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Chapter 1

Introduction

D
ue to advanced sensor technology, rapidly increasing digitalization capabilities

and the availability of less and less expensive storage volume the amount of

data has grown tremendously in the last decades. In the years between 1999 and

2002 an increase of stored information about 30% each year was estimated (Lyman

and Varian 2003). Usually this data consists of a variety of measured features lead-

ing to also very high dimensional data sets. Manually inspection of the data be-

comes more costly and automatic methods to help humans to quickly scan through

massive data amounts are desirable. This gave rise to many applications in com-

puter science to process the available data: advanced techniques including data

mining (Han and Kamber 2005), pattern recognition (Duda et al. 2000) and machine

learning (Mitchell 1997, Ripley 1996, Bishop 2006), among others. Even with great

progress in those fields the optimization of existing methods and development of

novel schemes is highly desirable to perform faster and more efficient data analysis.

The field of machine learning concerns the design of algorithms, which aim at the

optimization of adaptive systems on the basis of example data. A model is adapted

to learn complex patterns and process new data coming from the same domain bet-

ter regarding the specified objective. The analysis of patterns involves a number

of tasks including data representation, classification, clustering, density estimation,

regression, feature extraction and dimension reduction, just to name a few. A lot of

data visualization tools have been developed to use cognitive capabilities of humans

for structure detection in visual images. Structural characteristics of the data can be

captured almost instantly by humans despite the amount of data points which are

represented in the visualization. Hence, dimension reduction and visualization are

commonly used modern data mining techniques (Lee and Verleysen 2007). Ma-

chine learning is broadly categorized into reinforcement, supervised and unsuper-

vised learning. Reinforcement learning is inspired by behaviorist psychology and

concerns the finding of suitable actions to maximize some notion of reward (Sutton

and Barto 1998). Supervised techniques involve external supervision, which pro-

vides correct responses to the given inputs. The aim is usually the discrimination

of the categories and to maximize the generalization for novel data. Unsupervised

methods, on the other hand, do not need supervision and their goal is the discov-
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ery of underlying structures and regularities based on the definition of some ba-

sic properties of the data. An elaborate description concerning the history of ma-

chine learning can be found in, e. g. (Bishop 1995, Ripley 1996, Mitchell 1997, Duda

et al. 2000, Bishop 2006).

A very intuitive supervised technique called k-Nearest Neighbor (k-NN) clas-

sifier compares the unknown data to all known examples with respect to some

dissimilarity measure (Duda et al. 2000). Obviously the computational effort and

memory usage scales with the number of known samples. Therefore prototype-

based techniques were developed, which employ representations of data subsets.

The prototypes are vector locations in the feature space. They usually serve as typ-

ical representatives and reflect the characteristics of the data in their direct neigh-

borhood. Some prominent unsupervised examples are the Self-organizing Map

(SOM) (Kohonen et al. 2001) and Neural Gas (NG) (Martinetz and Schulten 1991).

And a popular supervised family of such prototype-based classification methods

is Learning Vector Quantization (LVQ) (Kohonen et al. 2001). All these methods

crucially depend on the distance measure, which is used to adapt the prototype po-

sitions and performs the nearest prototype classification. Therefore the learning of

adaptive metrics with respect to the given problem at hand was investigated (Xing

et al. 2002, Chopra et al. 2005, Frome et al. 2007, Schneider et al. 2009b, Schneider

et al. 2009a).

This thesis investigates adaptive dissimilarities and applications varying from

classification up to supervised and unsupervised dimension reduction.

1.1 Scope of this thesis

The objective of this thesis is manifold, it contains:

• the introduction of prototype-based adaptive dissimilarity learning with lim-

ited rank matrices,

• a new method based on that principle for learning in complex valued data

domains and

• a general view and new algorithms for unsupervised as well as supervised

dimension reduction and visualization.

Adaptive dissimilarities are a powerful tool, which are shown to improve the per-

formance of supervised methods, such as for example LVQ and the k-NN classifiers.

These classification algorithms crucially depend on the distance measure used. Met-

ric adaptation techniques allow the learning of discriminative dissimilarity mea-
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sures from a given set of representative example data. Restrictions in adaptive ma-

trix learning, e. g. the limitation of the rank, enables the learning of discriminative

global or local linear transformations. These transformations can then be used for

supervised dimension reduction and visualization. It also reduces the number of

the effective learning parameters, which might be interesting from the computa-

tional point of view.

In the first part of this contribution previously proposed methods for metric

learning in LVQ are extended to limited rank matrices. Several practical applica-

tions are investigated including Content Based Image Retrieval (CBIR), dimension

reduction and visualization. Furthermore we provide an extension which can be

used on complex valued data shown on an example for texture classification in im-

ages.

The second part of this thesis focuses on dimension reduction and visualization.

We provide a general view on existing dimension reduction methods, which orig-

inally provide just an implicit mapping of the given data points itself. Based on

this general principle we extend these methods to learn the parameters of explicit

mapping functions instead. This provides direct out-of-sample extensions, reduces

computational effort by restricting the learning process just on a small subset of

the possible large data set and enables the formal investigation of the generaliza-

tion ability. Furthermore we provide an unsupervised dimension reduction method,

which in contrast to other techniques exhibit a complexity which scales linear with

the number of data points in every step. It aims in the combination of fast online

learning with the high quality of direct divergence optimization, successfully used

by state-of-the-art techniques.

1.2 Outline

This section briefly addresses the outline of the thesis and the topics of the chapters.

The thesis is divided into two parts. Part I spans from Chapters 2 to 4 and dis-

cusses adaptive dissimilarity measures especially as extensions of LVQ. The metric

learning defined in this work can be reformulated to learn global or local linear pro-

jections of the data, which smoothly leads over to Part II of the thesis dealing with

dimension reduction.

The chapters are organized as follows: Chapter 2 provides a short introduction to

prototype-based learning and adaptive dissimilarities. Basic algorithms like Gener-

alized LVQ (GLVQ) and Generalized Matrix LVQ (GMLVQ) are described in detail.

The metric adaptation scheme is then modified to use limited rank matrices, which

reduce the number of parameters and thus the computational effort and gives di-
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rect access to supervised dimension reduction. The latter aspect is resumed and

investigated in more detail in Chapter 7 in the second part of this thesis.

In Chapter 4 adaptive dissimilarity learning is used in an application for CBIR in

Dermatology. The aim is a computer aided diagnosis system which helps the user, e.

g. medical doctors, with targeted searches in image data bases. A learned discrim-

inative distance measure is used to retrieve an arbitrary number of most similar

pictures from a data base of images of skin lesions. Two methods for metric learn-

ing are used and compared: Large Margin Nearest Neighbor (LMNN), which bases

on the k-NN algorithm, and the LVQ based approach. It is shown, that adaptive

dissimilarities can be used to improve the performance of a CBIR system.

Chapter 5 introduces a variant of LVQ defined on complex valued data. The

modification is shown on one example application for texture classification in color

images. These variant called Color Image Analysis LVQ (CIA LVQ) combines well

known image analysis filter techniques with prototype-based transformation learn-

ing defined in the Fourier domain.

Chapter 6 provides an introduction to the second part of the thesis: dimension

reduction and visualization. An overview over existing techniques is given and

a general principle is formulated. Based on that principle a general framework is

proposed which extends given dimension reduction techniques to learn an explicit

mapping function. This way those methods, which are originally introduced to pro-

vide implicit point-to-point embeddings can be extended to learn mapping func-

tions instead. Out-of-Sample extensions become immediate, the investigation of the

generalization ability is possible and it can save computational effort, because the

mapping function can be learned on a representative small subset of the data.

In Chapter 7 the adaptive distances and discriminative transformations intro-

duced in Chapter 2 are used for supervised dimension reduction and visualization.

A variety of given unsupervised techniques are extended to use label information

by plugging in the supervised learned distance or the local linear transformations.

Most dimension reduction techniques preserve properties extracted from local

neighborhoods. This requires the computation of pairwise distances, so the compu-

tational effort squares with the number of points. Chapter 8 introduces a dimension

reduction method which combines the high performance of direct divergence op-

timization with fast online learning, leading to a complexity growing linear with

the number of points. There are numerous divergences offering different proper-

ties. Chapter 9 gives an overview over the three divergence families and examples

thereof. Using the concept of Fréchet derivatives three algorithms are expanded to

the use of arbitrary divergences.

Finally, Chapter 10 presents a brief summary of the research and a collection of

ideas for future work and investigation.
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Chapter 2

Distance Based Classification

Everything has its beauty but not everyone sees it.

Confucius

Abstract

This chapter introduces the basic Learning Vector Quantization (LVQ) algorithms and

notations used throughout the thesis. We discuss nearest prototype classification and a

set of LVQ learning schemes, which are relevant in the context of this work. Furthermore

we explain the concept of parameterized dissimilarity and metric adaptation proposed in

the literature.

2.1 Introduction

M
achine learning (Mitchell 1997, Bishop 2006) constitutes a huge field in com-

puter science expanding into broad distribution of both, application and the-

ory. The term “learning” comprises the biological point of view by modeling the

theory of psychologists of learning in animals and humans. And it also addresses

the development of algorithms aiming at the adjustment to a given objective based

on empirical data. Thus, from a given set of input/output pairs produced by an

complicated unknown process a machine should be able to adjust its internal struc-

ture such that the correct output is reproduced for a large number of samples. This

part of the thesis concentrates a subfield usually referred to as supervised learning:

Samples are given for which the output is (sometimes only approximately) known.

The aim is to find a hypothesis that closely agrees with these given data and gener-

alizes well, i.e. produces the desired output also for new samples.

Learning Vector Quantization (LVQ) and its variants constitute a popular fam-

ily of supervised prototype-based classifiers. The basic algorithm introduced by

(Kohonen 1986) is parameterized by a set of labeled prototypes representing the

classes in the input space in combination with a dissimilarity measure. The classi-

fication takes places by a nearest prototype scheme, i.e. a new sample is assigned

to the class represented by the closest prototype with respect to the given metric.
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These algorithms are naturally suitable for multi-class problems without changing

the learning rules and the complexity is usually dependent on the number of pro-

totypes and only indirect on the number of classes. This classification procedure

is closely related to the popular k-Nearest Neighbor (k-NN) approach (Cover and

Hart 1967), which keeps the given labeled data set as a reference set and classi-

fies every new data point to the class given by the majority among its k nearest

neighbors. Although the k-NN approach is one of the most intuitive and simplest

classification algorithms it shows often very good performance. Nevertheless, it

might become very expensive in memory usage and computation for very large ref-

erence sets. Prototype methods overcome those problems by defining a clustering

on the data. Another advantage of LVQ is the interpretability of the resulting pa-

rameters: It does not suffer from a “black box” character like an Artificial Neural

Network (ANN) or a Support Vector Machine (SVM). The prototypes reflect the

characteristic class-specific attributes of the input samples.

The basic heuristic algorithm, called LVQ1 (Kohonen 1986), adapts a set of pro-

totypes from labeled training data by implementing Hebbian learning steps. Addi-

tionally, Kohonen introduced two alternative learning schemes: optimized learning-

rate LVQ (OLVQ1) and LVQ2.1, aiming at faster convergence and better approx-

imation of Bayesian decision boundaries, respectively. Furthermore, several LVQ

variants were proposed, which are derived from an explicit cost function (Sato and

Yamada 1996, Seo and Obermayer 2002, Seo et al. 2003). Cost function based ap-

proaches are easily extended to a larger number of adaptive parameters. And meth-

ods of theoretical learning theory can be used to investigate risk bounds and con-

vergence behavior. A mathematical analysis with respect to the cost function is per-

formed in (Sato and Yamada 1998) and the authors of (Crammer et al. 2002) showed

that LVQ aims at margin optimization and therefore good generalization ability

can be expected. Further theoretical analysis of different LVQ variants and statis-

tical physics investigations on simplified model situations can be found in (Ghosh

et al. 2006, Biehl et al. 2007). Further extensions of the LVQ classification scheme in-

cludes the combination with other prototype-based learning schemes. For example

the comprehension of the neighborhood cooperation known from Self-organizing

Map (SOM) or Neural Gas (NG) into the learning process (Kohonen 2002, Hammer,

Strickert and Villmann 2005b).

Particularly interesting for distance-based machine learning methods like men-

tioned before is the employed dissimilarity measure. A very common choice is the

Euclidean distance, which is a special case of the Minkowski metric. Recently, also

divergences known from information theory were used as dissimilarity measure

in vector quantization schemes (Mwebaze et al. 2011, Villmann and Haase 2011).

In supervised settings where auxiliary information, such as labels, is available the
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adaptation of the distance by means of metric learning became popular. Some LVQ

variants have been proposed, which aim at the optimization of the distance measure

for a specific application (Bojer et al. 2001, Hammer and Villmann 2002, Schneider

et al. 2009b, Schneider et al. 2009a). Also methods which aim at the optimization of

the k-NN classification scheme have been developed using adaptive dissimilarities

(Goldberger et al. 2004, Weinberger et al. 2006). Usually a big improvement of the

classification performance can be observed when metric learning is incorporated in

the algorithms. In the following section we will review some machine learning tech-

niques used throughout the thesis, especially, existing metric adaptation schemes

are presented.

2.2 Nearest prototype classification

We assume that the input data X consists of n examples txiuni�1 P IRN together with

their corresponding labels yi P t1, . . . , Cu, where N denotes the dimension and C

the number of classes or categories. A nearest prototype classifier is parameterized

by a set of labeled prototype vectors wj , also called codebook, and a distance mea-

sure d. The protoytpes wj are defined on the same feature space as the input data

and they carry the label cpwjq of the class they aim to represent. This implies the

definition

W � tpwj , cpwjqq P IRN � t1, . . . , Cuunw

j�1 , (2.1)

where the number of prototypes nw ¥ C, which means that at least one prototype

per class is needed. A popular distance measure is the Euclidean distance, which is

a special case of the general Minkowski metric

dppx,wq �

�
Ņ

i�1

|xi � wi|
p

� 1
p

(2.2)

with p � 2. Examples of the equidistance lines using the Minkowski metric and

different values for p are shown in Figure 2.1. The classification takes places by a

winner-takes-all scheme, i.e. a new data point x is assigned to the class represented

by the closest prototype:

x� cpwiq, with wi � argmin
j

dpx,wjq, (2.3)

braking ties arbitrary. The set of protoytpes and the metric is partitioning the input

data space. Each prototype wi has a receptive field Ri, which is a region in the

feature space where wi is closer to the data than any other prototype:

Ri � tx P X | dpx,wiq   dpx,wjq,�i � ju . (2.4)
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Equidistance lines with the Minkowski metric
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Figure 2.1: Visualization of the equidistance lines from the origin using the Minkow-

ski metric with different values of p.

Figure 2.2 shows two examples of nearest prototype classification on a three class

problem using different distance measures. The Euclidean distance leads piecewise

linear decision boundaries and receptive fields. For different values of p in the Min-

kowski metric more general decision boundaries can be realized.

The number of protoytpes is a hyper-parameter of the model and has to be op-

timized by means of a validation procedure. Too few prototypes may not represent

the data structure sufficiently, which yields poor classification performance and too

many prototypes may cause overfitting leading to poor generalization ability of the

classifier. Many machine learning techniques have been proposed based on the

nearest prototype classification scheme. Some of them used in the thesis will be

addressed in the next sections.

2.3 Generalized Learning Vector Quantization

Generalized LVQ (GLVQ) (Sato and Yamada 1996) was proposed as a variant of

the original LVQ algorithms (Kohonen 1986) derived from an explicit cost function.

The method is designed as online-learning algorithm, i.e. the training samples are

presented iteratively in each iteration i causing a parameter update only dependent

on the current example pxi, yiq. The aim is to place the prototypes wj such that

a high classification accuracy on novel data after training is achieved. Assuming

training data tpxi, yiquni�1 the cost function is defined by

EGLVQ �

ņ

i�1

Φpµiq, with µi �
dJ � dK

dJ � dK
, (2.5)
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Nearest prototype classification using the Minkowsky metric with different p
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Figure 2.2: Visualization of the decision bounds of a nearest prototype classification

scheme using different distances. The data is consisting of 3 classes and each class is

represented by two prototypes. The Euclidean distance (left panel) shows piecewise

linear boundaries where the gray lines denote the receptive fields of each prototype.

In the right panel the Minkowski metric of order p � 5 is used.

with dJ � dpxi,wJq and dK � dpxi,wKq denote the squared Euclidean distance

of the closest prototype with the same and a different class label compared to the

actual sample xi respectively. Φ is a monotonically increasing function, such as a

sigmoidal function Φptq � p1� expp�tqq�1 or the identity Φptq � t. The relative dif-

ference distance µ can be interpreted as a measure of confidence of the classification.

A negative numerator indicates a correct classification. The smaller the value of the

numerator the larger the distance of the closest wrong prototype and the bigger the

security of the classifiers decision. With the denominator µ is scaled to the inter-

val r�1, 1s. The cost function is heuristically motivated. Nevertheless, it has been

shown, that it corresponds to large margin optimization, so that good generalization

ability is expected (Hammer, Strickert and Villmann 2005a).

In GLVQ the learning rules are given following a steepest descent procedure

to minimize the costs. It can be shown that GLVQ is a generalized model that, with

respective choice for Φ and µ, includes the conventional LVQ schemes, such as LVQ1

and LVQ2.1 (Sato and Yamada 1996). The learning rules derived from Eq. (2.5) are

similar to LVQ2.1:

wJ � wJ � τ
BΦpµiq

Bµi

2dK

pdJ � dKq2
� pxi �wJq (2.6)

wK � wK � τ
BΦpµiq

Bµi

2dJ

pdJ � dKq2
� pxi �wKq , (2.7)
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where τ ¡ 0 is the learning rate or update strength. The closest correct prototype

wJ is attracted by the current training sample, while the closest incorrect prototype

wK is repelled. The learning rule (2.6) and (2.7) with sigmoidal Φ shows particular

powerful and noise tolerant behavior since it combines adaptation near the opti-

mum Bayesian borders like LVQ2.1, while prohibiting the possible divergence of

LVQ2.1 as reported in (Sato and Yamada 1996). The cost function Eq. (2.5) is non-

convex, so, as for the other LVQ variants, the learning dynamics depend on the

initial state of the system and may suffer from local minima. Often the prototypes

are initialized near the class conditional means. The learning is performed until a

stopping criterion is fulfilled, e.g. convergence or the maximal number of iterations

is reached. One sweep through the complete training set is referred to as an epoch.

A short description of the algorithm is given in Algorithm 2.1.

Algorithm 2.1 : Generalized LVQ (GLVQ)

1: initialize the prototypes wj

2: while stopping criterion not reached do

3: randomly select a training sample xi

4: determine closest correct prototype wJ � argmin
j

dpxi,wjq with yi � cpwJ q

and the closest incorrect prototype wK � argmin
j

dpxi,wjq with yi � cpwKq

5: update the prototypes according to Eq. (2.6) and (2.7)

6: end while

2.4 Adaptive metrics in Learning Vector Quantization

The classification schemes mentioned before crucially depend on the dissimilarity

measure used. A common choice is the (squared) Euclidean distance, which evalu-

ates the similarity of two feature vectors by equally weighted input dimensions: i.e.

equidistance points lie on a hypersphere around the target point. This might be in-

appropriate for data sets in which features are correlated or not equally scaled. Fur-

thermore, noisy dimensions contribute equally to the computation of the distance

and may impair the classification accuracy. Therefore data has to be preprocessed

and scaled appropriately, such that the input dimensions have approximately the

same importance for classification.

Metric adaptation techniques have been investigated to overcome some prob-

lems mentioned before. The aim is to learn a discriminative distance from training

data optimized for the specific application. Early proposals introduce weighting fac-

tors λi to the data dimensions xi which are automatically adapted (Bojer et al. 2001).
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Equidistance lines for d
λ
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Figure 2.3: Visualization of equidistance lines from the origin using the scaled Eu-

clidean distance dλ with different relevances λ. The left panel shows the case similar

to the Euclidean distance.

They substituted the squared Euclidean distance by a parameterized dissimilarity

incorporating a relevance vector λ with λi ¥ 0 and
°N

i�1 λi � 1. The adaptive vector

introduces a weight for each input dimension:

dλpx,wq �

Ņ

i�1

λipxi � wiq
2 . (2.8)

These weights can be interpreted as importance of the respective feature for the clas-

sification: weights of noisy, redundant or non-informative dimensions are reduced,

while discriminative features gain higher values. The illustration of equidistance

lines using dλ is depicted in Figure 2.3. A Hebbian learning step was added to the

original LVQ1 learning rule, which updates the relevance vector λ in each iteration.

The new algorithm was called Relevance LVQ (RLVQ) (Bojer et al. 2001). The Heb-

bian learning step inherited from LVQ1 showed some instabilities for large data sets,

which are subject to noise, hence, the GLVQ (sec. 2.3) was extended with respect to

the adaptive metric Eq. (2.8) (Hammer and Villmann 2002). The resulting algorithm

is called Generalized Relevance LVQ (GRLVQ). The relevance update is given by

the derivative of the cost function Eq. (2.5) with respect to λ and reads

λm � λm�ǫ�
BΦpµiq

Bµi

�
dK

pdJ � dKq2
pxi

m � wJ
mq

2 �
dJ

pdJ � dKq2
pxi

m � wK
mq

2



, (2.9)

with dJ � dλpxi,wJ q and dK � dλpxi,wKq computed using the scaled distance Eq.

(2.8). The pseudocode for GRLVQ is depicted in Algorithm 2.2.

Relevances of features might change within the data space. Localized GRLVQ
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Algorithm 2.2 : Generalized Relevance LVQ (GRLVQ)

1: initialize the prototypes wj

2: initialize relevance vector λ

3: while stopping criterion not reached do

4: randomly select a training sample xi

5: compute the distances dj � dλpxi,wjq to the prototypes wj

6: determine closest correct wJ � argmin
j

dλpxi,wjq with yi � cpwJq

and closest incorrect wK � argmin
j

dλpxi,wjq with yi � cpwKq

7: update the prototypes according to Eq. (2.6) and (2.7)

8: update the relevances according to Eq. (2.9)

9: end while

(LGRLVQ) addresses this by localized relevance factors attached to each prototype:

dλ
j

px,wjq �

Ņ

i�1

λ
j
i pxi � w

j
i q

2 (2.10)

causing an individual update for λL together with their corresponding prototypes

wL for L P tJ,Ku (Hammer, Schleif and Villmann 2005).

Relevance learning in LVQ has shown to improve not only the classification per-

formance, but also enhance the interpretability of the model. The relevance profile

can directly be interpreted as the contribution of the dimensions for the classifica-

tion problem and can be used to find suitable candidate features for pruning to save

costly measurements. This has turned out particularly suitable in many practical

applications containing irrelevant or inadequately scaled dimensions (Mendenhall

and Merényi 2006, Biehl et al. 2007, Kietzmann et al. 2008). Further, the generaliza-

tion ability have been investigated in (Hammer, Strickert and Villmann 2005a). It

has been shown, that for an adaptive diagonal metric Λ � diagpλq, large margin

generalization bounds can be derived independent from the dimensionality.

The principle of feature weighting can be developed further by taking into ac-

count pairwise correlations of features. Recently, an LVQ extension called Gen-

eralized Matrix LVQ (GMLVQ) was proposed (Schneider et al. 2009b, Schneider

et al. 2009a). It uses an adaptive metric of the form of a Mahalanobis distance

dΛpw,xq � px�wqJΛ px�wq (2.11)

with a parameter matrix Λ P IRN�N . The matrix Λ is assumed to be positive (semi-)

definite and we can substitute

Λ � ΩJΩ with Ω P IRN�N . (2.12)
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Figure 2.4: Visualization of equidistance lines from the origin using the adaptive dis-

tance dΛ with different relevance matrices Λ. The left panel shows a metric similar

to the Euclidean distance.

Hence, the measure corresponds to a (squared) Euclidean distance in an appropri-

ately transformed space

dΛpx,wq � rΩ px�wqs
2 (2.13)

with an arbitrary matrix Ω. Specific restrictions may be imposed on Ω without loss

of generality. Note that, for instance, every positive symmetric Λ has a symmetric

root Ω with Λ � Ω2. The equidistance lines for some example configurations of dΛ

are visualized in Figure 2.4. Using relevance matrices allows to detect alternative

directions in the feature space and therefore provide more discriminative power to

separate the classes. Also GMLVQ was introduced as an extension of GLVQ and

therefore inherits the same cost function, substituting the squared Euclidean dis-

tance in the original formulation Eq. (2.5) by the adaptive metric:

EGMLVQ �

i̧

Φpµiq, with µi �
dΛJ � dΛK
dΛJ � dΛK

. (2.14)

The quantities dΛJ � dΛpxi,wJq and dΛK � dΛpxi,wKq correspond again to the dis-

tances of the actual feature vector xi from the closest correct prototype wJ and the

closest incorrect prototype wK , respectively. The original GMLVQ algorithm corre-

sponds to a stochastic gradient descent in the cost function, Eq. (2.14), with respect

to the prototype configuration and an arbitrary matrix Ω. Gradients are evaluated

with respect to the contribution of single instances xi, which are presented random

sequentially. The GMLVQ method is summarized in Algorithm 2.3:
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Algorithm 2.3 : Generalized Matrix LVQ (GMLVQ)

1: initialize the prototypes wj

2: initialize matrix Ω and normalize according to Eq. (2.21)

3: while stopping criterion not reached do

4: randomly select a training sample xi

5: compute the distances dΛpxi,wjq to the prototypes wj

6: determine closest correct wJ � argmin
j

dΛpxi,wjq with yi � cpwJq

and closest incorrect wK � argmin
j

dΛpxi,wjq with yi � cpwKq

7: update the prototypes according to wL � wL � τ1 �
BEGMLVQ

BwL , L P tJ,Ku

8: update the matrix according to Ω� Ω� τ2 �
BEGMLVQ

BΩ
9: normalize the matrix according to Eq. (2.21)

10: end while

The derivative of EGMLVQ with respect to the prototypes is given by:

BEGMLVQ

BwL
�

Φpµiq

Bµi
�
Bµi

BdΛL
�
BdΛL
BwL

� Φ1 � γL �
BdΛL
BwL

where L P tJ,Ku (2.15)

with γJ �
Bµ

BdΛJ
�

2dΛK
pdΛJ � dΛKq

2
, (2.16)

γK �
Bµ

BdΛK
�

�2dΛJ
pdΛJ � dΛKq

2
, (2.17)

and
BdΛL
BwL

� �2ΩJΩpxi �wLq . (2.18)

The derivatives corresponding to the elements of Ωmn read:

BEGMLVQ

BΩmn

�
Φpµiq

Bµi
�
Bµi

BΩmn

� Φ1 �

�
γJ BdΛJ

BΩmn

� γK BdΛK
BΩmn



, (2.19)

BdΛL
BΩmn

� 2

Ņ

j

pxi
n � wL

n qΩmjpx
i
j � wL

j q � 2
�
Ωpxi �wLq

�
m
pxi

n � wL
n q. (2.20)

After each learning step the matrix Λ is normalized to prevent the algorithm from

degeneration. One possibility is to enforce

i̧

Λii �

i̧k

ΩkiΩki �

i̧k

pΩkiq
2 � 1 (2.21)

by dividing all elements of Ω by
�°

kipΩkiq
2
� 1

2 . The sum of diagonal elements
°

i Λii

coincides with the sum of eigenvalues. This generalizes the normalization of rele-

vances
°

i λi � 1 for a simple diagonal metric.
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Alternatively, similar to the LGRLVQ scheme Eq. (2.10), local matrices Λj can be

attached to every prototype or to the prototypes of each class (Schneider et al. 2009b,

Schneider et al. 2009a). The corresponding dissimilarity measure

dΛ
j

px,wjq � px�wjqJΛjpx�wjq with Λj � ΩjJΩj (2.22)

has the potential to take into account correlations varying between different classes

or regions of the feature space. Thus, clusters with ellipsoidal shape and differ-

ent orientations can be presented in the data. The cost function of this Localized

GMLVQ (LGMLVQ) is defined including the localized distances dΛ
J

J � dΛ
J

pxi,wJq

and dΛ
K

K � dΛ
K

pxi,wKq, with the indices J and K again referencing the closest

correct and incorrect prototype respectively:

ELGMLVQ �

i̧

Φpµi
localq, with µi

local �
dΛ

J

J � dΛ
K

K

dΛ
J

J � dΛ
K

K

. (2.23)

The LGMLVQ is depicted in Algorithm 2.4.

Algorithm 2.4 : Localized GMLVQ (LGMLVQ)

1: initialize the prototypes wj

2: initialize matrices Ωj and normalize according to Eq. (2.21)

3: while stopping criterion not reached do

4: randomly select a training sample xi

5: compute the distances dΛ
j

pxi,wjq to the prototypes wj

6: determine closest correct wJ � argmin
j

dΛ
j

pxi,wjq with yi � cpwJ q

and closest incorrect wK � argmin
j

dΛ
j

pxi,wjq with yi � cpwKq

7: update the prototypes according to wL � wL � τ1 �
BELGMLVQ

BwL , L P tJ,Ku

8: update the matrices according to ΩL � ΩL � τ2 �
BELGMLVQ

BΩL

9: normalize the matrices according to Eq. (2.21)

10: end while

The derivative of ELGMLVQ with respect to the prototypes is given by:

BELGMLVQ

BwL
�

Φpµi
localq

Bµi
local

�
Bµi

local

BdΛ
L

L

�
BdΛ

L

L

BwL
where L P tJ,Ku, (2.24)

γJ
local �

Bµlocal

BdΛ
J

J

�
2dΛ

K

K

pdΛ
J

J � dΛ
K

K q2
, (2.25)

γK
local �

Bµlocal

BdΛ
K

K

�
�2dΛ

J

J

pdΛ
J

J � dΛ
K

K q2
, (2.26)
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and

BdΛ
L

L

BwL
� �2ΩLJΩLpxi �wLq . (2.27)

The derivatives corresponding to the elements of Ωmn read:

BELGMLVQ

BΩL
mn

�
Φpµi

localq

Bµi
local

�
Bµi

local

BΩL
mn

� Φ1 � γL
local �

BdΛ
L

L

BΩL
mn

with L P tJ,Ku (2.28)

BdΛ
L

L

BΩL
mn

� 2

Ņ

j

pxi
n � wL

n qΩ
L
mjpx

i
j � wL

j q � 2
�
ΩLpxi �wLq

�
m
pxi

n � wL
n q. (2.29)

Local matrices increase the capacity of the system by implying nonlinear decision

boundaries. The receptive fields of the prototypes need no longer be convex or

even connected. Example visualizations of global and local matrices are shown in

Chapter 3 and Part II of the thesis.

2.5 Large Margin Nearest Neighbor

The k-NN algorithm is a simple and intuitive method which classifies a novel fea-

ture vector by a majority vote among its k nearest neighbors in the training set. Thus,

its performance depends crucially on the metric used for the identification of the

neighbors. The Large Margin Nearest Neighbor (LMNN) (Weinberger et al. 2006)

algorithm extends the k-NN rule by an adaptive distance measure. The aim of the

training process is that a predefined number κ of nearest neighbors (called target

neighbors) belongs to the same class like the example data with high probability.

Simultaneously, samples of different classes should be separated by a large mar-

gin. Figure 2.5 illustrates this concept. Therefor, the LMNN algorithm provides a

discriminative distance measure for the k-NN classifier corresponding to

dΓpxi,xjq � pxi � xjqJΓpxi � xjq , (2.30)

where the matrix Γ P R
N�N denotes the counterpart of Λ used in GMLVQ.

The training procedure has two steps. The first step identifies a set of κ simi-

larly labeled target neighbors for each input xi. Whereby, the computational effort

depends crucially on the parameter κ. The second step adapts the Mahalanobis

distance metric such that these target neighbors are closer to xi than differently la-

beled inputs. The semi-definite optimization in LMNN classification arises from an

objective function:

E � p1�bq
¸

i,jùi

dΓpxi,xjq�b
¸

i,jùi,l

�
1� Y il

�
r1�dΓpxi,xjq�dΓpxi,xlqs�, (2.31)
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Figure 2.5: Illustration of the neighborhood before and after LMNN training.

where rzs� � maxpz, 0q denotes the standard hinge loss. The constant b defines the

trade-off between the two terms: the first part penalizes large distances between

inputs and their target neighbors, while the second part penalizes small distances

between differently labeled inputs.

The terms in the objective function can be specified with following notation:

Y ij P t0, 1u indicate whether the inputs xi and xj have the same class label. The

notation j ù i indicates that xj is a target neighbor of xi. Also, let the slack vari-

ables Xijl ¥ 0 denote the amount by which a differently labeled input xl (impostor)

invades the perimeter around input xi and its target neighbors xj . The matrix Γ in

the quadratic form Eq. (2.30) is obtained by solving the semidefinite program shown

in Algorithm 2.5.

