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Abstruct- The knowledge acquisition bottleneck in obtaining 
rules directly from an expert is well known. Hence, the problem 
of automated rule acquisition from data is a well-motivated one, 
particularly for domains where a database of sample data exists. 
In this paper we introduce a novel algorithm for the induction 
of rules from examples. The algorithm is novel in the sense 
that it not only learns rules for a given concept (classification), 
but it simultaneously learns rules relating multiple concepts. 
This type of learning, known as generalized rule induction is 
considerably more general than existing algorithms which tend 
to be classification oriented. Initially we focus on the problem of 
determining a quantitative, well-defined rule preference measure. 
In particular, we propose a quantity called the J-measure as 
an information theoretic alternative to existing approaches. The 
J-measure quantifies the information content of a rule or a 
hypothesis. We will outline the information theoretic origins 
of this measure and examine its plausibility as a hypothesis 
preference measure. We then define the ITRULE algorithm which 
uses the newly proposed measure to learn a set of optimal rules 
from a set of data samples, and we conclude the paper with an 
analysis of experimental results on real-world data. 

Index Terms-Cross entropy, expert systems, information the- 
ory, machine learning, knowledge acquisition, knowledge discov- 
ery, rule-based systems, rule induction. 

I. A STATEMENT OF THE PROBLEM 

ONSIDER a company which has a large database of C information, which is, perhaps, lying idle. For example, a 
telecommunications company might have logged hundreds of 
thousands of trouble reports, or a financial services company 
might have a database of past loan applications and credit 
histories of their customers. With the advent in recent years 
of inexpensive electronic and magnetic storage media and 
the increased use of office automation, such databases are 
quite commonplace. The company wishes to develop a rule- 
based expert system for the domain to which the data applies. 
The application of this expert system could be for prediction, 
diagnosis, simulation, training purposes, etc. Can one use the 
existing database to automatically derive rules for the expert 
system? The purpose of this paper is to set forth a basic theory 
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for automated rule induction using information theory and 
describe the ITRULE algorithm which precisely addresses this 
task. The motivation and rationale for using rule-based expert 
systems is well documented and will not be repeated here. The 
problem or “bottleneck’ of manual knowledge acquisition for 
such systems is perhaps their major drawback. It is notoriously 
difficult to obtain rules directly from human experts [1]-[3]. 
Furthermore, if the domain necessitates reasoning under un- 
certainty (probabilistic reasoning), humans are well known to 
be inconsistent in their description of subjective probabilities 
(Kahneman et al., [4]). Hence, it is quite clear that if our 
hypothetical company has an existing database of sample data 
available, a rule induction algorithm would be very useful. As 
we shall see, the problem can be rendered more general than 
simply deriving rules for an expert system - in a sense we 
are involved in a data reduction process, where we want to 
reduce a large database of information to a small number of 
rules describing the domain. 

Consider that we have M observations or samples available, 
e.g., the number of items in a database. Each sample datum 
is described in terms of N attributes or features, which can 
assume values in a corresponding set of N discrete alphabets. 
For example, our data might be described in the form of 10- 
component binary vectors. We note that this representation 
can be transformed into an N-fold discrete contingency table 
as is commonly referred to in multivariate statistical analysis. 
However, for N > 2, the contingency table representation is 
awkward and consequently we will prefer to think of the input 
data as simply a list of M attribute vectors. We will not dwell 
on statistical aspects of the problem (statistical analyses of 
contigency tables are well documented elsewhere, e.g., Bishop 
et al. [ 5 ] )  except to note that we implicitly assume throughout 
that the sample data is a true random sample of the population 
at large. The requirement for discrete rather than continuous- 
valued attributes is dictated by the very nature of the rule-based 
representation. It is worth noting, however, that techniques for 
converting both continuous and mixed mode data are available 
but will not be described here [6]. 

In addition it is important to note that we do not assume 
that the sample data are somehow exhaustive and “correct.” 
In the field of machine learning and/or artificial intelligence 
it is often assumed, for a classification problem say, that any 
given attribute can be perfectly described in terms of the other 
M - 1 attributes. In this case, the learning problem reduces to 
a simple search of the M - 1 dimensional “hypothesis space,” 
i.e., the space of possible classifiers based on functions of the 
predictor attributes. While this assumption may hold true in 
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certain domains such as game playing, it is rarely if ever true in 
real-world problems. Typically, the chosen attributes can only 
incompletely specify each other, at best. Hence, our viewpoint 
is very much in line with the statistical pattern recognition 
philosophy as opposed to what might be termed the artificial 
intelligence or symbolic learning approach. We will return to 
this point later. 

Our approach is inherently probabilistic, i.e., we adhere to 
the basic axioms of probability theory rather than adopting 
any of the more recent uncertainty paradigms such as the 
Dempster-Shafer or fuzzy logic theories. The rationale for 
statistical models as a necessary (though not necessarily sufi- 
cient) component of a general model of learning and reasoning 
under uncertainty has been clearly stated elsewhere (Lindley 
[7], Cheeseman [SI) and will not be repeated here. 

A rule is a statement to the effect that “if event i occurs, 
then event j will probably occur,” where the events are 
propositions of the form of attribute A, taking on some 
particular value from its alphabet. In general, the rule has an 
associated belief parameter such as a conditional probability 
or a “certainty factor.” For our purposes we will use the 
conditional probability p(event j levent i). Given sample data 
as described earlier we pose the problem as follows: can we 
find the “best” rules from a given data set, say the K best 
rules ? We will refer to this problem as that of generalized rule 
induction, in order to distinguish it from the special case of 
deriving classification rules. Classification only derives rules 
relating to a single “class” attribute, whereas generalized rule 
induction derives rules relating any or all of the attributes. 
Clearly, we require a preference measure to rank the rules and 
a learning algorithm which uses the preference measure to find 
the K best rules. This paper reviews our recently introduced 
rule preference measure known as the J-measure [9], but is 
primarily focused on the learning aspect of the problem and, 
in particular, the ITRULE algorithm. 

Beginning with a review of related work on rule induction 
algorithms, we will see that existing approaches lack robust- 
ness and generality for the problem we have described. We 
then define in Section I11 the basic rule preference measure 
and outline its information theoretic properties. Section IV ana- 
lyzes the measure from a general theory of learning viewpoint. 
It is established that the measure is consistent in the sense 
that it trades-off hypothesis simplicity with goodness-of-fit. In 
Section V we explore in more detail the nature of this trade-off 
and in particular establish some information theoretic bounds. 
These bounds are used in Section VI where we define the 
ITRULE algorithm itself. Section VI1 contains experimental 
results and analysis on real-world data sets. 

11. BACKGROUND ON RULE INDUCTION ALGORITHMS 

Comparison of learning algorithms is quite difficult since 
many algorithms address different goals and are based on 
different implicit assumptions. However, there are a few broad 
dimensions along which we can classify these approaches. 
Induction, or learning from examples, can be viewed as a 
search for hypotheses (restricted to some hypothesis space) to 
account for a set of instances or examples which are often 

assumed to be restricted to some instance space. For the 
purposes of this paper, the hypothesis space will be restricted 
to the conjunctive propositions in the discrete space defined by 
the Cartesian product of the sample spaces of the individual 
attributes-the extension to more general hypothesis spaces 
remains a topic for further investigation. For a given concept 
(in our terminology, a particular attribute value pair) the 
hypothesis space is defined as the Cartesian product of the 
sample spaces of the other N - 1 individual attributes, whereas 
the instance space is defined over the entire N-dimensional 
product space. 

