487 research outputs found

    A 2.4GHz fast-switching integer-N frequency synthesizer

    Get PDF
    The adaptive bandwidth technique is commonly used to implement fast switching in low-spurious frequency synthesizers. In this technique the high loop bandwidth used during the switching mode has to be restored once switching is complete. The process of restoring the bandwidth adds to the total switching time because of the glitches on the VCO control voltage arising from the perturbation caused in the loop. Often in applications demanding ultra fast switching times and tight error tolerances, the additional settling time due to these secondary glitches can be a significant fraction of the total switching time. In this thesis, a more efficient multi-step bandwidth-switching scheme is proposed that can significantly reduce the total switching time by minimizing the effect of secondary glitches. After satisfactory behavioral simulations, a proof-of-concept test chip integrating a 2.4GHz Integer-N synthesizer is designed and fabricated in the TSMC 0.25mum mixed-signal CMOS process. Simulations using time contraction show that the synthesizer switches 14% faster in the four-step mode compared to the one-step mode for a frequency step of 20MHz and 0.1% error tolerance

    Design of CMOS integrated frequency synthesizers for ultra-wideband wireless communications systems

    Get PDF
    Ultra¬wide band (UWB) system is a breakthrough in wireless communication, as it provides data rate one order higher than existing ones. This dissertation focuses on the design of CMOS integrated frequency synthesizer and its building blocks used in UWB system. A mixer¬based frequency synthesizer architecture is proposed to satisfy the agile frequency hopping requirement, which is no more than 9.5 ns, three orders faster than conventional phase¬locked loop (PLL)¬based synthesizers. Harmonic cancela¬tion technique is extended and applied to suppress the undesired harmonic mixing components. Simulation shows that sidebands at 2.4 GHz and 5 GHz are below 36 dBc from carrier. The frequency synthesizer contains a novel quadrature VCO based on the capacitive source degeneration structure. The QVCO tackles the jeopardous ambiguity of the oscillation frequency in conventional QVCOs. Measurement shows that the 5¬GHz CSD¬QVCO in 0.18 µm CMOS technology draws 5.2 mA current from a 1.2 V power supply. Its phase noise is ¬120 dBc at 3 MHz offset. Compared with existing phase shift LC QVCOs, the proposed CSD¬QVCO presents better phase noise and power efficiency. Finally, a novel injection locking frequency divider (ILFD) is presented. Im¬plemented with three stages in 0.18 µm CMOS technology, the ILFD draws 3¬mA current from a 1.8¬V power supply. It achieves multiple large division ratios as 6, 12, and 18 with all locking ranges greater than 1.7 GHz and injection frequency up to 11 GHz. Compared with other published ILFDs, the proposed ILFD achieves the largest division ratio with satisfactory locking range

    Diseño y realización del sistema de osciladores para un receptor de TDT

    Get PDF
    El objetivo de este proyecto es explicar todos los pasos necesarios, desde principio a fin, que se utilizan a nivel profesional para el diseño de circuitos electrónicos y de microondas, desde su primera concepción como idea hasta su posterior desarrollo, fabricación y finalmente test y validación. Para ello se va a realizar la síntesis de diseño de un oscilador local doble de altas prestaciones, utilizando la tecnología que actualmente se nutre la industria electrónica y de telecomunicaciones. Entre muchas de sus otras aplicaciones, dicho oscilador doble se utiliza comúnmente para implementar receptores profesionales superheterodinos de doble conversión para equipos repetidores y remisores de Televisión Digital Terrena. Se ha realizado el diseño final de tres osciladores locales basados en bucles PLL. El primero de ellos se utiliza para implementar una frecuencia fija de 30MHz a partir de una referencia externa de 10MHz de gran pureza espectral que comúnmente se encuentra en los centros transmisores procedente de la recepción GPS. Dicha referencia de 30MHz la van a utilizar los siguientes dos osciladores locales para sintetizar frecuencias con buenas prestaciones en ruido de fase que van a utilizarse a posteriori para implementar un receptor complejo de doble conversión. El primero de los osciladores locales para la doble conversión sintetiza frecuencias de 1GHz a 2GHz con pasos de 5MHz, y se utiliza en el receptor superheterodino para obtener una primera FI elevada y solventar el problema del canal imagen del receptor común. El segundo oscilador local sintetiza frecuencias de 500MHz a 1GHz con pasos de 1MHz y se utiliza para obtener una segunda FI la cual a posteriori va a ser la que se va a demodular y tratar digitalmente en el receptor profesional

