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Design and analysis of a novel
long-distance double tendon-sheath
transmission device for breast
intervention robots under MRI field

Xiaohong Jia1, Yongde Zhang1 , Jingang Jiang1, Haiyan Du1 and Yan Yu2

Abstract
Cancer represents a major threat to human health. Magnetic resonance imaging (MRI) provides superior performance
to other imaging-based examination methods in the detection of tumors and offers distinct advantages in biopsy and
seed implantation. However, because of the MRI environment, the material requirements for actuating devices for the
medical robots used in MRI are incredibly demanding. This paper describes a novel double tendon-sheath transmission
device for use in MRI applications. LeBus grooves are used in the original transmission wheels, thus enabling the system
to realize long-distance and large-stroke transmission with improved accuracy. The friction model of the transmission
system and the transmission characteristics model of the novel tendon-sheath structure are then established. To address
the problem that tension sensors cannot be installed in large-stroke transmission systems, a three-point force measure-
ment method is used to measure and set an appropriate preload in the novel tendon-sheath transmission system.
Additionally, experiments are conducted to verify the accuracy of the theoretical model and multiple groups of tests are
performed to explore the transmission characteristics. Finally, the novel tendon-sheath transmission system is compen-
sated to improve its accuracy and the experimental results acquired after compensation show that the system satisfies
the design requirements.
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Double tendon-sheath, large-stroke transmission model, LeBus grooves, breast intervention robot, MRI, transmission
device, friction model
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Introduction

According to the global cancer statistics for 2018,1 there
are currently an estimated 18.19 million new cancer
cases and 9.6 million cancer deaths per year. Cancer is a
serious threat to human health and affects people’s lives
in both developed and developing countries. Magnetic
resonance imaging (MRI) is widely used when perform-
ing biopsies and therapeutic surgery because it offers
highly accurate cancer detection,2,3 provides high-
definition and high-resolution images, and does not
subject patients to radiation. The medical robots used

in MRI are attracting increasing attention from the
international medical community4–6 and from scientific
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researchers in recent years because of advantages that
include high efficiency and minimally invasive perfor-
mance. However, MRI uses a strong magnetic field.
There are thus strict requirements for the selection of
suitable materials for these robots and their drive sys-
tems.7–9 In addition, there is an urgent need for a robot
driving method that is suitable for use in the nuclear
magnetic environment because such a method would
allow robots to assist in operations without affecting
the MRI results.

The tendon-sheath concept has been widely used in
medical and other types of robots10–13 because of its
high transmission precision, light weight, smooth trans-
mission, flexibility, and small size. Kaneko et al.14,15

studied the transmission characteristics of a simple
tendon-sheath model for finger joint control. They
reported an elastic hysteresis phenomenon in the trans-
mission process and observed a change in the transmis-
sion stiffness when the transmission direction changed.
Their model was limited to a constant transmission
angle and constant preload, and the torque model and
the hysteresis characteristics of the transmission device
were verified from both experimental and simulation
perspectives. Palli et al.16 proposed both static and
dynamic models of tendon-sheath actuation systems.
They also introduced a new viscoelastic model in which
polymeric fibers were used as tendon materials for a
robotic hand. A simple control strategy was proposed
to compensate for nonlinear effects and a complex
LuGre-like dynamic friction model was used to
improve the controller reliability. Agrawal et al.17,18

proposed a set of continuous time-domain partial dif-
ferential equations for a tendon-sheath structure with
an arbitrary curvature and initial tension distribution.
They also considered the effects of the MRI environ-
ment and time-varying nonlinear viscoelastic behavior.
Their model can effectively analyze the backlash from
motion, the relaxation phenomenon of the system, and
the transmission tension between the two cables.

Phee et al.19–21 studied control of the precise posi-
tioning and the force feedback from robotic arms used
in natural orifice transluminal endoscopic surgery.
Nonlinear adaptive control algorithms and real-time
enhancements for tracking were designed to improve
the performance of the cable-conduit mechanisms.
They also developed a motion control device, a telesur-
gical workstation and a slave manipulator. Schiele
et al.22,23 investigated a new type of tendon-sheath
actuator to perform force-reflection to a wearable exos-
keleton. They proposed a hardware prototype in which
springs ensured the constant preloading associated with
the packaging angles. The transmission characteristics
of the tendon-sheath system between the actuator and
the robot joint were also analyzed.

Jiang et al.24,25 designed and analyzed MRI-compa-
tible surgical robots for breast puncture and prostate

needle insertion operations. In their approach, the
tendon-sheath systems were used for power transmis-
sion over comparatively long distances. Wang et al.26,27

established a transmission model for a double tendon-
sheath structure under arbitrary load conditions and
analyzed many non-ideal and nonlinear tendon-sheath
transmission problems. They also built an experimental
tendon-sheath platform and applied friction and con-
trol compensation measures to the tendon-sheath
transmission.

Currently, the joints of the manipulators of medical
robots, and particularly surgical robots, are often dri-
ven using tendon-sheath systems. The transmission
wheels of these tendon-sheath systems are usually made
from metal and are primarily designed for single-slot
and single-layer arrangements. The range of possible
transmission angles is typically small. However, MRI-
compatible interventional surgical robots require a
transmission system that can be driven over a wide
range of angles and over long distances within a limited
space. In addition, the commonly used transmission
wheels with thread grooves often suffer from the phe-
nomena of empty ropes and stacked ropes when the
wheels are winding; in the former case, the tendon is
wound in multiple grooves for a single lap, while in the
latter case, the tendon is wound for multiple laps in one
groove. Regardless of whether these phenomena occur
in the first layer or in multiple layers, this will affect the
winding accuracy.

Based on previous studies, this paper describes a new
type of tendon-sheath transmission device that com-
bines long-distance power transmission with nuclear
magnetic compatibility. LeBus grooves are used in the
transmission wheels to solve the problem of random
winding during tendon-sheath multi-layer transmission;
this allows the transmission accuracy to be further
improved. The motor can be located away from the
MRI source to avoid affecting the imaging, and power
can be transmitted to the robot on the nuclear magnetic
resonance apparatus via the tendon-sheath system. In
this way, the problem of nuclear magnetic incompatibil-
ity can be solved and the service life of the tendon-
sheath device can be extended.