Algorithm 2.5 : Semidefinite optimization problem in LMNN

Minimize p1� bq
°

i,jùi d
Γpxi,xjq � b

°
i,jùi,lp1� Y ilqXijl subject to:

(a) dΓpxi,xlq � dΓpxi,xjq ¥ 1�Xijl

(b) Xijl ¥ 0

(c) Γ © 0

The constraints of type (a) favor inputs xi closer to their κ target neighbors

xj then to any other differently labeled input xl. When differently labeled xl in-

vade the local neighborhood a positive slack variable Xijl is generated. This is

penalized in the second term of the objective function. Constraints of type (b) en-

force non-negativity of the slack variables and constraint (c) enforces positive semi-
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definiteness of Γ. Noting that the quadratic form dΓ is linear in the matrix Γ, the

above optimization is easily recognized as a semidefinite problem. MATLAB code1

of the algorithm is provided and used for the experiments in this thesis.

1www.cse.wustl.edu/�kilian/code/code.html



Published as:

K. Bunte, P. Schneider, B. Hammer, F.-M. Schleif, T. Villmann and M. Biehl – “Discriminative Visualization

by Limited Rank Matrix Learning,” Leipzig University, Machine Learning Reports (2:3), pp. 37–51, 2008.

K. Bunte, P. Schneider, B. Hammer, F.-M. Schleif, T. Villmann and M. Biehl – “Limited Rank Matrix

Learning Discriminative Dimension Reduction and Visualization,” accepted for publication in Neural

Networks 2011.

Chapter 3

Limited Rank Matrix LVQ

Projection makes it possible.

The impossible triangle. Shigeo Fukuda

Abstract

We present an extension of the Generalized Matrix Learning Vector Quantization algo-

rithm. In the original scheme, adaptive square matrices of relevance factors parameterize

a discriminative distance measure. We extend the scheme to matrices of limited rank

corresponding to low-dimensional representations of the data. This allows to incorpo-

rate prior knowledge of the intrinsic dimension and to reduce the number of adaptive

parameters efficiently. In particular, for very high dimensional data, the limitation of

the rank can reduce computation time and memory requirements significantly. Fur-

thermore, two- or three-dimensional representations constitute an efficient visualization

method for labeled data sets. The identification of a suitable projection is not treated as a

pre-processing step but as an integral part of the supervised training. Several real world

data sets serve as illustration and demonstrate the usefulness of the suggested method.

3.1 Introduction

I
n (Schneider et al. 2009b, Schneider et al. 2009a) the concept of GMLVQ is intro-

duced. It uses the quadratic form Eq. (2.11) as distance including a full matrix
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of relevances, which can account for correlations between different features. An

adaptive self-affine transformation Ω (see Eq. (2.12)) of feature space identifies the

coordinate system which is most suitable for the given classification task. The orig-

inal formulation of GMLVQ employs symmetric squared matrices Ω P IRN�N and

is summarized in Algorithm 2.3. In the simplest case, one matrix is taken to define

a global distance measure. Extensions to class-wise or local matrices, attached to

individual prototypes Eq. (2.22), are technically straightforward and allow for the

parameterization of more complex decision boundaries.

In this chapter we present and discuss an important modification: the use of rect-

angular transformation matrices Ω P IRM�N with M ¤ N (Bunte et al. 2008, Bunte,

Schneider, Hammer, Schleif, Villmann and Biehl 2011). The corresponding relevance

matrices Λ are of bounded rank M or, in other words, distances are evaluated in a

space with reduced dimension, see Eq. (2.13). The motivation for considering this

variation of GMLVQ is at least two-fold: (a) prior knowledge about the intrinsic

dimension of the data can be incorporated efficiently and (b) the number of free

parameters in the learning problem may be reduced significantly.

Although unrestricted GMLVQ displays a tendency to reduce the rank of the rel-

evance matrices in the training process, the advantages of restricting the rank explic-

itly are obvious. In particular for nominally very high-dimensional data, e.g. in im-

age analysis or bioinformatics, unrestricted relevance matrices become intractable.

In addition, optimization results can be poor when the search is performed in an un-

necessarily large parameter space. Furthermore, the exact control of the rank allows

for pre-defining the dimension of the intrinsic representation and is, for instance,

suitable for the discriminative visualization of labeled data sets. In contrast with

many other schemes that consider dimension reduction as a pre-processing step,

our method performs the training of prototypes and the identification of a suitable

transformation simultaneously. Hence, both sub-tasks are guided by the ultimate

goal of implementing the desired classification scheme.

Appropriate projections into two- or three-dimensional spaces can furthermore

be used for efficient visualization of labeled data. Visualization enables to use the

astonishing cognitive capabilities of humans for visual perception when extracting

information from large data volumes. Structural characteristics can be captured al-

most instantly by humans, independent of the number of displayed points. Classical

unsupervised dimension reduction techniques represent data points contained in a

high dimensional data manifold by low dimensional counterparts in, for instance,

two or three dimensions, while preserving as much information as possible. Since it

is not clear in advance which parts of the data are relevant to the user, this problem

is inherently ill-posed: depending on the specific data domain and the situation at

hand, different aspects can be in the focus of attention. Prior knowledge, in form of



3.2. Limited Rank Matrix LVQ 23

label information, can be used to formulate a well-defined objective in terms of the

classification performance.

There exist a few classical dimensionality reduction tools which take class labels

into account: e.g. Classical Fisher Linear Discriminant Analysis (LDA), the recently

introduced local Fisher discriminant analysis (LFDA) (Sugiyama and Roweis 2007),

Neighborhood Component Analysis (NCA) (Goldberger et al. 2004), as well as par-

tial Least Squares regression (PLS). These methods can be extended to nonlinear

projections by kernel methods (Ma et al. 2007, Baudat and Anouar 2000). Adaptive

dissimilarity measures which modify the metric according to the given auxiliary in-

formation have been introduced e.g. in (Kaski et al. 2001, Peltonen et al. 2004, Bunte,

Hammer, Schneider and Biehl 2009, Bunte, Hammer and Biehl 2009, Bunte, Ham-

mer, Wismüller and Biehl 2010).The resulting metric can be integrated into various

techniques such as SOM, Multidimensional Scaling (MDS), or a recent information

theoretic model for data visualization (Kaski et al. 2001, Peltonen et al. 2004, Venna

et al. 2010). An ad hoc metric adaptation is used in (Geng et al. 2005) to extend

Isomap (Tenenbaum et al. 2000) to class labels. Alternative approaches change the

cost function of dimensionality reduction, for instance by using conditional prob-

abilities, class-wise similarity matrices or introducing a covariance-based coloring

matrix for the side information as proposed in (Iwata et al. 2007, Memisevic and

Hinton 2005, Song et al. 2008). The detailed explanation of the most important su-

pervised and unsupervised dimension reduction techniques is given in Part II of

this thesis.

In the next section we describe the Limited Rank Matrix LVQ (LiRaM LVQ) as

extension of the original GMLVQ formulation. Afterwards we apply the novel ap-

proach to a benchmark problem and study the influence of the dimension reduc-

tion on the classification performance. We also compare the limited rank version

to the naive approach of taking the first components of the full rank GMLVQ. We

show that reducing the rank after training not only requires more memory and CPU

time, but also yields inferior classification performance compared to LiRaM LVQ.

In Sec. 3.4 we present example applications of our algorithm in the visualization of

labeled data. We also compare with visualizations obtained by LFDA and NCA. We

conclude by summarizing our findings and providing an outlook on perspective

investigations.

3.2 Limited Rank Matrix LVQ

In the following we extend the concept of GMLVQ to the use of rectangular matrices

in the distance measure and refer to the corresponding algorithm as LiRaM LVQ.
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Basically, we follow the same procedure as depicted in Algorithm 2.3 for GMLVQ,

but we consider Ω from Eqs. (2.11) and (2.12) to define a transformation from the

original N -dimensional feature space to IRM with M ¤ N so that:

Λ � ΩJΩ with Ω P IRM�N . (3.1)

This section addresses the use of one global matrix for the dimension reduction

and visualization. Modifications in the sense of extensions towards local distance

measures will be discussed in the next section.

Note that, in general, the transformation matrix Ω is not uniquely determined.

The distance measure is, for instance, invariant under rotations in feature space. We

can identify a unique pΩ by decomposing Λ � ΩJΩ in a canonical way: We determine

the normalized eigenvectors v1,v2, . . . ,vM corresponding to the M ordered non-

zero eigenvalues of Λ, λ1 ¥ λ2 ¥ � � � ¥ λM and define pΩ as:pΩ �
��a

λ1v
1,
a

λ2v
2, . . . ,

a
λMvM

�	J
(3.2)

In addition we choose the sign of vi, such that the component of vi with largest

magnitude is positive. Note, that the value M limits the rank of the dissimilarity

matrix Λ to a maximum of M . Nevertheless, the matrix can be forced to keep the

given rank by recently introduced regularization schemes (Schneider et al. 2010).

With the scheme Eq. (3.2) also a full matrix can be restricted after training. However,

if eigenvectors with eigenvalues bigger than zero are omitted classification accuracy

might get lost. We discuss this in section 3.3. Nominally, the matrix Ω will have more

independent entries than the symmetric Λ whenever M ¡ pN � 1q{2. However, we

have found no evidence that this ambiguity complicates the optimization problem.

Therefore we consider throughout the following, general, unrestricted matrices Ω

with M �N independent entries.

The update rules for the LiRaM LVQ can be obtained by taking the derivatives

of the objective function EGMLVQ Eq. (2.14) with respect to the prototypes wL with

L P tJ,Ku and the matrix Ω P IRM�N . The derivatives are the same as for GMLVQ

given in Appendix 3.A and the updates for a given sample xi read:

wL � wL � τ1 � Φ
1 � γL � 2 � ΩJΩpxi �wLq with L P tJ,Ku (3.3)

Ω� Ω� τ2 � Φ
1 �

�
γJ BdΛJ

BΩmn

� γK BdΛK
BΩmn



(3.4)

Throughout the thesis we consider the scaling function Φ being the identity

Φpaq � a with derivative Φ1 � 1.

Note that the learning rates τ1 and τ2 can be chosen independently. In partic-

ular, we set τ1 " τ2 which implies that changes of the metric occur on a slower
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Algorithm 3.1 : Limited Rank Matrix LVQ (LiRaM LVQ)

Same as Algorithm 2.3 with Ω P IRM�N limiting the rank of Λ to a maximum M

time scale than those of the prototypes. This setting has proven advantageous in

many implementations of matrix relevance learning (Bojer et al. 2001, Hammer and

Villmann 2002, Schneider et al. 2009b). In all practical examples considered in the

following, we apply a learning rate schedule of the form

τ1ptq �
τ start1

1� pt� 1q∆τ1
and (3.5)

τ2ptq �

#
τstart
2

1�pt�tM q∆τ2
for t ¥ tM

0 for t   tM .
(3.6)

Here, t corresponds to the current epoch, i.e. sweep through the training data set,

and τ start1,2 denotes the initial learning rates. Non-zero relevance updates are per-

formed only after the first tM epochs of prototype training. The computational costs

scale linearly with the number of prototypes nw, the dimension of the data N , the

target dimension M and with the number of training examples n in each epoch

OpnwMNnq.

3.2.1 LiRaM LVQ with localized similarities using two matrices

For full rank matrices the LGMLVQ was introduced in (Schneider et al. 2009b, Schnei-

der et al. 2009a) and is depicted in Algorithm 2.4. It is based on the concept of

localized matrices Ωj in the distance (see Eq. 2.22) individually adapted for each

prototype or for each class, flexibly increasing the complexity of the LVQ system.

The concept of LiRaM LVQ can also be expanded to the use of localized rectangular

matrices, representing several local linear projections. The global combination of

these local linear patches by means of charting is discussed in (Brand 2002, Bunte,

Hammer, Wismüller and Biehl 2010) and will be discussed in Part II of this thesis.

In this chapter, we will investigate the use of localized matrices in combination

with global linear dimension reduction. This can be achieved by expanding the def-

inition of the dissimilarity measure Eq. (2.22) with the combination of two matrices:

dΨ
L

L px,wLq � px�wLqJΩJΨLJΨLΩ px�wLq. (3.7)

Here Ω P IRM�N performs the dimension reduction with target dimension M , while

the ΨL P IRM�M locally attached to the prototypes wL define a local dissimilarity

measure in the transformed space. Consequently the visualizations show nonlinear
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rather than piecewise linear decision boundaries in the M -dimensional space. In

the experiments we used class-wise dissimilarities Ψc with c P t1, . . . , Cu attached

to the prototypes wL with equal class label cpwLq � c, which may be interesting in

a setting with more than one prototype per class. In the following we will address

this algorithm as Localized LiRaM LVQ (LLiRaM LVQ).

The update rules for the algorithm are obtained by taking the derivatives of

EGMLVQ with respect to the prototypes wL, the transformation Ω P IRM�N and the

localized matrices ΨL P IRM�M with L P tJ,Ku (see Appendix 3.B). The updates

can be summarized by:

wL � wL � τ1 � Φ
1 � γL

Ψ � 2ΩJΨLJΨLΩ pxi �wLq with L P tJ,Ku (3.8)

Ω� Ω� τ2 � Φ
1 �

�
γJ
Ψ �

BdΨ
J

J

BΩ
� γK

Ψ �
BdΨ

K

K

BΩ

�
(3.9)

ΨL � ΨL � τ2 � Φ
1 � γL

Ψ � 2 �ΨL
�
Ωpxi �wLqpxi �wLqJ

�
ΩJ (3.10)

The LLiRaM LVQ is depicted in Algorithm 3.2:

Algorithm 3.2 : Localized LiRaM LVQ (LLiRaM LVQ)

1: initialize the prototypes wj

2: initialize matrix Ω and normalize according to Eq. (2.21)

3: initialize matrices Ψj

4: while stopping criterion not reached do

5: randomly select a training sample xi

6: compute the distances dΨ
j

j pxi,wjq to the prototypes wj

7: determine closest correct wJ � argmin
j

dΨ
j

j pxi,wjq with yi � cpwJq

and closest incorrect wK � argmin
j

dΨ
j

j pxi,wjq with yi � cpwKq

consider L P tJ,Ku

8: update the prototypes according to wL � wL � τ1 �
BEGMLVQ

BwL (Eq. (3.8))

9: update the matrix Ω� Ω� τ2 �
BEGMLVQ

BΩ (Eq. (3.9))

10: update the matrices according to ΨL � ΨL � τ2 �
BEGMLVQ

BΨL (Eq. (3.10))

11: normalize Ω according to Eq. (2.21)

12: end while

3.3 A classification problem

As an illustrative example, we study the performance of the LiRaM LVQ algorithm

on the image segmentation data set as provided in the UCI repository (Asuncion
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et al. 1998). It contains 19-dimensional feature vectors, which have been constructed

from regions of 3 � 3 pixels, randomly drawn from a set of 7 manually segmented

outdoor images. The features encode various attributes of the example patches,

which have to be assigned to one of the following 7 classes: brickface, sky, foliage,

cement, window, path, and grass. The provided data set consists of 210 feature

vectors for training, with 30 instances per class. The test set comprises 300 instances

per class, i.e. 2100 samples in total. We refer the reader to (Asuncion et al. 1998) for

the details. In the data as provided the features 3, 4 and 5 (region-pixel-count, short-

line-density-5 and short-line-density-2) display zero variance. Hence, we omit these

features and consider only the remaining 16 features. After a z-transformation, each

feature displays zero mean and unit variance in the data set.

We apply in the following the LiRaM LVQ algorithm with global matrix Λ and

parameters τstart1 � 0.01, ∆τ1 � 0.0001, τstart2 � 0.001, ∆τ2 � 0.0001 in the schedule

Eqs. (3.5) and (3.6), matrix adaptation begins in epoch tM � 100. Similar settings

have proven successful in previous applications of the original GMLVQ algorithm

to the data set (Schneider et al. 2009a).

3.3.1 Performance dependence on M

We first study the simplest GMLVQ classifiers with only one prototype per class.

For several values of M , we perform LiRaM LVQ on the given training set of 210

example data and observe the evolution of training and test accuracies with the

number of epochs. In order to obtain reliable results and as an indication of the ro-

bustness and convergence properties we present averages and standard deviations

with respect to 10 different random initializations of the prototypes and matrix Ω.

Fig. 3.1 shows averaged learning curves for the example cases M � 2 and M �

16. We display the training and test accuracies averaged over 10 random initializa-

tions of the algorithm and the estimates of the corresponding standard errors are

on the order 0.01 for M � 2 and below 0.005 for M � 16. Note that training and

test accuracies can display a weak maximum in the course of learning. Therefore,

for each M , we determine the number of epochs that yields the best mean training

accuracy and display the corresponding test accuracy in the right panel of Fig. 3.1.

The non-monotonic behavior could be cured by means of a proper regularization of

GMLVQ, see (Schneider et al. 2010). Here, we resort to the above described early

stopping technique for simplicity. We would like to point out that it relies only on

the observed training accuracy and does not make use of test set information.

Fig. 3.1 also displays the relevance matrices and their eigenvalue spectra corre-

sponding to the early stopping performances. In the case M � 16 we observe that

only about 9 � 10 eigenvalues remain significantly different from zero. Even GM-
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Figure 3.1: Left panels: learning curves of LiRaM LVQ with one prototype per class

for M � 2 (top) and M � 16 (bottom) when applied to the UCI image segmentation

data set. Right panels: diagonal elements, eigenvalues and off-diagonal elements of

the matrix Λ as obtained in a single run. The diagonal elements are set to zero for

the matrix plots.

LVQ with unrestricted rank results in an effective low-dimensional representation

of the data. One would expect that LiRaM LVQ with large enough M already yields

the same performance as the unrestricted variant. Fig. 3.2 shows that this is indeed

the case. Only for small M we observe a clear dependence of the test accuracy on

the rank of Ω, while all M ¥ 5 display essentially the same performance. In the

extreme case M � 2 we observe a significant drop of the generalization ability due

to the serious restriction to only two non-zero eigenvalues of Λ. At the same time,

the outcome of training displays a large variability: random initializations of Ω can

lead to the selection of very different transformation matrices as reflected in the in-

creased standard deviation. Many nonlinear dimension reduction methods such as

Stochastic Neighbor Embedding (SNE) do not lead to a unique solution, a data set

may visualized differently by the same technique in different runs. It can be argued

(see e.g. (van der Maaten and Hinton 2008)) that this effect is desirable since it mir-
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Figure 3.2: Performance of the LiRaM LVQ (upper panel) and GMLVQ with suc-

cessive matrix reduction following Eq. (3.2) (lower panel) using one prototype per

class as a function of M for the UCI image segmentation data set. We display the

test accuracy on average over 10 random initializations, also given as a numerical

value. The light shading corresponds to the interval from worst to best accuracy, the

darker area marks the standard deviations.

rors different possible views of the given data and the ill-posedness of the problem

of dimension reduction. Auxiliary information in the form of class labels can be use-

ful to shape the problem in such settings and to resolve (parts of) the ambiguities
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inherent in the problem. However, if the intrinsic dimension of the data is larger

than the target dimension some ambiguities may not be resolved.

Additionally, we investigate the performance of the full matrix system reducing

the rank after training with Eq. (3.2) using only the first M eigenvalues and eigen-

vectors. The lower panel of Fig. 3.2 shows the test accuracies using the M � 16

matrices and the canonical representation with M eigenvectors for different values

of M . As observed before, keeping less than the 5 eigenvalues in the successive re-

stricted GMLVQ (lower panel of Fig. 3.2) results in a decrease of the classification

accuracy. The drop of accuracy is especially significant when eigenvectors with rel-

atively large eigenvalues are omitted. Just using the eigenvectors of the two largest

eigenvalues for example shows a mean test accuracy which is 11 % smaller than the

corresponding LiRaM LVQ result for M � 2. Despite the computation time and

memory efficiency, the limited rank version yields better preservation of the classi-

fication performance in the restricted setting than the heuristic dimension reduction

after training.

3.3.2 Comparison with other methods

Here we compare the LiRaM LVQ scheme with frequently used standard proce-

dures of comparable complexity. Note, that the complexity of LiRaM LVQ can be

easily controlled by the number of prototypes. GMLVQ with only one prototype

per class appears to be similar in spirit to the well known LDA (Duda et al. 2000,

Friedman 1989, Bensmail and Celeux 1996). In this method, a Multivariate Nor-

mal density (MVN) is fitted to the observed data in each class, here we consider

a pooled estimate of the covariance matrix. Given the density estimates, the best

linear decision boundaries are constructed in order to approximate Bayes optimal

classification (Duda et al. 2000). The well known Nearest Neighbor (1-NN) classifier

serves as a second reference: Based on the standard Euclidean distance measure, any

feature vector is simply assigned to the class of the closest labeled example (Duda

et al. 2000). For the given data set, the extension to k-NN schemes displays only a

weak dependence on k and results will not be presented here.

The most common strategy for dimension reduction is Principal Component

Analysis (PCA). In order to compare with LiRaM LVQ, we apply PCA to the en-

tire data set and obtain a low-dimensional representation in terms of the first M

principal components. The projected training data is then used in LDA or serves

as the reference set of the 1-NN classifier. In the case M � 16, the full data set is

employed without performing a PCA.

In Fig. 3.3, the achieved test accuracies are displayed for several values of M .

For large enough dimension M , the principal components capture all relevant in-
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Figure 3.3: UCI image segmentation data set. Left panel: test accuracy obtained by

LDA as described in the text. Right panel: test accuracies for the 1-NN classifier

using the PCA-based transformation to M dimensions (solid lines). In addition, the

results after transforming the data with Ω as obtained in LiRaM LVQ, the dotted

lines mark the average over 10 random initialization as in Fig. 3.2.

formation and the performance of, both, LDA and 1-NN is comparable to that of

the LiRaM LVQ prescription. This finding is consistent with the M -dependence dis-

cussed in the previous section.

Significant differences can be observed for small M : The dimension reduction

by PCA (or any other unsupervised technique) does not take into account label in-

formation and may focus on features with large variation but little relevance for

the classification. Therefore, the subsequent supervised training does not reach the

quality of the LiRaM LVQ scheme even with only one prototype per class. Here,

the complexity of the system is similar but the identification of a suitable low-

dimensional representation is directly guided by the classification, which facilitates

superior performance. This is easily demonstrated by replacing the PCA based

transformation by the matrix Ω obtained in LiRaM LVQ, see Eqs. (2.13) and (3.1).

Now, the simple 1-NN system performs significantly better, as displayed in the

right panel of Fig. 3.3. The idea of determining a discriminative transformation

directly within the k-NN classification scheme has been put forward in LMNN

(Weinberger et al. 2006), there without considering dimensional reduction. A more

detailed comparison of LMNN with LiRaM LVQ is given in (Bunte, Biehl, Jonkman

and Petkov 2011) and in Chapter 4 of this thesis.

LiRaM LVQ with several prototypes per class and a global relevance matrix can

implement piecewise linear decision boundaries, the complexity of which can ex-

ceed that of LDA or similar methods significantly. In previous applications of un-
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Figure 3.4: UCI segmentation. Left panel: test accuracies achieved by LiRaM LVQ

with 2 prototypes per class (3 in class 5) for different values of M ; other details as

in Fig. 3.2. Right panel: the corresponding learning curves for M � 2, i.e. mean

training and test accuracy vs. the number training epochs.
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Figure 3.5: Diagonal elements, eigenvalues, and off-diagonal elements of an example

relevance matrix in LiRaM LVQ with two prototypes per class and three in class 5.

Other details as in Fig. 3.1, right panels. The diagonal elements are set to zero for

the plots of the relevance matrices.

restricted GMLVQ to the UCI image segmentation data it has proven advantageous

to assign 3 prototypes to class 5 (window) and 2 prototypes to all other classes. Fig.

3.4 shows that this setting improves the classification accuracies in comparison to

the above studied case of a single prototype per class, cf. Fig. 3.2. As expected,

the improvement is particularly pronounced for small M . In Fig. 3.5 we visualize
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typical properties of the relevance matrices obtained in the extreme cases M � 2

and M � 16. Note that even the unrestricted matrix displays only three non-zero

eigenvalues. The increased complexity due to the larger number of prototypes fa-

cilitates good performance in spite of a very simple implicit representation of the

data. The use of more eigendirections could be enforced by means of a matrix regu-

larization scheme suggested in (Schneider et al. 2010). We will address this issue in

forthcoming studies.

3.4 Visualization of classification schemes

The LiRaM LVQ prescription with M � 2 or M � 3 can be readily employed as a

tool for the visualization of labeled data sets. In contrast to many standard methods,

the tasks of identifying an appropriate subspace and implementing the actual clas-

sification is addressed in a single training phase. Supervised dimension reduction

has drawn some attention recently, some of the methods have been mentioned in

the Introduction. We explain two of these methods in the next section in more detail

and will compare example visualizations of different data sets thereafter.

3.4.1 Local Fisher Discriminant Analysis

A supervised linear dimension reduction technique named LFDA (Sugiyama and

Roweis 2007) was recently introduced as a combination of the well known Fisher

Discriminant Analysis (FDA) (Fisher 1936) and the unsupervised Locality-Preserv-

ing Projection (LPP) (He and Niyogi 2003). FDA works particularly well, when

each class can be modeled as an unimodal Gaussian. It is based on the within-class

and between-class scatter matrix and finds a transformation matrix T , such that the

between-class scatter is maximized, while the within-class scatter is minimized. This

optimization problem can be solved by means of a generalized eigenvalue problem

(Fukunaga 1990). The between-class scatter matrix has a rank limited to the number

of classes minus one (C � 1). This implies that FDA can find at most C � 1 mean-

ingful features, which constitutes a serious restriction in practice. LPP on the other

hand is an unsupervised dimension reduction technique based on pairwise affini-

ties Ai,j P r0, 1s between data points xi and xj . The aim is to find a transformation

matrix T such that local neighborhoods are preserved in the embedding space.

The LFDA efficiently combines the ideas of both methods and facilitates the di-

mension reduction of multi-modal labeled data by maximizing the between-class

separability, while preserving the local structure within classes. The local within-

class and local between-class scatter matrices Spwq and Spbq are defined using pair-
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wise affinities of the data:

Spwq �
1

2

ņ

i,j�1

W
pwq
i,j pxi � xjqpxi � xjqJ (3.11)

Spbq �
1

2

ņ

i,j�1

W
pbq
i,j px

i � xjqpxi � xjqJ , (3.12)

where n denotes the number of samples and

W
pwq
i,j �

#
Ai,j{nl if yi � yj � l

0 if yi � yj
(3.13)

W
pbq
i,j �

#
Ai,jp

1
n
� 1

nl
q if yi � yj � l

1{n if yi � yj
. (3.14)

The value nl denotes the number of samples from class l. Therefore, LFDA aims at

finding a transformation matrix T , such that nearby data pairs of the same class are

also close in the embedding and data points of different classes are separated from

each other. Similar to FDA also LFDA projection can be computed analytically by

solving a generalized eigenvalue problem:

T � argmax
TPIRN�M

�
tr
�
pTJSpwqT q�1TJSpbqT

	�
. (3.15)

In contrast to FDA the LFDA does not have the same rank limitation. Therefore a

dimension reduction to arbitrary dimensions is possible. However, the embedding

crucially depends on the computation of the pairwise affinities. In (Sugiyama and

Roweis 2007) four definitions of the affinity matrix are given. In the following ex-

periments we use the ”local scaling“ method, which is also used in the provided

implementation1. Here the density of the data is taken into account in a heuris-

tic manner: a local scaling based on the k-th nearest neighbor is included. In the

experiments we tried different values of k to find good visualizations.

3.4.2 Neighborhood Component Analysis

Recently, a supervised dimension reduction method called NCA has been intro-

duced (Goldberger et al. 2004). It aims in the maximization of the expected number

of correctly classified samples by a stochastic variant of the nearest neighbor clas-

1MATLAB implementation LFDA: http://sugiyama-www.cs.titech.ac.jp/�sugi/software/LFDA/
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sifier. Therefore, NCA seeks a transformation matrix TNCA such that the between-

class separability is maximized:

TNCA � argmax
TPIRN�M

�� ņ

i�1

¸
yj�yi

pNCA
i,j

�
TTJ�� (3.16)

where

pNCA
i,j pUq �

$&% expt�pxi�xjqJUpxi�xjqu°
k�i expt�pxi�xkqJUpxi�xkqu if i � j

0 if i � j
.

Thus, similar to LFDA, nearby data pairs from the same class should be close in the

embedding space. This ensures that also multi-modal structure of the data can be

preserved. However, the optimization problem is non-convex and there is no guar-

antee that the global optimum can be obtained. The optimization was proposed

as a gradient ascent method and we use the provided implementation 2 for the ex-

periments. Note, that NCA needs to compute the pairwise dissimilarities between

samples of the same class in every step. Although LiRaM LVQ also follows a gradi-

ent procedure it computes only the dissimilarities with respect to the prototypes in

every step. Since the number of prototypes per class is usually much smaller than

the number of samples, the computational costs per gradient step are significantly

lower than for NCA. In the implementation a Polack-Ribiere flavor of conjugate

gradients is used to compute search directions, and a line search using quadratic

and cubic polynomial approximations. There is mainly one parameter to change: l

the length of the run. It corresponds to the maximum number of line searches.

3.4.3 The segmentation data set

The above discussed UCI segmentation data may serve as a first illustrative exam-

ple. From the 10 independent runs performed with M � 2 to obtain the results

displayed in Fig. 3.2 (single prototype per class) and Fig. 3.4 (several prototypes per

class), we have selected the runs that achieved the best training accuracy in order

to achieve the most discriminative visualization. As mentioned above, the actual

outcome can depend on the random initialization of the LiRaM LVQ system, see

Figs. 3.2 and 3.4 for the range of observed accuracies. With a single prototype per

class, a maximum classification accuracy of 88.4% on the entire data set is achieved.

The use of 2 prototypes per class (3 in class 5) yields a best accuracy of 90.4% on the

2MATLAB implementation for NCA: http://www.ics.uci.edu/�fowlkes/software/nca/
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Figure 3.6: Visualizations of the UCI segmentation data set aquired by the different

methods. For the sake of clarity we display only 50 examples per class. Detailed

explanation can be found in the text.
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entire set. The use of several prototypes with LLiRaM LVQ enhances the accuracy

by realizing more complex piecewise linear decision boundaries.

Furthermore we trained the LLiRaM LVQ under the same conditions ten times

on the training set of the segmentation data and used the resulting transformations

and prototypes to visualize the data. The run showing the best performances is

shown in Fig. 3.6 with the quality given in Table 3.1. The mean accuracy over all

runs on the training data is 85% with a standard deviation (STD) of 0.04 with one

prototype per class and class-wise dissimilarities Ψc. LLiRaM LVQ implements non-

linear decision boundaries, which shows already good accuracies using one proto-

type per class. With this particular data set using more prototypes does not improve

the classification significantly.

Additionally, we employ the implementation of LFDA and NCA from the orig-

inal authors with default parameters and tried a range of k and l P r1, 30s. We

observed, that both methods crucially depend on the parameter used. The accuracy

on the training set measured by an 1-NN classification on the embedding aquired by

LFDA, for example, ranges from the best accuracy 83.7% with k � 2 and the worst

accuracy 66.6% with k � 25. For NCA the worst accuracy of 56.2% is observed with

l � 1 and with l ¥ 16 the training accuracy reaches 90%. The number of protoytpes

and the initialization in the LiRaM LVQ setting is less crucial with respect to the

classification accuracy.

Fig. 3.6 displays the best visualizations of the segmentation data set aquired by

the different techniques explained above. This multi-class problem allows for very

good classification performance already in two dimensions. The localized variant of

LiRaM LVQ can realize more complicated non-linear decision boundaries than the

global version. However, overfitting effects become possible: For one prototype per

class we observe an improvement although empty cells appear in the tessellation.

