20 research outputs found

    Requirement Risk Level Forecast Using Bayesian Networks Classifiers

    Get PDF
    Requirement engineering is a key issue in the development of a software project. Like any other development activity it is not without risks. This work is about the empirical study of risks of requirements by applying machine learning techniques, specifically Bayesian networks classifiers. We have defined several models to predict the risk level for a given requirement using three dataset that collect metrics taken from the requirement specifications of different projects. The classification accuracy of the Bayesian models obtained is evaluated and compared using several classification performance measures. The results of the experiments show that the Bayesians networks allow obtaining valid predictors. Specifically, a tree augmented network structure shows a competitive experimental performance in all datasets. Besides, the relations established between the variables collected to determine the level of risk in a requirement, match with those set by requirement engineers. We show that Bayesian networks are valid tools for the automation of risks assessment in requirement engineering

    The Use of Explicit Plans to Guide Inductive Proofs

    Get PDF
    We propose the use of explicit proof plans to guide the search for a proof in automatic theorem proving. By representing proof plans as the specifications of LCF-like tactics, [Gordon et al 79], and by recording these specifications in a sorted meta-logic, we are able to reason about the conjectures to be proved and the methods available to prove them. In this way we can build proof plans of wide generality, formally account for and predict their successes and failures, apply them flexibly, recover from their failures, and learn them from example proofs. We illustrate this technique by building a proof plan based on a simple subset of the implicit proof plan embedded in the Boyer-Moore theorem prover, [Boyer & Moore 79]

    An information theoretic approach to rule induction from databases

    Get PDF
    The knowledge acquisition bottleneck in obtaining rules directly from an expert is well known. Hence, the problem of automated rule acquisition from data is a well-motivated one, particularly for domains where a database of sample data exists. In this paper we introduce a novel algorithm for the induction of rules from examples. The algorithm is novel in the sense that it not only learns rules for a given concept (classification), but it simultaneously learns rules relating multiple concepts. This type of learning, known as generalized rule induction is considerably more general than existing algorithms which tend to be classification oriented. Initially we focus on the problem of determining a quantitative, well-defined rule preference measure. In particular, we propose a quantity called the J-measure as an information theoretic alternative to existing approaches. The J-measure quantifies the information content of a rule or a hypothesis. We will outline the information theoretic origins of this measure and examine its plausibility as a hypothesis preference measure. We then define the ITRULE algorithm which uses the newly proposed measure to learn a set of optimal rules from a set of data samples, and we conclude the paper with an analysis of experimental results on real-world data

    An information theoretic approach to rule induction from databases

    Get PDF
    The knowledge acquisition bottleneck in obtaining rules directly from an expert is well known. Hence, the problem of automated rule acquisition from data is a well-motivated one, particularly for domains where a database of sample data exists. In this paper we introduce a novel algorithm for the induction of rules from examples. The algorithm is novel in the sense that it not only learns rules for a given concept (classification), but it simultaneously learns rules relating multiple concepts. This type of learning, known as generalized rule induction is considerably more general than existing algorithms which tend to be classification oriented. Initially we focus on the problem of determining a quantitative, well-defined rule preference measure. In particular, we propose a quantity called the J-measure as an information theoretic alternative to existing approaches. The J-measure quantifies the information content of a rule or a hypothesis. We will outline the information theoretic origins of this measure and examine its plausibility as a hypothesis preference measure. We then define the ITRULE algorithm which uses the newly proposed measure to learn a set of optimal rules from a set of data samples, and we conclude the paper with an analysis of experimental results on real-world data

    Evolutionary design of decision-tree algorithms tailored to microarray gene expression data sets

    Get PDF
    Decision-tree induction algorithms are widely used in machine learning applications in which the goal is to extract knowledge from data and present it in a graphically intuitive way. The most successful strategy for inducing decision trees is the greedy top-down recursive approach, which has been continuously improved by researchers over the past 40 years. In this paper, we propose a paradigm shift in the research of decision trees: instead of proposing a new manually designed method for inducing decision trees, we propose automatically designing decision-tree induction algorithms tailored to a specific type of classification data set (or application domain). Following recent breakthroughs in the automatic design of machine learning algorithms, we propose a hyper-heuristic evolutionary algorithm called hyper-heuristic evolutionary algorithm for designing decision-tree algorithms (HEAD-DT) that evolves design components of top-down decision-tree induction algorithms. By the end of the evolution, we expect HEAD-DT to generate a new and possibly better decision-tree algorithm for a given application domain. We perform extensive experiments in 35 real-world microarray gene expression data sets to assess the performance of HEAD-DT, and compare it with very well known decision-tree algorithms such as C4.5, CART, and REPTree. Results show that HEAD-DT is capable of generating algorithms that significantly outperform the baseline manually designed decision-tree algorithms regarding predictive accuracy and F-measure

    Introduction in IND and recursive partitioning

    Get PDF
    This manual describes the IND package for learning tree classifiers from data. The package is an integrated C and C shell re-implementation of tree learning routines such as CART, C4, and various MDL and Bayesian variations. The package includes routines for experiment control, interactive operation, and analysis of tree building. The manual introduces the system and its many options, gives a basic review of tree learning, contains a guide to the literature and a glossary, and lists the manual pages for the routines and instructions on installation

    Introduction to IND and recursive partitioning, version 1.0

    Get PDF
    This manual describes the IND package for learning tree classifiers from data. The package is an integrated C and C shell re-implementation of tree learning routines such as CART, C4, and various MDL and Bayesian variations. The package includes routines for experiment control, interactive operation, and analysis of tree building. The manual introduces the system and its many options, gives a basic review of tree learning, contains a guide to the literature and a glossary, lists the manual pages for the routines, and instructions on installation

    A new approach of top-down induction of decision trees for knowledge discovery

    Get PDF
    Top-down induction of decision trees is the most popular technique for classification in the field of data mining and knowledge discovery. Quinlan developed the basic induction algorithm of decision trees, ID3 (1984), and extended to C4.5 (1993). There is a lot of research work for dealing with a single attribute decision-making node (so-called the first-order decision) of decision trees. Murphy and Pazzani (1991) addressed about multiple-attribute conditions at decision-making nodes. They show that higher order decision-making generates smaller decision trees and better accuracy. However, there always exist NP-complete combinations of multiple-attribute decision-makings.;We develop a new algorithm of second-order decision-tree inductions (SODI) for nominal attributes. The induction rules of first-order decision trees are combined by \u27AND\u27 logic only, but those of SODI consist of \u27AND\u27, \u27OR\u27, and \u27OTHERWISE\u27 logics. It generates more accurate results and smaller decision trees than any first-order decision tree inductions.;Quinlan used information gains via VC-dimension (Vapnik-Chevonenkis; Vapnik, 1995) for clustering the experimental values for each numerical attribute. However, many researchers have discovered the weakness of the use of VC-dim analysis. Bennett (1997) sophistically applies support vector machines (SVM) to decision tree induction. We suggest a heuristic algorithm (SVMM; SVM for Multi-category) that combines a TDIDT scheme with SVM. In this thesis it will be also addressed how to solve multiclass classification problems.;Our final goal for this thesis is IDSS (Induction of Decision Trees using SODI and SVMM). We will address how to combine SODI and SVMM for the construction of top-down induction of decision trees in order to minimize the generalized penalty cost
    corecore