    Advances in Solid State Circuit Technologies

    Get PDF
    This book brings together contributions from experts in the fields to describe the current status of important topics in solid-state circuit technologies. It consists of 20 chapters which are grouped under the following categories: general information, circuits and devices, materials, and characterization techniques. These chapters have been written by renowned experts in the respective fields making this book valuable to the integrated circuits and materials science communities. It is intended for a diverse readership including electrical engineers and material scientists in the industry and academic institutions. Readers will be able to familiarize themselves with the latest technologies in the various fields

    Electrical overstress and electrostatic discharge failure in silicon MOS devices

    Get PDF
    This thesis presents an experimental and theoretical investigation of electrical failure in MOS structures, with a particular emphasis on short-pulse and ESD failure. It begins with an extensive survey of MOS technology, its failure mechanisms and protection schemes. A program of experimental research on MOS breakdown is then reported, the results of which are used to develop a model of breakdown across a wide spectrum of time scales. This model, in which bulk-oxide electron trapping/emission plays a major role, prohibits the direct use of causal theory over short time-scales, invalidating earlier theories on the subject. The work is extended to ESD stress of both polarities. Negative polarity ESD breakdownis found to be primarily oxide-voltage activated, with no significant dependence on temperature of luminosity. Positive polarity breakdown depends on the rate of surface inversion, dictated by the Si avalanche threshold and/or the generation speed of light-induced carriers. An analytical model, based upon the above theory is developed to predict ESD breakdown over a wide range of conditions. The thesis ends with an experimental and theoretical investigation of the effects of ESD breakdown on device and circuit performance. Breakdown sites are modelled as resistive paths in the oxide, and their distorting effects upon transistor performance are studied. The degradation of a damaged transistor under working stress is observed, giving a deeper insight into the latent hazards of ESD damage

    Charge Pumps for Implantable Microstimulators in Low and High-Voltage Technologies

    Get PDF
    RÉSUMÉ L'objectif principal de cette thèse est de concevoir et mettre en œuvre une pompe de charge qui peut produire suffisamment de tension afin de l’implémenter à un système de prothèse visuelle, conçue par le laboratoire PolyStim neurotechnologies. Il a été constaté que l'une des parties les plus consommatrices d'énergie de l'ensemble du système de prothèse visuelle est la pompe de charge. En raison de la nature variable du tissu nerveux et de l'interface d’électrode, la tension nécessaire par stimuler le tissu nerveux est très élevé et consomme extrêmement d’énergie. En outre, afin de fournir du courant biphasique aux électrodes il faut produire des tensions positives et négatives. La génération de tension négative est très difficile, surtout dans les technologies à faible tension compte tenu des limites de la technologie. Le premier objectif du projet est de générer la haute tension nécessaire qui va consommer une faible puissance statique. La technologie de haute tension a été utilisée dans le but d’atteindre cet objectif. Le deuxième objectif est de générer la tension requise dans la technologie de basse tension et ainsi surmonter les limites de la technologie. Dans les deux cas, une attention particulière a été portée afin que personne ne latch-up apparaît pour le cycle négatif. L'architecture de la conception proposée a été présentée dans cette thèse. La pompe de charge a été conçu et mis en oeuvre à la fois dans la technologie CMOS 0,8 μm offert par TELEDYNE DALSA et technologie 0,13 μm CMOS offert par IBM. En raison de la tension requise, 0,8 μm technologie a été utilisée pour atteindre la sortie et conçu pour minimiser la consommation de puissance statique. La même architecture a été mise en oeuvre en technologie 0,13 μm pour enquêter sur la tension de sortie obtenue avec une faible consommation électrique. Les deux puces ont été testées en laboratoire PolyStim. Les résultats testés ont montré une variation moyenne très faible de déviation inférieure à 5% par rapport au résultat de simulation. Pour la conception en 0,8 µm, nous avons été en mesure d'obtenir plus de 25 V avec une consommation électrique très faible d’énergie statique de 3,846 mW et une charge d'entraînement maximum de 2 mA avec un maximum d'efficacité de 84,2%. Pour le même processus en 0,13 µm, les resultats ont été plus que 20V, 0,913 mW, 500 µA, et 85,2% respectivement.----------ABSTRACT The main objective of the thesis is to design and implement a charge pump that can produce enough voltage required to be implemented to the visual prosthesis system, designed by the PolyStim Neurotechnologies laboratory. It has been found that one of the most power consuming parts of the whole visual prosthesis system is the charge pump. Due to the variable nature of the nerve tissue and electrode interface, the required voltage of stimulating the nerve tissue is very high and thus extremely power consuming. Also, in order to provide biphasic current to the electrodes, there is a requirement of generating both positive and negative voltages. Generating negative voltage is very hard especially in low voltage technologies considering the technology limitations. The first objective of the project is to generate required high voltage that will consume low static power. High voltage technology has been used to achieve the goal. The second objective is to generate the required voltage in low voltage technology overcoming the technology limitations. In both cases, special care has been taken so that no latch-up occurs for the negative cycle. Architecture of the proposed design has been presented in this thesis. The charge pump has been designed and implemented in both 0.8 µm CMOS technology offered by TELEDYNE DALSA and 0.13 µm CMOS technology offered by IBM. Because of the required voltage, 0.8 µm technology has been used to achieve the output and designed to minimize the static power consumption. The same architecture has been implemented in 0.13 µm technology to investigate the achievable output voltage with low power consumption. Both the chips have been tested in polyStim laboratory. The tested results have shown very low variation of less than 5% average deflection from the simulation output. For the design in 0.8 µm, we have been able to get more than 25 V output with very low static power consumption of 3.846 mW and maximum drive load of 2 mA with maximum efficiency of 84.2%. For the same design in 0.13 µm, the outputs were more than 20V, 0.913 mW, 500 µA, and 85.2% respectively