With two prototypes per class no further improvement is observed. In all visualiza-

tions the classes ”sky“ and ”grass“ can be separated quite well. For the other classes

the visualizations differ in arrangement and shape of the clusters. The LiRaM LVQ

visualizations show equal or superior quality compared to the other methods. An

overview of the visualization quality of the different methods on the data sets can be

found in Table 3.1. The classification accuracy in the original space is usually larger,

than the accuracy in the low-dimension space after transformation. However, the

numbers show, that in most cases the supervised dimension reduction was able to

preserve high accuracies even in the reduced spaces. We would like to point out

once more, that the computational effort for NCA is much larger than for the LiRaM

LVQ variants. NCA computes all pairwise distances, while the LVQ approaches are

based on a small number of prototypes. In particular for large data sets the compu-

tational effort may be reduced significantly compared to NCA.
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Table 3.1: Classification and 1-NN accuracies (acc. in %) on the visualizations of the

data sets. The quantity P denotes the number prototypes.

method / data set acc. training acc. test

Segmentation data

LiRaM LVQ 7P (classification accuracy) 92.9 88.0

LiRaM LVQ 7P (1-NN acc. on embedding) 85.7 87.0

LiRaM LVQ 14P (classification accuracy) 91.9 90.3

LiRaM LVQ 14P (1-NN acc. on embedding) 88.6 87.5

LLiRaM LVQ (classification accuracy) 89.0 85.7

LLiRaM LVQ (1-NN acc. on embedding) 88.6 87.4

LFDA (1-NN acc. on embedding) 83.7 85.8

NCA (1-NN acc. on embedding) 90.0 87.1

Colorado data 2D

LiRaM LVQ (classification accuracy) 83.0 80.0

LiRaM LVQ (1-NN acc. on embedding) 79.6 84.6

LLiRaM LVQ (classification accuracy) 78.7 73.8

LLiRaM LVQ (1-NN acc. on embedding) 79.9 83.7

LFDA (1-NN acc. on embedding) 50.4 61.1

NCA (1-NN acc. on embedding) 81.5 89.7

Colorado data 3D

LiRaM LVQ (classification accuracy) 88.9 86.3

LiRaM LVQ (1-NN acc. on embedding) 93.3 96.4

LLiRaM LVQ (classification accuracy) 87.7 85.8

LLiRaM LVQ (1-NN acc. on embedding) 92.8 96.1

LFDA (1-NN acc. on embedding) 89.6 93.8

NCA (1-NN acc. on embedding) 92.6 95.5

3.4.4 High-dimensional Gene Expression Data

Discriminative visualization can be particularly useful in the context of medical

data. Here we apply the LiRaM LVQ algorithm to two gene expression data sets

which were recently analyzed in (Faith et al. 2006). The first set concerns small

round blue cell childhood tumors, and we refer to it as SRBCT (Faith et al. 2006). It

comprises cDNA microarray expression levels of 50 pre-selected genes in 83 differ-

ent samples (Khan et al. 2001). The target classification assigns every sample to one

of 4 tumor types. We will refer to the second data set as NCI. It contains gene ex-

pression data from 60 cell lines from the National Cancer Institute anticancer drug

screen (Scherf et al. 2000). Again 50 genes have been pre-selected and samples are to
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Figure 3.7: Two-dimensional, visualizations of the SRBCT data set (left column) and

the NCI data (right column) obtained by the different variants of LiRaM LVQ ex-

plained in the text.

be assigned to one of 8 different types of tissue. For details of the data sets we refer

to (Faith et al. 2006) and references therein. The authors present a method termed

Targeted Projection Pursuit (TPP) and compare it with several existing techniques,

including MDS (Ewing and Cherry 2001), VizStruct (Zhang et al. 2004), a dendro-

gram based method (Eisen et al. 1998), and Projection Pursuit (Lee et al. 2005). TPP

is demonstrated to outperform most of these methods or to achieve at least compa-

rable performance on the above data sets. The employed data sets as well as source

codes of TPP implementations are publicly available (Faith et al. 2006). First, we

apply LiRaM LVQ with one prototype per class to the SRBCT data set. Results pre-
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Figure 3.8: Two-dimensional, visualizations of the SRBCT data set (left column) and

the NCI data (right column) obtained by LFDA and NCA. Detailed explanation can

be found in the text.

sented here are obtained after 1000 epochs with respect to the entire data set of 83

samples. We observe almost no variability with respect to random initializations of

the system. A typical outcome is displayed in Fig. 3.7 (top row left panel) the ob-

tained 2D visualization perfectly separates the four classes. Error free visualizations

were also obtained by Faith et al., see (Faith et al. 2006) for comparison.

The analogous application of LiRaM LVQ to the NCI 8-class-problem shows

slightly larger variability of results. In 10 runs with different random initialization

we obtain after 1000 epochs accuracies in the range from 95.1%-100%, with an av-

erage of 97.7%. Fig. 3.7 (upper row, right panel) displays a perfectly separating
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visualization. For the sake of completeness we show the error-free example results

of the LLiRaM LVQ with one prototype per class in Figure 3.7 (bottom row). The

algorithm was trained with the same parameters as the global version on both, the

whole SRBCT and NCI, data set. Again the four-class problem SRBCT can be sepa-

rated in every Run with random initialization, whereas the training on the NCI data

set shows some variation in classification accuracy. In mean we achieved on the

NCI data an accuracy of 94.6% with a standard deviation of 0.02 over the 10 random

initializations.

The visualization of these data sets achieved by LFDA and NCA are shown in

Fig. 3.8. LFDA was performed on the SRBCT data set with k P r1, 10s, all yielding er-

ror free visualizations. On the NCI data set the accuracy varied from 91.8% achieved

with k � 4 to the best accuracy of 96.7% using k � 1. For the training of NCA on the

SRBCT data set with l varying from one to 10 we observed error free visualizations

for l ¥ 3 and the worst accuracy of 80.7% for l � 1. On the NCI data set an error free

visualization is found for l ¥ 10 and the worst performance was 59% observed with

l � 1. In (Faith et al. 2006), error free visualizations of the NCI data are obtained by

means of TPP in combination with PCA, Projection Pursuit and subsequent LDA or

k-NN classification. For a visual inspection of the achieved separation we refer to

Figs. 9 and 11 in (Faith et al. 2006), which display either slightly overlapping classes

or only very small gaps between some of them. Other methods considered in (Faith

et al. 2006) yield less favorable results on this data set. Most of all, we would like

to point out that our method appears very simple and intuitive compared to many

other suggested approaches. However, it yields comparable or even superior results

at comparably low computational costs.

3.4.5 Satellite Remote Sensing data

Here we apply the algorithm to a large real world data set: a multi-spectral satel-

lite image of the Colorado area, focusing of visualizing the class structure. Remote

sensing spectral images consist of an array of multi-dimensional vectors (spectra)

assigned to particular spatial regions (pixels) reflecting the response of a spectral

sensor at various wavelengths. A spectrum is a characteristic pattern that provides a

clue to the surface material within the respective area. The use of these data includes

areas such as mineral exploration, land use, forestry; and many other activities of

economic significance.

We consider a data set that corresponds to an image taken close to Colorado

Springs using satellites of the LANDSAT-TM type. The size of the image is 1907 �

1784 pixels, each of which corresponds to an area of 900m2 on the ground. The spec-

trum is represented by a 6-dimensional feature vector. The aim of the classification
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Figure 3.9: Visualizations of a small subset of the Colorado data set aquired by the

different methods.

is to assign each pixel to one of 14 classes, corresponding to specific surface covers

such as different types of forests, alpine vegetation, water, etc., see (Hammer and

Villmann 2002, Villmann et al. 2003) for a detailed description and Table 3.2 for the

list of classes. A labeling of the entire image was provided by experts and serves

as the target classification. For further details of the data set we refer the reader to

(Hammer and Villmann 2002, Villmann et al. 2003) where the authors apply scaled

Euclidean distance in combination with a Growing Self-Organized Map (GSOM).

Test accuracies in the range of 90% have been achieved depending on the specific

method in use.

For the following, we selected 2000 examples per class randomly, used as a train-

ing set. We also give the accuracies evaluated with respect to the whole data set of

3,402,088 data points. We have performed 10 runs of LiRaM LVQ with M � 2, 3 and
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Figure 3.10: The labels of a section of the Colorado satellite image (left panel) and the

classification result obtained by the best run of LLiRaM LVQ in the 3D case (right

panel). Detailed information about the class-wise accuracies can be found in the

confusion matrix Tab. 3.3.

Table 3.2: Short description of the differ-

ent classes of the satellite image and the

number of pixels in each class.

classground cover type # pixels

1 Scotch pine 581424

2 Douglas fir 355145

3 Pine / fir 181036

4 Mixed pine forest 272282

5 Supple/prickle pine 144334

6 Aspen/mixed pine forest 208152

7 Without vegetation 170196

8 Aspen 277778

9 Water 16667

10 Moist meadow 97502

11 Bush land 127464

12 Grass/pastureland 267495

13 Dry meadow 675048

14 Alpine vegetation 27556

0 not classified 9

three prototypes per class. After 1500

training epochs we observe only very

little variation due to the random ini-

tialization of the system. The range

of training accuracies is 79.8%-83% for

M � 2 and 87.5%-88.9% for M � 3,

respectively. The classifiers with the

best training set performance achieve

accuracies on the whole set of 80.1%

(M � 2) and 86.3% (M � 3), see Ta-

ble 3.1. In spite of the low-dimensional

representation and the relatively small

numbers of prototypes we achieve very

good accuracies. This is consistent with

the analysis in (Villmann et al. 2003)

which suggests that good classification

performance requires at least a two-

or three-dimensional representations of

the data.

Here, we are mainly interested in

the discriminative visualization of the

data set. Fig. 3.9 shows the data globally projected into two and three dimensions,
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Table 3.3: Confusion matrix of the 3D LLiRaM LVQ on the Colorado data set.
actual class

C 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0
°

1 460594 612 104 5 2376 458 49 883 4 0 0 1498 0 139 0 466722

2 13642 331530 590 11146 0 841 9 79 8 0 0 0 0 0 0 357845

3 0 9379 155775 17306 0 0 1 0 757 0 0 0 0 0 0 183218

4 0 3742 704 231063 0 596 1 7 90 0 0 0 0 0 0 236203

5 14776 0 11 0 122956 0 7793 0 1 0 0 2989 25239 70 0 173835

6 22880 8618 102 12235 5 203917 7 7980 28 0 0 0 0 0 0 255772

7 521 0 3 3 7337 0 111692 360 3 66 554 23873 31728 0 0 176140

8 18380 0 60 14 41 2340 11 256243 8 1 1597 10277 0 0 1 288973

9 14 1210 23613 479 143 0 46 0 15761 0 0 0 0 116 0 41382

10 3 0 5 7 38 0 12842 0 1 86795 7970 7894 7352 0 0 122907

11 0 0 18 11 0 0 285 11660 0 6508 117212 4352 0 0 0 140046

12 48564 54 38 5 8716 0 24687 566 3 2279 130 216576 10522 0 0 312140

13 2045 0 13 8 2611 0 4063 0 3 1853 0 36 582457 148 1 593238

14 5 0 0 0 111 0 8710 0 0 0 1 0 17750 27083 7 53667

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0°
581424 355145 181036 272282 144334 208152 170196 277778 16667 97502 127464 267495 675048 27556 9 3402088

class-wise accuracy of the estimation in %
79.22 93.35 86.05 84.86 85.19 97.97 65.63 92.25 94.56 89.02 91.96 80.96 86.28 98.28 0

respectively. We also trained the Localized LiRaM LVQ on 2000 random samples

from each class with slightly different parameters: 300 epochs, learning rates be-

ginning with τ start=0.001 and ∆τ � 0.0001 for the prototypes, the matrix Ω and

the class-wise matrices Ψc respectively. We trained the system with two and three

prototypes per class. The average accuracy on the training data is 75% with STD

0.03 in the two-dimensional case with 28 prototypes. In three dimensions with three

prototypes per class we obtain a mean accuracy of 85.2% and STD 0.02. These re-

sults correspond to the findings in (Hammer and Villmann 2002) where GRLVQ was

applied to the data set: When pruning to three dimensions a classification perfor-

mance of ca. 84% can be achieved, while dropping further dimensions decreases

the accuracy significantly. The visualizations resulting from the best run in two and

three dimensions are shown in Fig. 3.9 (bottom row). Furthermore, the confusion

matrix for the three-dimensional case containing information about the class-wise

accuracies and misclassification can be found in Table 3.3. We also provide the orig-

inal labeling of the satellite image and the estimated Labels with misclassification.

The corresponding graphics can be found in Fig. 3.10. The projections facilitate a

detailed interpretation and analysis of the data set. We will present and exploit the

obtained insights in a forthcoming study.

We demonstrate the advantages of LiRaM LVQ and its localized variant over

LFDA and NCA: Fig. 3.11 shows the best visualizations we could achieve with

this methods. We varied the value k and l in the interval r1, 10s and for LFDA we

achieved the best 1-NN error measures on the visualizations with k � 6 and k � 9

for 2D and 3D respectively. While certain classes (e.g. 14, alpine vegetation) seem

to separate well, the overall discriminativity is limited. Only 50.4% accuracy can be
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Figure 3.11: Visualizations of a small subset of the Colorado data set aquired by the

different methods.

achieved using a 1-NN classifier on the training data in the two-dimensional case

and 89.6% in the three-dimensional case. For this particular data set the value of

the parameter k has no significant influence on the quality of the LFDA-embedding

of the training data. The computation of the 1-NN error on over three million data

points of the test set was not practicable. Therefore we draw 100 000 points ran-

domly from the test set and this reduced set serves as approximation of the test-

error. With the best LFDA we observed 61.3% and 93.75% 1-NN classification ac-

curacy on the reduced test set for two and three dimensions, respectively. Table 3.1

shows the detailed comparison. The use of NCA turned out in-practicable due to

excessive memory use. Therefore, we reduced the training set to 900 samples per

class. We tried different values for the parameter l ranging from one to ten. The best

results are shown in Fig. 3.11 (bottom row) for k � 3 and k � 2 in the 2D and 3D

visualization respectively. On this data set the best NCA parametrization showed

comparable or even better results than the LVQ approach. Nevertheless, some pa-
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tience was necessary to get these results due to the computational complexity and

the variation with respect to the parameter was huge. In the two-dimensional case

the 1-NN accuracy ranged between 56.43% and 81.49% on the training set and in

the 3-dim. case accuracies between 67.29% and 92.56% were observed. The other

methods showed to be faster and more robust with respect to the parametrization.

3.5 Summary and outlook

In this Chaper we present the LiRaM LVQ algorithm together with a localized vari-

ant, as a modification of GMLVQ (Schneider et al. 2009a). It employs rectangular

projection matrices to represent N -dim. feature vectors in an M -dim. space inter-

nally. This makes it possible to limit the rank of the relevance matrices used in

GMLVQ which parameterize an adaptive distance measure. Obvious aims are to

incorporate prior knowledge of the intrinsic dimension or to reduce the number

of free parameters while maintaining good classification performance. In particular

for high-dimensional data sets this can reduce the computational effort significantly.

First we illustrate the approach in terms of a multi-class benchmark data set and

compare with other methods of similar complexity. We demonstrate that LiRaM

LVQ is an efficient method for determining discriminative, low-dimensional repre-

sentations of labeled data and facilitates good generalization behavior. In LiRaM

LVQ, the search for the appropriate subspace is guided directly by the classifica-

tion performance in a single supervised training phase. This is in contrast to classi-

cal combinations of unsupervised dimension reduction and subsequent supervised

learning.

A particular attractive application of the concept concerns the visualization of

labeled data sets. Setting M � 2 or 3 in LiRaM LVQ provides us with a discrimina-

tive visualization of the original data set. The algorithm results in linear or piece-

wise linear decision boundaries dependent on the number of prototypes and classes.

With the localized variant LLiRaM LVQ it is possible to visualize even more compli-

cated non-linear decision boundaries. We demonstrate the usefulness of this concept

in the context of several real world multi-class problems. Furthermore we compare

the visualizations to some recent state-of-the-art supervised dimension reduction

techniques, namely LFDA and NCA. The LFDA approach provides an analytical

solution, but also depends on the computation of pairwise dissimilarities within

samples of the same class. The results may differ a lot depending on the number k

of neighbors used. For less complex data sets, like the four class SRCBT cancer data

set error free visualizations are possible. On other data sets LFDA showed worse

results compared to the other methods. NCA showed good results in most cases.
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Its performance is also dependent on random initialization and the number of line

searches l. NCA is based on the computation of pairwise dissimilarities which is

expensive for large data sets. The LiRaM LVQ approach displays in all cases com-

parable or superior results on the investigated data sets. The computational effort

depends on the target dimension, the number of prototypes and the number of sam-

ples for training. Unlike other methods, which require all pairwise dissimilarities,

LiRaM LVQ computes distances of samples with respect to only a few prototypes.

The observed influence of the number of protoytpes on the performance is weak

compared to the dependence on the neighborhood parameter in other methods.

The use of local or class-wise transformation matrices in LLiRaM LVQ allows for

more complex decision boundaries. The decision boundary in the low-dimensional

space is based on local matrices attached to the prototypes. Note, that the dimension

reduction itself is done in terms of a global linear projection. The concept of using

local dissimilarities in combination with non-linear dimension reduction and visu-

alization was recently discussed in (Bunte, Hammer, Wismüller and Biehl 2010).

In this paper we have not emphasized one particularly attractive feature of rele-

vance learning: The resulting transformation and relevance matrices can be readily

interpreted and carry important information about the structure of the data. For in-

stance, in the visualization of gene expression data, Sec. 3.4.4, we note that several

features (intensities) essentially do not contribute to the highly discriminative linear

combinations defined by Ω. This type of information provides valid insights to the

application expert and should be exploited systematically.

In forthcoming projects we will also investigate several extensions of the method.

So far, we only limit the maximum rank of relevance matrices by choice of the pa-

rameter M , the effective dimension of the transformation can become even smaller.

In applications, including visualization, it can be desirable to fix the rank and to

make the system exhaust the bound. This could be done in terms of an efficient

regularization method which we developed recently (Schneider et al. 2010). Most

importantly, we plan to apply the LiRaM LVQ approach in various application do-

mains, including the ones discussed above. An example application in the context

of Content Based Image Retrieval (CBIR) is discussed in (Bunte, Biehl, Jonkman and

Petkov 2011) and Chapter 4 of this thesis.
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3.A Derivatives of GMLVQ and LiRaM LVQ

Here we show the derivatives of the GMLVQ costfunction EGMLVQ for one pre-

sented training example xi, see Eq. (2.14), with respect to the prototypes wL with

L P tJ,Ku and the transformation matrix Ω P IRM�N . The derivative with respect

to the prototypes can be formulated like following:
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3.B Derivatives of Localized LiRaM LVQ

Now we describe the derivatives of the LLiRaM LVQ scheme for one presented

training example xi with respect to the prototypes wL, the transformation matrix

Ω P IRM�N and the localized dissimilarities denoted by ΨL P IRM�M with L P

tJ,Ku. We assume the quantities of the cost function Eq. (2.14) correspond to dΛJ �

dΨ
J

J pxi,wJq and dΛK � dΨ
K

K pxi,wKq using the distance measure defined in Eq. (3.7).

The derivative with respect to the prototypes is given by:
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The derivative with respect to the matrices is given by:
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Chapter 4

Adaptive Metrics for Content based Image
Retrieval in Dermatology

“Lunch with a Helmet on”

848 welded forks and spoons that cast a shadow of form.

Shigeo Fukuda 1987

Abstract

In this chapter we investigate the extraction of effective color features for a Content Based

Image Retrieval application in dermatology. Effectiveness is measured by the rate of cor-

rect retrieval of images from four color classes of skin lesions. We employ and compare

two different methods to learn favorable feature representations for this special applica-

tion: Limited Rank Matrix LVQ and the Large Margin Nearest Neighbor approach. Both

methods use labeled training data and provide a discriminant linear transformation of the

original features, potentially to a lower dimensional space. The extracted color features

are used to retrieve images from a database by a k-Nearest Neighbor search. We perform

a comparison of retrieval rates achieved with extracted and original features for eight

different standard color spaces and observed significant improvements in each of them.

LiRaM LVQ and the computationally more expensive LMNN give comparable results

for large values of the method parameter κ of LMNN (κ ¥ 25) while LiRaM LVQ out-

performs LMNN for smaller values of κ. We conclude that feature extraction by LiRaM

LVQ leads to considerable improvement in color-based retrieval of dermatologic images.
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4.1 Introduction

I
n the last decades the availability of digital images produced by scientific, ed-

ucational, medical, industrial and other applications has increased dramatically.

Thus, the management of the expanding visual information has become a challeng-

ing task. Since the 1990’s Content Based Image Retrieval (CBIR) is a rapidly advanc-

ing research area, which uses visual content to search images from large databases

according to the user’s interest (Smeulders et al. 2000, Müller et al. 2004, Lehmann

et al. 2004, Datta et al. 2005, Min and Cheng 2009, Giacinto and Roli 2004, Torres

et al. 2009, Jain and Vailaya 1996). A typical CBIR system extracts visual information

from an image and converts it internally to a multidimensional feature vector repre-

sentation. For retrieval, the dissimilarities (distances) between the feature vector of

a query image and the feature vectors of the images in the database are computed.

Then, the database images most similar to the query are presented to the user. CBIR

may especially be interesting in the field of computer aided diagnostics when it is

partly based on images. An intelligent pre-selection of images with a trained sys-

tem might help a medical doctor to efficiently search for patients, who had problems

similar to the actual case.

The visual content of an image can be described by color, texture, shape or spa-

tial relationship. A good visual content descriptor should be insensitive to the spe-

cific imaging process, e.g. invariant under changes of illumination. The preva-

lent visual content for image retrieval is color. Frequently used color descriptors

are color moments, histograms, coherence vectors and correlograms (Jau-Ling and

Ling-Hwei 2002, Pass et al. 1996). Before a color descriptor can be selected, the un-

derlying color space has to be specified. There are many different color spaces avail-

able, which may be beneficial in different application domains. The color represen-

tations most commonly used in electronic systems are RGB and CIE-XYZ. CIE-XYZ

and the related CIE-Lab and CIE-Luv are designed to match human perception. In

(Terrillon and Akamatsu 2000) the authors argue, that normalized TSL (Tint, Satura-

tion, Lightness) is superior to other color spaces for skin modeling with a unimodal

Gaussian joint probability density function. The color space YCrCb is adjusted for

efficient image compression, but the transformation simplicity and explicit sepa-

ration of luminance and chrominance components appear attractive for skin color

modeling (Phung et al. 2002, Zarit et al. 1999, Chai and Bouzerdoum 2000). Surveys

on color spaces and their use can be found in (Terrillon and Akamatsu 2000, Vezhn-

evets et al. 2003). We are not aware of a general rule for the choice of the color space

and the representation might follow the users preference. So we decided to investi-

gate eight different color spaces, which are commonly used and may be useful for

the task at hand.
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Figure 4.1: Two example retrievals of the 11 most similar images for a given query

image. The first image in a row is the query image, followed by the images returned

from the retrieval system (Bosman et al. 2010). The green tick marks images with

the same class label like the query.

Color is an important attribute for primary skin efflorescences (Bolognia et al.

2007). Color features have proven beneficial in many applications and medical sci-

ences, especially for the recognition of skin regions (Felice et al. 2002, Terrillon and

Akamatsu 2000, Vezhnevets et al. 2003, Takiwaki 1998, Shin et al. 2002, Kjeldsen and

Kender 1996, Sobottka and Pitas 1996, Phung et al. 2002, Zarit et al. 1999, Kakumanu

et al. 2007) or the classification of skin cancer (Schmid-Saugeona et al. 2003, Voigt

and Classen 2002, Blum et al. 2004, Hoffmann et al. 2003, Cheng et al. 2008, Um-

baugh et al. 1992). A dermatologist might be interested in pictures of similar skin

lesions in comparison to an actual case to verify the diagnosis or confer with similar

symptoms. This can be interpreted as a problem of CBIR. The authors of (Bosman

et al. 2010) study the use of color features and the effectiveness of different color

spaces in this context. They conclude that the representation of an image by the

difference in the average color of healthy and lesion skin gives better results than

the explicit use of the pair of colors. Fig. 4.1 shows two example retrievals for a

CBIR system in the field of skin lesion comparison in Dermatology. In (Bosman

et al. 2010), the best results were achieved with the CIE-Lab color representation.

Of course, it is possible that the use of a combination of a cyclic distance mea-

sure in the case of color spaces containing a “hue”-descriptor might lead to superior

results. We will address this interesting questions in further studies. Since the dif-

ference of two color values is a special case of a linear transformation, the question

arises whether better results can be achieved by more general linear transforma-

tions. One well known technique to achieve a linear projection of feature vectors

to a subspace which minimizes the overlap between different classes is Linear Dis-

criminant Analysis (LDA) (Duda et al. 2000). In this paper we employed and com-

pared two different recent techniques, which are able to find discriminant feature

transformations based on a supervised training procedure. The Large Margin Near-

est Neighbor (LMNN) (Weinberger et al. 2006) (see section 2.5) approach has the

advantage that it is based on a convex cost function, so it returns the global op-
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timum for the current configuration of training data and parameters. The Limited

Rank Matrix LVQ (LiRaM LVQ) (Schneider et al. 2009a, Schneider et al. 2009b, Bunte

et al. 2008, Schneider et al. 2008) (see Chapter 3) on the other hand follows a stochas-

tic gradient descent procedure and may get stuck in local minima, but it has the ad-

vantage of low computational costs. Both algorithms are available in general form

and turned out to be effective classifiers in many applications. In our real world

example application of CBIR in Dermatology, the LiRaM LVQ approach turned out

to be quite robust concerning the initialization and parameter setting. With compa-

rably low computational costs it leads to similar or better results than the LMNN

approach with optimal parameter setting on most color spaces discovered. We im-

prove the correct retrieval rate in CBIR of dermatological images significantly by

applying adaptive linear transformations.

The main aim of this work (Bunte, Biehl, Jonkman and Petkov 2011) is to demon-

strate in terms of a real world example, that an adaptive, i.e. data driven transfor-

mation of original color features can improve the retrieval performance of a CBIR

system significantly. We concentrate on the performance enhancement achieved by

using the most basic, easy and fast acquirable set of important features for the prob-

lem at hand, i.e. color information only. In Section 4.2 we explain the real world

data set and the feature extraction process. Afterwards, we discuss the results in

Section 4.3 and conclude in Section 4.4.

4.2 Methodology

This work is based on the scientific findings of (Bosman et al. 2010). It has been

shown, that a three-dimensional feature vector constructed from the difference be-

tween the color values of healthy and lesion skin yields better performance then

using the six-dimensional feature vector of the colors itself. Since the difference

features are acquired by a simple fixed linear transformation A the question arises if

the CBIR system can improve even further using an arbitrary transformation. There-

fore we compare two supervised adaptive distance techniques, namely LiRaM LVQ

and LMNN, which are able to provide discriminative transformations of the feature

space used for CBIR. An illustration of the Methodology is shown in Figure 4.2.

4.2.1 Data set and feature extraction

We analyze images from a database maintained at the Department of Dermatology

of the University of Groningen. At the time of this study it consisted of 47621 images

from 11361 patient sessions, the number of images grows by about 5000 per year.

Clinical images are obtained under standard light conditions and do not require
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Figure 4.2: Methodology overview for the proposed CBIR system.

Figure 4.3: Example images of the four skin lesion classes from (Bosman et al. 2010).

further calibration. A subset of 211 images was provided and manually labeled by a

dermatologist, who assigned each image to one of four classes of lesions. For better

readability we refer to these classes as “red”, “white”, “blue” and “brown”, see Fig.

4.3. These terms correspond to the relative tint of lesions which appear reddish,

hypo-pigmented, blue or brownish on the background of the surrounding healthy

skin. We consider a data set with 82, 46, 29 and 54 samples, respectively, which

amounts to a total of 211 images.

Of course there are more characteristics then just color which identify the kind
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of skin lesion, e.g. the shape. The consideration of other types of features will be

addressed in future work, here we concentrate on the quality the most basic set of

features is able to achieve. In this particular problem color seems to be a suitable

indicator for the skin lesion classes. The complete data set also contains other skin

lesions, but in this study we restrict ourselves to the consideration of the above

mentioned classes. Here, emphasis is not on the classification performance itself.

It serves as a basis for improving the retrieval system and the supervised training

yields a suitable distance measure. Further studies should address additional fea-

tures, more general skin lesion classes and the handling of unknown classes.

Figure 4.4: Feature extraction: a represen-

tative region of healthy skin (green) and

lesion skin (red) were manually selected.

The average colors of these regions are

combined in a six-dim. feature vector.

The original images were not pre-

processed. For each image a region

of lesion and a region of healthy skin

are manually selected and for each of

them the average color values are com-

puted (see Fig. 4.4). Hence, the ex-

tracted data contains three color com-

ponents for each of the two regions, re-

sulting in a six-dimensional feature vec-

tor x P IR6. As a normalization step we

perform a z-transformation resulting in

zero mean and unit variance features.

This normalization is reasonable in the

RGB color space and linear domains.

In case of cyclic descriptors, like the

“hue”, this might not be appropriate.

The combination of cyclic distances and

linear dissimilarities and their normal-

ization concerning this specific task will

be addressed in future studies. Never-

theless, for the sake of comparison and

completeness we show the results on different color spaces under the same condi-

tions.

4.2.2 Feature transformation obtained by LiRaM LVQ

In order to obtain discriminative representations of the data we employ LiRaM LVQ

technique, which is explained in Section 3.2. Following Eq. (2.13) we transform the

features into a discriminative space ξ � Ωx, which is then used in the CBIR system.

The results of the LiRaM LVQ algorithm may display a dependence on the initial
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state of the matrix Ω in the training. Hence, we present results on average over sev-

eral random initial configurations. For the training we employ the following cross

validation procedure: The data set is split in ten disjoint subsets with approximately

the same composition of classes. The union of nine subsets is used to determine the

transformation matrix Ω for the vectors of the remaining subset. In this way, the

matrix Ω which is applied to a given feature vector from the set is obtained with-

out using that feature vector. This procedure is repeated ten times, once for every

possible selection of the subset for which Ω is determined. In addition we repeat

each training process for ten different random initializations of the LiRaM LVQ al-

gorithm, resulting in 100 runs.

We start the matrix learning after tM � 50 of altogether 500 epochs t and apply

a learning rate schedule shown in Eqs. (3.5) and (3.6), which has proven advanta-

geous in many implementations of relevance learning. In our experiments we chose

τ start1 � 0.01, ∆τ1 � ∆τ2 � 0.0001 and τ start2 � 0.001, we do not perform an opti-

mization of these parameters concerning the retrieval rates. In our experiments we

use four prototypes (one per class) and their initial positions wipt � 0q are deter-

mined as the mean over a random selection of 1{3 of the available feature vectors

in class cpwiq with small random deviation. Hence, prototypes are initially close

to the class-conditional means in the training data, but with small deviations due

to the random sampling. This has the advantage that in the case of more proto-

types it is ensured that they are not initialized on exactly the same position. Rel-

evance initialization is done by generating independent uniform random numbers

Ωij P r�1, 1s and subsequent normalization Eq. (2.21). Performing independent

runs with random initialization and subsequent normalization prevents that single

features are favored by unlucky initialization. In the experiments we consider ma-

trices Ω P R
3�6, which transform the original six-dimensional feature vectors x into

a three-dimensional space. More dimensions do not increase the performance sig-

nificantly, but using less than three caused decreasing retrieval rates. Furthermore,

with three dimensions we can directly compare to earlier experiments.

The Localized GMLVQ (LGMLVQ) (see Algorithm 2.4) using localized dissimi-

larities Eq. (2.22) is trained under the same conditions and learning rate schedules,

adapting four matrices Ωj P IR3�6 together with their associated prototypes wj in

the supervised training process.

For each subset Ds, s � 1, . . . , 10, of the data set X we perform 10 runs over

random initializations i � 1, . . . , 10. For every image xj with j � 1, . . . , 211 from the

data set we compute the correct retrieval rate by means of the k nearest neighbors

within X ztxju. Therefore, we apply for each initialization i the transformation Ωsi

or Ωl,si in the localized version, which was learned without the samples x P Ds, and

obtain a retrieval rate rij for the query xj P Ds. Thus we get for every initialization
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i a mean retrieval rate r̄i � 1
211

°211
j�1 r

i
j . As an overall estimate of the performance

we determine the total mean rate r � 1
10

°10
i r̄i. The variability with respect to

initialization is quantified by the standard deviation

σinit �

�
1

9

10̧

i�1

pr̄i � rq2

� 1
2

. (4.1)

In order to quantify the variation of the data set we evaluate the mean retrieval rate

of every image r̄j �
1
10

°10
i�1 r

i
j and the corresponding standard error of mean:
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�
1
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� 1
2

� 211�
1
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With the original features there is no training process involved and ǫdata in Eq. (4.2)

is computed simultaneously with the retrieval rate rj of every image replacing r̄j .

4.2.3 Feature transformation obtained by LMNN

We also perform the LMNN method (Weinberger et al. 2006) explained in Section

2.5 to acquire discriminant transformations of the feature space. The results pre-

sented in the following section were produced with the available code1 using default

parameters except for the number of target neighbors κ, which varies in our exper-

iments from 1 to 25 and the matrix Γ � ΥJΥ Eq. (2.30) decomposed by Υ P R
3�6

initialized with elements randomly drawn from the interval r�1, 1s. For a fair com-

parison, LMNN and LiRaM LVQ are applied to the same subsets Ds of training data

and performance is evaluated on the same footing as explained before.