Design and friction study of double
tendon-sheath transmission wheels with
LeBus grooves

The proposed tendon-sheath system uses nonmetallic
materials to meet the requirements of the nuclear mag-
netic environment. Figure 1 illustrates use of the pro-
posed system in a nuclear magnetic environment. Long-
distance and wide-range transmission can be realized
and the sizes of the transmission wheels are minimized
to satisfy force demands (including space constraints).
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Therefore, the transmission wheels arrangement will
use a multi-layer winding method. However, there will
inevitably be contact between the upper and lower
layers of the tendon or between adjacent tendons that
are wound within the same layer. Friction between
adjacent tendons caused by extrusion means that the
contact point of the tendon is subjected to a sliding fric-
tion force during movement. Therefore, the stress char-
acteristics of the novel tendon-sheath transmission
system must be analyzed.

The tendon used in the proposed system is com-
posed of eight slender, flexible strands. Because a single
flexible tendon is relatively small in size, it is necessary
to determine the areas where damage to the device
could occur and to characterize the fatigue wear of the
tendon. However, changes in the infinitesimal displace-
ment relative to the size of the overall flexible tendon

are of low significance. Therefore, to simplify the calcu-
lations and obtain analytical data about the macro-
scopic stresses, the tendon is considered as a cylinder
here. The transmission winding mode of the double
tendon-sheath is illustrated in Figure 2. The driving
wheel uses left-hand threads while the follower wheel
uses right-hand threads, so the transmission directions
of the wheels remain consistent. In the initial state, the
thread grooves on side B of the driving wheel and the
thread grooves on side A of the follower wheel are
wound all over the wheel and these windings cover the
same n layers (where n is a positive integer). The thread
grooves on side A of the driving wheel and those on
side B of the follower wheel are then unwound. Arrows
indicate the rotation of the transmission wheels, and
the two transmission wheels are oriented parallel to
one another.

During the winding process, the axis of the tendon
changes from the fleet angle (i.e., the angle between the
center line of the tendon and the plane perpendicular to
the axis of the transmission wheel) to the helical angle
of the transmission wheel. To enable calculation of the
variations in the bending angle and the friction force of
the tendon during the process of multi-layer winding of
a double broken-line transmission wheel, the angle that
represents the transformation of the tendon from the
fleet angle g to the helical angle f is defined as the
deflection angle b. As shown in Figure 2, where the
direction is indicated by an arrow, the positive direction
runs clockwise. For convenience of calculation, we only
consider the friction generated by the regular contact
parts of the tendon during the multi-layer winding pro-
cess and ignore the friction that occurs during the tran-
sitions between the different layers.

To indicate the frictional force of the multi-layer
winding of the tendon, the LeBus grooves on the right-

Figure 1. Application of a new type of tendon-sheath
transmission device in an MRI environment.

Figure 2. Schematic diagram of double tendon-sheath and helical angle distribution of the transmission winding mode.
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hand side of the driving wheel are used as an example.
As shown in Figure 3, the spatial rectangular coordi-
nate system of the transmission wheel denoted by
O-XYZ is established in a relatively static state. The
origin O of the coordinate system is located at the
center of the transmission wheel. The XOY plane lies
perpendicular to the axis of the driving wheel. The
right-hand side of the driving wheel indicates the posi-
tive direction of the z-axis.

To describe the position and calculate the friction
force of the tendon on the transmission wheels, a corre-
sponding cylindrical coordinate system is established
based on the rectangular O-XYZ coordinates of the
transmission wheel. X, Y, and Z represent the coordi-
nate values of the points on the tendon in the spatial
rectangular coordinate system and (r,u, zP) represent
the coordinate values of the points on the tendon in the
cylindrical coordinate system. Any point p in the first
layer of the tendon in the transmission wheel is denoted
in cylindrical coordinates by (r,u, zP). The relationship
between the spatial rectangular coordinate system and
the cylindrical coordinate system at any point in the
transmission wheel is given as follows:

x= r cosu

y= r sinu

z= zp

8><
>: ð1Þ

The starting point of the tendon winding on the
driving wheel is P0, which is located in the XOZ plane

on the right-hand side of the driving wheel. The tendon
is wound in a left-hand manner. Ideally, when the driv-
ing wheel rotates by an angle a in the direction of the
arrow around the center axis, the tendon is wound by
the same angle around the LeBus grooves in the direc-
tion opposite to the rotation of the driving wheel. The
width of the driving wheel required to accommodate
the tendon is Ld0 and the centerline of the tendon wind-
ing is, by default, oriented along the centerline of the
driving wheel. Because the diameter of the tendon is
much smaller than that of the driving wheel, the driving
wheel diameter can be regarded as the diameter of the
tendon winding on the driving wheel, denoted by D.
The angle u indicates the rotation of the tendon on the
driving wheel, i.e., the angle of rotation relative to the
initial point. For the case of LeBus grooves, the trajec-
tory curve of tendon winding on the transmission wheel
can be expressed in the cylindrical coordinate system
as:

r = rp0

u=� u

�
ð2Þ

Figure 3 shows that when the transmission wheel
rotates by 360�, it will experience two straight grooves
and double broken-line grooves, where the combined
rotation angle of a straight groove and a broken-line
groove is 180�. Let the lengths of the straight grooves
and the broken-line grooves of the transmission wheel
when rotating by 360� in the direction perpendicular to
the axis of the driving wheel be ls and lb, respectively.
The angle at which the tendon winds around each
straight groove is as, and the angle at which the tendon
winds around each broken groove is ab.