In general, the learning problem consists of being given 
positive and negative instances of some concept and trying to 
find a hypothesis in the hypothesis space which best describes 
this concept. Let v be any positive instance in the instance 
space for some concept. Symbolic algorithms try to find a 
deterministic mapping, or a Boolean function F ,  from the 
instance space to the hypothesis space, to describe the concept, 
i.e., seek an F such that F ( u )  = 1 for all 11, where F is in 
the hypothesis space. The statistical approach, however, tries 
to find a probabilistic mapping, or a probability distribution, 
between the two spaces, i.e., prob(F(v)  = 1) 2 1 - 6, where 
S is as close to 0 as possible but may be lower bounded by 
a fundamental parameter of the hypothesis space, such as the 
Bayes’ misclassification rate [ 101. This distinction, between 
approaches which implicitly assume that S = 0 and those that 
do not, is important since a variety of results obtained in the 
area of theoretical inductive learning (e.g., Gold [ l l ] ,  Valiant 
[12], Haussler et al. [13]) cannot be readily extended to the 
case where the Bayes’ risk for the problem is nonzero. 

Learning algorithms can be viewed as searching the hy- 
pothesis space in some manner. A “bottom-up” approach 
(e.g., symbolic learning) involves incremental generalization 
of specialized hypotheses, while a “top-down” approach (e.g., 
statistical algorithms) is based on the specialization of more 
general hypotheses, i.e., an initially simple and general model 
is refined and specialized to improve the goodness-of-fit. It 
is interesting to note that connectionist learning such as the 
backpropagation algorithm [ 141 is inherently “bottom-up’’ in 
this sense. The approach followed by our ITRULE algorithm 
will be “top-down.’’ One might speculate as to the statistical 
robustness and convergence rates of the respective approaches, 
e.g., the bottom-up approach is less robust in the sense that it 
may be order sensitive. We will not pursue this topic further 
in this paper. 

A good taxonomy of automatic induction algorithms is 
given in Cohen and Feigenbaum [15]. These algorithms can 
loosely be categorized into two main areas, those which 
use symbolic manipulation techniques and those which use 
statistically oriented techniques. Mitchell’s “version spaces” 
algorithm [16] is perhaps the best known symbolic concept 
learning algorithm. Another example is the AQll  algorithm 
of Michalski and Larson [17] which achieved success in 
the domain of plant disease diagnosis [ 181. Typically, these 
algorithms examine the examples sequentially and refine what 
is known as the rule space until a set of general classification 
rules covering the examples are arrived at. However, noise 
is not easily handled by the symbolic approaches, since they 
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involve an implicit assumption that the Bayes error rate for the 
problem is zero, i.e., “perfect” classification of each attribute 
is possible in terms of the other attributes. In addition, the 
algorithms are computationally unattractive. Consequently, 
their use has been limited to research-oriented endeavors rather 
than practical applications such as knowledge acquisition for 
expert systems. 

Methods which can be termed as statistical, exploit average 
properties of the example set. However, existing statistical 
learning algorithms generally lack the flexibility we require, 
by either imposing a particular parametric statistical model 
on the environment, or, as with tree-induction algorithms, 
imposing a particular structure on the nature of the solution. 
Algorithms such as ID3 (which derives classification decision 
trees from sample data [19], [20]) have been widely used for 
rule induction. However, such trees are essentially sequential 
decision algorithms which are quite different in nature to the 
data driven nature of expert systems. Rule bases are data 
driven in the sense that any set of input data can potentially 
be used to begin the inference. Trees must always begin with 
the attribute associated with the root node. In addition, rule 
bases can accomodate missing attribute information, whereas 
trees are not designed to do so. Trees can also be difficult to 
understand for the user [21], a problem which should not be 
underestimated in light of the overall advantages of explicit 
knowledge representation inherent to production rules. We 
were originally motivated to look at this problem of general- 
ized rule induction as the limitations of tree structures became 
apparent in relation to expert systems. In short, rules provide 
a much more flexible representation than tree structures. This 
is not to say that trees are not useful in problem areas, such as 
classification where a predetermined “hard-wired’’ solution is 
sufficient [22], [23]. However, by their very definition, expert 
systems tend to be used for problems where variable inputs 
can be handled (missing, uncertain, or changing data), variable 
outputs (different goals) may be specified, and there is a need 
for an explicit representation of the system’s knowledge for 
user interaction. 

One of the few contributions to the problem of generalized 
rule induction is an approach based on fuzzy logic which was 
independently proposed recently by Gaines and Shaw [24]. 
They define the ENTAIL algorithm which derives rules from 
a reportory grid (Boose [25]).  Their approach is interesting in 
that they transform the subjective reportory grid numbers (as 
input by a human expert) into fuzzy logic parameters which, in 
turn, are used to obtain a measure of the information content 
of the associated rules. The algorithm outputs the set of most 
informative rules. This approach is one of the few examples 
of automated knowledge acquisition tools currently avaliable. 
However, since it is designed to elicit subjective data rather 
than deal with random sample data, i t  is not directly applicable 
to our problem. In addition, our approach is differentiated by 
the underlying philosophy for dealing with uncertainty, namely 
standard probability theory rather than fuzzy logic. 

Ganascia [26] has also proposed an algorithm for rule in- 
duction. His approach is more heuristic in nature than the algo- 
rithm to be presented here and is not based on any fundamental 
measure of rule “goodness.” Quinlan described a scheme [27] 
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whereby ID3-induced trees are transformed into production 
rules. In addition to the drawback that this particular scheme is 
classification based, we feel that tree transformation techniques 
in general may not be optimal for performing rule induction. 
Like Quinlan’s approach, Cendrowska’s PRISM algorithm 
[28] is classification based and has an information theoretic 
basis. The PRISM algorithm is intrinsically a symbolic learn- 
ing technique since Cendrowska assumes that a “complete” 
training set will lead to the existence of a perfect classifier 
(zero error probability) for a given set of attributes. As 
mentioned earlier, one rarely encounters such a situation 
in practice, i.e., there is almost always a lower (nonzero) 
bound, the Bayes risk for uniform losses, on the minimum 
classification error achievable. 

More recently Clark and Niblett have described CN2 [29], 
a rule induction algorithm which, like PRISM, searches for 
classification rules directly using a measure of rule goodness. 
While CN2 incorporates a larger hypothesis space than simple 
conjunctive terms (by allowing internal disjunction) it con- 
strains its search through the allowable hypothesis space using 
the notion of a “beam size” which is an ad hoc technique to 
restrict the algorithms’ potentially combinatorially large search 
for rules. We will avoid this problem in our specification of 
the ITRULE algorithm by using information theoretic bounds 
(based on existing rules found by the algorithm) to constrain its 
search through the hypothesis space without loss of optimality. 
CN2 also produces a set of rules in the form of a decision 
list [30]-since a decision list is a form of decision tree this 
form of derived rule representation suffers from the limitations 
mentioned earlier with respect to trees. 

In fact, neither the CN2 and PRISM rule measures include 
an a priori probability term. Incorporation of a priori belief 
is a necessary component of any scheme which performs 
generalized rule induction since it allows one to compare 
not only competing hypotheses for the same concept, but 
also hypotheses for different concepts. From an informa- 
tion theoretic point of view, the rarer the occurence of an 
event, the more valuable is the information confirming its 
occurence. This ability to rank competing hypotheses for 
multiple concepts is fundamental for a learning agent in a 
resource constrained environment and is a central theme of 
our paper. The problem of generalized rule induction has not 
previously been addressed directly, although it is implicit in 
both the Bayesian approach of Cheesman [31] and the ENTAIL 
algorithm of Gaines and Shaw [24]. 