4.2.4 Canonical representations

Note that the transformation matrix Ω obtained by LiRaM LVQ and Υ in LMNN are

not uniquely determined: For instance, the distance measure is invariant under rota-

tions in the feature space. Thus, the training process can yield different transforma-

tion matrices depending on the (random) initialization of the training process. We

identify unique transformations pΩ and pΥ by decomposing Λ � ΩJΩ and Γ � ΥJΥ

in a canonical way based on the sorted eigenvectors vj following Eq. (3.2):pΥ, pΩ �
��a

λ1 v
1,
a

λ2 v
2, � � � ,

a
λM vM

�	J
P R

M�N . (4.3)

1www.cse.wustl.edu/�kilian/code/code.html (last visited September 2010)
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This canonical representation does not alter the retrieval system and it allows direct

comparison of the transformations pΩ and pΥ.

It is not obvious how to extend the LMNN scheme for a comparison with the

use of local matrices Ωj like in the LiRaM LVQ. Localized transformations could

heuristically be put on top of the LMNN scheme by forcing a separation of the fea-

ture space, e.g. based on the class information. Since the LMNN scheme computes

distances within the feature space it is not clear which distance should be used when

comparing two sampes of two different classes:

dΥ
yi

pxi,xjq � dΥ
yj

pxj ,xiq assuming Υyi

� Υyj

. (4.4)

LVQ, on the other hand, contains a quantization process within the learning pro-

cedure, which makes localized transformations within the receptive fields a very

natural and easy extension. The distances are always computed with respect to the

prototypes, not the samples itself.

4.2.5 Retrieval test

As a performance measure for CBIR we use the average correct retrieval rate, also

referred to as precision. It is defined as the percentage of k-Nearest Neighbors (k-

NNs) that belong to the same category as a query image. We determine for each

image its k-NNs in the entire data set using the Euclidean distance measure. For

comparison, we do this both in the original feature space X and in the transformed

feature space E � Bx with B P tΩ,Υu. Note that in our evaluation for a given query

image, the transformation matrices Ω, Υ and Ωj have been determined from subsets

which do not contain the query.

Using the Generalized Matrix LVQ (GMLVQ) approach the training process op-

timizes j localized transformations Ωj corresponding to the classification task. We

involve this information by projecting every feature vector x with the transforma-

tion ΩJ corresponding to the nearest prototype wJ with dΛ
J

pwJ ,xq   dΛ
l

pwl,xq

�J � l resulting in local linear projections for different areas of the feature space.

Section 4.3 presents and compares the resulting retrieval rates as average over all

images. Furthermore, the standard error of the performance with the actual query

image and its dependence on the initialization of LiRaM LVQ are discussed.

4.2.6 Color spaces

We explore the retrieval rates for eight different color representations separately.

The different color spaces vary, as already mentioned, with respect to their useful-

ness in different applications. Possible motivations for the choice of a particular
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Table 4.1: Overview over some color spaces compared for their use in CBIR.

Color space chosen for:

RGB widespread use

normalized RGB invariance (under certain assumptions) to changes of sur-

face orientation with respect to the light source (Skarbek and

Koschan 1994)

TSL successful application in skin detection (Terrillon and

Akamatsu 2000)

CIE-XYZ role as the basis for CIE-Lab and CIE-Luv

CIE-Lab perceptual relevance and relation to melanin and hemoglobin

(Takiwaki 1998)

CIE-Luv & CIE-Lch perceptual relevance

YCrCb simplicity and explicit separation of luminance and chromi-

nance components (Phung et al. 2002, Zarit et al. 1999) and

popularity in skin detection applications (Kakumanu et al.

2007)

color space are summarized in Table 4.1. Despite the potential difficulty rising from

the cyclic representation of the “Hue” component of the TSL color space and its

relatives HSV and HSL, for completeness, we investigate its behavior for our appli-

cation task in terms of one example, namely TSL.

4.3 Results

4.3.1 Retrieval rates

In this Section we summarize the retrieval results for the different color representa-

tions using transformed features from LMNN, LiRaM LVQ and GMLVQ. We com-

pare them with those obtained in the original feature spaces and with the difference

features from (Bosman et al. 2010) obtained with the transformation ξ � Ax with:

A�

�� �1 0 0 1 0 0

0 �1 0 0 1 0

0 0 �1 0 0 1

� . (4.5)

The overall mean rates r obtained with LiRaM LVQ and Ω P R
3�6 are displayed

in Fig. 4.5 for each color space as a function of the number k, i. e. the number of

pictures the CBIR system returns to the user. The best correct retrieval rates for this
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Figure 4.5: Mean correct retrieval rates obtained with the LiRaM LVQ transformed

data as a function of the number k of retrieved images for eight color spaces.

algorithm are achieved with the color spaces YCrCb (82.3%), CIE-Lab (82.2%), CIE-

Lch (81.1%), CIE-Luv (81.0%) and RGB (80.7%) where the numbers correspond to

the example case k � 11. All other color representations yield by far lower per-

formances with rates between 68.7% and 75.0%. We chose the example case of 11

returned images for the quantitative analysis to be able to compare to earlier studies

(Bosman et al. 2010) and because it seems a reasonable large number suggested by

the doctor. Of course the system is able to return as many similar images as the data

base contains and the user wishes to see.

Fig. 4.6 shows a comparison of the correct retrieval rates based on the original

features (red lines), the difference features from (Bosman et al. 2010) (green lines)

and the transformed data (blue and black lines) as a function of the neighborhood

size k of the retrieval system. The gray shaded areas mark the standard error of

mean ǫdata, while the blue shaded area corresponds to σinit of the LiRaM LVQ. Note

that the latter is, of course, absent in the results based on original features and dif-

ference features, as no training process is involved and also absent in the results
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Figure 4.6: Comparison of correct retrieval rates dependent on the number of near-

est neighbors k for each color space. The red lines denote the mean retrieval rates

on the original feature space, the green line stands for the difference features from

(Bosman et al. 2010), whereas the blue and black lines shows the mean results on the

transformed feature spaces. The blue shaded areas indicates the standard deviation

due to the random initializations σinit in LiRaM LVQ.

coming from LMNN, because it finds the global optimum for a given parameter set,

independent of the initial state. The variation due to initialization of the GMLVQ

is not displayed; it is comparable to the variation in the global version. We set the

parameter κ of the LMNN approach equal to the neighborhood k of the retrieval

system and, in addition, we consider κ � 25. The latter is close to the size of the

smallest class in the data set, ”blue“ (c), with 29 examples. For κ � 25 the retrieval

performances of LMNN and LiRaM LVQ are comparable which is also reflected in

the fact that the obtained matrices pΩ and pΥ are very similar, cf. Fig. 4.7 and Fig.

4.8. Smaller values for κ reduce the computational effort of the optimization at the

expense of performance.
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LGMLVQ achieves the best correct retrieval rate for the most suitable color spaces:

Lab and YCrCb. However, the performance boost compared to the other methods

is only moderate. In TSL, GMLVQ is even outperformed by the simpler techniques

based on global measures. These findings suggest that the latter already extract the

most important information from the original color features. Furthermore, TSL is

cyclic represented by the angle of color components, which may cause instabilities

for naive distance computation. We suggest the performance drop of the difference

features in comparison to the use of the original features is a consequence of the

Hue representation in TSL and its relatives HSL and HSU were we observed the

same effect. However, the adaptive distance is able to compensate for this effect and

still yields a boost of performance also in these color spaces.

In most of the color spaces, including RGB, the LiRaM LVQ result is not very

sensitive to initialization, as indicated by relatively small standard deviations σinit ¤

2%. The XYZ color representation display the largest dependence on initialization

with σinit ¡ 2.7%. The variation with the data set is approximately the same in orig-

inal and transformed feature spaces. This variability is not an effect of the LiRaM

LVQ training but is characteristic of the data set itself. In the case of the LMNN

optimization, we observe that the use of an adaptive transformation increases the

mean retrieval rate r significantly for all color spaces, for every choice of k and ap-

propriate κ. The best results are obtained with CIE-Lab (72%   r   85%) and

YCrCb (72%   r   84%). It is interesting to note that the popular RGB representa-

tion exhibits comparable performance (70%   r   82%) in the transformed feature

space. Thus, we achieve an improvement between 10% and 27% when employing

an adaptive linear transformation of features.

4.3.2 Recommended transformations

Here we inspect the favorable transformations of the feature space as obtained by

LiRaM LVQ and LMNN. We focus on RGB as the by far most frequently used color

space and on CIE-Lab because of its excellent retrieval performance.

Global transformations

We observe that the obtained distance measure represented by Λ depends only

weakly on the initialization of LiRaM LVQ. However, a continuum of matrices Ω

satisfies ΩJΩ � Λ and, in this sense, the actual outcome Ω of the training process

can vary widely. Thus, the canonical representation pΩ Eq. (4.3) is averaged over

all training runs. The mean transformation is explicitly given for RGB in Eq. (4.6)

and visualized in Fig. 4.7. The standard deviation concerning the random initializa-

tion of each component lies between 0.01 to 0.03 for pΩRGB. Each row of the matrix
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Figure 4.7: Recommendation for the transformation in RGB: (left) Multipliers that

define the new features as linear combinations of the original features earned from

LiRaM LVQ. (right) Multipliers earned from LMNN with κ � 25.
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Figure 4.8: Recommendation for the transformation in CIE-Lab: (left) Multipliers

that define the new features as linear combinations of the original features earned

from LiRaM LVQ. (right) Multipliers earned from LMNN with κ � 25.

defines a new feature as a linear combination of the original six features.pΩRGB �

�� 0.139 �0.192 0.093 �0.320 0.662 �0.469

0.127 �0.082 �0.112 �0.167 0.080 0.276

0.036 �0.064 0.108 �0.047 �0.063 �0.002

� (4.6)
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Figure 4.9: The resulting 3D visualizations of the skin cancer data set transformed

from the RGB and LAB color space with pΩRGB (left panel) and pΩLab (right panel).

We observe, that the absolute weights corresponding to skin lesions (columns 4,5,6)

are typically 1-2 times larger than the coefficients assigned to the healthy skin fea-

tures (columns 1,2,3). In general, the corresponding coefficients for lesion and healthy

skin features are of opposite sign. Hence, the transformed features correspond to

weighted differences of the lesion and healthy skin color values. Eq. (4.7) denotes

explicitly the mean transformation pΩLab for CIE-Lab; it is visualized in Fig. 4.8:pΩLab�

�� �0.115 �0.225 0.140 0.358 0.606 �0.418

0.069 �0.120 �0.120 �0.200 0.231 0.164

�0.087 �0.063 0.011 0.109 �0.006 0.147

� . (4.7)

The above discussed properties of ΩRGB persist also in the transformation of CIE-Lab

feature vectors. The standard deviations for the mean transformation vary from 0.01

and 0.06 for the random initializations.

The resulting 3D visualizations of the data set with the mean canonical transfor-

mations pΩ using the RGB and LAB color representation are shown in Fig. 4.9. It can

be seen that the classes for ”white“, ”red“ and ”brown“ skin cancer build a nicely

separable data cloud respectively, whereas the class ”blue“ lays between the others

and overlaps. With more training samples especially of the difficult class the data

set might be even better separable by supervised adaptive dissimilarity learning.
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Figure 4.10: Local Matrices for RGB corresponding to one prototype of each class.

Local transformations

Also with the localized matrices the above discussed properties persist. For the lo-

cal feature transformation the prototypes are necessary and define the area of the

original feature space, where their transformation is valid. So the samples are trans-

formed with the transformation attached to the nearest prototype wJ :

ξ � ΩJx with dΛ
J

pwJ ,xq � min
j

dΛ
j

pwj ,xq . (4.8)

The mean canonical representations of the local matrices for RGB are shown in

Fig. 4.10. Note that the definition in Eq. (4.8) is only valid in the neighborhood of the
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corresponding prototype. At the borders of the Voronoi cell of each prototype this

definition may be inappropriate. In general it is possible to combine the local lin-

ear patches in a global nonlinear way by charting (Bunte, Hammer, Wismüller and

Biehl 2010, Brand 2002) or Local Linear Coordination (LLC) (Teh and Roweis 2003).

It can be seen that some class-wise transformations seems to be already well dis-

criminating with one or two features, for example the matrices for the ”brown“ and

”red“ class of skin lesions. However, for the class of white and bluish appearing

skin lesions also the third feature shows a contribution to the transformation. It

would have been possible to have class-wise different target spaces for two and

one dimension in respective transformations, but for reasons of consistency and for

comparison purpose we chose the target dimension to be the same for every class.

In summary, our findings support the basic idea of using differences of color

features presented in (Bosman et al. 2010). We have shown, however, that gen-

eralizing this concept by introducing adaptive coefficients improves the retrieval

performance significantly for this supervised problem.

4.4 Summary and conclusion

In this chapter we show the usefulness of adaptive distances and corresponding

feature space transformations on a real world example application. We observe that

CBIR on color is a powerful tool for analysis of dermatological image databases.

Previously unnoticed color similarities may give new insight into the correlations

between and within various skin diseases. We introduce discriminative color de-

scriptors which are obtained by LiRaM LVQ and LMNN during supervised training,

and we compare and evaluate their performance for CBIR of dermatological images.

Starting from a 6D vector representation of images, we define three new features as

linear combinations of the original six color components of healthy and lesion skin.

The linear combinations are determined by LiRaM LVQ in a training process which

is guided by classification performance and yields a discriminative representation

of the feature space. With new features we achieve considerable improvement of re-

trieval results in all eight color spaces that we studied. In the five best color spaces

(YCrCb, CIE-Lab, CIE-Lch, CIE-Luv and RGB) the increase of the correct retrieval

rate is between 10% and 27% in the range of k � 1 to k � 25 retrieved images in

comparison to earlier studies. We conclude that adaptive dissimilarity learning is

favorable independent of the choice of the actual color space. The user may decide

according to his personal preference which color representation is most suitable.

The use of LMNN seems natural, since the retrieval is based on a k-NN ap-

proach. However, our investigation shows that the LiRaM LVQ approach outper-
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forms LMNN if the latter takes only a relatively small number κ of neighbors into

account in the training process. For larger κ the obtained metric becomes very simi-

lar to that of LiRaM LVQ and, consequently, the retrieval performances are compa-

rable. The computational effort for LiRaM LVQ training is typically lower than that

of the LMNN optimization which grows with κ. An important advantage of the

LVQ approach is its potential with respect to extensions. As shown, for example,

local metrics can be attached to the prototypes which are responsible for different

areas of the original feature space. In the most favorable color spaces, the localized

variant GMLVQ increased the retrieval rates even further.

We conclude that LiRaM LVQ is an efficient technique for the extraction of highly

discriminative color features for CBIR of dermatological images. With this approach,

we obtain high mean correct retrieval rates of between 84% for k � 1 and 79% for

k � 25 retrieved images in the five best color spaces. For two of the color spaces,

RGB and CIE-Lab, we discuss in detail the canonical linear transformations of the

original six color components to three new features and showed their superiority to

recently introduced approaches.

Obviously, several important extensions are possible. For instance, the auto-

matic detection of regions of interest or the integration of shape information should

be relevant in practical applications. Forthcoming studies should address, among

other modifications, the use of extended original feature spaces which include, for

instance, shape information.
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Chapter 5

Adaptive Matrices for Color Texture
Classification

Art is the imposing of a pattern on experience,

and our aesthetic enjoyment is recognition of the pattern.

Alfred North Whitehead (1861 - 1947)

Abstract

In this chapter we introduce an integrative approach towards color texture classifica-

tion learned by a supervised framework. Our approach is based on the Generalized

LVQ (GLVQ), extended by an adaptive distance measure which is defined in the Fourier

domain and 2D Gabor filters. We evaluate the proposed technique named Color Image

Analysis LVQ (CIA LVQ) on a set of color texture images and compare results with those

achieved by simple gray value transformation on the color images with a comparable dis-

similarity measure and the same filter bank. The features learned by CIA LVQ improve

classification accuracy and they generalize much better for evaluation data previously

unknown to the system.

5.1 Introduction

T
exture analysis and classification are topics of particular interest mainly due to

their numerous possible applications, such as medical imaging, industrial qual-

ity control and remote sensing. Despite the absence of a unique definition, texture is

understood as a description of the spatial arrangement of colors or intensities in an

image. A wide variety of methods for texture analysis has been already developed

such as co-occurrence matrices (Haralick et al. 1973), Markov random fields (Wang

and Liu 1999), autocorrelation methods (Pietikäinen et al. 2000, Ojala et al. 2002), Ga-

bor filtering (Turner 1986, Fogel and Sagi 1989, Jain and Farrokhnia 1991, Kruizinga
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and Petkov 1995, Manjunath and Ma 1996, Grigorescu et al. 2002) and wavelet de-

composition (Wang et al. 1998). However, these methods mostly concern intensity

images and since color information is a vector quantity the transfer of traditional

methods to the color domain is not always straightforward. With regards to color

texture the possible approaches can be distinguished in three categories (Palm 2004).

In the parallel approach (Messer and Kittler 1999, Paschos 2000) textural features are

extracted solely from the luminance plane and are used together with color features.

The sequential approach (Hauta-Kasari et al. 1999) involves a quantization of the

color space and subsequently the extraction of statistical features from the indexed

images. The most popular among them is called the integrative approach (Jain and

Healey 1998, Drimbarean and Whelan 2001, Palm 2004, Hoang et al. 2005) and is

an attempt to describe texture by combining color information with the spatial re-

lationships of image regions within each color channel and between different color

channels.

We introduce a novel integrative approach towards color texture classification

and recognition based on 2D Gabor filters and supervised learning (Bunte, Giotis,

Petkov and Biehl 2011). Given a set of labeled color images (RGB) for training and a

bank of 2D Gabor filters the goal here is to learn a transformation of a color image to

a single channel (intensity) image, such that the Gabor responses of the transformed

images will yield the best possible classification. Most signal processing techniques

are based on insights or empirical observations from neurophysiology or optical

physics. The proposed, novel approach incorporates data-driven adaptation of the

system, e.g. example based learning. Furthermore, the filters used in our approach

can be substituted, depending on the data domain and the task at hand. As an

example we explore the use of rotation and scale invariant descriptors based on

Gabor filter responses (Han and Ma 2007). We demonstrate that our novel approach

yields very good generalization ability with respect to previously unknown data.

In Section 5.2 we introduce the LVQ based color texture learning method. The

experiments are shown in Section 5.3 and finally we conclude in Section 5.4.

5.2 Adaptive matrices for texture classification

We consider a data set consisting of color image patches of a priorly defined size

(s� s) and a bank of Gabor kernels G with different scales and orientations. We use

for both the image patches and the filter kernels their representation in the Fourier

domain. After vectorizing we end up with complex data points xi P CN of dimen-

sion N � s � s � 3 carrying a label yi P t1, . . . , Cu that belong to one of C classes.

Gl P CM with M � s � s is the vectorized kernel of the l-th filter of the bank G. The
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general form of the descriptor for a vectorized patch v given the filter bank G and

parameterized by local transformations Ωk can be written as fΩkpv,Gq : C Ñ C .

Here k corresponds to the index of the prototype wk or the index of its class label

cpwkq for class-wise transformations. For the proposed optimization procedure it is

necessary, that fΩk is differentiable. In this contribution fΩk corresponds to the sum

of the responses of all filter kernels in G to the vectorized patch, thus defining the

descriptor:

fΩkpv,Gq : v Ñ rkpvq �

ļ

Ωkv 
Gl , (5.1)

where 
 denotes the convolution. The filter bank G may be chosen based on the

user’s preference, suitable to the data and the task at hand. The vector v is defined

in the data domain CN and Ωk P CM�N is the local transformation, which maps

the color values to scalar, “intensity” values used for filtering. The dissimilarity

measure is defined by:

dΩ
k

G pxi,wkq � ‖ |rkpxiq|2 � |rkpwkq|2 ‖2 (5.2)

and corresponds to the difference of descriptor magnitudes. This considers two

patches containing the same texture pattern as similar, independent of the position

where the pattern occurs within the patches.

We use the same cost function as in the original GLVQ algorithm Eq. (2.5) includ-

ing the dissimilarity measure defined by Eq. (5.2):

ECIA �

ņ

i�1

dΩ
J

G
� dΩ

K

G

dΩ
J

G
� dΩ

K

G

, with dΩ
L

G � dΩ
L

G pxi,wLq for L P tJ,Ku . (5.3)

We follow a stochastic gradient descent procedure and present the samples xi of

the training set sequentially and update the parameters accordingly. We will refer

to this algorithm as CIA LVQ (see Algorithm 5.1). The detailed description of the

derivatives BECIA

BwL and BECIA

BΩL for L P tJ,Ku defining the learning rules can be found

in Appendix 5.A. A short scheme of the method is also depicted in Fig. 5.1. In the

next section we experiment with the algorithm and show its use in practice.

5.3 Experiments

In order to evaluate the usefulness of the proposed algorithm, we perform classi-

fication on patches of pictures taken from the VisTex database (VisTex 2002). Our

data consists of color images with size 128�128 pixels from the groups Bark, Brick,

Tile, Fabric and Food. Although in texture classification literature each such image



72 5. Adaptive Matrices for Color Texture Classification

Algorithm 5.1 : Color Image Analysis LVQ (CIA LVQ)

1: define a filter bank G

2: initialize the prototypes wj and their labels cpwjq

3: initialize matrices Ωj

4: while stopping criterion not reached do

5: randomly select a training sample xi

6: compute the distances dΩ
j

G
pxi,wjq to the prototypes wj

7: determine closest correct wJ � argmin
j

dΩ
j

G
pxi,wjq with yi � cpwJ q

and closest incorrect wK � argmin
j

dΩ
j

G
pxi,wjq with yi � cpwKq

8: update the prototypes according to wL � wL � τ1 �
BECIA

BwL , L P tJ,Ku

9: update the matrices according to ΩL � ΩL � τ2 �
BECIA

BΩL

10: end while

Define Gabor
filter bank

G1 . . . Gl

Original Image Extract patches

of size s� s
R

G

B

xi � rFpRq,FpGq,FpBqs P Cs�s�3

Fourier-
transform
3 channels

CIA LVQ

Initialize

1. prototypes wk

2. transformations Ωk

Define

1. image descriptor rk

2. distance dΩ
k

G
px,wkq

Optimize

the costs ECIA

with respect to w and Ω

Figure 5.1: Methodology overview for the proposed CIA LVQ.

is often considered as a different class, here we distinguish into five different classes

equivalent to the five aforementioned groups. Despite its increased difficulty, this

classification task allows us to better demonstrate the ability of CIA LVQ to describe

general characteristics of real-world texture patterns.

At first we draw 15�15 patches randomly from each image shown in Fig. 5.2.

The training set contains 150 patches per image, resulting in 3000 samples in total,

while the test set holds 50 patches from each image. The test set may contain patches
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Figure 5.2: Images, which are used to provide

random patches for training and test.
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Figure 5.3: Images used to provide

random patches for evaluation.

which partially overlap with those used for training. Therefore the images in Fig.

5.3 are used in order to create an evaluation set that was never seen in the training

process. The evaluation set consists of 50 randomly drawn patches per image and

is used to show the generalization ability of the approach.

A note is due here to the nature of the filter used. A 2D Gabor filter is defined as

a Gaussian kernel function modulated by a sinusoidal plane wave. All filter kernels

can be generated from one basic wavelet by dilation and rotation. In this experiment

our filter bank consists of 12 Gabor filters of bandwidth equal to 1 at six orientations

θ � 0, 30, 60, 90, 120 and 150 degrees and two scales (wavelegths) varying by one

octave: λ � 7 and 7
?
2. These scales ensure that the Gabor function yields an ade-

quate number of visible parallel excitatory and inhibitory stripe zones. Dependent

on the patch size different scales might be adequate. We set the phase offset φ � 0

and the aspect ratio γ � 1 for all filters. In this way we create center-on symmetric

filters with circular support. We run the CIA LVQ with class-wise matrices Ωc ini-

tialized with the identity matrix and 4 prototypes per class for tmax �300 epochs.

The learning rates were chosen as

τ1ptq � 0.002 p0.005q
t{tmax (5.4)

τ2ptq � 10�3
�
10�2

�t{tmax
, (5.5)

where t is the current epoch. Using more filters and more localized matrices Ωj may

cause overfitting effects. So it is advisable to increase the complexity of the system
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Table 5.1: Confusion matrices (eval. set)

CIA-LVQ:

1 2 3 4 5
°

1 176 10 12 7 2 207

2 1 57 11 9 3 81

3 18 25 43 31 10 127

4 1 5 23 127 4 160

5 4 3 11 26 131 175°
200 100 100 200 150 750

class-wise accuracy of estimation in %

88.00 57.00 43.00 63.50 87.33

RGB2G:

1 2 3 4 5
°

1 52 14 7 36 28 137

2 51 45 30 37 34 197

3 27 27 51 26 22 153

4 29 6 8 83 11 137

5 41 8 4 18 55 126°
200 100 100 200 150 750

class-wise accuracy of estimation in %

26.00 45.00 51.00 41.50 36.67

20 40 60 80 100
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Figure 5.4: Class-wise and individual im-

age accuracies

carefully. The training error is 10.6% and the error on the test set 28%.

We use the same data sets and the same filter bank to compare with the common

approach of deriving textural information only from the luminance plane of images

(Drimbarean and Whelan 2001). This approach is considered to often outperform

combined color and texture features (Mäenpää and Pietikäinen 2004). For compar-

ison, we also use an RGB to gray (RGB2G) transformation, which builds intensity

values by a weighted sum of the color components of every pixel:

0.2989 �R� 0.587 �G� 0.114 �B . (5.6)

We vectorize all patches x and in this case the image patch descriptor is given by

r2pxq �

ļ

x
Gl . (5.7)

We use a Nearest Neighbor (1-NN) classification scheme with a dissimilarity mea-
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sure similar to Eq. (5.2):

dGpx
i,xjq � ‖ |r2px

iq|2 � |r2px
jq|2 ‖2 . (5.8)

The 1-NN scheme based on the RGB2G transformation shows a test error of 37.5%,

but most interesting is the comparison of the classification errors on the evaluation

set. Here the 1-NN scheme shows an error of 61.9%, while the CIA-LVQ still has an

error of 28.8%. The LVQ scheme displays very good generalization, which is shown

in Table 5.1 and Fig. 5.4. Note, that the accuracy rates among individual images

of the same class can vary. Brick and Tile are the most difficult classes, because the

texture is large, so it cannot be captured very well with such a small patch size,

since a lot of patches might be drawn from non-textured regions. On the other side,

classes like Food and Bark with less diversity regarding textural structures can be

learned quite well.

The prototypes, which classify the evaluation set are shown in Fig. 5.5. Addition-

ally we show some example patches from the evaluation set, which are classified

correctly together with their descriptors in Fig. 5.6 and some examples of wrongly

classified patches in Fig. 5.7. Some obvious problems occur due to the random sam-

pling and the very small patchsize: a lot of samples of Brick and Tile, for example,

show homogeneous regions coming from the area in-between the textural structure

(see Fig. 5.7). We observe, that classes which vary a lot in the size of the actual struc-

ture (e.g. Brick and Tile) are more difficult to recognize than classes with small vari-

ations in the scale of texture (like Bark and Food). It is interesting to notice that ran-

dom patches drawn from Food.0010.ppm are 100% correctly classified, even though

no patch from this image was ever used to train the algorithm. The learned local

transformation recognizes the channels leading to the orange color and increased

their weights to distinguish this class from others.

5.4 Conclusion and outlook

In this contribution we proposed a prototype based framework for color texture

analysis. In contrary to standard approaches which are either based on a single

channel representation of the images through a fixed transformation or empirical

observations for combining color and textural information, we offer the alternative

of data driven learning of suitable, parameterized image descriptors. The ability

of weighting different color channels automatically according to their importance

for the classification task is the most important factor which distinguishes our ap-

proach. We have formulated a novel general principle: based on a differentiable

convolution and a predefined filter bank the CIA-LVQ algorithm optimizes the clas-

sification. It is also of conceptual value that this adaptation of LVQ is suitable for
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Bark 4 Brick 6 Brick 7 Brick 8 Tile 9

Tile 11 Tile 12 Fabric 13 Food 17 Food 20

Figure 5.5: Magnitude of the descriptors |rLpw
Lq| of the prototypes which classify

the evaluation set.
example patch of Bark

corresponding descriptor

example patch of Brick

corresponding descriptor

example patch of Tile

corresponding descriptor

example patch of Fabric

corresponding descriptor

example patch of Food

corresponding descriptor

Figure 5.6: Magnitude of the descriptors |rLpwLq| of some correct classified example

patches of the evaluation set.
example patch of Bark

corresponding descriptor

example patch of Brick

corresponding descriptor

example patch of Tile

corresponding descriptor

example patch of Fabric

corresponding descriptor

example patch of Food

corresponding descriptor

Figure 5.7: Magnitude of the descriptors |rLpwLq| of some wrongly classified exam-

ple patches of the evaluation set.
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learning in the complex numbers domain. As an example we used Gabor filters to

classify texture patterns in 15�15 patches randomly drawn from images of the Vis-

Tex database. The results show that the algorithm can learn typical texture patterns

with very good generalization, even from relatively small patches and filter banks.

Similarly to Gabor filters any other family of 2D filters commonly used to describe

gray scale image information could be adapted and applied to color image analysis

with this algorithm. A filter bank with differences of Gaussians for color edge detec-

tion is a possible example. Investigation of the performance of the system on other

filters can be addressed in future. Furthermore, depending on the task it might be

desirable that two patches in which the same texture occurs on different positions

should not be interpreted as similar. In this case another similarity measure should

be used: ‖ |rpxiq � rpwLq| ‖2, which is not based on the difference of magnitudes.

This might be of advantage for example in the recognition of objects such as traf-

fic signs, were a corner or an edge might have different meanings dependent on its

position in the image.

Furthermore, the algorithm theoretically allows the optimization with respect to

all variables. Using a dissimilarity measure

dΩ
k

F px,wkq � ‖ |Ωkx
 Fk|2 �wk‖2 (5.9)

in the cost function ECIA Eq. (5.3) and performing an optimization with respect

to the prototypes w, matrices Ω and the local filters F showed already promising

results. Here, the matrix F can be initialized e.g. as the sum of differently param-

eterized Gabor filters. During the training unnecessary scales and orientations are

suppressed, which yields individually suitable class-wise filter banks. The investi-

gation of this extension will be addressed in forthcoming projects.
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5.A Derivatives of CIA LVQ

Here we show the derivatives of the CIA LVQ costfunction ECIA, see Eq. (5.3), for

one presented training example xi, with respect to the prototypes wL and the trans-

formation matrices ΩL P IRM�N with L P tJ,Ku. In the following we denote the

real part of a variable v by ℜpvq and the imaginary part by ℑpvq. We have to take

the derivatives with respect to the real and imaginary part, respectively:

BECIA

BwL
�

BECIA

BℜpwLq
� i

BECIA

BℑpwLq
�
BECIA

BdΩ
L

G

�

�
BdΩ

L

G

BℜpwLq
� i

BdΩ
L

G

BℑpwLq

�
(5.10)
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�

�
BdΩ
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with γJ
G �

BECIA

BdΩ
J

G

�
2 � dΩ

K

G
pxi,wKq�

dΩ
J

G
pxi,wJ q � dΩ

K

G
pxi,wKq

�2 (5.12)

γK
G �

BECIA

BdΩ
K

G

�
�2 � dΩ

J

G
pxi,wJq�

dΩ
J

G
pxi,wJ q � dΩ

K

G
pxi,wKq

�2 . (5.13)

The derivatives can be written as:

BECIA

BwL
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��
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ļ

ΩL 
Gl

���
(5.14)
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ļ

wL 
Gl

����

,

with � denoting the complex conjugate. A more detailed description of the deriva-

tives is achieved by rewriting the distance Eq. (5.2):

dΩ
L

G px,wLq � ‖ ℜprLpxqq2 � ℑprLpxqq2 � ℜprLpwLqq2 � ℑprLpwLqq2 ‖2 (5.16)
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The derivatives with respect to the real and imaginary parts of one element of the

prototypes wL
r and matrices ΩL

mn read:
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ļ

ℑpGl
mq

�
j̧

ℑpwL
j q � ℜpΩ

L
mjq � ℜpwL

j q � ℑpΩ
L
mjq

��
��

ļ
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Chapter 6

Dimension Reduction Mappings

Any intelligent fool can make things bigger and more

complex . . . It takes a touch of genius - and a lot of courage

to move in the opposite direction.