These two angles can be expressed as:

as =
90

pr
ls

ab =
90

pr
lb

8><
>: ð3Þ

Therefore, zp can be expressed as follows:

zp =

Ld0 � nPs 2n � 1808\a\2n � 1808+as

Ld0 � nPs �
Ps

2ab

(a� 3608 � n� as) 2n � 1808+as\a\2(n+ 1) � 1808

Ld0 �
Ps

2
(2n+ 1) 2(n+ 1) � 1808\a\ 2(n+ 1) � 1808+as

Ld0 �
Ps

2
(2n+ 1)� Ps

2ab

(a� 3608 � n� 1808� as) 2(n+ 1) � 1808+as\a\2(n+ 2) � 1808

8>>>>>>><
>>>>>>>:

ð4Þ

where Ps is the pitch of one rotation of the transmission
wheel, Ps = lb tanf, and n=0,1,2. is the number of
cycles in which the tendon is wound onto the driving
wheel.

As Figure 2 shows, the distance between the baffle
on which the sheath is placed and the tendon on the
driving wheel is Lc.

Figure 3. Schematic diagram showing the spatial rectangular
coordinate system and the cylindrical coordinate system in the
transmission wheel.
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Assuming that the tendon is in an ideal condition in
terms of its winding and tightening on the driving
wheel, when the tendon is located within the Ld0

2
– Ld0

range on either side of the transmission wheel, the fleet
angle is given by:

gf = arctan
Zp � Ld0

2

Lc

ð5Þ

When the tendon is located in the range from O– Ld0

2

on either side of the transmission wheel, the fleet angle
is given by:

gn = arctan
Ld0

2
� Zp

Lc

ð6Þ

The friction force of the tendon on the transmission
wheel is related to both the fleet angle g and the helical
angle f of the system, the diameter of the transmission
wheel, and the structure and the mechanical properties
of the tendon itself. The winding force of the tendon is
much more complex in the transitional stage, and the
stroke is shorter, which means that it has less of an
influence on the friction force of the tendon in the over-
all transmission process. Therefore, the analysis of the
friction force of the broken-line segment must also con-
sider the situation where a straight segment is wound
around the transmission wheel. The tension of the ten-
don is Fc, the sliding friction factor between the tendons
is m, and the circumferential winding force produced by
the tendon winding around the transmission wheel is
Fq. The circumferential winding force Fq1 generated by
the winding of the tendon in the first layer can be
expressed as:

Fq1 = 2Fc cosg=D ð7Þ

and the friction force of the first layer of the transmis-
sion wheel Ff1 can be expressed as:

Ff 1 =mFq1 ð8Þ

Therefore, the friction force Ff1 can be expressed as:

Ff 1 = 2mFc cosg=D ð9Þ

As shown in Figure 4, in most areas, the second
layer of the tendon is wound systematically in the
grooves arranged in the first layer of the tendon and
this can be considered to be a triangular arrangement.
This arrangement is relatively stable and thus the sec-
ond layer of the tendon can be regarded as being sup-
ported by the bottom layer only. The same is true for
multi-layer windings of the tendon and there is no
trend for mutual movement. At this point, the stress of
the tendon can be expressed as follows:

Ff 2 = 2mNP ð10Þ

where Np is the extrusion force between the two layers
of the tendons and is given by:

NP =Fq2=2 cosu ð11Þ

and f represents the angle between the winding force of
the transmission wheel and the direction normal to the
contact surface of the tendon. The geometric relation-
ship between the upper and lower layers of the tendon
can be approximated as an equilateral triangle and thus
f ’ 30�. The circumferential winding force Fq2 gener-
ated by the winding of the tendon in the second layer
can be expressed as:

Fq2 = 2Fc cosg=D2 ð12Þ

Because the diameter of the tendon is very small rela-
tive to the diameter of the transmission wheel, D2 can
be approximated as D. From equations (10)–(12), we
then obtain:

Ff 2 = 4
ffiffiffi
3
p

mFc cosg=3D ð13Þ

Because the winding of the tendon during transmis-
sion is mostly in triangular form, the friction force of
the tendon in layer N*+2 (where N* is a positive inte-
ger) can be calculated using equation (13) in the case of
winding of multiple layers. It is only necessary to con-
sider the transmission wheel diameter after winding of
the tendon based on the diameter of the actual trans-
mission wheel and the diameter of the tendon.

Research on nonlinear transmission
characteristics of the double tendon-
sheath with LeBus grooves

Unit and unidirectional motion formulas

In the transmission process of the double tendon-sheath
system, the elastic elongation deformation of a tendon

Figure 4. Schematic diagram of stress of the second layer of
the tendon on the transmission wheel.

Jia et al. 5



with no relative motion on the transmission wheel is
not taken into account—only the friction between the
transmission wheel and the tendon, the friction between
the tendon and the sheath, and the elastic elongation
deformation of the tendon are considered. The force of
the small static element in the double tendon-sheath
system is analyzed first. In Figure 5, the following nota-
tion is used.

The force model of the tendon is shown in Figure 5
and the relational formulas are as follows:

du(l, t)= dl=R(l, t)
N (l:t)= T (l, t)du(l, t)
f (l, t)= dT(l, t)=mN (l, t)

8<
: ð14Þ

where T is the tension of the tendon, N is the normal
force, f is the friction force, m is the friction coefficient,
R is the radius, du is the curve angle, dT is the change
in tension, and dl is the tendon segment length.

If the coefficient of dynamic friction is equal to the
coefficient of static friction, then the following equation
can be obtained:

du(l, t)

T (l, t)
=m

dl

R(l, t)
ð15Þ

Let T0(l, t) be the initial value of the tension of the
flexible cable before transmission and l be the total arc
length of the distance transmitted by the system. The
above equation is based on the assumption that the
sheath has only one overall bending radius, R.
However, in practice, the bending radius and the num-
ber of bends of the tendon and the sheath could both
be arbitrary, as shown in Figure 6.