111. THE INFORMATION CONTENT OF A RULE 

We propose to use the following simple model of a rule, 
i.e.: 

If Y =y. then X = x with probability p (1) 

where X and Y are two attributes (dimensions in the instance 
space) with “x” and “y” being values in their respective 
discrete alphabets. For our purposes we may treat X and 
Y as discrete random variables. We restrict the right-hand 
expression to being a single value assignment expression while 
the left-hand side may be a conjunction of such expressions. 
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Fig. 1. Two variables connected by a discrete memoryless channel 

Intuitively we can view the two random variables as being 
connected by a discrete memoryless channel, as in Fig. 1. 
The channel transition probabilities are simply the conditional 
probabilities between the two variables. 

A rule corresponds to a particular input event y = y, rather 
than the average over all input events as is normally defined 
for communication channels, and p ,  the rule probability, is 
the transition probability p(X  = .IIY = y). Let us define 
f ( X . Y  = y) as the instantaneous information that the event 
Y = y provides about X ,  is . ,  the information that we receive 
about X given that Y = IJ has occurred. The instantaneous 
information is the information content of the rule given that 
the left-hand side is true. A reasonable requirement to make 
(the interested reader can refer to Shannon’s original paper 
[32] for a complete discussion), is that 

(1) 

where E, denotes the expectation with respect to the random 
variable Y .  The equation requires that the average information 
from all rules should be consistent with the standard definition 
for average mutual information beteen two random variables. 
Blachman has shown [33] that f ( X :  Y )  as defined above is not 
unique. In his paper he proposes 2 candidates which satisfy this 
equation. We shall refer to these 2 functions as the i-measure, 
I ( X :  Y ) ,  and the j-measure, wherej(X: Y = y), 

E y [ f ( X : Y  = ?/I = Z ( X : Y )  

i ( X : Y  = y) = H ( X )  - H ( X I Y  = y) 

and 

These two measures have quite different interpretations. In 
words, the i-measure is the difference in the a priori and a 
posteriori entropies of X ,  while the j-measure is the average 
mutual information between the events 2,  and y with the 
expectation taken with respect to the a posteriori probability 
distribution of X .  The difference is subtle, yet significant 
enough that the j-measure is always non-negative, while the i- 
measure may be either negative or positive. In fact, Blachman 
has proven that the j-measure is unique as a non-negative 
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information measure which satisfies (l), i.e., i t  is the only 
non-negative measure. We note in passing that CN2 minimizes 
H ( X I Y  = y)  (in (2)) in order to search for good rules-as 
mentioned earlier this ignores any a priori belief pertaining to 
X ,  thus precluding the use of these algorithms for generalized 
rule induction. In addition, the term H(XIY  = y) only 
measures the a posteriori entropy of X-as we shall shortly 
see, this is not sufficient for defining a general rule goodness 
measure. 

We have demonstrated elsewhere [9] that there is a funda- 
mental problem with using measures which are negative. We 
see that Z ( X : Y  = y)  can be equal to zero even if p ( z l y )  # 
p ( x ) ,  e.g., p(sly) = p(Z), where X is a binary variable. In 
other words, the i-measure is zero if the transition probabilities 
in the channel, for a given input, form a permutation of the 
output probabilities. An appropriate title for this phenomenon 
is the information paradox, i.e., there is no change in the 
entropy but we have recieved information about X .  This is an 
example of a fundamental difference between using channel 
models for cognitive modeling, and using them for standard 
communication purposes. In the case of the latter, we do not 
distinguish between individual random events, except in terms 
of their attached probabilities of occurrence. The entropy of 
a discrete random variable is the same, independent of which 
probabilities are assigned to which events in the event space 
of the variable. Consider the case of an n-valued variable 
where a particular value of X = .rl is particularly likely a 
priori @(,r l )  = 1 - e ) ,  while all other values in X ’ s  alphabet 
are equally unlikely with probability 6/71. - 1. In this case a 
conditional permutation of these probabilities (the conditional 
p(X1y)) would be significant, i.e., a rule which predicts the 
relatively rare event x = .rk for some k. However, the 
2-measure, because it  cannot distinguish between particular 
events, would yield zero information for such events. Hence, 
we argue that the 2-measure is inappropriate as a basic measure 
of rule information content. 

Consider the alternative, the 3-measure. It can be shown 
that the j-measure satisfies a variety of desirable mathe- 
matical properties which render it acceptable [34], including 
appropriate limiting properties. For example, as the transi- 
tion probability approaches 1, the information content of the 
rule approaches the self-information of the right-hand event, 
log (l/p(z)). For our purposes, i.e., with a rule rather than a 
channel, J ( X :  Y = y) has the special form, 

j ( X : Y  = y) =p(zly).log ___ (:g) 
since a rule only gives us information about the event X = z 
and its complement 2.  Because of this form we can plot 
some typical curves for j ( X ; Y  = y), as shown in Fig. 2. 
A further point worth making about the j-measure at this 
juncture is that it appears in the information theoretic literature 
under various guises. For instance, it can be viewed as a 
special case of the cross-entropy (Shore and Johnson [35])  
or the discrimination (Kullback [36],  Blahut [37]), a measure 
which defines the information theoretic similarity between two 
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p(z)  = 0.05 / 
/ 

0.0 0.2 0.4 0.6 0.8 1 0  

Transition probahility p(zly) 

Fig. 2. Typical plots of the ]-measure for various values of p i  ) 

probability distributions. In this sense the j-measure is a well- 
defined measure of how dissimilar our apriori and aposteriori 
beliefs are about X-useful rules imply a high degree of 
dissimilarity. 

From our original definition in (l), the average information 
content of a rule can be defined as 

.J (X:Y = y) = p(y) . j ( X : Y  = y ) .  (5 )  

Note that this measure is an average in the sense there is an im- 
plicit assumption that the instantaneous information from the 
other “Y-terms” is zero. This is consistent with the cognitive 
science approach to production rules where essentially we can 
only draw inferences based on the occurence of a particular 
event but not its complement. More generally, in the context 
of learning in a resource constrained environment, each rule 
must be significant in its own right. In particular, rules which 
have left-hand sides that are the complements of existing rules 
must be evaluated separately. In the next section we will 
demonstrate the appropriateness of the previous definition for 
average information content. In an intuitive sense the average 
measure relates to the average value of the rule information 
content (useful for learning), while the instantaneous measure 
can be used to rank rules after the event Y = y has occured 
(useful for forward chaining in rule-based inference). 

We shall see later that bounding the information content of 
a rule can help considerably when we are trying to learn rules 
from data. At this point it is sufficient to point out that the 
J-measure must obey the following basic inequality [34]: 

We will later investigate more detailed bounds on the measure 
for use in the ITRULE algorithm. 

Iv. PROPERTIES OF THE J-MEASURE AS 

A HYPOTHESIS PREFERENCE CRITERION 

The next step is to understand the nature of the J-measure 
as a basic preference measure among competing hypotheses, 
i.e., rather than considering its mathematical properties, we 
will consider its interpretation in terms of classical induction 
theory. Consider the problem of finding a hypothesis to fit 
some given data, i.e., a general learning problem. There 
appears to be a general consensus that the two primary criteria 
for evaluating a hypothesis are the simplicity of the hypothesis 
and the goodness-of-fit between the hypothesis and the data 
(Angluin and Smith [38], Gaines [39], and Michalski [40]). 
The problem is to combine these two criteria into a single 
measure such that the hypotheses can be ordered. In terms of 
the probabilistic rules defined earlier, let us interpret the event 
X = .I‘ as the concept to be learned and the event (possibly 
conjunctive) Y = y as the hypothesis describing this concept. 