    Potential and Challenges of Analog Reconfigurable Computation in Modern and Future CMOS

    Get PDF
    In this work, the feasibility of the floating-gate technology in analog computing platforms in a scaled down general-purpose CMOS technology is considered. When the technology is scaled down the performance of analog circuits tends to get worse because the process parameters are optimized for digital transistors and the scaling involves the reduction of supply voltages. Generally, the challenge in analog circuit design is that all salient design metrics such as power, area, bandwidth and accuracy are interrelated. Furthermore, poor flexibility, i.e. lack of reconfigurability, the reuse of IP etc., can be considered the most severe weakness of analog hardware. On this account, digital calibration schemes are often required for improved performance or yield enhancement, whereas high flexibility/reconfigurability can not be easily achieved. Here, it is discussed whether it is possible to work around these obstacles by using floating-gate transistors (FGTs), and analyze problems associated with the practical implementation. FGT technology is attractive because it is electrically programmable and also features a charge-based built-in non-volatile memory. Apart from being ideal for canceling the circuit non-idealities due to process variations, the FGTs can also be used as computational or adaptive elements in analog circuits. The nominal gate oxide thickness in the deep sub-micron (DSM) processes is too thin to support robust charge retention and consequently the FGT becomes leaky. In principle, non-leaky FGTs can be implemented in a scaled down process without any special masks by using “double”-oxide transistors intended for providing devices that operate with higher supply voltages than general purpose devices. However, in practice the technology scaling poses several challenges which are addressed in this thesis. To provide a sufficiently wide-ranging survey, six prototype chips with varying complexity were implemented in four different DSM process nodes and investigated from this perspective. The focus is on non-leaky FGTs, but the presented autozeroing floating-gate amplifier (AFGA) demonstrates that leaky FGTs may also find a use. The simplest test structures contain only a few transistors, whereas the most complex experimental chip is an implementation of a spiking neural network (SNN) which comprises thousands of active and passive devices. More precisely, it is a fully connected (256 FGT synapses) two-layer spiking neural network (SNN), where the adaptive properties of FGT are taken advantage of. A compact realization of Spike Timing Dependent Plasticity (STDP) within the SNN is one of the key contributions of this thesis. Finally, the considerations in this thesis extend beyond CMOS to emerging nanodevices. To this end, one promising emerging nanoscale circuit element - memristor - is reviewed and its applicability for analog processing is considered. Furthermore, it is discussed how the FGT technology can be used to prototype computation paradigms compatible with these emerging two-terminal nanoscale devices in a mature and widely available CMOS technology.Siirretty Doriast