Therefore, the tendon of the ith segment can be rep-
resented by:

Ti(l, t)= T0(0, t)e
(�m

l1
R1(l, t)�m

l2�l1
R2 (l, t)��������m

li�li�1
Ri (l, t)

)sign(j) ð16Þ

where sign(j) is the direction function and j is the ten-
don displacement at the driving wheel, such that:

sign(j)=
1 (j.0) pull phase
�1 (j\0) release phase

�

For a tendon-sheath system with an arbitrary bend-
ing radius (even in the case of a straight line), the ten-
sion at any point can be calculated using equation (16),
which represents an improved Euler equation for fric-
tion transmission in the tendon-sheath structure. Using
this equation, the elastic deformation of the tendon
caused by changes in tension under the action of an
external load can be calculated.

Let li be the length of the tendon from the starting
point of the transmission to the end point of the ith seg-
ment of an arc. The tension at the end of the tendon is
then given by:

Te(l, t)= T0(0, t)e
(�m

l1
R1 (l, t)

�m
l2�l1
R2 (l, t)��������m

lm�lm�1
Rm(l, t) )sign(j) ð17Þ

Let the intermediate variable l be expressed as:

l=m
l1

R1(l, t)
+m

l2 � l1

R2(l, t)
+ � � � � � � +m

ln � ln�1

Rn(l, t)
ð18Þ

Figure 5. Force balance of a tiny segment of the tendon-sheath system.

Figure 6. Schematic diagram of tendon-sheath transmission
with arbitrary curvature.
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The relationship of the parameters l and R to the
force output in the transmission part can then be
obtained via the intermediate parameter l by analyzing
the tendon in its various states of motion:

Te(l, t)= T0(l, t)e
�lsign(j) ð19Þ

If we consider the elastic deformation of the tendon-
sheath transmission device studied in this paper, the
elongation of the tendon can be expressed as:

DL=
T

EA
L ð20Þ

i.e.,

DL=

ðl

0

T (l, t)

EA
dl=

T (0, t)

EA

ðl

0

e�lsign(j)dl ð21Þ

where the speed of movement of the tendon is j, the
tendon elongation is DL, the elastic modulus of the ten-
don is E, the Coulomb friction coefficient is t, and the
cross-sectional area of the tendon is A.

Bidirectionally coupled motion model of the tendon-
sheath structure

The bidirectionally coupled transmission model of a
double tendon-sheath structure with nonlinear charac-
teristics that can realize long-distance and large-stroke
driving not only differs from the long-distance single
tendon-sheath transmission model, but also differs
from the long-distance, small-stroke double tendon-
sheath transmission model. The proposed system must
combine the transmission characteristics of the single
tendon-sheath structure with the bidirectionally
coupled characteristics of the double tendon-sheath
structure to solve the hysteresis, transmission backlash,
and direction-dependence phenomena that often occur
during the transmission process. To solve these prob-
lems, it is essential to establish a reasonable mathemati-
cal model of the structure from which an efficient and
stable solution can be derived.

The bidirectional coupled transmission of a double
tendon-sheath structure that can realize long-distance
and large-stroke driving requires continuous multi-turn
rotation of the transmission wheels during movement.
At the same time, the deformation should be generated
by the movement of the tendon in the sheath. Therefore,
the system return error is mainly composed of the non-
linear distortion of the tendon during the transmission
process and the friction of the transmission wheels when
they are affected by the load. Figure 7 shows a schematic
diagram of the coupled motion model of the tendon-
sheath system when driven using a motor.

Figure 7 shows that the two ends of tendon a and
tendon b are fixed at the driving wheel and the follower

wheel, respectively. The input angle of the driving wheel
is uin and the output angle of the follower wheel is uout.
Sin is the tendon rotation length in the driving wheel
and Sout is the tendon rotation length in the follower
wheel. Both tendons follow a similar transmission line.
By default, the changes in the curvatures of the two ten-
dons along the length direction are the same.

Let the direction of movement of tendon a denote
the positive direction of the movement and let tendon b
move in the negative direction when the driving wheel
rotates clockwise. When the tendon moves in the posi-
tive direction, the sliding direction exponent is defined
as 1; when the tendon moves in the opposite direction,
the sliding direction exponent is then 21. When the sys-
tem driving wheel is driven clockwise, the output rela-
tionship of the force is described as follows, based on
equation (19):

Tae(l, t)= Ta0(0, t)
�lsign(j) j.0

Tbe(l, t)= Tb0(0, t)
�lsign(j) j\0

ð22Þ

where Tao(l, t) and Tae(l, t) are the tensile values at the
beginning and the end of tendon a, respectively.
Similarly, Tbo(l, t) and Tbe(l, t) are the tensile values at
the beginning and the end of tendon b, respectively.

The tension of the tendon when winding around the
transmission wheel in a static condition is defined as
T0(0, t). The deformations of the tendons can be
obtained from the elastic deformation formula for a
tendon during transmission, as follows:

DLa
+ =

Tao(l, t)� T0(0, t)

EA

ðl

0

e�lsign(j)dl

DLb
+ =

Tbe(l, t)� T0(0, t)

EA

ðl

0

e�lsign(j)dl

ð23Þ

Figure 7. Schematic diagram of double tendon-sheath
transmission model.
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However, during the transmission process, the driv-
ing wheel must also overcome the friction of the tendon
from the transmission wheels. The two-layer tendon
winding in the transmission wheel is used as an exam-
ple and the theory for multi-layer tendons is similar.

Let Sain and Sbin be the rotation lengths of tendons a
and b in the driving wheel, respectively. Let Saout and
Sbout be the rotation lengths of tendons a and b in the
follower wheel, respectively. The actual deformation of
the two tendons during motion is then given by:

DLaw
+ =

Tao(l, t)� T0(0, t)� Ff 2

EA

ðl

0

e�lsign(j)dl

DLbw
+ =

Tbe(l, t)� T0(0, t)+Ff 2

EA

ðl

0

e�lsign(j)dl

ð24Þ

Therefore, the actual displacements of the driving
wheel for the two tendons are:

Sain(l, t)=DLaw
+ + Saout(l, t)

Sbout(l, t)=DLbw
+ + Sbin(l, t)

ð25Þ

On the output side, the displacements of tendon a
and tendon b should be equal, i.e.,