The .I-measure is the product of two terms. The first, 
p(Y = y), is the probability that the hypothesis will occur 
and, as such, can be interpreted as a measure of hypothesis 
simplicity. Symbolic algorithms use more ad hoc techniques to 
determine the simplicity of a hypothesis, such as enumerating 
the number of basic propositions which make up a conjunctive 
hypothesis (Angluin and Smith [38]).  Such techniques may 
work in given domains but lack generality. In contrast, the 
probabilistic criterion for simplicity is perfectly general. 

The second term making up J ( X : y )  is j(X:y). As we 
have seen in the last section, j(X:g) can be interpreted as 
the cross entropy of X with the variable “X conditioned 
on the event Y = y”. Cross entropy is well known as a 
goodness of fit measure between two distributions (Shore and 
Johnson [35]). It can be interpreted as a distance measure 
where “distance” corresponds to the amount of information 
required to specify a random variable. It is frequently used 
to find the conditional distribution which most closely agrees 
with the original distribution. For our purposes the goodness- 
of-fit should be maximized when the transition probabil- 
ity equals 1 (or 0), and it should be minimized when the 
transition probability equals the a priori probability p(x). 
Clearly j ( X :  Y = y) is a monotonic distance measure in this 
sense as can be seen from Fig. 2. Consequently, the product 
term, J ( X :  Y = y) = p ( y ) j ( X :  Y = y), possesses a direct 
interpretation as a multiplicative measure of the simplicity and 
goodness-of-fit of a given rule. 

As an example of this trade-off consider the following 
hypothetical reptile domain which is described in terms of 
3 binary attributes, namely, legs (true or false), habitat (desert 
or not), and snake (true or false). A joint distribution over 
these attributes is specified in Table I. Let us say that we are 
interested in rules which confirm the attribute-value pair snake 
= true as a right hand side. The rule 

If habitat = desert then snake = true 
with probability = 0.625, 

j = 0.225. J = 0.09 

is a reasonable rule. The a priori probability of a reptile being 
a snake is 0.35, while the a posteriori probability is 0.625, 
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legs 

0 
0 
1 
1 

0 
0 
1 
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snake 

0 
1 

0 
1 
0 
1 

0 

desert joint 
probability 

0.0 
0.1 
0.5 
0.0 
0.0 

0.25 
0.15 

0.0 

given that the rule fires, an event which has a probability of 
0.4. The J-measure for this rule is calculated to be 0.09 bits 
of information, i.e., this is the information we will acquire on 
average by using this rule. If we specialize this rule by adding 
another term to the left-hand side. we would obtain 

If habitat = desert and legs=fulse then 
snake = true with probability = 1.0. 

J = 0.379 j = 1.51, 

which has a much greater information content of 0.379 bits. 
The decrease in simplicity (by a factor of 0.25/0.4) is more 
than offset by the approximately 8-fold increase in goodness- 
of-fit, as measured in bits. If we now generalize once more 
to 

If legs=false then snake = true with probability = 1.0. 
j = 1.51, J = 0.53 

we obtain a rule with 0.53 bits of information, which is, in fact, 
the best rule. The key point to note is the advantage of using 
a quantitative rule preference measure to easily compare the 
more general and specialized versions of the same basic rule. 

It is worth pointing out in passing that cognitive scientists 
consider generalization and specialization to be two of the 
most basic techniques used by the brain to generate new rules 
[41, pp. 84-88l-while we are not interested in cognitive 
modeling per se it is interesting to note that our measure 
supports these rule generation principles in a robust and 
quantitative manner. 

V. THE BASIS FOR ITRULE: SPECIALIZING 
RULES TO INCREASE THE J-MEASURE 

Before describing the ITRULE algorithm we must first 
develop some quantitative bounds on the nature of specializa- 
tion. The basic premise of the algorithm will revolve around 
instance-based generalization from examples to generate an 
initial set of rules, followed by specialization of these rules to 
optimize the rule set. The exact nature of the specialization is 
critical to the performance of the algorithm. 

Specialization is the process by which we hope to increase 
a rule’s “goodness” by adding an extra condition to, or 
specializing, the rule’s left-hand side. The consequent nec- 
essary decrease in simplicity of the hypothesis should be 
offset by an increase in the goodness-of-fit to the extent 
that the overall goodness measure is increased. We will 

examine specialization, using the J-measure as our definition 
of rule goodness, with p(y)  corresponding to simplicity and 
j ( X :  Y = y)  corresponding to goodness-of-fit. 

The question we pose is as follows: given a particular 
general rule, what quantitative statements can we make about 
specializing this rule? In particular, if we define Js and 
J ,  as the J-measures of the specialized and general rules, 
respectively, can we find a bound of the form 

J s  I f ( J , )  (9) 

for some f ( . )  defined on Jg  or its component terms? The 
motivation for bounding J ,  in this manner is two-fold. Firstly, 
i t  produces some theoretical insight into specialization, while 
secondly, the bound can be used by rule induction algorithms 
to search the rule space (hypothesis space) efficiently. This 
section will be devoted to stating and analyzing a very useful 
bound of this form. 

Consider that we are given a general rule whose J-measure, 
Jg ,  is defined as 

= p ( y ) j ( X : Y  = y) (14 

where p ,  = p(xly) and px = p(s). The probability p ,  is the 
transition probability of the general rule. We wish to bound 

Js  = J ( X : Y  = y . 2  = 2 )  (13) 
= p ( y . 2 )  p s . l o g ~ + ( l  P -p,).log(-)) 1 - P s  (14) ( P x  1 - P x  
= P(2lY) P ( Y )  j s  (15) 

where j ,  is the specialized j-measure, and p ,  = p(z1y.z) 
which is the transition probability of the specialized rule. 
Without loss of generality we assume that p ,  > p,, since 
if p ,  < p ,  we can simply reverse the labeling on 5 and 2, 
while if p ,  = p ,  then Jg = 0 and the case is not of interest 
since any condition z # y will lead to J ,  being greater than 
J,. Given no information about 2 whatsoever, we can state 
the following result. 

Theorem: 

The proof is given in the Appendix. If we recall the original 
bound we stated in (6), and we make the assumption that 
p(y) 5 p(x) and p(y) 5 p(Z), then the equivalent original 
bound can be stated as 

Comparing the two inequalities we see that the new result 
gives an improvement of a factor of p(zly) (or p g ) .  It is 
interesting to note that the transition probability of the general 
rule plays such a limiting multiplicative role in the bound. In 



SMYTH AND GOODMAN: THEORETIC APPROACH TO RULE INDUCTION FROM DATABASES 307 

essence, it tells us the limits imposed by the continued presence 
of the y term in any more specialized rule. 

Consider the reptile domain rules discussed in the previous 
section. Had we applied the above bound to the general 
rule with habitat=desert as its left-hand side we could have 
determined that the most information we could get from 
specializing that rule further would be 0.3768 bits. In fact, 
it turned out that the specialized rule we considered achieved 
this bound as does the third example rule, with snake=true 
as its left-hand side. Both cannot be improved upon since the 
transition probabilities are 1. 

For the case when p(y) > p ( z ) ,  or p(y)  > p(Z), we note 
that this introduces an extra constraint into the problem by ef- 
fectively limiting the achievable value of p,, and consequently 
p,. Clearly, the bounds still hold but are no longer achievable. 
Equivalent achievable bounds can be derived, but are omitted 
in this paper, since such pathological cases are not of general 
interest. 