    Analysis on Supercapacitor Assisted Low Dropout (SCALDO) Regulators

    Get PDF
    State-of-the-art electronic systems employ three fundamental techniques for DC-DC converters: (a) switch-mode power supplies (SMPS); (b) linear power supplies; (c) switched capacitor (charge pump) converters. In practical systems, these three techniques are mixed to provide a complex, but elegant, overall solution, with energy efficiency, effective PCB footprint, noise and transient performance to suit different electronic circuit blocks. Switching regulators have relatively high end-to-end efficiency, in the range of 70 to 93%, but can have issues with output noise and EMI/RFI emissions. Switched capacitor converters use a set of capacitors for energy storage and conversion. In general, linear regulators have low efficiencies in the range 30 to 60%. However, they have outstanding output characteristics such as low noise, excellent transient response to load current fluctuations, design simplicity and low cost design which are far superior to SMPS. Given the complex situation in switch-mode converters, low dropout (LDO) regulators were introduced to address the equirements of noise-sensitive and fast transient loads in portable devices. A typical commercial off-the-shelf LDO has its input voltage slightly higher than the desired regulated output for optimal efficiency. The approximate efficiency of a linear regulator, if the power consumed by the control circuits is negligible, can be expressed by the ratio of Vo/Vin. A very low frequency supercapacitor circulation technique can be combined with commercial low dropout regulator ICs to significantly increase the end-to-end efficiency by a multiplication factor in the range of 1.33 to 3, compared to the efficiency of a linear regulator circuit with the same input-output voltages. In this patented supercapacitor-assisted low dropout (SCALDO) regulator technique developed by a research team at the University of Waikato, supercapacitors are used as lossless voltage droppers, and the energy reuse occurs at very low frequencies in the range of less than ten hertz, eliminating RFI/EMI concerns. This SCALDO technique opens up a new approach to design step-down, DC-DC converters suitable for processor power supplies with very high end-to-end efficiency which is closer to the efficiencies of practical switching regulators, while maintaining the superior output specifications of a linear design. Furthermore, it is important to emphasize that the SCALDO technique is not a variation of well-known switched capacitor DC-DC converters. In this thesis, the basic SCALDO concept is further developed to achieve generalised topologies, with the relevant theory that can be applied to a converter with any input-output step-down voltage combination. For these generalised topologies, some important design parameters, such as the number of supercapacitors, switching matrix details and efficiency improvement factors, are derived to form the basis of designing SCALDO regulators. With the availability of commercial LDO ICs with output current ratings up to 10 A, and thin-prole supercapacitors with DC voltage ratings from 2.3 to 5.5 V, several practically useful, medium-current SCALDO prototypes: 12V-to-5V, 5V-to-2V, 5.5V-to-3.3V have been developed. Experimental studies were carried out on these SCALDO prototypes to quantify performance in terms of line regulation, load regulation, efficiency and transient response. In order to accurately predict the performance and associated waveforms of the individual phases (charge, discharge and transition) of the SCALDO regulator, Laplace transform-based theory for supercapacitor circulation is developed, and analytical predictions are compared with experimental measurements for a 12V-to-5V prototype. The analytical results tallied well with the practical waveforms observed in a 12V-to-5V converter, indicating that the SCALDO technique can be generalized to other versatile configurations, and confirming that the simplified assumptions used to describe the circuit elements are reasonable and justifiable. After analysing the performance of several SCALDO prototypes, some practical issues in designing SCALDO regulators have been identified. These relate to power losses and implications for future development of the SCALDO design

    Nano-Power Integrated Circuits for Energy Harvesting

    Get PDF
    The energy harvesting research field has grown considerably in the last decade due to increasing interests in energy autonomous sensing systems, which require smart and efficient interfaces for extracting power from energy source and power management (PM) circuits. This thesis investigates the design trade-offs for minimizing the intrinsic power of PM circuits, in order to allow operation with very weak energy sources. For validation purposes, three different integrated power converter and PM circuits for energy harvesting applications are presented. They have been designed for nano-power operations and single-source converters can operate with input power lower than 1 μW. The first IC is a buck-boost converter for piezoelectric transducers (PZ) implementing Synchronous Electrical Charge Extraction (SECE), a non-linear energy extraction technique. Moreover, Residual Charge Inversion technique is exploited for extracting energy from PZ with weak and irregular excitations (i.e. lower voltage), and the implemented PM policy, named Two-Way Energy Storage, considerably reduces the start-up time of the converter, improving the overall conversion efficiency. The second proposed IC is a general-purpose buck-boost converter for low-voltage DC energy sources, up to 2.5 V. An ultra-low-power MPPT circuit has been designed in order to track variations of source power. Furthermore, a capacitive boost circuit has been included, allowing the converter start-up from a source voltage VDC0 = 223 mV. A nano-power programmable linear regulator is also included in order to provide a stable voltage to the load. The third IC implements an heterogeneous multisource buck-boost converter. It provides up to 9 independent input channels, of which 5 are specific for PZ (with SECE) and 4 for DC energy sources with MPPT. The inductor is shared among channels and an arbiter, designed with asynchronous logic to reduce the energy consumption, avoids simultaneous access to the buck-boost core, with a dynamic schedule based on source priority
    corecore