Saout(l, t)= Sbout(l, t) ð26Þ

By substituting equation (26) into equation (25), the
displacement difference of the two tendons at the input
side during clockwise driving is given by:

DS+(l, t)= Sain(l, t)� Sbin(l, t)=DLaw
+ +DLbw

+

ð27Þ

Therefore, when the direction of motion changes, the
hysteresis angle can be determined. The formula for the
backlash-like hysteresis angle is:

ub(l, t)=DS+(l, t)=r ð28Þ

The angles of the driving wheel and the follower
wheel can thus be obtained as:

uin
+ (l, t)= Sain(l, t)=r

uout
+ (l, t)= Sbout(l, t)=r

ð29Þ

Based on the formulas above, the relational expres-
sion for the output angle is:

uout
+ (l, t)=

Sain(l, t)� DLaw
+

r
ð30Þ

After multiple experiments, it was demonstrated that
at the initial moment, when the transmission wheel
rotates in one direction, the tendon moving in the
opposite direction on the other side will always produce
a relaxation phenomenon; this occurs even if the two

tendons are in tension and regardless of the magnitude
of the pre-stress. This phenomenon will continue until
a change in direction occurs, and when the transmis-
sion wheel has overcome the displacement difference of
the tendons and the loose tendon begins to gradually
tighten. The movement of the tendon will then continue
to pass. This phenomenon can be proved and verified
experimentally.

Similarly, when the driving wheel needs to change
direction after positive movement, the output relation-
ship of the force is:

Tae(l, t)= Ta0(0, t)
�lsign(j) j\0

Tbe(l, t)= Tb0(0, t)
�lsign(j) j.0

ð31Þ

If the winding range of the tendon in the driving
wheel does not reach the second layer after the positive
movement, the friction will be Ff 1. If the winding range
of the tendon in the driving wheel does reach the sec-
ond layer after the positive movement has ended, then
the actual deformation of the tendon in motion is:

DLaw
�=

Tae(l, t)� Ta0(0, t)+Ff 2

EA

ðl

0

e�lsign(j)dl

DLbw
�=

Tb0(l, t)� Tbe(0, t)� Ff 2

EA

ðl

0

e�lsign(j)dl

ð32Þ

However, before the driving end of tendon b can
drive the follower end of tendon b, the driving wheel
must rotate by the displacement difference caused by
the positive movement.

Therefore, the actual displacement of the driving end
of the two tendons is given by:

Saout(l, t)=DLaw
�+ Sain(l, t)

Sbin(l, t)=DS+(l, t)+DLbw
�+ Sbout(l, t)

ð33Þ

Consequently, the displacement difference between
the two tendons after the reverse motion can be deter-
mined as follows:

DS�(l, t)= Sbin(l, t)� Sain(l, t)

=DLaw
�+DLbw

�+DS+(l, t)
ð34Þ

Subsequently, the angular displacements of the driv-
ing wheel and the follower wheel when driving counter-
clockwise can be calculated as:

uin
�(l, t)= Sbin(l, t)=r

uout
�(l, t)= Saout(l, t)=r

ð35Þ

Based on the equations above, the relational expres-
sion for the output angle after the reverse motion is
given by:
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uout
�(l, t)=

Sbin(l, t)� DLaw
� � DS+(l, t)

r
ð36Þ

The transfer process of the double tendon-sheath
system can be analyzed using these equations. First, in
the delay stage, after the direction of the driving wheel
changes, the follower wheel displacement is invariant,
with one of the tendons in a gradual tension state and
the other tendon in a gradual relaxation state. The ten-
don inside the sheath is in partial motion and does not
reach the follower wheel. Second, during the running
stage, the two tendons are in motion simultaneously,
but the tension on one side of the driving end is increas-
ing while the tension on the other side of the tendon is
decreasing. Finally, during the transition stage between
the delay stage and the running stage, one tendon is in
a state of tension and the other is in a state of partial
motion, which indicates loosening from one side and
gradual tightening from the other side. The motion of
the double-tendon-sheath coupling is initially in the
transition stage before entering the full running stage
up to a predetermined position, and it then enters the
delay stage when the direction is about to change.

From the equations above, the nonlinear character-
istics of the hysteresis, the backlash-like hysteresis, and
the directional dependence can be determined, and the
friction coefficient of the tendon contact surface, the
full curvature of the double tendon-sheath structure,
and the equivalent elasticity of the tendon can also be
calculated. The friction coefficient is related to the
curve torsion rate, the transmission speed, and other
factors. Research into the transmission characteristics
of the double tendon-sheath system has important
guiding significance for precise control of nonmetallic
tendon-driven robots that require long-distance and
large-stroke motion capabilities.

Determination of pre-tightening force
parameters and their application

In accordance with the MRI operating requirements,
the tendon in the proposed system is constructed using

a high-molecular-weight polyethylene fiber. This fiber
has properties that include high strength, a high modu-
lus, low fiber density, low elongation on breaking, high
breaking resistance, and a strong energy absorption
capability. Overall, this material offers outstanding
impact resistance, shearing resistance, chemical resis-
tance, and abrasion resistance, and also offers a long
flexural life. If the preloading is too small, some slack
will be present in the transmission process; however, if
the preload is too high, the service life of the tendon
and the transition phenomenon in transmission will be
affected. Because the tendon is a nonmetallic wire elas-
tic material, selection of a reasonable preload could
effectively avoid the problems noted above. The experi-
mental platform for the tendon-sheath system was con-
structed as shown in Figure 8 to aid in selection of the
appropriate preload.

The experimental principle is described as follows.
The two ends of the tension sensor were tied directly to
the tendon. In a natural tension state, the preload on
the tendon was 0 N. This preload could be increased by
varying the position of the pulley on the slide of the
tendon tensioning mechanism and the pulley position
was changed in 3 mm steps with a maximum movement
of 12 mm. When the tensioning mechanism pulley was
moved along the slider by 3, 6, 9, and 12 mm, the corre-
sponding pre-tension forces on the tendon were 0.6 N,
1.1 N, 1.7 N, and 1.9 N, respectively. Finally, the dis-
placement difference between the input and output ends
of the tendon was tested under different preloads. The
experimental results are presented in Figure 9.