Albert Einstein

Abstract

In recent years a wealth of dimension reduction techniques for data visualization and

preprocessing has been established. Non-parametric methods require additional effort

for out-of-sample extensions, because they just provide a mapping of a given finite set

of points. In this chapter we propose a general view on non-parametric dimension re-

duction based on the concept of cost functions and properties of the data. Based on this

general principle we transfer non-parametric dimension reduction to explicit mappings

of the data manifold such that direct out-of-sample extensions become possible. Further-

more, this concept offers the possibility to investigate the generalization ability of data

visualization to new data points. We demonstrate the approach based on a simple global

linear mapping as well as prototype-based local linear mappings. In addition, we can

bias the functional form according to given auxiliary information. This leads to explicit

supervised visualization mappings which discriminative properties are comparable to

state-of-the-art approaches.

6.1 Introduction

D
ue to improved sensor technology, dedicated data formats and rapidly increas-

ing digitalization capabilities the amount of electronic data increases dramat-

ically since decades (Frawley et al. 1991). As a consequence, manual inspection of
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digital data sets often becomes infeasible. Automatic methods which help users to

quickly scan through large amounts of data are desirable. In recent years, many

powerful non-linear dimension reduction techniques have been developed which

provide a visualization of complex data sets. This way, humans can rely on their as-

tonishing cognitive capabilities for visual perception when extracting information

from large data volumes: structural characteristics can be captured almost instantly

by humans independent of the number of displayed data points.

In the past years many powerful dimension reduction techniques have been pro-

posed (Lee and Verleysen 2007, van der Maaten et al. 2009, van der Maaten and

Hinton 2008, Venna et al. 2010). Basically, the task of dimensionality reduction is

to represent data points contained in a high-dimensional data manifold by low-

dimensional counterparts in two or three dimensions, while preserving as much

information as possible. Since it is not clear, a priori, which parts of the data are

relevant to the user, this problem is inherently ill-posed: depending on the spe-

cific data domain and the situation at hand, different aspects can be the focus of

attention. Therefore a variety of different methods has been proposed which try to

preserve different properties of the data and which impose additional regularizing

constraints on the methods: Spectral techniques such as Locally Linear Embedding

(LLE) (Roweis and Saul 2000), Isomap (Tenenbaum et al. 2000), or Laplacian Eigen-

maps (Belkin and Niyogi. 2003) rely on the spectrum of the neighborhood graph of

the data and preserve important properties of this graph. In general a unique al-

gebraic solution of the corresponding mathematical objective can be formalized. To

arrive at unimodal costs, these methods often base on very simple affinity func-

tions such as Gaussians. As a consequence their results can be flawed when it

comes to boundaries, disconnected manifolds, or holes. Using more complex affini-

ties such as geodesic distance or local neighborhood relations, techniques such as

Isomap or Maximum Variance Unfolding (MVU) (Weinberger and Saul 2006) can

partially avoid these problems at the prize of higher computational costs. Many

highly non-linear techniques have been proposed as an alternative which often suf-

fer from the existence of local minima. They do not yield unique solutions, and

they require numerical optimization techniques. In turn, due to the greater com-

plexity, their visualization properties may be superior as demonstrated in (Hinton

and Roweis 2003, van der Maaten and Hinton 2008, Carreira-Perpiñán 2010).

All methods mentioned above map a given finite set of data points to low-

dimensions. Additional effort is required to include new points into the mapping

and to arrive at out-of-sample extensions: usually, novel points are mapped to the

projection space by minimizing the underlying cost function of the visualization

method while keeping the projections of the priorly given data points fixed. This

way novel coordinates depend on all given data points, and the effort to map new
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data depends on the size of the training set. Moreover, no explicit mapping function

is available and the generalization ability of the techniques to novel data is not clear.

As an alternative, some approaches derive an explicit function that maps the

given data to low-dimension. This way, an immediate extension to novel data be-

comes possible. Linear techniques such as standard Principal Component Analysis

(PCA) or Fisher Discriminant Analysis (FDA) provide an explicit mapping. Auto-

encoder networks can be seen as a non-linear extension of PCA which directly

aims at the inference of a non-linear mapping function and its approximate inverse.

Nonlinear mapping functions have also been considered by (Bae et al. 2010) where

only few points are mapped using a dimensionality reduction technique and an

interpolation to all data is done by means of a k-NN approach. For LLE, a simi-

lar extension has been proposed based on locally linear functions by (Roweis and

Saul 2000) called Locally Linear Coordination (LLC). There, the function parameters

are optimized directly using the LLE cost function. Similarly, t-distributed SNE (t-

SNE) has been extended to a mapping given by deep encoder networks (van der

Maaten 2009), relying on the t-SNE cost function to optimize the mapping func-

tion parameters. In (Suykens 2008) a kernel mappings with a reference point is

used to arrive at high-quality data visualization mappings. They also experimen-

tally demonstrate the excellent generalization ability and visualization properties

of the technique. Albeit these approaches constitute promising directions to arrive

at explicit dimensionality reduction mappings, many of the techniques have been

developed for a specific setting and dimensionality reduction technique only.

In this chapter we propose a general principle to formalize non-parametric di-

mension reduction based on cost optimization. This general principle allows us to

simultaneously extend non-parametric methods to explicit mapping functions for

which out-of-sample extensions are immediate. In this setting, the functional form

of the mapping is fixed a priori and function parameters are optimized within the

dimension reduction framework instead of the coordinates of single point projec-

tions. We demonstrate the suitability of this approach using two different types of

functions: simple linear projections and locally linear functions. Interestingly, it can

be shown that state of the art dimensionality reduction cost functions as provided

by t-SNE, for example, can even improve simple linear dimensionality reduction

functions as compared to classical PCA. Furthermore, the performance of state-of-

the-art techniques such as presented by (van der Maaten 2009) can be achieved using

more complex locally linear functions. Several benefits arise from an explicit dimen-

sion reduction mapping: out-of-sample extensions are immediate and require only

constant time depending on the chosen form of the mapping. Since an explicit map-

ping function is available, approximate inverse mapping is possible at least locally:

locally linear functions, for example, can be inverted using the pseudo-inverse. This
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makes a deeper investigation of the structure of the projection possible. Depend-

ing on the form of the mapping function, only few parameters need to be deter-

mined and implicit regularization takes place. In consequence, only few data points

are necessary to adequately determine these mapping parameters and generalize to

novel data points. Hence, only a small subset of the full data is necessary for train-

ing, an enormous speed-up for large data sets is possible: Instead of a, usually, qua-

dratic complexity to map the data, due to the computation of the pairwise distances,

the mapping function can be determined in constant time complexity. The full data

set can be displayed in linear time complexity. This opens the way to feasible di-

mension reduction for very large data sets. In this contribution, we experimentally

demonstrate the suitability of the approach and we investigate the generalization

ability in terms of several application. Moreover, we substantiate the experimental

findings with an explicit mathematical formalization of the generalization ability of

dimensionality reduction in the framework of statistical learning theory. Albeit we

are not yet able to provide good explicit generalization bounds, we argue that prin-

cipled learnability can be guaranteed for standard techniques. Another benefit of

an explicit mapping function is the possibility to bias the dimensionality reduction

mapping according to given prior knowledge. The task of dimension reduction is

inherently ill-posed, and which aspects of the data are relevant for the user depends

on the situation at hand. One way to shape the ill-posed task of data visualization

is by incorporating auxiliary information as proposed e.g. by (Kaski et al. 2001).

There exist a few classical dimension reducing visualization tools which take

class labeling into account: Feature selection can be interpreted as a particularly sim-

ple form of discriminative dimensionality reduction, see e.g. (Guyon and Elisseeff

2003) for an overview. Classical LDA as well as partial Least Squares regression

(PLS) offer supervised linear visualization techniques based on the covariances of

the classes; kernel techniques extend these settings to non-linear projections (Ma

et al. 2007, Baudat and Anouar 2000). The principle of adaptive metrics used for

data projection according to the given auxiliary information has been introduced in

(Kaski et al. 2001, Peltonen et al. 2004). The obtained metric can be integrated into

diverse techniques such as Self-organizing Map (SOM), Multidimensional Scaling

(MDS), or a recent information theoretic model for data visualization (Kaski et al.

2001, Peltonen et al. 2004, Venna et al. 2010). An ad hoc metric adaptation is used in

(Geng et al. 2005) to extend Isomap to class labels. Furthermore, in Chapter 7 of this

thesis we discuss the combination of some metric adaptation schemes introduced

in Part I with several examples of dimension reduction techniques (Bunte, Ham-

mer, Wismüller and Biehl 2010). Alternative approaches change the cost function of

dimensionality reduction, see (Iwata et al. 2007, Memisevic and Hinton 2005, Song

et al. 2008) for examples. In this Chapter, we will show that auxiliary information in
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the form of given class labels can be easily integrated into the dimension reduction

scheme by biasing the functional form accordingly. As a result, one obtains a dis-

criminative dimensionality reduction technique which is competitive to alternative

state-of-the-art approaches.

We first shortly review several popular non-parametric dimensionality reduction

techniques. We put them into a general framework based on the notion of cost func-

tions which compare characteristics of the data and the projections. This general

framework allows us to simultaneously extend the methods to explicit mappings

which do not only lead to a finite set of projection coordinates but employ to an

explicit projection function. We demonstrate this principle using a linear mapping

and locally linear projections the form of which are induced by standard cluster-

ing techniques. We incorporate these functional forms into the cost function of t-

SNE. Interestingly, the results are superior compared to standard linear techniques

such as PCA and alternative mapping functions as presented, e.g., by (van der

Maaten 2009). Furthermore, we demonstrate that the functional form can be bi-

ased towards auxiliary label information by choosing the functional form on top of

supervised classification. Finally, we argue that, based on the notion of a mapping

function, generalization properties of dimension reduction can be formalized in the

framework of computational learning theory.

6.2 Dimension reduction as cost optimization

In this section we shortly review some popular dimension reduction methods pro-

posed in the literature. We assume high-dimensional data points are given: xi P IRN

where i � 1 . . . n. These points are projected to a low-dimensional embedding space

E P IRM , with M   N , usually M P t2, 3u for visualization. The coordinates of the

points in the projection space are referred to as ξi P IRM for i � 1, . . . , n. Further-

more, Ξ refers to the matrix of all points tξiuni�1. Often, visualization techniques

refer to the distances or affinities of data in the high-dimensional input space X and

the projection space E , respectively. The pairwise affinities are denoted as dX px
i,xjq

for the original high-dimensional data points and by dEpξ
i, ξjq for the correspond-

ing dissimilarities in the embedding space. Usually, dE is chosen as Euclidean dis-

tance, while dX is chosen according to the data set at hand, e.g. it is given by the

Euclidean or the geodesic distance in the high-dimensional space. A mathematical

formalization of dimensionality reduction can take place in different ways:

Multidimensional Scaling and Extensions:

MDS (Torgerson 1952) is probably one of the oldest dimension reduction methods.

It aims at the preservation of pairwise relations measured in the least square sense.
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The original MDS measures the pairwise relations of the data in terms of dot prod-

ucts in the original and the embedding space respectively and minimizes the cost

function:

EMDS �

i̧j

ppxiqJxj � pξiqJξjq2 . (6.1)

The advantage of this formulation is that an analytical solution is available. In later

approaches, the objective has been changed to the preservation of distances, often

called goodness-of-fit or stress measure:

EMDS �
1

a
i̧j

wijpdX px
i,xjq � dEpξ

i, ξjqq2 (6.2)

with Euclidean distances dX and dE and a normalizing constant a (Lee and Verleysen

2007). The weights can be chosen for example as wij � 1. In the well-known Sam-

mon mapping (Sammon 1969) they take the form wij � 1{dX px
i,xjq, this way em-

phasizing the preservation of small distances. There, the constant a is set to the sum

of the distances and the optimization takes place by a gradient descent procedure.

Isomap:

Depending on the actual data, the Euclidean distance might not be appropriate to

describe pairwise relations. Therefore, Isomap (Geng et al. 2005) is based on the

approximation of geodesic distances, which measure the relations along the data

manifold. A neighborhood graph is constructed using k neighborhoods or ǫ-balls

and the shortest path lengths in this graph (computed using Dijkstra’s algorithm,

for example) define the pairwise affinities dX in the data space. Afterwards, the

standard MDS procedure is used, which is mentioned above.

Locally Linear Embedding:

LLE (Roweis and Saul 2000) aims at the preservation of local topologies defined by

the reconstruction of data points i by means of linear combination of its neighbors

j. We denote the property that j is neighbor to i by i Ñ j. As for Isomap, local

neighbors can be defined based on k-NNs or ǫ-balls, respectively. To obtain weights

for reconstruction, the objective
°

i

�
xi �

°
j: iÑj wijx

j
	2

in original space is min-

imized under the constraint
°

j wij � 1, in oder to ensure rotation and translation

invariance of the output. Afterwards, the projections are determined such that lo-

cal linear relationships are preserved as well as possible in a least squared sense:

minimize
°

ipξ
i �

°
j: iÑj wijξ

jq2 subject to the constraints of centered coordinates
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i ξ

i � 0 with unit covariance ΞJΞ � I. Where I is the M �M identity matrix.

Here, the normalization of the reconstruction weights leads to a unique optimum of

the system. The LLE method is summarized in Algorithm 6.1:

Algorithm 6.1 : Optimization problem for Locally Linear Embedding

Step 1: select neighbors iÑ j

Step 2: obtain reconstruction weights

Minimize
°

i

�
xi �

°
j: iÑj wijx

j
	2

subject to:

rotation and translation invariance:
°

j wij � 1

Step 3: determine projections

Minimize
°

ipξ
i �

°
j: iÑj wijξ

jq2 subject to:

(a) centered coordinates:
°

i ξ
i � 0

(b) unit covariance ΞJΞ � I

Laplacian Eigenmaps:

Similar to LLE and Isomap, Laplacian Eigenmaps (Belkin and Niyogi. 2003) are

based on the construction of a local neighborhood graph given the k-NNs or an

ǫ-neighborhood, respectively. The connections are weighted by coefficients wij , e.g.

using a heat kernel. The projection is obtained by solving a generalized eigenvalue

problem given the corresponding graph Laplacian L � A�D with adjacency matrix

A and the degree matrix D of the graph, picking the eigendirections corresponding

to the smallest eigenvalues unequal to 0. This is equivalent to minimizing the em-

bedding objective

i̧Ñj

wij � dEpξ
i, ξjq2 � 2ΞJL Ξ (considering Euclidean distance dEq (6.3)

under constraints ΞJD Ξ � I and ΞJD 1 � 0, where D is the degree matrix to

remove scaling and translation factors. This objective is summarized in Algorithm

6.2:

Algorithm 6.2 : Optimization problem for Laplacian Eigenmaps

Construct neighborhood graph weighting the edges by wij

and determine graph Laplacian L � A�D

Minimize ΞJL Ξ subject to:

(a) ΞJD Ξ � I

(b) ΞJD 1 � 0
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Maximum Variance Unfolding:

MVU (Weinberger and Saul 2006) is based on a neighborhood graph with k near-

est neighborhood graphs or ǫ-neighborhoods N . Projections ξi are determined by

maximizing the variance of the projection. The aim is, that neighboring points xi

and xj preserve their affinities also in the low-dimensional space after projection:

dEpξ
i, ξjq � dX px

i,xjq. Considering the inner product matrix K � pΞJqΞ a refor-

mulation as a convex problem is possible and a solution can be found in terms of a

semidefinite program (SDP) (Vandenberghe and Boyd 1994). The variance is max-

imized by maximizing the trace of K (maximum variance unfolding) under con-

straints as summarized in Algorithm 6.3.

Algorithm 6.3 : Optimization problem for Maximum Variance Unfolding

Maximize max
K©0 trpKq with K P IRM�M subject to:

(a) preservation of distances:

dEpξ
i, ξjq � Kii �Kjj � 2Kij � dX px

i,xjq �pi, jq P N

(b) centered embedding data:

K1 � 0, where 1 � p1, . . . , 1qJ and 0 � p0, . . . , 0qJ

(c) K © 0

Numerous variants of the original formulation exist, where for example the dis-

tances are only allow to shrink or low-rank expansions of K are used to cope with

the computational complexity of semidefinite programming. Furthermore, if a pre-

servation of neighbored distances is not exactly possible, slack variables can be in-

troduced.

Stochastic Neighbor Embedding:

Stochastic Neighbor Embedding (SNE) (Hinton and Roweis 2003) defines the char-

acteristics of the data in terms of probabilities that i would pick j as neighbor in the

original and embedding space respectively:

pj|i �
exp

�
�dX pxi,xjq2

2σi

	°
k�i exp

�
�dX pxi,xkq2

2σi

	 (6.4)

and qj|i �
exp

�
�dEpξ

i, ξj
�2°

k�i exp
�
�dEpξ

i, ξkq2
	 (6.5)
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using Euclidean distances as default. The objective

ESNE � �

i̧j

pj|i log
pj|i

qj|i
(6.6)

corresponds to the Kullback-Leibler divergence between the probability densities in

the original and the projection space. The bandwidths σi is either set by hand or is

found by a binary search, such that the entropy of the distribution over neighbors

becomes equal to log k. Here k corresponds to the effective number of local neigh-

bors, which is chosen by hand and in the following referred to as “perplexity”. A

gradient descent procedure is used for optimization, based on the derivative:

BESNE

Bξi
� 2

j̧

pξi � ξjqppj|i � qj|i � pi|j � qi|jq . (6.7)

This can be interpreted as a sum of forces pulling ξi toward ξj or pushing it away

depending on whether j is observed to be a neighbor more or less often than desired.

Algorithm 6.4 : Stochastic Neighbor Embedding (SNE)

1: determine σi (e.g. based on the perplexity) and compute probabilities pj|i (6.4)

2: initialize low dimensional images ξ

3: while stopping criterion not reached do

4: compute probabilities qj|i Eq. (6.5)

5: update the ξi according to BESNE

Bξi Eq. (6.7)

6: end while

T-Distributed Stochastic Neighbor Embedding:

t-SNE (van der Maaten and Hinton 2008) modifies the SNE cost function such that

the long tailed student-t distribution is used in the embedding space instead of

Gaussians. The cost function

Et�SNE �

i̧ j̧

pij log

�
pij

qij



(6.8)

uses symmetrized conditional probabilities

pij �
pj|i � pi|j

2n
(6.9)

and qij �
p1� dEpξ

i, ξjq{ςq�
ς�1
2°

k�lp1� dEpξ
k, ξlq{ςq�

ς�1
2

(6.10)
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with n denoting the number of data points and the student-t distribution parame-

terized with ς � �1 by default. Again, optimization is done in terms of a gradient

method.

Algorithm 6.5 : t-distributed SNE (t-SNE)

same as for SNE using the student-t distribution in the embedding space

and replacing the probabilities by Eqs. (6.9) and (6.10)

Neighborhood Retrieval Visualizer:

In (Venna et al. 2010) a quality measure for dimension reduction is derived from

an information retrieval point of view is proposed. A new dimension reduction

technique based on the new objective accompanies this proposal: the Neighborhood

Retrieval Visualizer (NeRV). The cost function reads:

ENeRV � �c
i̧j

pj|i log
pj|i

qj|i
� p1� cq

i̧j

qj|i log
qj|i

pj|i
(6.11)

with probabilities as defined for SNE (Eqs. (6.4) and (6.5)) and a weighting param-

eter c P r0, 1s to control the influence of the competing terms related to the tradi-

tional measures precision and recall. The t-distributed NeRV (t-NeRV) extension is

straightforward considering symmetric pairwise probabilities just as in t-SNE (Eqs.

(6.9) and (6.10)) in the symmetrized version of the Kullback-Leibler divergence.

6.2.1 A general view

All methods as summarized above obey one general principle. Assume a finite

sample of points X � pxi P IRN | i � 1, . . . , nq � px1, . . . ,xnq is given. These

points should be mapped to a low-dimensional embedding space IRM with M   N ,

where data point xi is mapped to the projection ξi P IRM by means of a non-

parametric mapping. The projections are referred to as Ξ � pξi | i � 1, . . . , nq �

pξ1, . . . , ξnq. The sequence of tuples of data points and their projections is referred

to as XΞ � ppx1, ξ1q, . . . , pxn, ξnqq. We denote the set of all finite subsequences of

IRN by SpIRN q; more generally SpAq refers to all finite subsequences of a given set

A. Given a sequence X � px1, . . . ,xnq, its length is denoted by n � |X|.

For all methods, the coefficients ξi are determined based on the same general

principle, using the same basic ingredients, the characteristics derived from the orig-

inal training set X for every data point, corresponding characteristics of its projec-

tion, and an error measure between these two characteristics. The latter is min-
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imized during projection, possibly taking into account further constraints. More

precisely, dimensionality reduction is characterized by the following ingredients:

• A function charX : SpIRN q � IRN Ñ SpIRq is fixed which maps a data se-

quence X and a point x in the original space IRN to a characteristic. Usually,

|charX pX,xq| � |X|.

• A function charE : SpIRM � IRN q � pIRM � IRN q Ñ SpIRq is fixed which maps

a finite subset XΞ of points and their projections, and a given tuple of a point

and its projection to a corresponding characteristic.

Usually |charEpXΞ, pxi, ξiqq| � |XΞ|.

• An error measure is fixed which measures the difference of two such charac-

teristics: error : SpIRq � SpIRq Ñ IR.

• Given a finite sequence X P SpIRN q, dimensionality reduction takes place by

determining the projection ξi of every xi such that the costs

costspXΞq :�

x̧iPX

errorpcharX pX,xiq, charEpXΞ, pxi, ξiqq (6.12)

are minimized.

• Possibly, additional constraints are imposed on ξi to guarantee uniqueness or

invariance of the result. This can be formalized by a constraint function

constraint : SpIRM � IRN q Ñ IR (6.13)

which is optimized simultaneously to the overall costs (6.12) and which can

implement hard constraints by means of an indicator function or soft con-

straints by means of a real-valued function.

The methods differ in the definition of the data characteristics and in the way the

error of the characteristics is defined. Furthermore, they differ in the (implicit or ex-

plicit) computation of the characteristics and the employed (analytical or numerical)

optimization method. The objective (6.12) and the constraints (6.13) might be con-

tradictory, and the way in which these two objectives are combined can be chosen

differently.

Table 6.1 summarizes the properties of the different optimization methods with

respect to this general principle. We explain the formalization and the exact choice

of the relevant functions in more detail in the following:
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MDS: the characteristics are the pairwise Euclidean distances in the original and

embedding space respectively:

charX pX,xq � pdX px
1,xq, . . . , dX px

n,xqq

and

charEpXΞ, px, ξqq � pdEpξ
1, ξq, . . . , dEpξ

n, ξqq

In particular, the characteristic charE depends on the projections of the data only

and not the original coefficients in this case. The cost function is the least squared

error, i.e.

errorppa1, . . . , anq, pb1, . . . , bnqq �

ņ

i�1

pai � biq
2{ai

for ai, bi P IR, where the weighting corresponds to the Sammon mapping. Note that

only sequences of the same length are compared via this function. No constraints

are imposed, i.e. the constraint function (6.13) is trivial.

Isomap: Isomap differs from MDS only in the characteristic charX which is given

by the geodesic distances pdgeodesicpx
1,xq, . . . , dgeodesicpx

n,xqq. Geodesic distances

are usually approximated in the data set by means of the following algorithm: A

neighborhood graph is constructed from X � px1, . . . ,xnq and x by means of an

ǫ-neighborhood or a k-NN graph with vertices enumerated by xi and x. Then, all

shortest paths from x to xi are computed within this graph. These distances consti-

tute an approximation of the geodesic distances of the underlying data manifold.

LLE: In LLE the characteristics are the local reconstruction weights of points esti-

mated by their neighborhood, i.e.

charX pX,xq � argminpw1,...,wnq

$&%�x�
i̧

1xÑxi wix
i

�2 �����
i̧

wi � 1

,.-
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where 1xÑxi denotes the characteristic function of the neighbors of x in X, exclud-

ing x itself.

charEpXΞ, px, ξqq � argminpw̃1,...,w̃nq

$&%�ξ �
i̧

1xÑxi w̃iξ
i

�2
,.-

This characteristic uses both, the projections ξi, and the data in original space xi to

define the neighborhood graph. Since the characteristic charE already includes an

approximation, the error can be picked in a trivial way:

errorppa1, . . . , anq, pb1, . . . , bnqq �

"
0 if �i ai � bi

1 otherwise

Because of this definition, minimization of (6.12) is equivalent to a minimization of°
ipξ

i �
°

j 1xiÑxj wijξ
jq2 where the reconstruction weights wij and the neighbor-

hood structure 1xiÑxj are taken from the original data space. Since this formulation

is not well posed, 0 being an obvious global optimum, regularization is used. The

constraints enforce that the projection coefficients are centered at the origin and their

correlation matrix is given by the unit matrix. Since these constraints can be fulfilled

exactly, the characteristic function

constraintpXΞq �

"
0 if

°
ξi � 0 and

°
i ξ

ipξiqJ � n � I

1 otherwise

can be used.

Laplacian Eigenmap: The characteristics of the original data space is based on the

local neighborhood structure and an appropriate weighting of distances given in

this neighborhood, e.g. weighting according to the heat kernel:

charX pX,xq � p1xÑx1 � expp�px� x1q2{σq, . . . , 1xÑxn � expp�px� xnq2{σqq .

Characteristics of the projections are similar, but based on the standard Euclidean

distance

charEpXΞ, px, ξqq � p1xÑx1 � pξ � ξ1q2, . . . , 1xÑxn � pξ � ξnq2q .

The cost function is given by the dot product:

errorppa1, . . . , anq, pb1, . . . , bnqq �
i̧

aibi
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which is minimized. Since this formulation allows the trivial solution 0, constraints

are imposed. Set dii �
°

j 1xiÑxj expp�pxi � xjq2{σq, then an arbitrary scaling

factor and translation of the solution is removed by imposing the constraint function

constraintpXΞq �

"
0 if

°
i diiξ

ipξiqqJ � I and
°

i diiξ
i � 0

1 otherwise

MVU: Similarly,

charX pX,xq � p1xÑx1 � px� x1q2, . . . , 1xÑxn � px� xnq2q

and

charEpXΞ, px, ξqq � p1xÑx1 � pξ � ξ1q2, . . . , 1xÑxn � pξ � ξnq2q

with error

errorppa1, . . . , anq, pb1, . . . , bnqq �

"
0 if �i ai � bi

1 otherwise

and constraint

constraintpXΞq � �
i̧j

pξi � ξjq2 �

$&% 0 if
°

i ξ
i � 0

c otherwise

with a constant c. The cost term defines a characteristic function which might not

possess a feasible solution because it is in general not possible to exactly preserve

all local distances. Therefore, the cost function should be “smoothed”. In MVU,

the characteristic functions are taken as constraints of an optimization problem and

slack variables are introduced.

SNE: Similarly,

charX pX,xq �

�� exp
�
�dX px,xiq2

2σx

	°
xk ��x exp

�
�dX px,xkq2

2σx

	��
i�1,...,n

where entries corresponding to xi � x are set to 0, and

charEpXΞ, px, ξqq �

�� exp
�
�dEpξ, ξ

i
�2°

xk ��x exp
�
�dEpξ, ξ

kq2
	��

i�1,...,n
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again setting entries for ξi � ξ to 0. The bandwidth parameter σx is determined

such that the effective number of neighbors of x in X as measured via an informa-

tion theoretic framework is equal to a predefined value, the perplexity, which con-

stitutes a meta-parameter of the model. The error is given by the Kullback Leibler

divergence

errorppa1, . . . , anq, pb1, . . . , bnqq �
i̧

ai log
ai

bi

No constraints are imposed.

t-SNE: Similar to SNE, we have

charX pX,xq � 1{p2p|XY txu|qq �

���� exp
�
�dX px,xiq2

2σx

	°
xkPX,xk ��x

exp
�
�dX px,xkq2

2σx

	����
i�1,...,n

� 1{p2p|XY txu|qq �

���� exp
�
�dX px,xiq2

2σ
xi

	°
xkPXYtxu,xk ��xi

exp
�
�dX pxk,xiq2

2σ
xi

	����
i�1,...,n

where XY txu refers to the set of elements without duplicates, and

charEpXΞ, px, ξqq �

�
p1� pξ � ξiq2q�1°

xk ��xlPXYtxup1� pξk � ξlq2q�1

�
i�1,...,n

setting entries corresponding to x � xi to 0. Again, the Kullback Leibler divergence

is used and no constraints are imposed.

NeRV: NeRV deviates from SNE only in the choice of the cost function which is

errorppa1, . . . , anq, pb1, . . . , bnqq � c
i̧

ai log
ai

bi
� p1� cq

i̧

bi log
bi

ai

with appropriate weighting c.

t-NeRV: Similarly, t-NeRV uses the same cost function as NeRV in the t-SNE set-

ting.

These formalizations are summarized in Tab. 6.1. Note that some of the tech-

niques allow for an explicit algebraic solution or lead to a unique optimum such as

LLE, MVU, and Laplacian eigenmaps, while others require numeric optimization
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such as SNE and its variants. For the latter cases, unique solutions usually do not

exist and multiple local optima may be found depending on the initialization of the

parameters. Visualizations obtained this way can differ significantly from one run

to the next depending on the initialization strategy. However, as argued by (van der

Maaten and Hinton 2008), this fact is not necessarily a drawback of the technique.

Usually, high-dimensional data sets cannot be embedded into low-dimensions with-

out loss of information. Often, there exists more than one reasonable embedding

of data which is inherently ambiguous. Different local optima of the projection

techniques can correspond to different low-dimensional views of the data with the

same quality (as measured e.g. using evaluation measures as proposed by (Lee and

Verleysen 2009, Venna et al. 2010)). This argument is in line with our experimental

observation, that dimension reduction based on t-SNE leads to qualitatively differ-

ent behavior in different runs. However, the quality of the different results usually

does not differ much from each other when using the quality measure proposed by

(Lee and Verleysen 2009), for instance.

6.2.2 Out-of-sample extensions

One benefit of our general formulation is that the optimization steps are separated

from the principled mathematical objective of the actual technique at hand. As an

immediate consequence, a principled framework for out-of-sample extension can be

formalized simultaneously for all techniques. Here, out-of-sample extension refers

to the question of how to extend the projection to a novel point x P IRN if a set of

points X is already mapped to projections Ξ. Assume that a dimension reduction

for a given data set is given, characterized by the sequence of points and their pro-

jections XΞ. Assume that a novel data point x is considered. Then, a reasonable

projection ξ of this point can be obtained by means of the mapping: x ÞÑ ξ such that

the costs

errorpcharX pX,xq, charEpXΞ, px, ξqq

are minimized. This term corresponds to the contribution of x and its projection ξ

to the overall costs (6.12) assuming that the projections Ξ of X are fixed. Simultane-

ously, the constraints

constraintpXΞ  px, ξqq

need to be optimized where XΞ  px, ξq denotes the concatenation of the known

coordinates and the novel projection px, ξq, where again, the coefficients Ξ are kept

fixed and only the novel projection coordinates ξ are treated as free parameters. For

simple constraints such as given for MDS, Isomap, and SNE and its variants, this

immediately yields a mathematical formalization of out-of-sample extensions. Nu-

merical optimization such as gradient techniques can be used to obtain solutions.
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For LLE and Laplacian Eigenmaps the constraints are given by an indicator func-

tion, the same holds for the constraint
°

ξi � 0 for MVU. These constraints can no

longer exactly be fulfilled and should be weakened to soft constraints. This has the

consequence that, in general, explicit algebraic solutions of the optimization prob-

lem are no longer available.

Typically, the complexity of this approach depends on the number n of the given

data points. Hence, this procedure can be quite time consuming depending on the

given data set. Moreover, this mapping leads to an implicit functional prescription

in terms of an optimum of a complicated function, which may display local optima.

In the following, we will substitute the implicit form by an explicit functional

prescription the form of which is fixed a priori. We derive techniques to determine

function parameters by means of the given optimization objectives. The fact that

non-parametric dimensionality reduction is formalized via a general framework al-

lows us to simultaneously extend all these methods to explicit mapping functions

in a principled way.

6.3 Dimension reduction mappings

Due to their dependency on pairwise dissimilarities, the computational effort of

most dimensionality reduction techniques scales quadratically with respect to the

number of data points. This makes them infeasible for large data sets. Even linear

techniques, such as presented in (Bunte, Hammer, Villmann, Biehl and Wismüller

2011), can reach their limits for very large data sets so that sub-linear or even con-

stant time techniques are required. Furthermore, it might be inadequate to display

all data points given a large data set due to the limited resolution on screens or

prints. Therefore, in the literature, often a random subsample of the full data set

is picked as representative of the data, see e.g. the overviews (van der Maaten

et al. 2009, Venna et al. 2010). If additional points are added on demand, out-of-

sample extension as specified above is necessary.

