91 research outputs found

    Exploratory Analysis of Functional Data via Clustering and Optimal Segmentation

    Full text link
    We propose in this paper an exploratory analysis algorithm for functional data. The method partitions a set of functions into KK clusters and represents each cluster by a simple prototype (e.g., piecewise constant). The total number of segments in the prototypes, PP, is chosen by the user and optimally distributed among the clusters via two dynamic programming algorithms. The practical relevance of the method is shown on two real world datasets

    Rejection-oriented learning without complete class information

    Get PDF
    Machine Learning is commonly used to support decision-making in numerous, diverse contexts. Its usefulness in this regard is unquestionable: there are complex systems built on the top of machine learning techniques whose descriptive and predictive capabilities go far beyond those of human beings. However, these systems still have limitations, whose analysis enable to estimate their applicability and confidence in various cases. This is interesting considering that abstention from the provision of a response is preferable to make a mistake in doing so. In the context of classification-like tasks, the indication of such inconclusive output is called rejection. The research which culminated in this thesis led to the conception, implementation and evaluation of rejection-oriented learning systems for two distinct tasks: open set recognition and data stream clustering. These system were derived from WiSARD artificial neural network, which had rejection modelling incorporated into its functioning. This text details and discuss such realizations. It also presents experimental results which allow assess the scientific and practical importance of the proposed state-of-the-art methodology.Aprendizado de Máquina é comumente usado para apoiar a tomada de decisão em numerosos e diversos contextos. Sua utilidade neste sentido é inquestionável: existem sistemas complexos baseados em técnicas de aprendizado de máquina cujas capacidades descritivas e preditivas vão muito além das dos seres humanos. Contudo, esses sistemas ainda possuem limitações, cuja análise permite estimar sua aplicabilidade e confiança em vários casos. Isto é interessante considerando que a abstenção da provisão de uma resposta é preferível a cometer um equívoco ao realizar tal ação. No contexto de classificação e tarefas similares, a indicação desse resultado inconclusivo é chamada de rejeição. A pesquisa que culminou nesta tese proporcionou a concepção, implementação e avaliação de sistemas de aprendizado orientados `a rejeição para duas tarefas distintas: reconhecimento em cenário abertos e agrupamento de dados em fluxo contínuo. Estes sistemas foram derivados da rede neural artificial WiSARD, que teve a modelagem de rejeição incorporada a seu funcionamento. Este texto detalha e discute tais realizações. Ele também apresenta resultados experimentais que permitem avaliar a importância científica e prática da metodologia de ponta proposta

    Lasso based feature selection for malaria risk exposure prediction

    Full text link
    In life sciences, the experts generally use empirical knowledge to recode variables, choose interactions and perform selection by classical approach. The aim of this work is to perform automatic learning algorithm for variables selection which can lead to know if experts can be help in they decision or simply replaced by the machine and improve they knowledge and results. The Lasso method can detect the optimal subset of variables for estimation and prediction under some conditions. In this paper, we propose a novel approach which uses automatically all variables available and all interactions. By a double cross-validation combine with Lasso, we select a best subset of variables and with GLM through a simple cross-validation perform predictions. The algorithm assures the stability and the the consistency of estimators.Comment: in Petra Perner. Machine Learning and Data Mining in Pattern Recognition, Jul 2015, Hamburg, Germany. Ibai publishing, 2015, Machine Learning and Data Mining in Pattern Recognition (proceedings of 11th International Conference, MLDM 2015

    Modeling and Simulation of Elementary Robot Behaviors using Associative Memories

    No full text
    International audienceToday, there are several drawbacks that impede the necessary and much needed use of robot learning techniques in real applications. First, the time needed to achieve the synthesis of any behavior is prohibitive. Second, the robot behavior during the learning phase is – by definition – bad, it may even be dangerous. Third, except within the lazy learning approach, a new behavior implies a new learning phase. We propose in this paper to use associative memories (self-organizing maps) to encode the non explicit model of the robot-world interaction sampled by the lazy memory, and then generate a robot behavior by means of situations to be achieved, i.e., points on the self-organizing maps. Any behavior can instantaneously be synthesized by the definition of a goal situation. Its performance will be minimal (not necessarily bad) and will improve by the mere repetition of the behavior
    • …
    corecore