As a consequence of this theorem we note that since the 
bound is achievable, then without further information about 
2, i t  cannot be improved upon. In fact, if we set y = z 
then we find that J,  itself also obeys this bound. The logical 
consequence of this statement is that i t  precludes using the 
bound to discontinue specializing based on the value of J ,  
alone, since unless p ,  = 0 or p ,  = 1, the result holds 
as a strict inequality for 5,. Conversely, if p ,  is not equal 
to either 1 or 0, then with no information at all available 
about the other variables, there may always exist a more 
specialized rule whose information content is strictly greater 
than that of the the general rule. However, as we shall see, we 
could certainly compare the bound with any rules we might 
already have. In particular, if the bound is less (in bits) than 
the information content of the worst rule, then specialization 
cannot possibly find any better rule. This principle will be the 
basis for restricting the search space of the ITRULE algorithm. 

VI. THE ITRULE ALGORITHM 

We will now define the ITRULE algorithm and discuss 
the basic ideas which motivated this particular definition. The 
ITRULE algorithm takes sample data in the form of discrete 
attribute vectors and generates a set of K rules, where K 
is a user-defined parameter. The set of generated rules are 
the K most informative rules from the data as defined by 
the J-measure. In this sense the algorithm can be described 
as optimal. The probabilities required for calculating the J -  
measures are estimated directly from the data using standard 
statistical point estimation techniques [42]. 

The algorithm proceeds by first finding K rules, calculating 
their J-measures, and then placing these K rules in an ordered 
list. The smallest J-measure, that of the Kth  element of the 
list, is then defined as the running minimum J,,,,. From that 
point onwards, new rules which are candidates for inclusion 
in the rule set have their J-measure compared with Jmtn. If 
greater than J,,,, they are inserted in the list, the Kth rule is 
deleted, and .Im;, is updated with the value of the J-measure 
of whatever rule is now Kth  on the list. The critical part of 
the algorithm is the specialization criterion since it determines 

how much of the exponentially large hypothesis space actually 
nseds to be explored by the algorithm. 

For each of the n.m possible right-hand sides, the algorithm 
employs depth-first search over possible left-hand sides, start- 
ing with the first-order conditions and specializing from there. 
Specialization ceases on a general rule if the bound above 
is less than J,,,. In addition, if the transition probability 
of a given general rule is equal to 1 or 0, then as we have 
seen earlier, we can also cease specializing. The algorithm 
systematically tries to specialize all nm.(n - 1).2m first-order 
rules and terminates when it has determined that no more first- 
order rules exist which can be specialized to achieve a higher 
J-measure than J,,,. 

The general situation occurs when we have a right-hand side 
X = .T and a left-hand side y1. . . . . y k ,  where we have just 
evaluated Jg  and inserted the rule in the list if Jg > J,,,. 
In practical terms, in order to calculate J,, we have sorted 
the original data into a subtable conditioned on y1,. . . , Yk. 
We now wish to decide (using the bounds) whether further 
specialization, and consequent sorting, is worthwhile. The 
decision whether to continue specializing or to back-up on the 
depth-first search is determined by the following sequence: 

i) if p ,  = 1 or p ,  = 0 then back-up the search, else; 
ii) if J ( X :  y1.. . . ~ y k )  5 J,,, then check if for any z we 

can hope to find J ,  > J,,,, i.e., calculate 

1 - p x  
1 
P x  

p (  y)p, log - . p (  y) (1 - p,) log - 

and (by Theorem 1) if .I, 5 Jmin ,  then back-up the 
search; 

iii) else continue to specialize. 
The general description of ITRULE given earlier is not in- 

tended as a definitive statement of how the algorithm should be 
implemented. Particular implementations may depend heavily 
on the nature of the particular problem. For instance, in data 
analysis we may only want to look at rules which conclude 
certain propositions of interest. The algorithm simply restricts 
the right-hand side propositions to that subset of interest (the 
limiting form of this approach is, of course, a classifier where 
we are only interested in propositions in the event space of a 
single variable, the “class” ). 

VII. ON THE COMPLEXITY OF ITRULE 

With n rn-ary attributes the number of possible rules in the 
data is R where, 

since for each of the nm possible right-hand sides, the other 
n - 1 attributes have 2m + 1 possible states, namely, a truth 
statement and its negation for each of the m propositions and 
a “don’t care” state for the attribute as a whole (for the case of 
binary attributes m = 1 because the negation of a proposition 
is also a basic proposition). As an example, if we have 10 
binary attributes, there are N = 10.39 - 10 = 196820 possible 
rules. From a practical point of view, of course, we are likely to 
have neither the data to support so many inductive assertions 
nor the computational resources to manage them. Hence, in 
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order to define a tractable algorithm we will need to “prune” 
the set of possible rule candidates considerably. Let us define 
a kth-order rule as a rule with k basic propositions in its left- 
hand side. Let T k  be the number of possible kth-order rules, 
so that we have 

l < l c < n -  

since there are sets of propositions of size k and ( 2 m ) ‘ “  

rules for each set. (That XI, T k  = R holds can be verified by 
using binomial identities such as those given in in Feller [43, 
p. 631). The ratio 

gives the ratio of the number of rules of order k to the number 
of order k - 1. When cy becomes less than 1 we have the 
condition that the number of rules is falling off rather than 
increasing, i.e., when 

k > ( & ) n  

The significance of this result is that for all practical purposes, 
as we increase the order of the rules from k = 1 upwards, 
the size of the search space increases, and for k ,  which is 
relatively small compared to 71, it increases geometrically (by 
(21)). We can write R as 

7L-1 

k=l 

where 
n-a 

ai = 2 m . (  T) and r0 = 1 . 

If we imagine implementing an algorithm which begins with 
first-order rules and specializes to higher orders (in order to 
find rules with higher J-measures) then an algorithm using 
blind search would have complexity O ( R )  = 7 ~ ( 2 r n , ) ~ ,  as 
defined previously. On the other hand, an algorithm which 
“prunes” the search space will have complexity 

where the PI; < a k .  A tractable algorithm will have Ljk < 1 
for (at least) k greater than some small fraction of n. 

The complexity of the ITRULE algorithm cannot be deter- 
mined exactly since it is highly dependent on the nature of the 
input data (in referring to “the algorithm,” we mean the general 
version, where, the exact nature of the specialization may 
vary). Probabilistic analysis, based on average performance 
over all possible input data sets, is too difficult to carry out 
directly without invoking unrealistic assumptions concerning 
the nature of the inputs. The best we can do is to invoke the 
argument that as specialization (or rule order) increases, the 

simplicity of the hypotheses decreases to the extent that their 
probability of occurrence is very small. Hence, our bounds 
should eliminate the majority of the higher order rules from 
consideration. In effect, the P k  should become negligible as 
k increases. We will see later how P behaves for real data 
sets. A worst-case upper bound occurs for the pathological 
case of a set of N binary attributes whose Nth-order joint 
distribution is entirely uniform, i.e., all transition probabilities 
are equal to 0.5. In this case all rules yield zero information, 
and hence, Jmin would always be zero. However, the bounds 
would be nonzero in general, in which case the algorithm 
would specialize to all possible R = nm((2m + l),-’ - 1) 
rules. Let us note in conclusion that the lack of quantitative 
results on the complexity of the ITRULE algorithm reflects the 
well-known inherent difficulty in quantifying the complexity 
of “open-ended” induction problems. 