One crucial property of this procedure consists in the requirement that the map-

ping which is determined from a small subsample is representative for a mapping

of the full data set. Hence, the generalization ability of dimensionality reduction to

novel data points must be guaranteed. To our knowledge, the generalization ability

of non-parametric dimension reduction has hardly been verified experimentally in

the literature (one exception being presented e.g. by (Suykens 2008)), nor do exact

mathematical treatments of the generalization ability exist.

Here, we take a different point of view and address the problem of dimension-

ality reduction by inferring an explicit mapping function. This has several benefits:
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a mapping function allows immediate extension to novel data points by simply ap-

plying the mapping. Hence, large data sets can be dealt with since the mapping

function can be inferred from a small subset only in constant time (assuming con-

stant size of the subset). Mapping all data points requires linear time only. The

generalization ability of the mapping function can be addressed explicitly in ex-

periments. We will observe an excellent generalization ability in several examples.

Furthermore, the generalization ability can be treated in an exact mathematical way

by referring to the mapping function. We will argue that for typical mapping func-

tions guarantees exist in the framework of statistical learning theory. An additional

benefit consists in the fact that the complexity of the mapping function and its func-

tional form can be chosen priorly, such that auxiliary information, e.g. in terms of

class labels, can be integrated into the system.

6.3.1 Previous work

A few dimensionality reduction techniques provide an explicit mapping of the data:

Linear methods such as PCA or neighborhood preserving projection optimize the

information loss of the projection (Bishop 2006, He et al. 2005). Extensions to non-

linear functions are given by autoencoder networks, which provide a function given

by a multilayer feedforward network in such a way that the reconstruction error

is minimized when projecting back with another feedforward network (van der

Maaten et al. 2009). Typically, training is done by standard back propagation, di-

rectly minimizing the reconstruction error. Manifold charting connects local linear

embeddings obtained by local PCA, for example, by minimizing the error on the

overlaps (Brand 2002, Teh and Roweis 2003). This can be formulated in terms of

a generalized eigenvalue problem. Topographic maps such as the self-organizing

map or generative topographic mapping characterize data in terms of prototypes

which are visualized in low-dimensions (Bishop and Williams 1998, Kohonen et al.

2001). Due to the clustering, new data points can directly be visualized by mapping

them to the closest prototype or its visualization, respectively.

Some non-parametric dimension reduction methods, as introduced above, have

been extended to global dimension reduction mappings. For example, LLC (Teh

and Roweis 2003) extends LLE by assuming that local linear projections are avail-

able, such as local PCAs, and combining these using affine transformations. The

resulting points are inserted in the LLE cost function and additional parameters are

optimized accordingly. Kernel maps, based on the ideas of kernel eigenmap meth-

ods, provide direct out-of-sample extensions with excellent generalization ability

(Suykens 2008). Parametric t-SNE (van der Maaten 2009) extends t-SNE towards

an embedding given by a multilayer neural network. The network parameters are
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determined using back propagation, where, instead of the mean squared error, the t-

SNE cost function is taken as objective. These techniques, however, are often specif-

ically tailored to the functional form of the mapping or the specific properties of

the technique. In contrast, we propose a general principle to extend non-parametric

dimension reduction to explicit mappings.

6.3.2 A general principle

As explained above, a dimension reduction technique determines an implicit func-

tion of the full data space to the projection space f : IRN Ñ IRM . A data point x

is projected to low-dimensional counterparts which minimizes the respective cost

function and constraints. Depending on the method, f might have a complex form

and its computation might be time consuming. This computational complexity can

be avoided by defining an explicit dimension reduction mapping function:

fW : IRN Ñ IRM ,xÑ pξ � fW pxq (6.14)

of fixed form parameterized by W . The general formalization of dimension reduc-

tion as cost optimization allows us to extend non-parametric embedding to an ex-

plicit mapping function fW as follows: We fix a parameterized function fW : IRN Ñ

IRM . Instead of the projection coordinates ξ, we consider the images of the mappingpξ � fW pxq and optimize the parameters W such that the costs

costspXpΞq �
x̧iPX

errorpcharX pX,xiq, charEpXpΞ, pxi,pξiqqq (6.15)

become minimal, under the constraints

constraintspXpΞq (6.16)

where XpΞ refers to the sequence ppx1,pξ1 � fW px1q, . . . , pxn,pξn � fW pxnqq.

This principle leads to a well defined mathematical objective for the mapping

parameters W for every dimension reduction method as summarized in Tab. 6.1.

For out-of-sample extensions, however, hard constraints such as imposed for LLE,

MVU, and Laplacian eigenmaps can no longer exactly be fulfilled and should be

transferred to soft constraints. This has the consequence that the optimization prob-

lem differs from the on in the original method: A closed form solution as given for,

e.g. spectral methods might no longer be available for a general functional form fW

and soft constraints. The functional form fW need to be specified a priori. It can

be chosen as a global linear function, a combination of locally linear projections, a

feedforward neural network, or any parameterized, possibly non-linear, function. If
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gradient techniques are used for the optimization of the parameters W , fW has to

be differentiable with respect to W . The functional form of fW defines the flexibil-

ity of the resulting dimensionality reduction mapping. Naturally, restricted choices

such as linear forms lead to less flexibility than universal approximators such as

feedforward networks or general kernel maps.

Note that this provides a general framework which extends dimensionality re-

duction techniques in order to obtain explicit mapping functions. The ingredients

are formally defined for all methods specified in Table 6.1. This gives a mathematical

objective for all functional forms of fW and all these methods, provided hard con-

straints of LLE and similar are softened in such a way that feasible solutions result.

The objectives can directly be optimized using universal optimization techniques

such as gradient methods or local search techniques. Explicit algebraic solutions as

given for the original spectral techniques are no longer available, however. Further-

more, the numeric optimization task can be difficult in practice.

Since every possible dimension reduction techniques and every choice of the

form fW leads to a different method, an extensive evaluation of all possible choices

is beyond the scope of this thesis. In the next section we consider example algo-

rithms for two specific mapping functions: a global linear one and a non-linear

mapping based on local linear projections in the t-SNE formalism. For the latter

setting, we first demonstrate the feasibility of the results in the unsupervised setting

for local linear maps in comparison to feedforward networks used for dimension

reduction. Then, we demonstrate the possibility to integrate supervised label infor-

mation into the technique by means of a bias of the functional form of fW .

6.4 Linear t-SNE mapping

In this section we derive the formulation based on a linear hypothesis for the map-

ping, optimized according to the t-SNE cost function. In this case the mapping

fW : xi Ñ pξi � A � xi (6.17)

is expressed in terms of a rectangular matrix A which defines a linear transformation

from IRN Ñ IRM . This matrix can be optimized by following a stochastic gradient

descent procedure using the gradient of the t-SNE cost function (Eq. (6.8)):

BEt�SNE

BA
�

i̧ j̧

BEt�SNE

Bqij
�

Bqij

BdEppξi, pξjq2 � BdEppξi, pξjq2BA

�
ς � 1

2ς
i̧ j̧

ppij � qjiq �

�
1�

dEppξi, pξjq
ς

��1

�
BdEppξi, pξjq2

BA
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Using Euclidean distance dEppξi, pξjq � ||Axi �Axj || it follows:

BdEppξi, pξjq2
BA

� 2pAxi �Axjqpxi � xjq,

and hence (see Appendix 6.A.1 for details)

BEt�SNE

BA
�
ς � 1

ς
i̧ j̧

ppij � qjiq

1� 1
ς
||Axi �Axj ||2

� pAxi �Axjqpxi � xjq . (6.18)

An example result of this algorithm on a three dimensional benchmark data set

is compared to simple PCA. The data contains three Gaussians arranged on top

of each other (see upper left panel of Figure 6.1). Because of the variance in the

z-direction PCA projects the modes onto each other loosing the cluster information

(see lower left panel in Figure 6.1). The linear mapping obtained by the optimization

of the t-SNE cost function (referred to as DiReduct mapping) on the other hand

shows a much clearer separation of the original clusters (see upper right panel of

Figure 6.1). This is due to the preservation of local structures formulated in the

t-SNE objective rather than the preservation of global variances as used in PCA.

A quantitative evaluation of the two mappings is also included in the lower right

panel of Figure 6.1, based on the quality measure proposed by (Lee and Verleysen

2008, Lee and Verleysen 2009). Basically, it relies on k-intrusions and k-extrusions,

which means it compares k-ary neighborhoods given in the original high-dimen-

sional space with those occurring in the low-dimensional space. Intrusion refers to

samples intruding a neighborhood in the embedding space, while extrusion counts

the number of samples which are missing in the projected k-ary neighborhoods.

The overall quality measure Q measures the percentage of data which is neither

k-intrusive nor k-extrusive. In the optimal case all neighborhoods are exactly pre-

served which results in a value of Q � 1. B measures the percentage of k-intrusions

minus the percentage of k-extrusions in the projection and therefore shows the ten-

dency of the mapping method: techniques with negative values for B are char-

acterized by extrusive behavior, while those with positive values tend to be more

intrusive. The procedure is summarized in Algorithm 6.6:

Obviously, DiReduct shows a superior quality, in particular for small neighbor-

hood ranges, since it preserves local structures of the data to a larger extent. Further,

unlike PCA which displays a trend towards highly intrusive behavior, it is rather

neutral in the mapping character, being mildly extrusive for medium values of k.
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Figure 6.1: Simulation results on a three class benchmark data set using PCA and a

global linear map optimizing the t-SNE cost function, respectively. The latter leads

to a better separation due to its local nature, which can be formally evaluated using

the measure of intrusion and extrusion on the resulting mapping.

Algorithm 6.6 : Intrusion / Extrusion measure for dimension reduction

1: compute the co-ranking matrix Q � r| tpi, jq : Rij � k and Rij � lu |s1¤k,l¤n�1

with Rij and Rij denoting the rank of sample xi with respect to xj and the rank

of ξi with respect to ξj in the high- and low-dimensional space, respectively

2: use blocks of the co-ranking matrix to identify k-intrusions and k-extrusions

3: obtain the overall quality Q based on the weighted averages that take into ac-

count all k-intrusions and k-extrusions

4: compute B measuring the percentage of k-intrusions minus the percentage of

k-extrusions indicating the overall behavior of the dimension reduction:

negative values imply extrusive and positive values indicate intrusive behavior
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6.5 Local Linear t-SNE mappings

In this section we consider non-linear mapping functions obtained by the principles

outlined above. Again, we employ the t-SNE cost function. The functional form

fW is chosen in two different ways: First, we consider fW given by a multilayer

feedforward network as proposed by (van der Maaten 2009). The update equations

for a feedforward network can be derived from the t-SNE cost function and are

similar to standard back-propagation, see (van der Maaten 2009) for details.

Second, we consider a locally linear projection which is based on local mappings

obtained by prototype-based techniques such as Neural Gas (NG) in combination

with local PCA or mixtures of probabilistic PCA (Möller and Hoffmann 2004). The

latter techniques provide a set of prototypes wk P IRN , dividing the data space into

k receptive fields, and corresponding local projections Ωk P IRm�N with m ¤ N .

We assume that locally linear projections of the data points are derived from one of

these techniques:

xi Ñ pkpxiq � Ωkpxi �wkq (6.19)

with local matrices Ωk and prototypes wk. We assume furthermore the existence of

responsibilities rik of the local mapping pk for data point xi, where
°

k rik � 1. In

the following, we choose simple responsibilities based on the receptive fields:

rik �

#
1 if dX px

i,wkq ¤ dX px
i,wjq �k � j

0 otherwise
(6.20)

More generally, a point x is associated with the responsibilities rkpxq in the same

way. A global non-linear mapping function combines these linear projections:

fW : xÑ pξ �
ķ

rkpA
k � pkpxq � okq , (6.21)

using local linear projections Ak P IRM�m with M ¤ m and local offsets ok P IRM

to align the local pieces. The number of parameters W that have to be determined,

depends on the number of local projections k and their dimension M . Usually, it is

much smaller than the number of parameters when projecting all points ξi directly.

Hence, it is sufficient to consider a small part of the given training data only, in

order to obtained a valid dimension reduction. We determine the parameters by a

stochastic gradient descent based on the derivative of the t-SNE cost function (see

also Appendix 6.A.2):

BEt�SNE

Bok
�
ς � 1

ς
i̧j

ppij � qjiq

1� 1
ς
dEppξi, pξjq2 � ppξi � pξjqprik � rjkq (6.22)
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and

BEt�SNE

BAk
�
ς � 1

ς
i̧j

ppij � qjiq

1� 1
ς
dEppξi, pξjq2 � ppξi � pξjqprikpkpxiq � rjkp

kpxjqq (6.23)

assuming Euclidean distance in the projection space, as before.

As an example, we show the results obtained on the UCI image segmentation

data set. It consists of 7 classes and 2310 instances of 3�3 regions randomly drawn

from 7 hand segmented outdoor images. Three of the 19 features were not taken into

account, because they show no variance. We scaled the features by dividing with

the maximal feature value in the data followed by PCA reducing the dimension

to m � 10. For the locally linear projection, we run the NG algorithm (Martinetz

and Schulten 1991, Cottrell et al. 2006) with 14 prototypes to get a division of the

data space into receptive fields. PCA was applied to every receptive field to define

local transformations Ωk. Together with the respective prototypes wk this offers the

corresponding data projections pkpxiq (see Eq. (6.19)). The transformations Ak P

IR2�10 were set as rectangular matrices to perform the dimension reduction from

10 to 2 dimensions. The offsets ok are vectors in IR2. The mapping parameters

were initialized with small random values and a stochastic gradient descent was

performed with tmax � 300 epochs and learning rate

τ1ptq � τ start1 � exp

��� log
�

τstart
1

τend
1

	
t

tmax

� (6.24)

τ2ptq � τ start2 � exp

��� log
�

τstart
2

τend
2

	
t

tmax

� (6.25)

annealed from τ start1 � τ start2 � 0.3 to τ end1 � τ end2 � 0.01. The perplexity of t-SNE

was set to 50. For the neural network embedding, we use parametric t-SNE with de-

fault parameters as provided in the implementation given by (van der Maaten 2009).

An optimum network architecture was picked varying the number of neurons from

50 to 2000 per hidden layer. The architecture is given by a r100 100 500 2s-layer

neural network. The perplexity was optimized on the data and picked as 25.

The results for a locally linear t-SNE mapping and parametric t-SNE are shown

in Figure 6.2. In both cases, we used a subset of roughly ten percent for training, and

we report the results of the mapping on training set and test set. Since the data set is

labeled, an evaluation of the projection in terms of the nearest neighbor classification

error is possible. The 5 nearest neighbor error for the whole preprocessed data after

PCA to 10 dimensions is 0.054. After further dimension reduction this error increase
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Figure 6.2: Projection of the UCI image segmentation data set using parametric t-

SNE and DiReduct combining unsupervised clustering and the learning of a map-

ping. The result of the subsample used for training (left panels) as well as the full

data set (right panels) are depicted. The intrusion/extrusion quality on the whole

data set for both methods is shown in the bottom row.
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due to the loss of information. For a locally linear mapping the 5-nearest neighbor

error is 0.21 for the training set and 0.16 for the full data set, the corresponding

projections are shown in the upper panel. The panels in the middle show the cor-

responding mappings achieved by parametric t-SNE (5 nearest neighbor error: 0.5

in training and 0.32 for the whole set, respectively). The bottom panel contains the

evaluation of the mappings using the quality measure depicted in Algorithm 6.6 as

proposed by (Lee and Verleysen 2008, Lee and Verleysen 2009). Interestingly, both

functional forms show a good generalization ability in the sense that the error of the

full data set resembles the error on the test set. However, the results of locally linear

mappings are superior to a feedforward mapping in both cases.

6.6 Supervised dimensionality reduction mapping

Mapping high-dimensional data to low-dimensions is connected to an information

loss and, depending on the dimension reduction technique, different data visualiza-

tions are derived. Since many methods such as t-SNE do not yield a unique solution,

it can even happen that a data set is visualized in different ways with a single visu-

alization technique in different runs. It can be argued (see e.g. (van der Maaten and

Hinton 2008)) that this effect is desirable since it mirrors different possible views

of the given data, reflecting the ill-posedness of the problem. Auxiliary informa-

tion in the form of class labels can be useful to shape the problem in such settings

and to resolve (parts of) the inherent ambiguities. Aspects of the data should be

included into the visualization which are of particular relevance for the given class

labels, while aspects can be neglected if they are not so important due to the given

labeling. Thus, additional information, such as class membership information, can

improve the results of dimension reduction by reducing possible “noise” in the data

and keeping the essential information to discriminate the classes.

This observation has led to the development of a variety of visualization tech-

niques which take given labels into account. These methods still map the original

data to low-dimensions, but they do so using the additional information. Examples

for such methods include LDA and variations, supervised NeRV (sNeRV), super-

vised Isomap, Multiple Relational Embedding (MRE), etc. (Venna et al. 2010), for

example, give a recent overview and compare various methods for supervised data

visualization. Here, we essentially repeat the experiments as proposed in (Venna

et al. 2010) to demonstrate the suitability of our general method to incorporate aux-

iliary information into the data visualization.

In this section we show some examples of the proposed method based on the t-

SNE cost function, employing supervised local linear projections pkpxiq (Eq. (6.19)).
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Here, the parameters Ωk and wk are acquired by a supervised, localized prototype

based classifier, LiRaM LVQ (Bunte, Hammer, Wismüller and Biehl 2010, Schneider

et al. 2009a) (see Algorithm 2.3 and Algorithm 3.1 on pages 16 and 25). We compare

the results to alternative state of the art techniques on the three data sets mimicking

the experiments by (Venna et al. 2010):

• The Letter recognition data set (referred to as Letter in the following) from the

UCI Machine Learning Repository (Asuncion et al. 1998). It is a 16-dimen-

sional data set of 4 � 4 images of the 26 capital letters of the alphabet. These

26 classes base on 20 different distorted fonts. In total, 20000 data points are

given.

• The Phoneme data set taken from LVQ-PAK (Kohonen et al. 1996) consists of 20-

dimensional feature vectors representing phoneme samples stemming from 13

different classes.

• The Landsat satellite data set is contained in the UCI Machine Learning Repos-

itory. Each of the 6435 36-dimensional vectors corresponds to a 3 � 3 satellite

image measured in four spectral bands. The six classes indicate the terrain

type in the image: red soil, cotton crop, grey soil, damp grey soil, soil with

vegetation stubble, and very damp grey soil.

For these data sets, we consider a projection to two dimensions by means of a locally

linear function, as before, characterized by the functional form Eq. (6.21). Unlike the

previous setting, this form is biased towards the given class information, because

the local projections pk are determined by means of a supervised prototype-based

projection method: We used LiRaM LVQ with the rank of the localized matrices Λk

limited to 10 (for Letter and Phoneme) and 30 (for Landsat), respectively. Based on

this setting, the offsets ok are initialized by means of the prototypes wk centering all

projections, and the projections Ωk are given directly by the canonical representation

following Eq. (3.2) of the matrices Λk obtained by LiRaM LVQ to get good class sep-

aration. Correspondingly, the parameter matrices Ak map from 10 or 30 dimensions

to two dimensions in this case. The supervised training of the initial functional form

of the mapping function, Eq. (6.21), by means of LiRaM LVQ as well as the (unsu-

pervised) training of the free parameters of the mapping function takes place using

only a small subset of the data (7%-18%) while the evaluation of the visualization

takes into account the full data set.

The goal of supervised dimension reduction is the preservation of classification

performance, and, is hence, quite different to classical unsupervised dimension re-

duction. In consequence, the quality assessment of the final embedding should be

done differently. Here, following the approach of (Venna et al. 2010), we measure
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the 5-nearest neighbor classification error (5NN error) of the resulting visualizations

achieved in a 10-fold cross validation scheme. We compare the result obtained by

locally linear projection based on the t-SNE cost function and a functional form bi-

ased by a discriminative prototype based classifier (referred to as DiReduct Map) as

specified above to several state-of-the-art supervised non-linear embedding meth-

ods taken from (Venna et al. 2010):

• sNeRV (Venna et al. 2010) which uses input distances dX px
i,xjq induced by

the Fisher information from a non-parametric supervised classifier.

• MRE (Memisevic and Hinton 2005) which is an extension of SNE accommo-

dating additional characteristics of the data space or subspaces provided as

similarity relations priorly known to the user.

• Colored MVU (cMVU) (Song et al. 2008) is an extension of the unsupervised

MVU. It is also called maximum unfolding via Hilbert-Schmidt independence

criterion (MUHSIC), because it maximizes the dependency between the em-

bedding coordinates and the labels.

• supervised Isomap (S-Isomap) (Geng et al. 2005) is an extension of unsuper-

vised Isomap extending distances to incorporate label information in an ad

hoc manner.

• Parametric Embedding (PE) (Iwata et al. 2007) aims at the preservation of the

topology of the original data by minimizing a sum of Kullback-Leibler di-

vergences between a Gaussian mixture model in the original and embedding

space.

• Neighborhood Component Analysis (NCA) (Goldberger et al. 2004) adapts a

metric by finding a linear transformation of the original data such that the

average leave-one-out k-nearest neighbor classification performance is maxi-

mized in the transformed space (see Section 3.4.2 for details).

Note that these methods constitute representative supervised visualization tech-

niques which enrich dimensionality reduction by incorporating given label infor-

mation in various forms.

The error rates of the nearest neighbor classification (using squared Euclidean

distance) on the whole original high-dimensional data set and after dimension re-

duction with the different methods are shown in Figure 6.3. In contrast to our

method, the other techniques were evaluated using only a small subset of the data

sets (only 1500 sampled points), because they are based on the embedding of single

points. For our approach, we train on a subsample of 7% only, but also report the
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Figure 6.3: 5-nearest neighbor errors of supervised visualization on three data sets.

results of the full data set obtained by the explicit mapping. Note that the classifica-

tion error obtained by an explicit mapping biased according to auxiliary information

is smaller than the alternatives for all three data sets. It is remarkable, that the error

in the reduced space is also comparable to the error on the high-dimensional data

for most data sets. For the Phoneme data set the supervised dimension reduction

even leads to a better separation of the classes than in the original space. Hence the

proposed method displays excellent generalization, this way offering an efficient

technique to deal with large data sets by inferring a mapping on a small subset only.

Example visualizations of the proposed method are displayed in Figure 6.4. A clear

class structure is visible especially for the data sets Letter and Phoneme. Interest-

ingly, the Letter clusters arrange in a quite intuitive way: “O”, “Q”, “G” and “C”

stay close together, so do “M”, “N” and “H”. The qualitative characteristic of the

projections is the same for the training data and the full data sets, displaying the

excellent generalization ability of the proposed method.

6.7 Generalization ability and complexity

The introduction of a general view on dimension reduction as cost optimization

extends the existing techniques to large data sets by subsampling. A mapping func-
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Figure 6.4: Examples of supervised visualizations of the data sets in two dimensions.

The result of the subsample used for training as well as the full data set are depicted.
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tion fW based on a small data subset is obtained which extends the embedding to

arbitrary points x coming from the same distribution as the training samples. In

this context it is of particular interest if the procedure can be substantiated by math-

ematical guarantees concerning its generalization ability. We are interested in the

question if a mapping achieves good quality on arbitrary data assuming it showed

satisfactory embeddings on a finite subset, which has been used to determine the

mapping parameters.

A formal evaluation measure of dimensionality reduction has been proposed

by (Lee and Verleysen 2009, Venna et al. 2010), based on the measurement of local

neighborhoods and their preservation while projecting the data. Since these mea-

sures rely on a finite number of neighbors, they are not directly suited as evaluation

measures for arbitrary data distributions in IRN . Furthermore, restrictions on the

applicability of these quality measures to evaluate clusterings, have been published

recently by (Mokbel et al. 2010).

6.7.1 A possible formalization

As pointed out by (Lee and Verleysen 2009) one alternative objective of dimension

reduction is to preserve the available information as much as possible – this ob-

jective is usually hardly used to evaluate non-parametric dimensionality reduction

because it cannot be evaluated due to the lack of an explicit mapping. Given an

explicit mapping, however, it can act as a valid evaluation measure: the error of a

dimensionality reduction mapping f is defined as

EpP q :�

»
X

‖x� f�1pfpxqq‖2P pxq dx (6.26)

where P defines the probability measure according to which the data x are dis-

tributed in X and f�1 denotes an approximate inverse mapping of f ; an exact in-

verse might not exist in general, but local inversion is usually possible apart from

sets of measure 0. In practice the full data manifold is not available such that this

objective can neither be evaluated nor optimized given a finite data set. Rather, the

empirical errorpEnpxq :�
1

n
i̧

‖xi � f�1pfpxiqq}2 (6.27)

can be computed based on given data samples xi. A dimension reduction mapping

shows good generalization ability iff the empirical error pEnpxq is representative for

the true error EpP q. If the form of f is fixed prior to training, we can specify a func-

tion class F with f P F independently of the given training set. Assuming repre-

sentative vectors xi are chosen independently and identically distributed according
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to P the question is whether the empirical error allows to limit the real error EpP q

we are interested in. As usual, bounds should hold simultaneously for all possible

functions in F to circumvent the problem that the function f is chosen according to

the given training data.

This setting can be captured in the classical framework of computational learn-

ing theory, as specified e.g. by (Bartlett and Mendelson 2003). We can adapt Theo-

rem 8 of (Bartlett and Mendelson 2003) to our setting: We assume that the norm of

the input data is limited to the unit ball. Possibly, prior normalization is necessary,

which would be mirrored by corresponding constants in the bounds. We consider

the loss function

L : X � X Ñ r0, 1s , pxi,xjq Ñ ‖xi � xj‖2 . (6.28)

Then, as reported by (Bartlett and Mendelson 2003) (Theorem 8), assuming i.i.d.

data according to P , for any confidence δ P p0, 1q and every f P F the relation

EpP q ¤ pEnpxq �RnpLF q �


8 lnp2{δq

n
(6.29)

holds with probability at least 1� δ where

LF :� tx ÞÑ Lpf�1pfpxqq,xq | f P Fu (6.30)

and Rn refers to the so-called Rademacher complexity of the function class. The

Rademacher complexity constitutes a quantity which, similar to the Vapnik Cher-

vonenkis dimension, estimates the capacity of a given function class, see (Bartlett

and Mendelson 2003). The Rademacher complexity of many function classes (such

as piecewise constant, piecewise linear functions with a fixed number of pieces, or

polynomials of fixed degree) can be limited by a term which scales as n�1{2. See

(Bartlett and Mendelson 2003) for structural results and explicit bounds for e.g. lin-

ear functions, and e.g. (Schneider et al. 2009a) for explicit bounds on piecewise con-

stant functions as induced by prototype based clustering. This result implies that the

generalization ability of dimension reduction mappings as considered above can be

guaranteed in principle since the Gaussian complexity of the class LF can be limited

in our settings. It remains a subject of future research to find explicit good bounds.

6.7.2 Computational complexity

Assume a set X of points is given. Most dimensionality reduction techniques are

computationally quite demanding due to the form if the overall costs Eq. (6.12):

since, usually, the characteristics map sequences of points to sequences of real values
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of the same length, the computation of Eq. (6.12) is at least Op|X|2q. This is infeasible

for large X. Out-of-sample extensions by means of an implicit mapping depend

on a subset X0 � X only. If the principle as derived in this paper is used, the

corresponding complexity is given by Op|X0|
2�|X0| � |X|q, since only the subset X0

is mapped using the original method, afterwards, all remaining points are mapped

by separately optimizing the costs of one x P X regarding their relation to X0, the

latter being Op|X0|q for every x. Thus, this approach substantially reduces the effort

depending on the size of X0, but it does not easily allow a way to control the form

of the mapping, or to integrate prior label information. By choosing an explicit

functional form, the complexity is further reduced to Opp|X0| � |W |q2 � |W | � |X|q,

assuming an effort Op|W |q to evaluate fW . Since, usually, |X| " |X0| " |W |, this

constitutes a further considerable reduction of the time required to map all points.

6.8 Conclusion

In this contribution we reformulated dimension reduction as an optimization prob-

lem based on structural characteristics. As a consequence many popular nonpara-

metric dimension reduction techniques can simultaneously be extended to learn an

explicit mapping function. The optimization of a parametrized mapping function

for dimension reduction is beneficial in several ways: large data sets can be dealt

with because the mapping function can be learned on a small random subset of the

data. Furthermore this framework allows us to consider the generalization ability

of dimension reduction since an explicit cost function is available in terms of the re-

construction error. Interestingly, bounds as derived in the context of computational

learning theory can be transferred to this setting.

We showed the suitability of the approach based on the integration of global

linear and locally linear projections into the t-SNE dimension reduction method on

different data sets. Furthermore we show the integration of auxiliary (e.g. class) in-

formation into the framework. The proposed general framework is very flexible and

can be combined with every possible form of the mapping function. The investiga-

tion of alternative dimension reduction mappings based on other cost functions and

other functional forms of the mapping, as well as the derivation of explicit bounds

on its generalization ability will be the subject of future work. At present, the set-

tings have been restricted to Euclidean data only due to the form of the mapping

fW . Naturally, more general forms could be considered which can take more com-

plex, non-Euclidean data as inputs, such as mappings which are based on general

dissimilarity characterization. Since it is not possible to embed such data in any

Euclidean vector space, possibly qualitatively different results may occur.
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6.A Derivatives for dimension reduction mappings

6.A.1 Derivatives of the linear t-SNE mapping

Here we show the derivatives of the t-SNE cost function Eq. (6.8) assuming a linear

mapping function fW of the high-dimensional data points x, see Eq. (6.17). We use

the following abbreviations

qij �
p1� dEppξi, pξjq{ςq� ς�1

2°
k�lp1� dEppξk, pξlq{ςq� ς�1

2

�
p1�

dij

ς
q�

ς�1
2°

k�lp1�
dkl

ς
q�

ς�1
2

�
gijς°
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in the context of the probabilities of neighborhoods in the low-dimensional space.

The rectangular matrix A defines the linear mapping from IRN Ñ IRM . This matrix

may be optimized using a stochastic gradient descent procedure using following

gradient:
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With Euclidean distance dij � dEppξi, pξjq � ||Axi �Axj ||2 follows:

Bdij

BA
�2pAxi �Axjqpxi � xjq (6.32)

BEt�SNE

BA
�
ς � 1

ς
i̧ j̧

ppij � qjiq

1� 1
ς
||Axi �Axj ||2

pAxi �Axjqpxi � xjq . (6.33)

6.A.2 Derivatives of local linear t-SNE mappings

The derivatives of the t-SNE cost function using a local linear mapping function

following Eq. (6.21) based on the linear projections Eq. (6.19) can be achieved in

analogy to above:

BEt�SNE

Bok
�

i̧j

BEt�SNE

Bqij
�

Bqij

BdEppξi, pξjq2 � BdEppξi, pξjq2Bok

�
ς � 1

ς
i̧j

ppij � qjiq

1� 1
ς
dEppξi, pξjq2 � ppξi � pξjqprik � rjkq (6.34)

and
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Chapter 7

Adaptive Local Dissimilarity Measures for
Discriminative Dimension Reduction and
Visualization

You learn more quickly under the guidance of experienced

teachers. You waste a lot of time going down blind alleys if

you have no one to lead you.

W. Somerset Maugham (1874 - 1965)

Abstract

Since embedding in lower dimensions necessarily includes a loss of information, methods

to explicitly control the information kept by a specific dimensionality reduction technique

are highly desirable. The incorporation of class information constitutes an important spe-

cific case. The aim is to preserve and potentially enhance the discrimination of classes in

lower dimensions. In this chapter we use the extension of prototype-based local distance

learning introduced in Part I of this thesis, which results in a discriminative dissimilar-

ity measure for a given labeled data manifold. The adapted local distance measure can

be used as basis for unsupervised dimensionality reduction techniques, which take into

account neighborhood information. We show the combination of different dimension-

ality reduction techniques with a discriminative similarity measure learned by LiRaM

LVQ using local projections Ωj and their behavior with different parameter settings. The

methods are discussed in terms of artificial and real world data sets.