The experimental data show that the displacement
differences between the input and output ends corre-
sponding to unidirectional motion are approximately
2.86 1.5 mm, 2.26 1.0 mm, 1.76 1.1 mm, 4.26 1.1
mm, and 5.16 2.2 mm under pre-tension forces of 0 N,
0.6 N, 1.1 N, 1.7 N, and 1.9 N, respectively. As shown
in Figure 10, the Akima spline interpolation method
was used to connect these curves. It is evident that the
displacement difference between the input and output
ends of the tendon was minimized when the preload on
the tendon was 1.1 N in unidirectional motion.
Therefore, under the experimental conditions, a value
of approximately 1.1 N for the pre-tension force of the
tendon is suitable.

In much of the literature, tendon-sheath transmis-
sion refers to a short-range and small-angle motion that
can be used to measure the initial force directly using a
tension sensor. Unlike most of these studies, however,
the tendon-sheath system proposed here is designed to
impart a driving force that can be transmitted over an
extensive range. As a result, the tension of the tendon
cannot be measured directly using a tension sensor. In
the previous methods, it was also impossible to adjust
the preload. Therefore, the three-point method was

Figure 8. Experimental platform for tendon-sheath pre-
tension transmission.
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used to measure the initial strength indirectly by mea-
suring the pressure at both ends of the tendon.

As shown in Figure 11, the preload force was mea-
sured using a six-dimensional force sensor based on a
three-point measurement method for the preload on a
small-diameter tendon. The distance between the two
fixed bars was set at 70 mm. One end of the tendon was
fixed and the other end was placed as shown in Figure
11 and was attached to a single-dimensional tension
sensor (DYLY-103, BIOFORCEN Co.). The tension
sensor was connected to the stepper motor via a ball
screw.

After installation, the software was opened for the
two sensors and run at the same time. The motor on
the screw produced a slow linear motion that provided
a small displacement. When the stepper motor moved
slowly backward, the tension in the tendon increased as
the range increased. The pressure Pr on the six-
dimensional force sensor varied with changes in the
tension Fr of the tendon. The tensile force Fr and the
pressure Pr were uploaded to the host computer simul-
taneously. Ten representative datasets were selected
(see Table 1) and were imported into MATLAB
(MathWorks, https://www.mathworks.com/). A curve
was then fitted using the least-squares method and the
following formula for the tension was obtained:

Figure 9. Input–output errors under different preload conditions.

Figure 10. Variations in the mean errors for five preloads.

Figure 11. Three-point force measurement experiment.
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Fr = 3:437Pr � 4:514 ð37Þ

Under the preload of 1.1 N, the pressure required for
a force of 1.63 N can be calculated using this formula.

Experiments on tendon-sheath
transmission

Experimental design and devices

The tendon-sheath structure with the LeBus grooves
system is controlled using an upper computer through
a motion control card (GE-800-PG-PCI, Googol
Technology) that drives the stepper motor (model num-
ber 57H7630A4, Leadshine). The transmission error at
the end of the system is measured using an incremental
rotary encoder. The motor end is connected to the driv-
ing wheel, the follower wheel is connected to the load,
and the driving wheel transmits the power from the fol-
lower wheel through the tendon-sheath system. All the
transmission wheels and a variety of fixed brackets
were constructed from nonmetallic materials that can
be used in nuclear magnetic environments.

The sheath has a length of 1500 mm and the tests
were conducted at cumulative bending angles of 1808

and 5408 with a friction coefficient of 0.16. The tendon
was constructed using a polyethylene fiber with a dia-
meter of 0.305 mm. The maximum tension value for the
tendon was 20.8 kg, which was sufficient to satisfy the
design requirements. The strength of the tendon was
2.8–4 N/tex, the modulus was 91–140 N/tex, and the
density was 0.97–0.98 g/cm3. The tendon was wound
on the new transmission wheel in two layers. The trans-
mission wheel had a diameter of 25 mm.

First, the initial conditions were defined and the pre-
load was set using the method described in the previous
section. The same preload T0 was applied to tendons 1
and 2 to ensure that the force on the input and output
ends was balanced. The elongation of the tendons due
to pre-tensioning forms part of the initial length.

Figure 12 shows a diagram of the experimental
apparatus. Based on good pre-tightening of the tendon
and using a motor speed of 0.05 m/s, the displacement
transmission characteristics of the double-tendon-
sheath system were tested and the results were
compared with the theoretical data. The two-way dis-
placement transmission of the system was compared
with the experimental results for various values of the
full curvature of the tendon and the load.

In the experiments, multiple datasets were tested for
each experimental state. The average values of the
multi-group data in the transmission were compared
with the theoretical data values to calculate the error
value of the system, as given by equation (38). In this
study, the absolute value of the transmission deviation
was recorded as the standard deviation.

ekj = sij � soj j= 1, 2, 3, . . . , n,

�ej =
1

n

Xn

k = 1

ekj k = 1, 2, 3, . . . , n,

s=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
k = 1

(ekj � �ej)
2

n� 1

vuuut
ð38Þ

where sij, soj, and ekj denote the motor input displace-
ment, the measured displacement of the encoder, and
the deviation between these displacements at the jth
moment of the kth group, respectively. �ej is the mean
value at the measurement point at the jth moment of
the nth set of experimental data.

The experimental and theoretical results were com-
pared and the average results from the multi-group
experiments obtained under the two different condi-
tions were analyzed. The positive trajectories are shown
in Figure 13. The maximum positive error was 2.88
mm when the loading was 0.5 kg with a 180�

Table 1. Data for calibration of sensors.

1 2 3 4 5 6 7 8 9 10

Pressure Pr (N) 1.25 1.36 1.46 1.53 1.68 1.77 1.88 2 2.07 2.16
Tensile force Fr (N) 0.07 0.27 0.43 0.63 0.94 1.22 2.1 2.42 2.74 3.02

Figure 12. Experimental setup of tendon-sheath transmission
system.
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cumulative bending radius. The maximum positive
error was 5.35 mm when the loading was 1 kg with a
540� cumulative bending radius. Furthermore, as
shown in Figure 14, the maximum errors in the reverse
hysteresis phase were 6.41 mm and 13.22 mm.