The choice of K ,  the number of rules which the algorithm 
keeps in the list, obviously affects the computational complex- 
ity, since the value of the J-measure of the Kth  rule has a 
considerable impact on the effectiveness of the bounding. For 
example, K may be chosen so large that J,,, is zero or near 
zero at all times. However, there is normally no reason to 
choose such large K .  If we are just interested in data analysis, 
then very often some value of K between say 20 and 100 
is sufficient for our purposes. However, if we wish to use 
the rules for probabilistic inference then we generally require 
more rules. In particular for each proposition in the system, we 
would like to have at least T rules with that proposition in their 
conclusions, or in terms of a graph where each proposition is 
a node, T is the number of rules entering a node or the “fan in” 
of the node. In order for the system to perform useful inference 
(for example, multiple pieces of evidence supporting the same 
hypothesis) we require that T be some integer greater than 1. 
Yet T should not be too large in order that the inference itself is 
computationally feasible. Hence, we can say that for inference 
purposes, O ( K )  = nm. 

VIII. EXPERIMENTAL RESULTS ON THREE DATA SETS 

We consider the results of applying the ITRULE algorithm 
to three “real-world’’ data sets-the first, a financial domain, 
in some detail, followed by a brief overview of the results 
obtained on congressional voting records and chess end-games. 
The first data set comes from published financial information 
on no-load mutual funds [44]. Fig. 3 shows a set of typical 
sample data. Each line is an instance of a fund (with name 
omitted), and each column represents an attribute of the fund. 
A typical categorical attribute is “fund type” which reflects the 
investment objectives of the fund (growth, growth and income, 
and agressive growth). Among the noncategorical attributes are 
“five year return on investment” expressed as a percentage, 
“yield” (the dividend payments as a proportion of net asset 
value), “turnover rate” (a measure of the trading activity of 
the fund), and “expense ratio” (the amount of administrative 
fees). 

Real-valued attributes (or indeed attributes whose alphabet 
size is large, but finite) are quantized a priori. While this 
is not necessarily an optimal procedure (quantization based 
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Fig. 3. Subsample of mutual funds data set. 

on conditional distributions may be much more predictive), 
we will not dwell on this topic here since the purpose of 
the paper is to focus on the ITRULE algorithm which is 
primarily intended to deal with categorical data. Quantization 
techniques, based both on domain knowledge and information 
theoretic criteria, are easy to derive. An example of using 
domain knowledge for quantization occurs with the attribute 
“Beta” or risk (volatility relative to the market), which has 
a natural cut-point of 1 since the market Beta is always 
defined to be 1. Domain knowledge also indicates that funds 
with expense ratios above 1.5% are high, and should be 
viewed critically. In the abscence of domain knowledge we use 
statistical and maximum entropy techniques for clustering the 
data into statistically significant categories. For example, the 
automatic technique splits the Stocks attribute (the percentage 
of fund assets in common stocks) at 75%. A domain expert 
may accept this advice or modify the value to make the 
categorization more meaningful. 

Fig. 4 shows the results of asking ITRULE for the 10 
best rules, where we restricted the maximum rule order to 
2 for the purposes of making the output easier to interpret. A 
point to note, in the figures of rule sets to follow, is that we 
have implemented a “subsumption” function on the displayed 
rule output, i.e., we remove any rules for which there is a 
more general rule ranked higher on the list. The more general 
rule is considered to subsume the more specialized rule. The 
columns are relatively self-explanatory, and the probabilities 
correspond to sample estimates from the data as mentioned 
earlier. However, there is a potentially confusing notation used 
with respect to the labeling of the event 2--z in general is a 
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label for the rule right-hand side or its negation, except for 
the first column “p(.rly)”, which is always written as the 
greater of the two transition probabilities, i.e., it is really 
rnax{p(.rly). p(.?iy)}. The final two columns “y” and ‘‘xf 
are the actual of number of occurences of the events y and 
.cy, respectively. 

From the figure we note that obvious rules emerge, con- 
firming that the algorithm is on the right track. For example, 
among the most informative rules are rules relating fund type 
of “Growth and Income” to high yield funds (rules 3 and 
4). This is obvious because income funds aim to do just 
that-pay dividends; they thus usually have nonzero yield. 
This ability to spot obvious rules is a powerful feature of 
the algorithm. It is usually the obvious domain rules that 
pose the biggest problem early in the knowledge acquisition 
process. The expert has difficulty in going back to basics, and 
explicitly identifying the vast number of fundamental rules 
applicable to the particular domain. Also, by looking at the 
trade-off between the instantaneous information or goodness- 
of-fit j ( X : Y  = y) and the simplicity of a rule p(y), we see 
that rule 4 is ranked lower than a rule which has much less 
instantaneous information (rule 3), but which fires more often. 

Fig. 5 shows the 10 best rules (still limited to second order) 
obtained when we run ITRULE as a classifier, i.e., restricting 
the right-hand side to a single variable of interest, namely, “5 
year return” which is either above or below the Standard and 
Poor index over the same 5 years. This is obviously a variable 
of considerable interest to prospective investors. However, we 
see that while rule 5 gives a reasonably accurate condition for 
determining below average funds, there is no single rule for 
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predicting above average funds with an accuracy greater than 
about 75%. 

For completeness, we show in Fig. 6 the 15 best rules 
obtained when ITRULE is allowed to search up to order 5.  
Note that more general rules tend to dominate the list, as 
one might expect given the small sample size. However there 
are some third-order rules present, characterized in general by 
relatively high transition probabilities. 

It would be naive to assume that the rules derived by 
ITRULE are necessarily an accurate reflection of the domain. 
For example, in this data set, there may be temporal variations 

masked out by the 5-year averaging on some attributes. 
Nonetheless the algorithm gives an immediate feel for the 
data and is particularly useful as an exploratory data analysis 
tool-essentially the produced rules are as good as the data 
is. The algorithm may be particularly effective when used in 
an iterative manner in conjunction with a domain expert-a 
given set of rules may suggest the inclusion of new attributes 
and the exclusion of others. 

The astute reader will also have noted that ITRULE pro- 
duces the set of best rules rather than the best set of rules, 
i.e., no attempt is made to evaluate the collective properties 
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UNDER1 

UNDER759. 
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UNDER1 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

THEN STOCKS UNDER75X 0 815 0 256 0 2 7 8  0 901 0 230 22 19 

THul STOCKS UNDER75% 0 807 0 244 0 278 0 873 0 214 21 18 

X-EN YIEW OMR3% 0 803 0 344 0 356 0 608 0 210 30 25 

X-EN YIELD OMR3% 0 891 0 222 0 356  0 901 0 200 19 18 

THEN FUNDMPE GTH&INCOME 0804 0 344 0 367 0 580 0 200 30 25 

THEN FUNOMPE GTH&INCOME O s y l  0 222 0 367 1 0 2 5  0 194 19 18 

THEN FUNDMPE GM8INCOME 0892 0 222 0 367 0 869 0 193 19 18 

Tt€N YIEW OVER3% 0857 0 244 0 356 0 777 0 190 21 19 

THEN FUNDMPE GTH8INCOME 0780 0 356 0 367 0 513 0 183 31 25 

WEN STOXS UNDER75% 0 724 0 289 0 278 0 618 0 179 25 19 

THW STOCKS UNMR75% 0 724 0 289 0 278 0 618 0 179 25 19 

M E N  Y E W  OVEFUX 0 756 0 367 0 356 0 481 0 177 32 25 

THEN STou(S UNDER75% 0 847 0 167 0 278 1 0 2 1  0 170 $ 4  13 

THEN STOCKS UNDER75% 0 698 0 300 0 278 0 549 0 165 26 19 

WEN STOCKS UNDER75% 0 698 0 300 0 278 0 549 0 165 26 19 

Fig. 6 .  The IS best rules from the mutual funds data set (up to order 5 )  

of the rules. It may be conjectured that this problem is 
computationally intractable to solve optimally for arbitrary K 
(assuming that somehow we can quantify the “goodness” of 
a rule set). Current research is focused on effective heuristics 
for generating pruned rule sets where, for example, accuracy 
can be traded off with generality and redundancy. We make a 
point of not describing such extensions to the algorithm in this 
paper since the purpose here is to focus on the basic algorithm. 

