a very promising option as potential treatment for several pathologies, including musculoskeletal (MSK) disorders. Apart from clinical applications, MRgFUS technology is the result of long, heavy and cumulative efforts exploring the effects of ultrasound on biological tissues and function, the generation of focused ultrasound and treatment monitoring by MRI. The aim of this article is to give an updated overview on a "new" interventional technique and on its applications for MSK and allied sciences

    Design and analysis of a novel long-distance double tendon-sheath transmission device for breast intervention robots under MRI field

    Get PDF
    Cancer represents a major threat to human health. Magnetic resonance imaging (MRI) provides superior performance to other imaging-based examination methods in the detection of tumors and offers distinct advantages in biopsy and seed implantation. However, because of the MRI environment, the material requirements for actuating devices for the medical robots used in MRI are incredibly demanding. This paper describes a novel double tendon-sheath transmission device for use in MRI applications. LeBus grooves are used in the original transmission wheels, thus enabling the system to realize long-distance and large-stroke transmission with improved accuracy. The friction model of the transmission system and the transmission characteristics model of the novel tendon-sheath structure are then established. To address the problem that tension sensors cannot be installed in large-stroke transmission systems, a three-point force measurement method is used to measure and set an appropriate preload in the novel tendon-sheath transmission system. Additionally, experiments are conducted to verify the accuracy of the theoretical model and multiple groups of tests are performed to explore the transmission characteristics. Finally, the novel tendon-sheath transmission system is compensated to improve its accuracy and the experimental results acquired after compensation show that the system satisfies the design requirements

    The Edna McConnell Clark Foundation's Tropical Disease Research Program: A 25-Year Retrospective Review 1976-1999

    Get PDF
    Documents and details the foundation's commitment to the program from its inception, and provides an analysis of its successes until the completion of the program in 1999

    Beyond risk compensation : clusters of antiretroviral treatment (ART) users in sexual networks can modify the impact of ART on HIV incidence

    Get PDF
    Introduction : Concerns about risk compensation-increased risk behaviours in response to a perception of reduced HIV transmission risk-after the initiation of ART have largely been dispelled in empirical studies, but other changes in sexual networking patterns may still modify the effects of ART on HIV incidence. Methods : We developed an exploratory mathematical model of HIV transmission that incorporates the possibility of ART clusters, i.e. subsets of the sexual network in which the density of ART patients is much higher than in the rest of the network. Such clusters may emerge as a result of ART homophily-a tendency for ART patients to preferentially form and maintain relationships with other ART patients. We assessed whether ART clusters may affect the impact of ART on HIV incidence, and how the influence of this effect-modifying variable depends on contextual variables such as HIV prevalence, HIV serosorting, coverage of HIV testing and ART, and adherence to ART. Results : ART homophily can modify the impact of ART on HIV incidence in both directions. In concentrated epidemics and generalized epidemics with moderate HIV prevalence (approximate to 10%), ART clusters can enhance the impact of ART on HIV incidence, especially when adherence to ART is poor. In hyperendemic settings (approximate to 35% HIV prevalence), ART clusters can reduce the impact of ART on HIV incidence when adherence to ART is high but few people living with HIV (PLWH) have been diagnosed. In all contexts, the effects of ART clusters on HIV epidemic dynamics are distinct from those of HIV serosorting. Conclusions : Depending on the programmatic and epidemiological context, ART clusters may enhance or reduce the impact of ART on HIV incidence, in contrast to serosorting, which always leads to a lower impact of ART on HIV incidence. ART homophily and the emergence of ART clusters should be measured empirically and incorporated into more refined models used to plan and evaluate ART programmes

    Design, Development, and Evaluation of a Teleoperated Master-Slave Surgical System for Breast Biopsy under Continuous MRI Guidance

    Get PDF
    The goal of this project is to design and develop a teleoperated master-slave surgical system that can potentially assist the physician in performing breast biopsy with a magnetic resonance imaging (MRI) compatible robotic system. MRI provides superior soft-tissue contrast compared to other imaging modalities such as computed tomography or ultrasound and is used for both diagnostic and therapeutic procedures. The strong magnetic field and the limited space inside the MRI bore, however, restrict direct means of breast biopsy while performing real-time imaging. Therefore, current breast biopsy procedures employ a blind targeting approach based on magnetic resonance (MR) images obtained a priori. Due to possible patient involuntary motion or inaccurate insertion through the registration grid, such approach could lead to tool tip positioning errors thereby affecting diagnostic accuracy and leading to a long and painful process, if repeated procedures are required. Hence, it is desired to develop the aforementioned teleoperation system to take advantages of real-time MR imaging and avoid multiple biopsy needle insertions, improving the procedure accuracy as well as reducing the sampling errors. The design, implementation, and evaluation of the teleoperation system is presented in this dissertation. A MRI-compatible slave robot is implemented, which consists of a 1 degree of freedom (DOF) needle driver, a 3-DOF parallel mechanism, and a 2-DOF X-Y stage. This slave robot is actuated with pneumatic cylinders through long transmission lines except the 1-DOF needle driver is actuated with a piezo motor. Pneumatic actuation through long transmission lines is then investigated using proportional pressure valves and controllers based on sliding mode control are presented. A dedicated master robot is also developed, and the kinematic map between the master and the slave robot is established. The two robots are integrated into a teleoperation system and a graphical user interface is developed to provide visual feedback to the physician. MRI experiment shows that the slave robot is MRI-compatible, and the ex vivo test shows over 85%success rate in targeting with the MRI-compatible robotic system. The success in performing in vivo animal experiments further confirm the potential of further developing the proposed robotic system for clinical applications

    Medical Robotics for use in MRI Guided Endoscopy

    Get PDF
    Interventional Magnetic Resonance Imaging (MRI) is a developing field that aims to provide intra-operative MRI to a clinician to guide diagnostic or therapeutic medical procedures. MRI provides excellent soft tissue contrast at sub-millimetre resolution in both 2D and 3D without the need for ionizing radiation. Images can be acquired in near real-time for guidance purposes. Operating in the MR environment brings challenges due to the high static magnetic field, switching magnetic field gradients and RF excitation pulses. In addition high field closed bore scanners have spatial constraints that severely limit access to the patient. This thesis presents a system for MRI-guided Endoscopic Retrograde Cholangio-pancreatography (ERCP). This includes a remote actuation system that enables an MRI-compatible endoscope to be controlled whilst the patient is inside the MRI scanner, overcoming the spatial and procedural constraints imposed by the closed scanner bore. The modular system utilises non-magnetic ultrasonic motors and is designed for image-guided user-in-the-loop control. A novel miniature MRI compatible clutch has been incorporated into the design to reduce the need for multiple parallel motors. The actuation system is MRI compatible does not degrade the MR images below acceptable levels. User testing showed that the actuation system requires some degree of training but enables completion of a simulated ERCP procedure with no loss of performance. This was demonstrated using a tailored ERCP simulator and kinematic assessment tool, which was validated with users from a range of skill levels to ensure that it provides an objective measurement of endoscopic skill. Methods of tracking the endoscope in real-time using the MRI scanner are explored and presented here. Use of the MRI-guided ERCP system was shown to improve the operator’s ability to position the endoscope in an experimental environment compared with a standard fluoroscopic-guided system.Open Acces

    UK preparedness for pandemic influenza.

    Get PDF
    Devolving responsibility for implementation to local authorities may not be the best polic
    • …
    corecore