No significant differences were observed between the
theoretical and experimental motion trajectories. The
experimental trajectory was close to the theoretical tra-
jectory, which thus verifies the correctness of the theo-
retical formulation.

Comparison of experimental data in three situations

Figure 15 shows the experimental data obtained from
rotation of the driving wheels for one cycle when the
tendon-sheath transmission system was loaded with 1
kg and 0.5 kg and when the cumulative bending radii
were 1808 and 5408. This figure represents a complete
periodic displacement diagram for the positive and
reverse motion of the double tendon-sheath system.
The positive and negative signs represent the transmis-
sion directions. The transverse coordinate sin is the dis-
placement of the driving end, and the longitudinal
coordinate sout is the displacement of the follower end.
_S (+ ) and _S (2) represent the speeds of the driving
end and the follower end, respectively. The running
direction (clockwise) at the beginning of the active end
represents the positive direction. When the driving end
was reversed, the elastic properties of the tendon mate-
rial and the friction between the tendon and the sheath
meant that the system at the follower end did not imme-
diately produce any rotation in response to the

movement of the driving end. The delay from the fol-
lower end is indicated by the movement from position 1
to position 2 in the figure. When the follower end over-
comes the elastic relaxation and the friction, the fol-
lower wheel then begins to rotate. That is, the follower
end moves after the driving end. Therefore, an apparent
hysteresis phenomenon occurs when the tendon-sheath
transmission system goes into reverse. When the hyster-
esis phenomenon ends, the motion is then transferred

Figure 13. Comparison of positive trajectories from
experiments and theory.

Figure 14. Comparison of negative trajectories from
experiments and theory.

Figure 15. Displacement of the double tendon-sheath
transmission system over one cycle.
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smoothly. As shown by the straight line extending from
position 2 to position 3, the movement from position 4
back to position 1 follows a similar curve in the coun-
terclockwise direction.

Figure 16 shows the displacement error curves for
the tendon-sheath system in the four cases after move-
ment of 785 mm in the clockwise direction from the
starting point. As shown in the graph, the displacement
error with the larger cumulative bending radius was
10.37 mm under the 1 kg load, while the corresponding
error with the smaller bending radius was 4.808 mm.
The displacement error with the larger cumulative
bending radius was 3.21 mm under the 0.5 kg load,
while the corresponding error with the smaller bending
radius was 1.77 mm. The experimental data indicate
that the transmission error is generated from the trans-
mission between the driving wheel and the follower
wheel because of the characteristics of the tendon itself
and the friction between the tendon and the sheath.
Additionally, the displacement error will accumulate as
the transmission distance increases. However, the dis-
placement error increased gradually up to approxi-
mately 2/3 of the stroke, and the remaining 1/3 of the
displacement error then decreased gradually. Because
the majority of the tendon will be in the elastic elonga-
tion stage when the driving wheel rotates, the error will
accumulate gradually. In the latter stages of the motion,
the tensile force in the first half of the tendon will gra-
dually increase with the winding of the driving wheel,
thus resulting in greater tension than the initial tension
at the driving end. Therefore, the rotational degree of
the follower end will be greater than that of the driving

end in the later stages of the motion. The cumulative
error is thus lower during the early stages.

Figure 17 shows the displacement error of the
reverse movement that followed the positive movement
of the double tendon-sheath system. The displacement
error with the larger bending radius was 205.99 mm
under the load of 1 kg during reverse operation, while
that with the smaller bending radius was 202.33 mm.
Under the 0.5 kg load, the displacement error with the
larger bending radius was 187.06 mm, while that with
the smaller bending radius was 156.28 mm. During the
initial stages of the transmission, the tendon gradually
changes from the relaxation stage to the tensioning
stage. Therefore, the follower wheel does not immedi-
ately produce any movement in tandem with the rota-
tion of the driving end. When the driving end
overcomes the relaxation of the tendon and gradually
becomes tensioned, the follower wheel then begins to
move. Because of the coupling characteristics of the
double tendon-sheath system, the error after the change
in direction was much greater than that observed dur-
ing positive driving.

Figure 17 also shows that a larger cumulative bend-
ing radius will produce more friction in both the trans-
mission and the reverse hysteresis, regardless of the
transmission load. These experimental data indicate
that when the same cumulative bending radius is used,
a greater positive error increment is observed in the sys-
tem with the heavier load. The hysteresis increment in
the system with the heavier load was smaller than that
in the system with the smaller load after the change in
the transmission direction. Because the cumulative
bending radius increased, the friction force of the ten-
don also increased. However, the increase in the load

Figure 16. Displacement error of double tendon-sheath
transmission system during positive movement.

Figure 17. Displacement error of the double tendon-sheath
transmission system during negative movement.
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meant that the larger cumulative radius produced more
friction, which then led to a higher positive transmis-
sion error. The relaxation increment in the tendon
under a larger load would be smaller than the incre-
ment under a lighter load. Therefore, when the cumula-
tive bending radius increased, the increment in the
hysteresis for the transmission system with the larger
load was less than that for the transmission system with
the smaller load. Similar conclusions to those of the
previous theories could be determined based on the
characteristics of the theoretical formula.

Figure 18 compares the experimental data acquired
under different transmission system loads for the same
cumulative bending angle. The positive movement of
the driving wheel was 785 mm, and the displacement
errors under loads of 0.5 kg and 1 kg were 3.85958 mm
and 7.42479 mm, respectively. For the reverse opera-
tion, the displacement errors under loads of 0.5 kg and
1 kg were 187.09167 mm and 205.99708 mm, respec-
tively. The figure shows that when the cumulative bend-
ing radius is the same, a heavier load results in greater
positive and reverse errors. The larger load means that
greater tension is required and this results in greater
friction.