7.1 Introduction

I
n the last decades an enormous number of unsupervised dimensionality reduc-

tion methods has been proposed. In general, this constitutes an ill-posed prob-
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lem since a clear specification which properties of the data should be preserved, is

missing. Standard criteria, for instance the distance measure employed for neigh-

borhood assignment, may turn out unsuitable for a given data set, and relevant

information often depends on the situation at hand. If data labeling is available, the

aim of dimensionality reduction can be defined clearly: the preservation of the clas-

sification accuracy in a reduced feature space. Supervised linear dimension reducers

are for example the LiRaM LVQ (Bunte, Schneider, Hammer, Schleif, Villmann and

Biehl 2011) introduced in Section 3.2, LDA (Fukunaga 1990), Targeted Projection

Pursuit (TPP) (Faith et al. 2006), and discriminative component analysis (Peltonen

et al. 2006). Often, however, the classes cannot be separated by a linear classifier

while a non-linear data projection better preserves the relevant information. Exam-

ples for nonlinear discriminative visualization techniques include, extensions of the

SOM incorporating class labels (Villmann et al. 2006) or more general auxiliary in-

formation (Peltonen et al. 2004). In both cases, the metric of SOM is adjusted such

that it emphasizes the given auxiliary information and, consequently, SOM displays

the aspects relevant for the given labeling. Further supervised dimensionality re-

duction techniques are model-based visualization (Kontkanen et al. 2000), sNeRV

(Venna et al. 2010), MRE (Memisevic and Hinton 2005), cMVU (Song et al. 2008),

S-Isomap (Geng et al. 2005), PE (Iwata et al. 2007) and NCA (Goldberger et al. 2004),

already mentioned in Section 3.4.2 and Section 6.6. In addition, linear schemes such

as LDA can be kernelized yielding a nonlinear supervised dimensionality reduc-

tion scheme (Baudat and Anouar 2000). These models have the drawback that they

are often very costly (squared or cubic with respect to the number of data points).

Recent approaches provide scalable alternatives, sometimes at the cost of non con-

vexity of the problem (Kulis et al. 2007, Vasiloglou et al. 2008, Collobert et al. 2006).

However, in most methods, the kernel has to be chosen prior to training and no

metric adaptation according to the given label information takes place.

Here, we aim in the identification and investigation of principled possibilities to

combine an adaptive metric and recent visualization techniques towards a discrim-

inative approach. We will exploit the discriminative scheme exemplary for different

types of visualization, necessarily restricting the number of possible combinations

to exemplary cases. A number of alternative combinations of metric learning and

data visualization as well as principled alternatives to arrive at discriminative vi-

sualization techniques (such as e.g. colored Maximum Variance Unfolding (Song

et al. 2008)) were addressed for example in Section 6.6. In this Chapter we com-

bine prototype-based matrix learning schemes, which result in local discrimina-

tive dissimilarity measures and local linear projections of the data, with different

neighborhood based nonlinear dimensionality reduction techniques and a charting

technique. In a first step the dissimilarity measure is learned using the LGMLVQ
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(see Algorithm 2.4) based on localized matrices Λj , possibly limiting the rank as

proposed in Chapter 3. In the second step unsupervised techniques like manifold

charting (Brand 2002), Isomap (Tenenbaum et al. 2000), LLE (Roweis and Saul 2000),

the Exploration Observation Machine (XOM) (Wismüller 2009d) and SNE (Hinton

and Roweis 2003) are performed incorporating the supervised information from the

Learning Vector Quantization (LVQ) approach. This leads to supervised nonlinear

dimensionality reduction and visualization techniques.

The following section gives a short overview over the techniques. We focus on

the question in how far local linear discriminative data transformations as provided

by LGMLVQ and LiRaM LVQ offer principled possibilities to extend standard unsu-

pervised visualization tools to discriminative visualization. Section 7.3 discusses the

different approaches for one artificial and three real world data sets and compares

the results to popular supervised as well as unsupervised dimensionality reduction

techniques. Finally we conclude in section 7.4.

7.2 Supervised Nonlinear Dimension Reduction

For general data sets a global linear reduction to lower dimensions may not be suf-

ficient to preserve the information relevant for classification. In (van der Maaten

et al. 2009) it is argued that the combination of several local linear projections to a

nonlinear mapping can yield promising results. We use this concept and learn dis-

criminative local linear (probably low-dimensional) projections from labeled data

using an efficient prototype based learning scheme, LGMLVQ (see Algorithm 2.4)

possibly limiting the rank using local transformations Ωj P IRM�N with M ¤ N

(following the principle of LiRaM LVQ Section 3.2). Locally linear projections ob-

tained from this first step provide transformations of the data points, which aims

in the preservation of the information relevant for the classification. Instead of the

local coordinates, local distances dΛ
j

Eq. (2.22) induced by these local representation

of data can be considered. As a consequence, visualization techniques which rely on

local coordinate systems or distances, respectively, can be combined with this adapt-

ive dissimilarity to arrive at a discriminative global nonlinear projection method.

This way, an incorporation into techniques such as manifold charting (Brand 2002),

Isomap (Tenenbaum et al. 2000), LLE (Roweis and Saul 2000), SNE (Hinton and

Roweis 2003), and the XOM (Wismüller 2009d), among others becomes possible.

7.2.1 LiRaM LVQ for discriminative visualization

In contrast to Localized LiRaM LVQ (LLiRaM LVQ) (see Section 3.2.1) we do not con-

sider an adaptive matrix composed of two matrices Λj � ΩJΨjJΨjΩ in this Chap-
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ter. Instead we adopt the localized dissimilarity measure dΛ
j

Eq. (2.22) of LGMLVQ

(summarized in Algorithm 2.4) assuming a possible limit of the rank of Λj � ΩjJΩ

by Ωj P IRM�N with M ¤ N . As for the GMLVQ method the LGMLVQ algorithm

and its derivatives do not change in case of a limited rank. Because of the kinship

we refer to this adaptation of LGMLVQ also as LiRaM LVQ, having in mind that we

do not address global linear projections Ω, but local linear Ωj in this Chapter.

For every prototype, a low-dimensional embedding ξi of each data point xi, akin

to Eq. (6.19) is given by:

pkpxiq � Ωkxi � ξi . (7.1)

This projection is a meaningful discriminative projection in the neighborhood of a

prototype. For a data point xi usually the projection ΩJ of its closest prototype wJ

is considered. This way, a naive mapping is given as

xi ÞÑ pJpxiq � ΩJxi with dΛ
J

pxi,wJq � min
k

dΛ
k

pxi,wkq . (7.2)

We will address this local linear mapping rule in the following as LiRaM LVQ pro-

jection. However, the cost function Eq. (2.23) together with the distance definition

Eq. (2.22) does not ensure that these local projections align correctly and that they

do not overlap when shown in one coordinate system. Rather, the projections pro-

vide widely unconnected mappings to low dimensions which offer only a locally

valid visualization. Nevertheless the mapping defined by Eq. (7.2) can give a first

intuition about the problematic samples and distinguish “easy” classes from more

difficult ones. Therefore, we will use this projection for comparison in the experi-

ments.

In order to achieve interpretable global nonlinear mappings of the data points

we have to align the local information provided by the local projections. This can

be done in different ways, using an explicit charting technique of the maps or using

visualization techniques based on the local distances provided by this method. In

the following, we introduce a few principled possibilities to combine the informa-

tion of LiRaM LVQ and unsupervised visualization techniques to achieve a global

non-linear discriminative visualization.

Local coordinates

As already stated, LiRaM LVQ gives rise to local linear projection maps pk as defined

in Eq. (7.1), which assign local projection coordinates to every data point xi. These

projections can be accompanied by values which indicate the responsibility rik of

mapping k for data point i. Crisp responsibilities are obtained by means of the

receptive fields, setting rik to 1 iff wk is the winner for xi and 0 otherwise (see
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Eq. (6.20)). Alternatively, soft assignments can be obtained by centering Gaussian

curves of appropriate bandwidth at the prototypes and successive normalization,

such that
°

k rik � 1.

These two ingredients constitute a sufficient input for data visualization meth-

ods which rely on local linear projections of the data only, such as manifold charting,

LLC (van der Maaten et al. 2009) and Local Tangent Space Alignment (LTSA) (Zhang

and Zha 2002). Basically, those methods arrive at a global embedding of data based

on local coordinates by gluing the points together such that the overall mapping is

consistent with the original data points as much as possible. The methods differ in

the precise cost function which is optimized: Manifold charting relying on the sum

squared error of points at overlapping pieces of the local charts, while LLC focuses

on the local topology and tries to minimize the reconstruction error of points from

their neighborhood. Both approaches provide explicit maps of the data manifold to

low dimensions, such that out-of-Sample extensions are immediate. As an exam-

ple for this principle, we will investigate the combination of local linear maps and

manifold charting in Section 7.2.2.

Global distances

The LVQ-based learning procedure provides discriminative local distances induced

by the matrices Λj in the receptive field of prototype wj . In contrast to the charting

approach, the ranks of the distance matrices Λj can be chosen larger than the em-

bedding dimension M in these cases, using e.g. full ranks and therefore the original

LGMLVQ formulation or the intrinsic dimension of the data manifold. We use the

resulting parameters to define a discriminative dissimilarity measure for the given

data points. We define the dissimilarity of a point xi to a point x:

dpxi,xq � pxi � xqJΛJpxi � xq where dΛ
J

pxi,wJq � min
k

dΛ
k

pxi,wkq (7.3)

using the distance measure ΛJ induced by the closest prototype wJ of xi. Note that

this definition leads to asymmetric dissimilarities, where dpxi,xjq �� dpxj ,xiq can

hold, for samples falling into different receptive fields. It is block wise symmetric for

data samples with the same winner prototype in the classification task. Further, due

to the nature of the LGMLVQ cost function, the dissimilarity measure constitutes

a valid choice only within or near receptive fields. The dissimilarity of far away

points which are not located in the same or proximate receptive fields can be seen

only as a rough estimation of a valid dissimilarity.

The global dissimilarities defined by Eq. (7.3) can be used directly within visual-

ization schemes which are based on distance preservation. If necessary, the dissimi-

larity matrix can be symmetrized prior to the mapping. Distance based visualization
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methods include classical MDS, Sammon’s map, SNE, t-SNE, and the XOM, to name

just a few (van der Maaten et al. 2009, Hinton and Roweis 2003, van der Maaten

and Hinton 2008, Wismüller 2009d). It can be expected that the combination of the

global discriminative dissimilarities as given by Eq. (7.3) yields to an appropriate vi-

sualization of the data only if the visualization method mainly focuses on the close

points, since the dissimilarity of far away points can only be seen as a guess in this

case. Thus, classical MDS is likely to fail, while SNE or XOM seem more promising

due to their focus on local topologies. As an example, we will investigate the com-

bination of the global dissimilarity matrix with SNE and XOM, respectively, in the

following.

Local distances or neighborhood

The problem that the dissimilarity measure as defined in Eq. (7.3) should preferably

only be used to compare data within a receptive field or in neighbored receptive

fields is avoided by visualization techniques which explicitly rely on local distances

only. Instances of such visualization techniques are given by Isomap, Laplacian

Eigenmaps, LLE (van der Maaten et al. 2009) and MVU (Weinberger and Saul 2006),

explained in Section 6.2. These methods use the local neighborhood of a data point,

i.e. its k-NN or the points in an ǫ-ball (ǫ-neighborhood), and aim at the preservation

of properties of these neighborhoods. Obviously, local neighborhoods can readily

be computed based on the dissimilarities given by Eq. (7.3), thus a discriminative

extensions of these methods is offered this way.

Isomap extends local distances within the local neighborhoods to a global mea-

sure by means of the graph distance, using simple MDS after this step. Laplacian

Eigenmaps use the neighborhood graph and try to map data points such that close

points remain close in the projection. LLE also relies on the local neighborhood,

but it tries to preserve the local angles of points rather than the distances. Obvi-

ously, these methods can be transferred to discriminative visualization techniques

by using the local neighborhood as given be the local discriminative distances and,

if required, the local discriminative distances themselves. As an example, we will

investigate the combination of Isomap and LLE with this discriminative technique.

Now we introduce four exemplary discriminative projection methods, covering

the different possibilities to combine the information given by LiRaM LVQ and di-

verse visualization techniques. We will compare these methods to a naive embedd-

ing directly given by the local linear maps as a baseline, LDA (Fukunaga 1990) (if

applicable) as a classical linear discriminative visualization tool, and t-SNE as one

of the currently most powerful unsupervised visualization techniques. Further, we

will emphasize the effect of discriminative information by presenting the result of
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the corresponding unsupervised projection method.

7.2.2 Combination of Local Linear Patches by Charting

The charting technique introduced in (Brand 2002) provides a frame for unsuper-

vised dimension reduction by decomposing the sample data into locally linear pat-

ches and combining them into a single low-dimensional coordinate system. This

procedure can be turned into a discriminative visualization scheme by using the

low-dimensional local linear projections pjpxiq P IRM for every data point xi and

every local projection Ωj provided by localized LiRaM LVQ. Afterwards, the chart-

ing method can directly be used to combine these locally linear patches: The local

projections pjpxiq are weighted by their responsibilities rij which quantify the over-

lap of neighbored charts. Here we choose responsibilities induced by Gaussians

centered at the prototypes, since a certain degree of overlap is needed for a mean-

ingful charting step:

rij ∝ expp�pxi �wjqJΛjpxi �wjq{σjq , (7.4)

where σj ¡ 0 constitutes an appropriate bandwidth. Further, we have to normalize

these responsibilities
°

j rij � 1 in order to apply charting. Since the combination

step needs a reasonable overlap of neighbored patches, the bandwidth σj must be

chosen to ensure this property. We set σj to a fraction α (0   α   1) of the mean

distance to the k nearest prototypes in the original feature space

σj �
α

k
�

d ¸
wlPNkpwjq

dΛj pwj ,wlq , (7.5)

where Nkpw
jq denotes the k closest prototypes of wj .

Manifold charting minimizes a convex cost function that measures the amount

of disagreement between the linear models on the global coordinates of the data

points. The charting technique finds affine mappings Aj from the data representa-

tions pjpxiq to the global coordinates that solves a weighted least-squares problem:

rA1, . . . , Anw s � arg min
Aj ,Ak

ņ

i�1

rijrik‖A
jppjpxiqq �Akppkpxiqq‖2 . (7.6)

This function is based on the idea that whenever two linear models possess a high

responsibility for a data point, the models should agree on the final coordinates of

that point. The cost function is formulated as the squared error corresponding to a

sum of all patch-to-anchor and patch-to-patch inconsistencies and can be rewritten
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as a generalized eigenvalue problem. An analytical solution can be found in closed

form. The final projection is given by the mapping

xi ÞÑ ξi �
j̧

rij �A
jppjpxiqq . (7.7)

We refer to (Brand 2002) for further details. Interestingly, an explicit map of the

data manifold to low dimensions is obtained this way. Further, the charting step is

linear in the number of data points n. We refer to the extension of charting by local

discriminative projections as charting� in the following.

7.2.3 Discriminative Locally Linear Embedding

LLE (Roweis and Saul 2000) aims in the preservation of topologies induced by local

k-ary neighborhoods. The idea is to reconstruct each point xi by a linear combi-

nation of its nearest neighbors and to project data points into lower dimensions,

such that this local representation of the data is preserved as much as possible. The

method is summarized in Algorithm 6.1 in Section 6.2. Step 1 of the LLE algorithm is

the determination of neighbors Ni for each data point xi. Following the ideas of su-

pervised LLE (Wang et al. 2006) and probability-based LLE (Zhao and Zhang 2009)

we take the label information into account by using the distance measure defined

in Eq. (7.3) to determine the k-NNs of each point. The rest of the LLE approach re-

main unchanged. We refer to this discriminative extension of LLE by LLE� in the

following.

7.2.4 Discriminative Isomap

Isomap (Tenenbaum et al. 2000) is an extension of metric MDS using graph distances

as an approximation of the geodesic distances in the high-dimensional space. For

this purpose, a weighted neighborhood graph is constructed by connecting points i

and j if their distance is smaller than ǫ (ǫ-Isomap), or if j is one of the k-NNs of i (k-

Isomap). Global distances between points are computed using shortest paths in this

neighborhood graph, see also Section 6.2. The local neighborhood graph can serve

as an interface to incorporate discriminative information provided by LiRaM LVQ.

We use the distances defined by Eq. (7.3) to determine the k-NNs and to weight the

edges in the neighborhood graph. Afterwards, we simply apply the same projection

technique as original Isomap. We refer to this discriminative extension of Isomap as

Isomap� in the following.
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7.2.5 Discriminative Stochastic Neighbor Embedding

SNE constitutes an unsupervised projection which follows a probabilistic approach.

It aims in the preservation of local topologies induced by the probability densities in

the original space pj|i and the projection space qj|i, see Section 6.2. SNE tries to find

a low-dimensional data representation that minimizes the mismatch between those

distributions. This is done by the minimization of the sum of the Kullback-Leibler

divergences Eq. (6.6). It is easily possible to incorporate discriminative information

into SNE by choosing the distances dX px
i,xjq in Eq. (6.4) as discriminative distances

as provided by Eq. (7.3). Then, the subsequent steps can be done in the same way

as in standard SNE.

7.2.6 Discriminative Exploration Observation Machine (XOM)

XOM has recently been introduced as a novel computational framework for struc-

ture-preserving dimension reduction (Wismüller 2009c, Wismüller 2009a). It can be

seen as an extension of the SOM changing the interpretation of the variables. The

XOM aims in the preservation of a topology in the high-dimensional space denoted

by neighborhood couplings dX px
i,xjq between the input data points x, represented

by a so-called cooperativity (or neighborhood) function, e.g. a Gaussian. The low-

dimensional counterparts ξ of every data point are moved in the low-dimensional

space according to this neighborhood function, such that local neighborhoods are

preserved. This algorithm will be explained in more detail in Chapter 8, where

it is also extended further. Obviously, discriminative information can be included

into XOM by substituting the distances dX px
i,xjq by the discriminative distances

as provided by Eq. 7.3.

7.2.7 Discriminative Maximum Variance Unfolding (MVU)

MVU (Weinberger and Saul 2006) is based on a neighborhood graph with k near-

est neighborhood graphs or ǫ-neighborhoods N . Projections ξi are determined by

maximizing the variance of the projection. The aim is, that neighboring points xi

and xj preserve their affinities also in the low-dimensional space after projection:

dEpξ
i, ξjq � dX px

i,xjq. The method is summarized in Algorithm 6.3 in Section 6.2.

To include supervision in this dimension reduction technique the distance defined

by Eq. (7.3) can be used to determine the k nearest neighbors. Afterwards we sim-

ply apply the same optimization as original MVU. For our experiments we used the

library for semi-definite programming called CSDP1 and the MVU implementation

1http://infohost.nmt.edu/�borchers/csdp.html
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provided by Kilian Q. Weinberger2.

7.2.8 Further embedding techniques

We will compare the results obtained within this discriminative framework to a few

standard embedding techniques. More precisely, we will display the results of LDA

(Fukunaga 1990) as a classical linear discriminative projection technology, t-SNE

as an extension of SNE which constitutes one of the most promising unsupervised

projection techniques available today.

LDA constitutes a supervised projection and classification technique. Given data

points and corresponding labeling, it determines a global linear map such that the

distances within classes of projected points are minimized whereas the distances

between classes of projected points are maximized. This objective can be formalized

in such a way that an explicit analytical solution is obtained by means of eigenvalue

techniques. It can be shown that the maximum dimension of the projection has to be

limited to C � 1, C being the number of classes, to give meaningful results. Hence,

this method can only be applied for data sets with 3 or more classes. Further, the

method is restricted to linear maps and it relies on the assumption that classes can be

represented by unimodal clusters, which can lead to severe limitations in practical

applications. t-SNE constitutes an extension of SNE, which achieved very promising

visualization for a couple of benchmarks (van der Maaten and Hinton 2008). The

probability densities in the low-dimensional space qij are defined using a student-t

distribution instead of a Gaussian, see Eq. (6.10). Further details can be found in

Section 6.2.

7.3 Experiments

7.3.1 Three Tip Star

This artificial dataset consists of 3000 samples in IR10 with two overlapping classes

(C1 and C2), each forming three clusters as displayed in Fig. 7.1. The first two

dimensions contain the information whereas the remaining eight dimensions con-

tribute high variance noise. Following the advise “always try Principal Component

Analysis (PCA) first”3 we achieve a leave-one-out 1-NN error of 29% in the data set

mapped to two dimensions (the result is shown in Fig. 7.2 left panel). The best em-

bedding of t-SNE was achieved by setting the perplexity to 35 and is shown in the

right panel. The localized LiRaM LVQ was trained for tmax � 500 epochs, with three

2http://www.weinbergerweb.net/Downloads/MVU.html
3John A. Lee, private communication, 2009.
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Figure 7.1: The two informational dimensions of the original Three Tip Star data set.

PCA t−SNE (Perplexity 35)

Figure 7.2: Example Visualizations of the Three Tip Star data set.

prototypes per class and local matrices of target dimension M � 2. Each of the pro-

totypes was initialized close to one of the cluster centers. Initial elements of Ωj were

generated randomly according to a uniform distribution in r�1, 1s with subsequent

normalization of the matrix following Eq. (2.21). The learning rate for prototype vec-

tors follows the schedule Eq. (3.5) τ1ptq � 0.01{p1�ptmax�1q�0.001q and metric learn-

ing starts at epoch tM � 50 with learning rate τ2ptq � 0.001{p1�ptmax�50q �0.0001q.

We repeat localized LiRaM LVQ with 10 independent random initializations of the

prototypes and matrices. The resulting mean classification error on the Three Tip

Star data set is 9.7%.
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Figure 7.3: 1-NN Errors of the Three Tip Star data set for different methods and

parameters. A “+” appended to the name of the method indicates incorporation of

local LiRaM LVQ distances with rank M matrices.



7.3. Experiments 131

1

2

34

5

6

LiRaM LVQ (Run 8)

 

 

1

2

34

5

6

1

2

34

5

6

1

2

34

5

6

1

2

34

5

6

1

2

34

5

6

1 2

3

4

5

6

charting (Run 8, α=0.1)

1 2

3

4

5

6

1 2

3

4

5

6

1 2

3

4

5

6

1 2

3

4

5

6

1 2

3

4

5

6

XOM (σ
2
=80, Init. 4)

 

 

XOM+ (σ
2
=10, Run 4, Init. 8)

Isomap (K=47) Local Isomap+ (Run 7, K=35)

LLE (K=12) LLE+ (Run 8, K=5)

SNE (Perplexity 60) SNE+ (Perplexity 55, Run 8)

MVU (k=2) Local MVU+ (k=5, Run 8)

prototypes

C1

C2
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of the method indicates the incorporation of local LiRaM LVQ.



132 7. Adaptive Dissimilarity Measures for Dimension Reduction

The 1-NN errors and standard deviations of the two-dimensional projections of all

methods with either Euclidean or supervised adapted distance are shown in Fig. 7.3.

A “+” appended to the name of a method indicates the use of the learned distance,

in addition the reduced target dimension in matrix learning M is given. From top

to bottom in Fig. 7.3 the following methods are compared:

1. The 1-NN errors of the LiRaM LVQ projections based on Eq. (7.2) are shown

on top. In particular, run 2 and 6 illustrate the problem that regions which are

well separated in the original space can be projected onto overlapping areas in

low dimension when local projection matrices Ωj are employed naively. Fre-

quently, however, a discriminative visualization is found, as an example the

outcome of run 8 is shown in Fig. 7.4 (upper left panel). Note that the aim of

the LiRaM LVQ algorithm is not to preserve topology or distances, but to find

projections which separate the classes efficiently. Consequently, clusters four

and six, for instance, may be merged in the projection, as they carry the same

class label. Nevertheless, the relative orientation of all six clusters persists in

the low-dimensional representation.

2. The 1-NN errors of the LiRaM LVQ projections followed by charting with dif-

ferent choices of the responsibilities, cf. σj Eq. (7.5). The x-axis corresponds to

the factor α which determines σj Eq. (7.5) from the mean distance of the k near-

est prototypes. Graphs are shown for several values of k, and bars mark the

standard deviations observed over the 10 runs. For large α and k the overlap

of the local charts increases, yielding larger 1-NN error in the final embedd-

ing. Small values of α, k lead to better projection results. The best result is

shown in Fig. 7.4 (upper right panel) using α � 0.1 and k � 3 nearest proto-

types. The quality of the projection is not affected by rotations or reflections,

consequently the actual positions and orientations of clusters can vary.

3. XOM was trained for tmax � 50000 iterations using a learning rate schedule

Eq. (6.24) for the image vectors ξ with τ start1 � 0.9 and τ end1 � 0.05. The

cooperativity function is chosen as Gaussian and like the learning rate τ1ptq

the variance σ is changed by an appropriate annealing scheme

σptq � σ1 �

�
� exp

�
log

�
σ1

σ2



{tmax



� t



. (7.8)

The sampling vectors are initialized randomly in 5 independent runs. The pa-

rameter σ1 is approximately set to the maximum distance in the data space:

1500 and σ2 is chosen as values between the interval r10, 100s. The actual

value of σ2 appears to influence the result only mildly. The 1-NN errors of
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the XOM projections with different values of the parameter σ2 are shown in

Fig. 7.3. The incorporation of the trained local distances improves the perfor-

mance significantly. Example projections are shown in Fig. 7.4 (second row)

using Euclidean distances (left panel) and for adaptive distance measure (right

panel). The former, unsupervised version cannot handle this difficult data set

satisfactorily, while supervised adaptation of the metric preserves the basic

structure of the cluster data set.

4. It follows, the 1-NN errors of the Isomap projection with different numbers

k of nearest neighbors taken into account. Also here the incorporation of the

learned local distance reduces the 1-NN error on the two-dimensional em-

bedding significantly. The parameter k has to be large enough to ensure that

a sufficient number of points is connected in the neighborhood graph. Oth-

erwise several subgraphs emerge which are not connected and lead to many

missing points in the final embedding. Appropriate example embeddings are

shown in Fig. 7.4 in the third row, corresponding to Euclidean distance in the

left panel and adaptive metrics in the right panel. In the former, purely unsu-

pervised case, the 3 main clusters are reproduced, but the classes are mixed.

When the adaptive distance measure is used, the cluster structure is essentially

lost, but the two classes remain separated.

5. The 1-NN errors of the LLE embedding are shown for various numbers k

of nearest neighbors considered. LLE displays very limited performance in

this data set, hardly any structure is preserved. Even the incorporation of the

learned distance measure does not lead to significant improvement, in gen-

eral. Only for very small values of k the 1-NN error decreases in comparison

with the usage of the Euclidean distance. LLE tends to collapse large portions

of data onto a single point when the target dimension is too low. Hence, even

a small 1-NN error may not indicate a good and interpretable visualization.

The best embeddings are shown in Fig. 7.4 in the forth row.

6. The 1-NN errors of SNE and t-SNE are slightly better than the other unsuper-

vised methods. Both methods preserve the main cluster structure, but not the

class memberships. Like already observed with Isomap� also with the super-

vised version of SNE (SNE�) the cluster structure is essentially lost, but the

two classes are separated as much as possible and a remarkable increase in

the 1-NN error of the embedded data is observed. Example embeddings are

shown in Fig. 7.4 (fifth row) and for t-SNE in Fig. 7.2 right panel.

7. The 1-NN errors of MVU are comparable to the SNE and t-SNE results. Like

them the main cluster structure is visible, but not the class memberships. In the
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supervised variant MVU� the cluster structure is essentially lost as observed

with Isomap� and SNE� too, but the two classes are separated relatively well.

This leads to a remarkable decrease in the 1-NN error of the embedded data

points. The best embeddings are shown in Fig. 7.4 bottom row.

Note that, due to the presence of only two classes, standard LDA would yield a

projection to one dimension only. We have also applied kernel PCA with Gaussian

kernel and different values of σ, but we obtained only poor 1-NN errors on the em-

bedded data with a best value of about 41%. As expected, purely unsupervised

methods preserve hardly any class structure in the obtained projections. For several

methods, however, the performance with respect to discriminative low-dimensional

representation can be improved dramatically by taking into account label informa-

tion in the local distance measures.

Figure 7.5 shows the computation times vs. the number of points to be embed-

ded of different dimension reduction techniques on the Three Tip Star data set. We

only measure the time necessary to embed the data after learning the local metrics
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Figure 7.5: The running time of different dimension reduction methods depending

on the number of samples to embed.
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Figure 7.6: Example embeddings of the Wine data set for PCA and LDA.

with LiRaM LVQ. The algorithms were performed on the same Windows XP 32bit

version machine4 using Matlab R2008b. The LiRaM LVQ algorithm was applied us-

ing six prototypes and 100 epochs. The other parameters were chosen as mentioned

above. The charting technique uses the six local linear projections provided by the

LVQ approach with responsibilities computed by Eq. (7.4). XOM is trained for 1500

steps and above mentioned parameters, LLE uses k � 35, Isomap k � 35 and MVU

k � 3 nearest neighbors. SNE was performed with a perplexity of 30. The LVQ

based approach, charting and XOM show a linear relationship between the num-

ber of points and the necessary computation time, whereas the other methods show

quadratic or even worse complexity.

7.3.2 Wine data set

The wine data from (Aeberhard et al. 1992) available at (Asuncion et al. 1998) con-

tains 178 samples in 13 dimensions divided in three classes. As proposed in (Rogers

and Girolami 2007) we first transformed the data to have zero mean and unit vari-

ance features. Maximum Likelihood Estimation (MLE) (Levina and Bickel 2005)

approximate the intrinsic dimension to 4. We set the reduced target dimension to

two. PCA achieves a leave-one-out 1-NN error of 28% in the mapped data set. In

comparison, supervised LDA (Fukunaga 1990) leads to a relatively small 1-NN error

of 1%. Fig. 7.6 shows the two-dimensional representations of the data set obtained

by PCA and LDA, respectively.

4Intel(R) Core(TM)2 Quad CPU Q6600 @2.40GHz, 2.98 GB of RAM
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Localized LiRaM LVQ was trained for tmax � 300 epochs, with one prototype per

class. Each prototype was initialized close to class centers, elements of the matrices

Ωj were initialized with values between r�1, 1swith subsequent normalization. The

learning rate for prototype updates follows the schedule τ1ptq � 0.1{p1�pt�1q�0.01q;

metric learning starts at epoch tM � 30 with the learning rate τ2ptq � 0.01{p1� pt�

50q � 0.001q. We run the localized LiRaM LVQ 10 times with random initializations

and with rank M � 2 and M � 4 of the relevance matrices, respectively. In all

runs we observe 100% correct classification for this data set. The resulting matrices

are used to embed the data into the two-dimensional space. In order to compare

the different approaches we compute the 1-NN errors in the projected data under

various parameter settings, results are shown in Fig. 7.7 and the best projections can

be found in Fig. 7.8. The incorporation of trained distances in some unsupervised

methods are indicated by a “+” appended to the name, together with the maximum

rank M .

1. In the direct LVQ-based mapping following Eq. (7.2), two prototypes project

into the same area in some of the runs, but most runs result in a clear sepa-

ration of the three classes. The charting technique is combined with the three

local projections obtained from the localized LiRaM LVQ (M � 2) and com-

puted with various parameters α to fix the responsibilities (see Eq. (7.4)). A

reasonable overlap of the local projections is required: If α is chosen too small

the 1-NN error displays large variations in the runs. For this data set a value

of α � 0.4 is sufficiently large to yield discriminative visualizations.

2. XOM was trained like with the previous data set for tmax � 50000 iterations

with the same learning rate schedule for τ1 Eq. (6.24) and σ Eq. (7.8). The

parameter σ1 is set to 2 and σ2 to 0.15. The sampling vectors are initialized

randomly in 10 independent runs. The results of XOM and XOM� in com-

bination with adaptive local distances are analogous to those for the Three

Tip Star data. The improvement due to the incorporation of label information

through the distance measure is even more significant, the method yields very

small 1-NN errors in the Wine data set.

3. The k-Isomap with Euclidean distance performs worse on this data set with an

1-NN error of about 30%. With the incorporation of the learned distance mea-

sure and a sufficiently large neighborhood value k all mappings separate the

classes very well. For smaller values of k the neighborhood graph is not con-

nected. In the worst case the procedure yields three unconnected subgraphs,

where only samples are connected which belong to the same prototype. When

all samples are connected the approach is very robust and shows no variation

with respect to the LVQ run.
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Figure 7.7: 1-NN Errors of the Wine data set for different methods and parameters.

A “+” appended to the name of the method indicates incorporation of local LiRaM

LVQ distances with rank M matrices.
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Figure 7.8: Example embeddings of the Wine data set. A “+” appended to the name

of the method indicates the incorporation of local LiRaM LVQ distances.
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4. The performance of LLE depends strongly on the number k of nearest neigh-

bors taken into account. For large k the advantage of using a supervised

learned distance measure essentially vanishes. The variations between dif-

ferent runs are particularly pronounce for rank M � 2 and no significance im-

provement over the purely unsupervised LLE is achieved. However, for small

k (e.g. k � 5, 6, 7) and with rank M � 4 very low 1-NN errors are obtained.

5. The SNE and t-SNE show already in the unsupervised versions good results

as shown in Fig. 7.7. The 1-NN error is not that much dependent on the chosen

perplexity, only slight changes can be observed. With the incorporation of the

learned distance measure the visualizations can be improved further and the

dependence on the perplexity is even less.