Results obtained on two other data sets are summarized 
in Figs. 7 and 8. For each data set we show the 10 most 
informative rules up to and including second order. We again 
purposely restricted the rules to low orders in order to make 
the output easier to interpret. The “voting” data set (as pre- 
viously reported by the machine learning community [45], 
[46]) consists of voting records in a 1984 session of Congress, 
each piece of data corresponding to a particular politician. 
The obvious class variable is party affiliation or “politics” 
(republican or democrat), the other 16 attributes being yesho 
votes on particular motions such as Contra-aid and budget cuts. 
The derived rules highlight the political topics which tend to 
segegrate politicians best-not surprisingly, there are strong 
correlations between foriegn policy, defense issues, and social 
programs, issues which traditionally separate the two parties. 
Given the probable imposition of party “whips” on many of 
these issues (i.e., all party members are instructed to vote in 
a certain manner) we did not expect any significant surprises 
from this data set. The primary intent was to verify that the 
algorithm would indeed find the expected relationships. 

The second data set is taken from a chess end-game problem 
described in Quinlan’s 1979 paper [47, pp. 177-1801. There 
are 7 attributes which characterize particular end-game con- 
figurations. With the 4 pieces (black knight and king, white 
rook, and king) there are 647 legal configurations. These 647 

examples completely describe this domain. The object of the 
exercise is to classify whether the end-game is lost two-ply 
in a black-to-move situation4etails are given in Quinlan’s 
paper. This rule set is interesting in that, as shown in Fig. 8, 
ITRULE generates probabilistic rules (namely, the first three) 
as well as “factual” rules (rules 4-10). Since this domain is 
deterministic, i.e., perfectly classifiable given the attributes, 
both PRISM and ID3 tend to produce only perfect rules, i.e., 
rules with an effective transition probability of 1 or 0 (as 
reported by Cendrowska [29]). While ITRULE will find these 
rules, it also generates probabilistic rules or domain heuristics. 
For example, rules 1 and 2 tell us that if the black knight, king, 
and white rook are in line and if the rook bears on either the 
black king or knight, then there is roughly an 80% chance 
that the game is safe. More significantly, the probability that 
the game is lost has risen from an a priori value of 0.054 
to an a posteriori probability of 0.2 1. In a statistical decision 
sense this change in probability could be very significant if 
the risk (associated with losing) significantly outweighs the 
benefit associated with a safe position. The rules shown in Fig. 
8 were produced by the general “attribute-attribute’’ version 
of the algorithm rather than running it as a classifier. Hence, 
nonclassification rules appear in the output, i.e., rules 4-6. 
These rules are essentially the opposite of predictive class 
rules-given the class value of ‘‘lost,’’ it is highly likely that 
certain piece configurations occurred, giving useful analysis 
information. 

From Fig. 8 we can also discern the limitation imposed 
by using only a conjunctive hypothesis space for learning. 
Clearly, the first three rules could be replaced by a more 
concise rule using the function “any 2 of 3.” More generally, 
the extension to arbitrary “X of N” functions in the hypothesis 
representation language (of which disjunction (“1 of N ” )  and 
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iq phys-freeze = n 
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iq phys-freeze = y 

iq politics = dem 

iq phys-freeze = n 

1 then [ phys-freeze = y ] 

synfuels = n ] then [ politics = rep] 

] then [ politics=rep] 

crime= y ] then [ el-salv-aid=y ] 

then [ el-salv-aid = y ] 

] then [ politics =dem] 

1 then [ contra-aid = y ] 

mx-missile = n ] then [ el-salv-aid = y ] 

contra-aid = y ] then [ phys-freeze = n ] 

contra-aid = y then [ el-salv-aid = n ] 

] 
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0.967 

0.913 

0.994 

0.983 

0.988 

0.986 

0.994 

0.981 

0.937 

0.387 

0.31 8 

0.407 

0.380 

0.410 

0.568 

0.478 

0.355 

0.501 

0.485 

0.418 
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0.353 
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Fig. 7 .  The 10 best rules from the congressional voting data set (up to order 2). 

No. Attributes = 8 
No. Examples = 647 
Maximum Rule Order = 2 
Maximum No.Rules = 10 
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P(XlY) P(Y) P(X) I(X;Y) JWY) Y XY 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

it in-line = t rk.brs.bkg = t ] then [ game=safe] 0.790 0.250 0.946 0.207 0.052 161 127 

iq in-line = t rk.brs.kn = t ] then [ game=safe] 0.790 0.250 0.946 0.207 0.052 161 127 

iq rk.brs.bkg = t rk.brs.kn = t ] then [ game = safe] 0.790 0.250 0.946 0.207 0.052 161 127 

iq game= lost 1 then [ in-line = t ] 0.972 0.054 0.499 0.819 0.044 34 0 

iq game= lost 1 then[rk.bn.bkg=t ] 0.972 0,054 0,499 0.819 0.044 34 0 

iq game= lost 1 then [ rk.brs.kn = t ] 0.972 0.054 0.499 0.819 0.044 34 0 

it in-line = f 1 then[ gatm=safe] 1.000 0.501 0.946 0.078 0.039 324 324 

iq rk.brs.bkg = f 1 then [ game-safe] 1.000 0.501 0.946 0.078 0.039 324 324 

iq rk.brs.kn = f 1 then[ game=safe] 1.000 0.501 0.946 0.078 0.WQ 324 324 

iq bkg-kn = not3 wkg-kn =not 1 ] then [ game=safe] 1.OOO 0.445 0.946 0.078 0.035 288 288 

Fig. 8 .  The 10 best rules from the chess data set (up to order 2). 

conjunction (“N of N ” )  are special cases) is a topic under 
current investigation [48]. As always, richer representation 
languages imply a larger search space for the induction algo- 
rithm-finding e#cient representation languages for arbitrary 
domains remains an open problem. 

Ix. EXPERIMENTAL EVALUATION OF 

THE EFFECTIVENESS OF THE BOUNDS 
Given that the computational complexity of ITRULE does 

not admit to direct analysis, we resorted in Section VI1 to 
intuitive arguments as to why we expected it to behave well 

in practice, on average. Recall that the number of possible rules 
is exponential in the number of attributes and the cardinality 
of their event spaces. We argued that in practice our bounds 
may be expected to become more effective as we go to higher 
and higher order rules-what we could not show was whether 
the constraints introduced by the bounds could overcome the 
tendency of the rule space to grow exponentially. In this 
section we present experimental evidence, based on the data 
sets described in the last section, which suggest that, in fact, 
the bounds are quite powerful. Naturally, for finite sample 
sizes the small sample bias in the point probability estimates 
also tends to cut down on the number of rules examined. 
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0 

k = 500 

k = 100 

2 2 0 0  Order of rules 

Fig. 9. Cumulative total of rules generated by ITRULE plotted on a log-scale 
versus rule order, with k = { 20.100.iOO): the theoretical cumulative total 
if no bounds were used is also shown. 