Compensation experiments

The proposed tendon-sheath system is driven using a
stepper motor. The elastic tension and the bending of
the sheath, along with the friction between the tendon
and the sheath and that between the tendon and the
transmission wheel, will lead to some errors during
movement. By establishing appropriate formulas for
the transmission characteristics of the tendon-sheath
system, the forward and reverse errors can then be cal-
culated using the driving input force at the proximal
end. However, the large-scale transfer characteristics of
the system described in this paper cannot be compen-
sated by simply measuring the proximal force. The

particular nature of the application environment means
that encoders that are suitable for nuclear magnetism
applications must be used.

By measuring the displacement of the follower end
during the initial stage of the movement, the initial pull
power could be calculated in real time, and the corre-
sponding tendon elongation and system hysteresis char-
acteristics could then be estimated by calculating the
initial tensile force. In this way, the system could be fed
forward, thus compensating for both the positive dis-
placement transmission and the hysteresis characteris-
tics of the reverse motion. In addition, the
compensation reflection time of the system could be
reduced. Using the data collected by the encoder, error
compensation could also be performed in real time.
Therefore, the corresponding transmission error model
can be expressed as follows:

uain = uaw
+ + uout

+

ubin = ubw
�+ uout

�+ ub

ð39Þ

where uaw
+ =DLaw

+=r, and uaw
�=DLbw

�=r.
The proposed system is designed such that the ten-

don is subjected to multi-layer winding in both the driv-
ing wheel and the follower wheel. The nonlinearity of
the tendon material produces viscous friction, and the
tendon and sheath motions during transmission also
generate friction. Therefore, the LuGre friction model28

was used to compensate for the nonlinear sliding defor-
mation and friction hysteresis during the transmission
process.

The mathematical expressions for the LuGre friction
model are given as follows:

f =s0z+s1 _z+s2 _x

_z= _x� _xj j
g _xð Þ z

g _xð Þ= fc + fs � fcð Þesp � x=vsð Þ2
h i

8><
>: ð40Þ

Figure 18. Comparison between different loads at the same cumulative bending radius.
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where the coefficients s0, s1, and s2 are the stiffness
coefficient, the micro-damping coefficient and the vis-
cous friction coefficient of the system, respectively. z is
the average deformation of the contact surface bristles
and _x is the relative velocity of the motion between the
two contact surfaces. The Stribeck phenomenon is
described using g( _x), which is a function of a constant
greater than zero. f is the friction, fc is the Coulomb
friction, fs is the static friction, and vs is the Stribeck
speed of the system.

The parameters of the LuGre model can be identified
from the experimental data using the least-squares
method and a genetic algorithm. In this study, we found
that the static friction factor ms = 0:16, the bristle stiff-
ness k = 1 3 105=(N=m), the microscopic damping coef-
ficient s1 = 1 3 102:5=(N � s=mm), the viscous friction

coefficient s2 = 4:3, and the Stribeck speed
vs = 1 3 10�5(m=s). A compensation program was writ-
ten into the control program of the Googol motion con-
trol card in the host computer using the C++
language. The following two cases were then compen-
sated: the load of 0.5 kg with a cumulative angle of 1808

and the load of 1 kg with a cumulative angle of 5408.
The results are shown in Figures 19 and 20, respectively.

Figures 19(a) and 20(a) show the experimental
motion trajectories. A significant error was still present
in the commutative hysteresis phase when no compen-
sation control was applied. However, the hysteresis
error of the positive motion was reduced significantly
after the compensation. Although the compensation
can reduce the hysteresis error, the actual relationship
between the input and the output remains nonlinear.

Figure 19. Comparison of experimental motion trajectories and errors before and after compensation under a load of 0.5 kg with
a cumulative angle of 1808.

Figure 20. Comparison of experimental motion trajectories and errors before and after compensation under a load of 1 kg with a
cumulative angle of 5408.
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Figures 19(b) and 20(b) show the average and stan-
dard deviations of the errors of the double tendon-
sheath system in the positive and hysteresis stages for
the two experimental cases. Using the compensation
mechanism, the positive operating error could be con-
trolled in the range from 1.14–1.24 mm and the average
hysteresis error could be controlled in the range from
1.32–1.59 mm. These results are sufficient to meet the
requirements of long-distance and large-stroke trans-
mission applications.

Conclusions

In this article, based on the critical driving technology
requirements for robots operating in nuclear magnetic
environments, a new type of double tendon-sheath
transmission system has been proposed that offers
long-distance and large-stroke power transmission. The
proposed system uses a double broken-line groove
structure that can effectively avoid the phenomenon of
tendon entanglement when the tendon is wound.
Therefore, the transmission accuracy can be improved
further. The friction model of the tendon winding pro-
cess and the transmission and hysteresis model of the
tendon-sheath system have been established, and an
experimental device was constructed. The experimental
data were compared with the theoretical model to ver-
ify the correctness of the model.

Experiments were conducted under various condi-
tions and the special transmission law of tendon-sheath
transmission was derived. On this basis, the friction and
hysteresis phenomena were compensated and precise
position control was realized. A position compensation
experiment demonstrated the validity of the proposed
compensation mechanism and the improved control
performance. The tendon-sheath transmission system
proposed in this article is not limited to application to
robots for use under nuclear magnetism conditions.
The proposed system could be used for any robot that
requires long-distance, large-stroke transmission, and
the paper provides a theoretical basis for researchers
who wish to achieve this functionality.

The goal for future work on this system is integra-
tion of this unique tendon-sheath system and breast
intervention robots into medical experiments. In this
study, the experimental platform was only applied to
degree of freedom (DOF) control of the robot joints.
Therefore, to meet the requirements of these robot
applications, multiple-DOF (more than five) move-
ments that combine advanced robotic technology with
measurement technology will be studied. Furthermore,
a rigid–flexible coupling analysis between the robot end
and human tissues will be investigated to enable more
complex tasks (e.g., removing target tissue while
bypassing blood vessels) to be performed. In addition,

tactile problems must also be considered to help sur-
geons to perceive organizational stress.
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