The data we chose for evaluation purposes were the afore- 
mentioned “voting” data set [46], the choice being made 
primarily on the basis that all variables are binary, hence, 
permitting relatively easy computation of upper bounds, etc. 
The algorithm was run with 3 different values of k (20, 100, 
500), chosen as a representative of the range of extremes which 
might be used in practice (from data analysis up to inference). 
Fig. 9 shows a semi-log plot of the number of rules generated 
by ITRULE during its search as a function of the order of the 
rules, e.g., the data point at “order 3” represents the cumulative 
total of rules of order 3 or less generated by the algorithm. It is 
important to note that each point was generated by a separate 
run of the algorithm where the maximum order of rules was 
restricted (from 1 to 6). As a comparison, the number of rules 
which would be searched if no bounds were used (let us call 
this parameter R(i )  where i is the rule order) is also shown 
in Fig. 9. This shows the exponential growth of R(z), as can 
be seen from (20) which gives us 

j = 2  R(i)  = EL)’( n - 1  ).n 

j=1 

where n = 17 for the voting data set. The benefit of bounding 
is immediately obvious from Fig. 9. 

Fig. 10 shows the noncumulative rule totals on a linear scale 
using the same data as for Fig. 9, i.e., it plots the number of 
additional (or new) rules processed from one order to the next. 
What is evident from this plot is the fact that for each value 
of k ,  the algorithm peaks at some order (always 3 or 4 in this 
case) and from that point onwards, the number of new rules 
begins to drop off. These same data are presented in a different 
format in Fig. 11, where we plot the ratio of the number of 
new rules generated at order i to the number at order i - 1. 
These are the p factors discussed earlier in Section VII-the 
graph verifies that the /3 factors indeed drop below 1 as we 
would like. 

Of course, these results only pertain to one data set, a data 
set which we have no particular reason to believe is “typical” 
of data sets in general. However, it has been our experience 

that the bounding is equally effective on the other data sets 
reported earlier, and on a variety of unreported data sets. 
Invariably, there will be cases such as the random problem 
described earlier, where the bounds may not be effective. 
However, we believe that such cases will be relatively rare 
in practice. 

X. CONCLUSION 

In this paper we have demonstrated the applicability of our 
proposed J-measure for induction from both a theoretical and 
practical standpoint. We developed an interpretation of the 
measure as a hypothesis preference criterion which trades- 
off simplicity and goodness-of-fit, and thus supports the basic 
inductive mechanisms of generalization and specialization. 
The ITRULE algorithm was described and we gave a practical 
example in the form of extracting rules from mutual fund data. 
The rules produced by ITRULE can be used either as a human 
aid to understanding the inherent model embodied in data, or 
as a tentative input set of rules to an expert system. In this 
case, ITRULE can ease the knowledge acquisition bottleneck 
by presenting the expert with a tentative rule set, or, in cases 
where no human expert exists, it may directly transform data 
into rule-based systems. Current work is focused on extensions 
and refinements of the basic ITRULE ideas and practical 
applications in a number of domains are in progress. 

APPENDIX 

Proof of the Specialization Theorem (Section V): 

We consider 3 distinct cases; i) p ,  > p,, ii) p ,  < p x ,  and 
iii) Pg L P ,  L P,. 

Case i )  p ,  > p,: 
We can write 

P(4Y) = P(4Y; Z)P(ZlY) + P(4Y; Z)P(ZlY) 

P,  = Ps.P(ZlY) + 6’41 - P(ZlY)) 

(28) 

or equivalently: 

(29) 

where 6’ = p(zly,Z). The left-hand side, p,, is fixed and 
represents a constraint which p,, 6’ and p(z1y)  must satisfy. 
We want to find a variable 2 which maximizes J ,  subject to 
this constraint. First we note that by (29): 

min{p,, e}  5 p ,  5 Inax{p,, e }  (30) 

since p(zly)+p(Zly) = 1. Since we have assumed that p ,  > p ,  
initially, we can state that 

(31) P ,  > Pg > 6’ ’ 
From (29), we have that 

P g  - 6’ 
P ,  - 6’ P ( Z l Y )  = - . 

Hence, our expression for J ,  can be written as 
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Fig. I I .  Beta-factors (j) as generated by ITRULE plotted versus rule order, with k = { Z O .  100. 500) .  

The only remaining free parameters are p ,  and H ,  which we 
will choose to maximize J,. The probabilities y, and H are 
jointly constrained by the fact that 

and so 

(39) P, - 0 2  < PY - 81 
Ps - 0 2  P ,  - 01 

(34) 

Since this is a multiplicative term in J s ,  to maximize J ,  we 
should maximize this term and then check if the value of this 
maximum constrains p s  in any way. If it does, then we cannot 
maximize the product terms in (33) to find an achievable 
bound. From (31) we know that 0 I Q < p,. The following 
lemma is useful. 

Lemma A . l :  

(35) 

which implies that the maximum occurs for H = 0. 
Accordingly, the choice of H = 0 minimizes the multiplica- 

tive term in (33) without introducing any extra constraints on 
p,. Hence, we can maximize the two terms separately and 
still obtain an achievable bound. We will refer to this bound 
as the product bound. From (33) and the result of the lemma 
we obtain 

Proof: Let H 1  < 8 2 .  Therefore: 
=p(y).pg.(l0g(:) + (- 1 - 1).10g(-))(41) 

P S  1 - P x  
P 
P x  

1 

P x  

h ( P s  - Y,) < H2(% - Yy)  (36) 

since p ,  - p ,  > 0, and by adding p s p g  + 1918~ to each side 

P.SP.!J + Q1&! + b% - Q1P.Y < PSP, + Q l H P  + Q2Ps - 02Pg (37) 

I P(Y).P,.  log( '1) 

I P ( Y )  .P,. 1% (-) 
we obtain (since the second term is negative) (42) 

(43) 

+ (pg - & ) . ( p ,  - 0 1 )  < ( p ,  - H 2 ) . ( p g  - 01) (38) This proves case i) of the Theorem. 
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Next we consider case ii) where 11, < p x  < py.  Intuitively 
what happens here is that the new condition “changes the 
direction of the rule” so that Z is being confirmed rather than 
x. In practice this case is far lesr likely to occur than case 
i). Nonetheless, we must analyze this case to obtain a general 
bound. Proceeding as in case i )  we get the equivalent condition 
to (31): 

Pb < p z  < P y  < 8 (44) 

and so we have that 

(4.5) 

due to the fact that the second term is negative since (1 - p g )  < 
(1 - ps). Hence, we get that 

J ,  < *( y) .pg . log( p”) 
Y X  

, which is less than (431, the bound for case i). Finally if 
p s  = pg, we can apply the same argument for the goodness- 
of-fit, j,, and noting that the simplicity component must be 
less than or equal to p(y), we obtain the same result as (52). 
By combining the results of cases i)-iii), we obtain the desired 
result. This proves the theorem in its entirety, which we will 
now restate: 

. ( 1 - p g )  log - 
1 - p x  

Lemma A.2: 

p ( 2 .  y) log L}.  (58) 
P r  Pz 

(46) 
1 - 1-9 

Pmo$ Let 01 > 0 2 .  Therefore: 
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and so, unlike case i), the maximum occurs for 0 = 1. 
As before, maximizing the product term does not constrain 

p ,  in any way since 0 < - < 1 for all allowable values 
of p,. Hence, we have that 

(51) 

( 5 2 )  

This proves the bound for case ii). For case iii) we can apply 
the following arguments. If p s  = * ( . I . )  then .I, = 0 and so the 
bound holds. If p ( r )  < p s  < p g ,  then from case ii) we see 
that the simplicity component 

( 5 3 )  

while the goodness-of-fit component 

( 5 5 )  
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