6. The unsupervised MVU showed a strong dependence on the number k of

neighbors taken into account. With a sufficient big k the algorithm show al-

ready good results when it is used in an unsupervised way. The incorporation

of the class labels however shows only a weak dependence on the number of

neighbors and in most of the results the classes are perfectly separated.

7.3.3 Segmentation

The Segmentation data set (available at the UCI repository (Asuncion et al. 1998))

consists of 19 features which have been constructed from randomly drawn regions

of 3 � 3 pixels in a set of 7 manually segmented outdoor images. Every sample is

assigned to one of seven classes: brickface, sky, foliage, cement, window, path and

grass (referred to as C1, . . . , C7). The set consists of 210 training points with 30 in-

stances per class and the test set comprises 300 instances per class, resulting in 2310

samples in total. We did not use the features (3,4,5) as they display zero variance

over the data set. For preprocessing we normalized the data by a z-Transformation

resulting in zero mean and unit variance features. An Maximum Likelihood estima-

tion yields an intrinsic dimension of about 3, so we use rank limits of M P t2, 3u for

the computation of the local distances in this data set. LDA yields a classification er-

ror of approx. 20% for a projection into two dimensions while PCA displays a 1-NN

error of 31%.

Localized LiRaM LVQ was trained for tmax � 500 epochs, with one prototype

per class. Each prototype was initialized close to class center, and elements of the

matrices Ωj are drawn randomly from r�1, 1s according to a uniform density with

subsequent normalization of the matrices. The learning rate for prototypes follows

the schedule τ1ptq � 0.01{p1 � pt � 1q � 0.001q. Metric adaptation starts at epoch

tM � 50 with learning rates τ2ptq � 0.001{p1 � pt � 50q � 0.0001q. We run localized
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Figure 7.9: Example embeddings of the Segmentation data set for PCA and LDA.

LiRaM LVQ 10 times with random initialization and with a rank limit of M � 2 and

M � 3, respectively. For M � 2 we achieve a mean classification error of about 8%

in all runs and with M � 3 the mean classification error is 7%. The obtained 1-NN

errors are shown in Fig. 7.10 and some example visualizations are given in Fig. 7.11.

1. The quality of direct LiRaM LVQ projections vary from run to run. One favor-

able projection is shown in Fig. 7.11 in the first row on the left side. The classes

C2 and C6 are well separated with large distances from the other classes. Also,

most samples of C4 and C1 are clustered properly, while class C3 is spread and

overlaps with class C7. This outcome is not too surprising, since C3 and C7

correspond to foliage and grass, respectively, two classes that may be expected

to have similar characteristics in feature space.

2. In the combination with a charting step results are rather robust with respect

to the parameter settings (α, k). Here, the best result is achieved with α � 0.1

and k � 1 (Fig. 7.11, top right panel). Again, three classes are well separated

from the others. The remaining four classes are projected into a relatively small

area. Three of these classes are very close: window, brickface, and cement.

3. XOM was trained for tmax � 50000 iterations with the same learning rate

schedule for τ1 and σ like for the other data sets. We set the parameters to

τ start1 � 0.9, τ end1 � 0.05 and σ1 to nearly the maximum distance in the data

space: 1500 and σ2 is chosen as values between the interval r5, 70s. The sam-

pling vectors are initialized randomly in 5 independent runs. In the applica-

tion of XOM we observe once more a clear improvement when incorporating
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Figure 7.10: 1-NN Errors of the Segmentation data set for different methods and

parameters. A “+” appended to the name of the method indicates incorporation of

local LiRaM LVQ distances with rank M matrices.
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Figure 7.11: Example embeddings of the Segmentation data set. A “+” appended to

the name of the method indicates the incorporation of local LiRaM LVQ distances.
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the adaptive local metrics obtained in LiRaM LVQ. Example projections are

shown in Fig. 7.11 (second row).

4. For Isomap a minimum value of k ¥ 48 is necessary to obtain fully con-

nected neighborhood graphs and, hence, embed all points. The incorporation

of adaptive local distances leads to a clear improvement of the 1-NN error in

the mapping. As expected, a low rank M of the local matrices results in in-

ferior 1-NN errors if M is smaller than the intrinsic dimension of the data.

When incorporating adaptive distances with very large k, a fully connected

graph can be obtained and all data are mapped. However, then, closer classes

would highly overlap in the projections and the visualization would not be

discriminative. If, on the other hand, a smaller k is chosen, some of the classes

are absent in the graph and, consequently, in the visualization. As a conse-

quence of this effect, in Fig. 7.11 (third row, right panel) class C2 subgraph is

absent.

5. Like in the previous examples, LLE performs relatively poor. The 1-NN er-

ror can be decreased by using adaptive distances but points tend to be col-

lapsed in the projection due to the discriminative nature of the distance mea-

sure. Most visualizations with relatively low 1-NN errors display an almost

linear arrangement of all classes, cf. Fig. 7.11 (fourth row, left panel). An exam-

ple visualization after incorporation of adaptive metrics is shown in the right

panel. While the visualization appears to be be better, qualitatively, the above

mentioned basic problem of LLE persists.

6. The last row of Fig. 7.11 displays the two-dimensional representations pro-

vided by SNE and SNE� for perplexities in the interval [30 60]. The unsuper-

vised variant performs already quite well, but the incorporation of the learned

local distances improves it even further especially for higher perplexities and

bigger values for the limited rank M of the LiRaM LVQ algorithm (see Fig.

7.10).

Classes C2 (sky) and C7 (grass) are obviously separable by all applied methods,

both unsupervised and supervised. On the other hand, the discrimination of classes

C4 (foliage) and C5 (window) appears to be difficult, in particular in unsupervised

dimension reduction. Since the patches are randomly drawn from the images they

might contain pixels belonging to more than one class and the overlap is compre-

hensible to some extend.

We could not evaluate MVU on this data set, because this would require the

costly incorporation of in minimum k � 46 neighbors. It appears, that a part of

the data is already well separated, so that the neighborhood graph is not connected
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with smaller values of k. The provided code demands a fully connected graph, so

the number of constraints of the SDP becomes too large to be solved in reasonable

time and needs more memory than we have.

7.3.4 USPS Digits

The USPS (United States Postal Service) data set consists of images of hand written

digits of a resolution of 16�16 pixel. We normalized the data to have zero mean

and unit variance features and used a test set containing 200 observations per class.

Since it is a digit recognition task , we have the classes P r0, . . . , 9s resulting in 2000

samples for the embedding. The 1-NN errors of all compared methods are shown

in Fig. 7.12.

Localized LiRaM LVQ was trained for tmax � 500 epochs, with one prototype per

class and the same initialization scheme for the prototypes and matrices, learning

rates and learning schedules like explained in Section 7.3.3.

1. The direct LiRaM LVQ projections separate the classes nearly perfectly and

one favorable projection is shown in Fig. 7.13 in the first row on the left side.

2. In the combination with a charting step the best result is achieved with α � 0.1

and k � 2 (Fig. 7.13, top right panel). Four classes appear to be squeezed

together, but the overlap is still small if zoomed.

3. XOM was trained in the same way like mentioned in Section 7.3.3 with σ2 cho-

sen as values between the interval [0.01,2]. The incorporation of the adaptive

local metrics obtained in LiRaM LVQ once more improve the results of the

XOM dramatically. Example projections are shown in Fig. 7.13 (second row).

4. For Isomap the incorporation of adaptive local distances improves the 1-NN

error in the mapping. Like mentioned with the other data sets some data

points appear to be too separated from the others if the local distances are

used, so the mapping may miss them with a small neighborhood parameter

k. Like in the previous examples, LLE performs relatively poor, but can be en-

hanced by using the local dissimilarities given by LiRaM LVQ (Fig. 7.13, fourth

row).

5. SNE performs relatively well, but t-SNE showed a remarkable better 1-NN

error on this data set. Still the class structure is hardly recognizable on the

unsupervised mapping, while it becomes clear if the local distances are incor-

porated (Fig. 7.13, fifth row, right panel). The supervised SNE� results in 10

nicely recognizable clusters.
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Figure 7.12: 1-NN Errors of the USPS Digits data set for different methods and pa-

rameters. A “+” appended to the name of the method indicates incorporation of

local LiRaM LVQ distances with rank M matrices.
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Figure 7.13: Example embeddings of the USPS Digits data set. A “+” appended to

the name of the method indicates the incorporation of local LiRaM LVQ.
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6. The last row of Fig. 7.13 displays the two-dimensional representations pro-

vided by MVU and LDA. MVU does not perform very well on this data set

and LDA yields a classification error of 35%. We could not apply MVU with in-

corporation of the local distances provided by LiRaM LVQ, because the classes

are separated so well in this case that a huge value of nearest neighbors k

would be necessary to get a connected graph.

7.4 Conclusions

We introduced the concept of discriminative nonlinear data visualization based on

local matrix learning. Unlike unsupervised visualization schemes, the resulting

techniques focus on the directions which are locally of particular relevance for an

underlying classification task such that this additional label information is preserved

by the visualization as much as possible. Interestingly, local matrix learning gives

rise to auxiliary information which can easily be integrated into visualization tech-

niques: as local discriminative coordinates of the data points for charting techniques

and similar methods, as global metric information for XOM, SNE, MDS, etc., or as

local neighborhood information for LLE, Isomap, MVU and similar schemes. We

have introduced these different paradigms and we exemplary presented the behav-

ior of these schemes for six concrete visualization techniques, namely charting, LLE,

Isomap, XOM, SNE and MVU. An extension to further methods such as t-SNE, dif-

fusion maps, etc. could be done along the same lines.

Interestingly, the resulting methods have quite different complexity: while chart-

ing uses the fact that information is compressed in the prototypes resulting in an

only linear scheme depending on the number of data, LLE, SNE, and Isomap end up

with quadratic or even cubic complexity. Further, charting techniques and similar

provide the only methods in this collection which yield an explicit embedding map

rather than an embedding of the given points only. The behavior of the resulting dis-

criminative visualization techniques has been investigated in one artificial and three

real life data sets. The best results for all methods and data sets are summarized in

Table 7.1. According to the different objectives optimized by the visualization tech-

niques, the results are quite diverse and no single method which is optimum for

every case can be identified. In general, discriminative visualization as introduced

in this paper improves all the corresponding unsupervised methods and also alter-

native state-of-the-art schemes such as t-SNE. Further, the techniques presented in

this Chapter are superior to discriminative LDA which is restricted to linear em-

bedding. It seems that charting offers a good choice in many cases, in particular

since it is a method with only linear effort which provides an explicit embedding
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Table 7.1: 1-NN errors (and Standard deviation) on the different data sets.

Method 3 Tip Star Wine Segmentation USPS Digits

LiRaM LVQ 0.06 (0.0) 0.00 (0.0) 0.07 (0.0) 0.01 (0.0)

charting 0.14 (0.1) 0.01 (0.0) 0.13 (0.0) 0.06 (0.0)

XOM 0.49 (0.0) 0.04 (0.0) 0.25 (0.0) 0.64 (0.0)

XOM+(M=2) 0.25 (0.0) 0.00 (0.0) 0.11 (0.0) 0.02 (0.0)

XOM+(M=3) - - 0.11 (0.0) -

Isomap 0.36 (0.0) 0.25 (0.0) 0.23 (0.0) 0.53 (0.0)

Isomap+(M=2) 0.20 (0.1) 0.00 (0.0) 0.18 (0.1) 0.01 (0.0)

Isomap+(M=3) - - 0.13 (0.1) -

LLE 0.47 (0.0) 0.28 (0.0) 0.36 (0.0) 0.57 (0.0)

LLE+(M=2) 0.34 (0.1) 0.18 (0.2) 0.25 (0.1) 0.11 (0.1)

LLE+(M=3) - 0.03 (0.0) 0.19 (0.0) -

SNE 0.45 (0.0) 0.03 (0.0) 0.11 (0.0) 0.34 (0.0)

SNE+(M=2) 0.14 (0.1) 0.00 (0.0) 0.10 (0.0) 0.01 (0.0)

SNE+(M=3) - - 0.09 (0.0) -

t-SNE 0.41 (0.0) 0.04 (0.0) 0.85 (0.0) 0.08 (0.0)

MVU 0.40 (0.0) 0.04 (0.0) - 0.56 (0.0)

MVU+(M=2) 0.16 (0.1) 0.00 (0.0) - -

LDA - 0.01 (0.0) 0.20 (0.0) 0.35 (0.0)

map.

Interestingly, a direct projection of the data by means of the local linear maps of

LiRaM LVQ displays good results in many cases, although an appropriate coordi-

nation of these maps cannot be guaranteed in this technique. It seems promising

to investigate the possibility to introduce the objective of valid coordination of the

local projections directly into the LiRaM LVQ learning scheme. This issue as well

an exhaustive comparison of more extensions of unsupervised methods (such as

t-SNE) to incorporate discriminative information are the subject of ongoing work.



Published as:

K. Bunte, B. Hammer, T. Villmann, M. Biehl and A. Wismüller – “Neighbor Embedding XOM for Dimension

Reduction and Visualization,” Neurocomputing, vol. 74, no. 9, pp. 1340–1350, 2010.

K. Bunte, B. Hammer, T. Villmann, M. Biehl and A. Wismüller – “Exploratory Observation Machine (XOM)

with Kullback-Leibler Divergence for Dimensionality Reduction and Visualization,” in Proc. of European

Symposium on Artificial Neural Networks (ESANN), pp. 87–92, Bruges, Belgium, April 2010.

Chapter 8

Self Organized Neighbor Embedding for
Dimension Reduction and Visualization

The important thing in science is not so much to obtain new

facts as to discover new ways of thinking about them.

Sir William Bragg (1862 - 1942)

Abstract

We present an extension of the Exploration Observation Machine for structure-pre-

serving dimensionality reduction. Based on minimizing the Kullback-Leibler diver-

gence of neighborhood functions in data and image spaces, this Self Organized Neighbor

Embedding (SONE) creates a link between fast sequential online learning known from

topology-preserving mappings and principled direct divergence optimization approaches.

We quantitatively evaluate our method on real world data using multiple embedding

quality measures. In this comparison, SONE performs as a competitive trade-off between

high embedding quality and low computational expense, which motivates its further use

in real-world settings throughout science and engineering.

8.1 Introduction

V
arious dimension reduction techniques have been introduced based on differ-

ent properties of the original data to be preserved. A detailed description of

an handpicked amount of unsupervised and supervised methods can be found

in Chapter 6. For a comprehensive review on nonlinear dimensionality reduction

methods, we refer to (Lee and Verleysen 2007). In Chapter 3 and 7 we proposed

further methods for supervised linear and non-linear dimension reduction and vi-

sualization.
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Recently, a novel computational approach to topology learning has attracted at-

tention for advanced data processing: The Exploration Observation Machine (XOM)

(Wismüller 2006, Wismüller 2009d, Wismüller 2009b, Wismüller 2001, Wismüller

2011) (and references therein) systematically reverses the data-processing work flow

in topology-preserving mappings. By consistently exchanging functional and struc-

tural components of topology-preserving mappings, XOM can be seen as a com-

putational framework that computes graphical representations of high-dimensional

observations by a strategy of self-organized model adaptation. Although simple

and computationally efficient, XOM enjoys a surprising flexibility to simultaneously

contribute to several different domains of advanced machine learning, scientific

data analysis, and visualization. In particular, it supports both structure-preserving

dimensionality reduction and data clustering.

The complexity of most non-linear dimension reduction techniques grows at

least quadratically with the number of points to embed. The aim of Self Organized

Neighbor Embedding (SONE) proposed in this Chapter is to create a conceptual

link between fast sequential online learning known from topology-preserving map-

pings and principled direct divergence optimization approaches, such as Stochastic

Neighbor Embedding (SNE) and t-distributed SNE (t-SNE). So it can be seen as a

trade-off between low computational costs and high quality of the final embedd-

ing. The complexity is linear with the number of points and can be easily controlled

by the user. Furthermore, prior knowledge and task specific requirements can be

incorporated to the embedding result.

We will describe the basic XOM algorithm and the SONE extension in Section

8.2 and Section 8.3. We discuss the parameters in section 8.4 and furthermore we

spend some words on the complexity in comparison with other techniques in Sec-

tion 8.5, discuss the embedding results on two benchmark data sets in Section 8.6,

and conclude in Section 8.7.

8.2 The Exploratory Observation Machine

XOM maps a finite number of high-dimensional data points xi P X in the observa-

tion space X to low-dimensional image vectors ξi P E in the embedding space E .

The embedding space is associated with a structure hypothesis, given by a number

of sampling vectors s P E , which corresponds to the final structure in which the data

is embedded. These can be seen as a generalization of the prototypes as included

in the Self-organizing Map (SOM). Reasonable choices for the sampling vectors s

are: the location on a regular lattice structure in E , discrete positions in E as rep-

resentation of a finite number of class centers, drawn from a mixture of Gaussian
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to represent a finite number of clusters, or uniformly sampled in a region of E to

indicate that the visualization of the data should occupy the full projection space.

Unlike SOM, XOM does not project the sampling vectors s to the data space, rather

it projects the data to the embedding space. Nevertheless, the sampling vectors de-

fine receptive fields by a decomposition into points mapped closest to the sampling

vectors. An approximate back projection of the sampling vector can be defined as

the best match input vector

Ψpsq � xi where dEps, ξ
iq is minimum. (8.1)

The images ξi are initialized randomly and adapted iteratively during the training

triggered by the structure of the embedding space. All ξi are adapted into the di-

rection of the actual s according to the distances between the best match input Ψpsq

and their counterparts xi in the observation space X . For a given sampling vector s

the adaptation rule is given by:

ξk :� ξk � τ � hσpdX pΨpsq,x
kqq

BdEps, ξ
kq

Bξk
, (8.2)

where τ ¡ 0 denotes the learning rate, dX refers to the distance in the observation

space, e.g. the Euclidean distance and

hσpdX px
i,xjqq � hij

σ � exp

�
�dX px

i,xjq

2σ2



with σ ¡ 0 (8.3)

defines the neighborhood cooperation. In this way the projections ξ are arranged

around the priorly chosen structure elements s such that image vectors are close to

the same sampling vector if their corresponding data points x are neighbored in the

data space. The method is summarized in Algorithm 8.1:

Algorithm 8.1 : Exploratory Observation Machine (XOM)

1: choose a structure hypothesis, given by sampling vectors s P E

2: initialize the image vectors ξ, e.g. randomly or by means of a PCA.

3: compute the neighborhood function , e.g. a Gaussian Eq. (8.3)

4: while stopping criterion not reached do

5: present a sampling vector s from the structure hypothesis

6: find the best matching input vector following Eq. (8.1)

7: perform the update of all image vectors with the adaptation rule Eq. (8.2)

8: end while



152 8. Self Organized Neighbor Embedding (SONE)

8.2.1 Formalization of a cost function

As the SOM, XOM in its original form does not correspond to a cost function. How-

ever, as proposed in (Bunte, Hammer, Villmann, Biehl and Wismüller 2010), a vari-

ation following (Heskes 1999) by setting the best match input data vector to the

average

Ψpsq � xi where
j̧

hσpdX px
i,xjqqdEps, ξ

jq is minimum . (8.4)

This leads to the cost function:

EXOM �

»
i̧

δΨpsq,xi �

Ņ

j�1

hσpdX px
i,xjqq � dEps, ξ

jq ppsq ds, (8.5)

where δ denotes the Kronecker delta. The derivative of EXOM with respect to ξk can

be found in 8.A and yields the XOM learning rule given in Eq. (8.2). Thus, XOM

tries to minimize the distortion of sampling vectors s and projections ξj whereby

this term is weighted according to a Gaussian function depending on the distance

of the inverse images Ψpsq and xj in the data space.

8.3 SONE using generalized Kullback-Leibler

XOM, unlike SNE and many other embedding algorithms, exhibits the interesting

property that it allows to impose a prior structure on the projection space, which is a

property that can also be found in SOM. Like many other visualization techniques,

SNE has a computational and memory complexity that grows quadratically with the

number of data points, because it bases on the computation of pairwise affinities in

the projection space (for detailed description see Algorithm 6.4 in Section 6.2). The

complexity of XOM can be easily controlled by the structure definition and is linear

with the number of data points and the number of sampling vectors. We propose

to combine the ideas of XOM with the concept of direct divergence optimization as

proposed by SNE, to merge the advantages of both methods.

By means of the cost function Eq. (8.5) we are able to define new learning rules

for the XOM algorithm based on the generalized Kullback-Leibler (GKL) divergence

for not normalized positive measures p and q with 0 ¤ p, q ¤ 1:

DGKLpp}qq �

» �
ppxq log

�
ppxq

qpxq


�
dx�

»
rppxq � qpxqs dx . (8.6)

We consider the use of normalized and symmetrized probability densities (proposed

for SNE) as unnecessary restriction and define our concept in a more general way.
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In contrast to (Villmann and Haase 2011, Mwebaze et al. 2011), however, we do not

use the GKL divergence as a distance measure within the original or the embedd-

ing space, but as a dissimilarity measure between the two spaces. The cooperativity

functions hσpdX px
i,xjqq and gςpdEps, ξ

jqq used as positive measures, can be defined

analogously to Eq. (8.3):

hxi

σ pkq � hσpdX px
i,xkqq � exp

�
�dX px

i,xkq

2σ2



(8.7)

gsς pkq � gςpdEps, ξ
kqq � exp

�
�dEps, ξ

kq

2ς2

�
. (8.8)

They model the neighborhoods in the original space and the embedding space,

similar to the probability densities p and q in the SNE formulation. Following the

ideas of t-SNE (see Algorithm 6.5 in Section 6.2) the neighborhood function of the

embedding space gςpdEps, ξ
jqq could be chosen as a heavy-tailed distribution, e.g.

the Student-t-distribution similar to Eq. (6.10):

gsς pkq � p1� dEps, ξ
kq{ςqp�

ς�1
2 q (8.9)

This should avoid the crowding problem (van der Maaten and Hinton 2008), which

may occur due to the volume difference between high-dimensional and low-dimen-

sional spaces. The following formulas will give the most general definitions for

flexible use of distances dX and dE and positive measures h and g in the high- and

low-dimensional space, as well as explicit examples of them. Based on these set-

tings, we define a novel cost function using the divergence DGKL Eq. (8.6):

EGKL �

»
i̧

δΨGKLpsq,xi �
j̧

�
hΨGKLpsq
σ pjq log

�
h
ΨGKLpsq
σ pjq

gsς pjq

�
� hΨGKLpsq

σ pjq � gsς pjq

�
ppsq ds , (8.10)

where the best match data point for s is defined as:

ΨGKLpsq � xi such that (8.11)

j̧

�
hΨGKLpsq
σ pjq log

�
h
ΨGKLpsq
σ pjq

gsς pjq

�
� hΨGKLpsq

σ pjq � gsς pjq

�
is minimum.

The derivative of the cost function with respect to the images ξk yields the online

learning update rule for a given sampling vector s (see 8.B for details):

BEGKL

Bξk
�
Bgsς pkq

Bξk

�
1�

h
ΨGKLpsq
σ pkq

gsς pkq

�
, (8.12)
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In case of a Gaussian gsς pkq Eq. (8.8) the derivative reads:

BEGKL

Bξk
�

1

2ς2

�
hΨGKLpsq
σ pkq � gsς pkq

	 BdEps, ξkq
Bξk

(8.13)

�
αg

2

�
hΨGKLpsq
σ pkq � gsς pkq

	 BdEps, ξkq
Bξk

, αg �
1

ς2
(8.14)

and with a t-distributed gsς pkq defined in Eq. (8.9) the update is:

BEGKL

Bξk
�
ς � 1

2ς

1

p1� dEps, ξ
kq{ςq

�
hΨGKLpsq
σ pkq � gsς pkq

	 BdEps, ξkq
Bξk

(8.15)

�
αt

2

�
hΨGKLpsq
σ pkq � gsς pkq

	 BdEps, ξkq
Bξk

, αt �
ς � 1

ς � dEps, ξ
kq

(8.16)

and we refer to this variant as t-distributed SONE (t-SONE).

Algorithm 8.2 : Self Organized Neighbor Embedding (SONE)

1: choose a structure hypothesis, given by sampling vectors s P E

2: initialize the image vectors ξ, e.g. randomly or by means of a PCA.

3: compute the neighborhood function, e.g. hxi

σ pjq Eq. (8.7)

4: while stopping criterion not reached do

5: present a sampling vector s from the structure hypothesis

6: compute the neighborhood cooperation gsς pkq in E �ξk

7: find the best matching input vector ΨGKLpsq following Eq. (8.11)

8: perform the update of all image vectors ξk � ξk � τ � BEGKL

Bξk

following Eq. (8.13) or Eq. (8.15) dependent on the function gsς pkq

9: end while

While the original XOM approach is based on attraction forces only (see Eq.

(8.2)), the prototype update in Eq. (8.12) includes repulsion as well. This is due to the

possibility of a change of the sign dependent on the fraction between the coopera-

tivity function h and g. The XOM update emphasizes attraction and predominantly

optimizes “continuity”, such that small distances in X lead to small distances in E .

In contrast to the XOM adaptation rule, the SONE adaptation is able to push less

similar samples out of a region of a sampling vector, if the pulling force of the actual

winning sample is weaker than the repulsive force of the sampling vector. This also

prevents image vectors of collapsing onto one point which is stated to be a problem

in Locally Linear Embedding (LLE) (van der Maaten et al. 2009). Furthermore the

parameter ς in the t-distributed version Eq. (8.15) can be used to control the gran-

ularity of the final embedding. Further information about the parameters can be

found in section 8.4.
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8.3.1 SONE without structure hypothesis

It is also possible to use this algorithm without a defined structure. One could sim-

ply change the definition of the sampling vectors, as inspired by (Wismüller 2001,

Lee et al. 2003), in such a way that they are selected in close proximity to the image

vector positions.

Therefore, instead of choosing a sampling vector randomly according to a given

distribution, we visit the images ξ sequentially and choose a sampling vector sj �

ξ̃
j

drawn from a distribution centered around the actual images ξj . Examples could

be a Gaussian, a localized uniform, or a t-distribution. In our experiments we denote

the use of this variant with the term (ws) added to the method name. And we used

a normal distribution with variance ̟: N pξj , ̟q. The algorithm thus changes to:

Algorithm 8.3 : SONE without structure hypothesis

1: initialize the image vectors ξ, e.g. randomly or by means of a PCA.

2: compute the neighborhood function, e.g. hxi

σ pjq Eq. (8.7)

3: while stopping criterion not reached do

4: randomly pick an image vector ξj

5: find a sampling vector drawn from N pξj , ̟q centered around ξj

6: compute the neighborhood cooperation gsς pkq in E �ξk

7: find the best matching input vector ΨGKLpsq following Eq. (8.11)

8: perform the update of all image vectors ξk � ξk � τ � BEGKL

Bξk

9: end while

The final positions of the vectors ξ represent the output of the algorithm. How-

ever, in this variant the SONE is not longer bounded to a predefined structure, but

creates its own similarity map. Note, that in this variant the parameters have to be

tuned carefully, so that the repulsive forces do not dominate the embedding. Fur-

thermore the algorithm without structure hypothesis may be computationally more

expensive if the number of data samples grows over the number of vectors, which

would be used in a predefined structure.

8.4 Parameter setting

In this Section we will shortly discuss the parameters and their influence on the fi-

nal embedding of the SONE algorithm. First, the dissimilarity measures dX and dE

of the observation and embedding space have to be chosen. In our experiments we

used the squared Euclidean distance for both of them. Further, one has to decide

which neighborhood function g should be used in the embedding space. We show
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in this section the different behavior of the algorithm for two example cases: Gaus-

sian and t-distribution. As in XOM, the sampling vectors s may be chosen to match

application-specific user needs. They could for example be drawn from a uniform

distribution, a Gaussian, several Gaussian clusters or they could build a regular grid

of any shape. In our experiments we used triangular grids generated by DISTMESH

(Persson and Strang 2004). The list of parameters, which are candidates for adapta-

tion during training, contains:

σ the variance of the neighborhood cooperation h in the observation space X ,

ς the variance of the neighborhood cooperation g in the embedding space E ,

τ the learning rate in the gradient decent optimization.
The parameter σ resembles the variance of the neighborhood function from the

original SOM and XOM algorithms and is decreased during training. In our ex-

periments, we used a different σi for every data sample xi such that an ǫ-ball of

variance σi would contain a fixed number nk of neighbors. This ensures, that also

data samples in less dense regions have an effect on the embedding. All σi follow

an annealing scheme of the nk during training:

nkptq � nkpt1q � exp

��� log
�

nkpt1q
nkptendq

	
t

tmax

�, (8.17)

with nkpt1q and nkptendq being the number of neighbors at the beginning and at the

end of training and tmax the total number of epochs (sweeps through the sampling

vectors or number of iterations for randomly chosen s). It is also possible to find

appropriate σi by using the “perplexity” proposed for the SNE approach (Hinton

and Roweis 2003).

From Eq. (8.3) follows that the winner always gets the maximal attraction force

of one. Therefore, it is quite possible that for a sampling vector always the same

data point xi becomes the winner. To increase the probability that different samples

become the winners to one sampling vector we adjusted the value of

hxi

σi
piq � 0.9 �max

i�j

�
hxi

σi
pjq
	

. (8.18)

This way different samples become winner and therefore more data points influence

the final embedding.

Figure 8.1 shows the influence of the parameter ς on the repulsive forces g and

the learning rate α� in dependence of the distance between image and sampling

vectors in the embedding space. Fig. 8.1(a) shows the influence of the value ς for

the repulsive forces addressed by g and the learning rate factor αg in case of a Gaus-

sian used as neighborhood function in the embedding space. The repulsion forces
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(a) Gaussian neighborhood cooperation function in the embedding space
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(b) t-distributed neighborhood cooperation function in the embedding space

Figure 8.1: Influence of the parameter ς on the repulsion forces g and the learning

rate factor α� in SONE for given distances dE . In (a) the neighborhood function g

is Gaussian and αg the resulting factor, see Eq. (8.14), which influences the learning

rate τ . In (b) g is given by Eq. (8.9), αt is defined in Eq. (8.16).

which may cause instabilities can be easily suppressed by big distances between the

sampling vectors and a small ς P r1, 2s. For bigger ς , the update would become van-

ishingly small. In this case, the ς can be fixed during training, while the learning rate

τ is decreased following an annealing scheme. One may also start with high repul-

sive forces denoted by a bigger value of ς and decrease it during training following

an annealing scheme:

ςptq � ςpt1q � exp

��� log
�

ςpt1q
ςptendq

	
t

tmax

�, (8.19)
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Figure 8.2: The influence of the parameter ς for the learning rate factor αt in t-SONE

using a t-distribution in the embedding space. The sampling vectors lie on a regular

grid of hexagonal shape. For big values of ς , all image vectors are updated with

nearly equal strength. With smaller values the update strength of image vectors

outside the direct neighborhood of a sampling vector is suppressed.

with ςpt1q and ςptendq being the value of ς in the beginning and the end of the train-

ing. Note that in this case the learning rate τ should be adapted inversely propor-

tional to the factor αg , so that the resulting learning rate factor τ � αg is decreased

during training.

The application of a t-distribution in the embedding space shows an interesting

behavior of the update strength αt in dependence of the distance dEps, ξ
jq (see Fig.

8.1(b)). Here, the localization of the update in the embedding space can be controlled

with ς . A high value of ς ensures the same update strength for all samples. For

lower values only samples in the direct neighborhood of the actual sampling vector

are updated, see Fig. 8.2. With the parameter ς for the t-distribution we can control

the granularity or level of detail in the final similarity map. The influence of the

learning rate τ is negligible in this case and it is fixed to one. The value of ς is

decreased during training with a similar annealing scheme as Eq. (8.19).

In summary, the parameter which depends on the actual data set at hand is σ for

the neighborhood function in the observation space X . The other parameters like

the sampling distribution s are dependent on the needs and preferences of the user,

but not on the data itself. As in original XOM, prior knowledge may be integrated

in the choice of the structure. The parameter ς for the cooperativity function in the
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embedding space is adjusted according to the choice of the structure hypothesis and

the level of detail the user desires.

8.5 Complexity

The complexity of the structure variant of SONE depends on the dimension M of

the embedding space E , the number of samples to embed n, the number of sampling

vectors ns (which is usually much smaller than n) and the number of epochs tmax.

So, every epoch calculations of the complexity OpM � n � nsq have to be computed.
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Figure 8.3: The running time of different

dimension reduction methods depending

on the number of samples to embed.

Fig. 8.3 shows the computational

advantage of the simplest variant of

SONE in dependence of the number

of data points to be embedded. For

SNE and SONE we used the same num-

ber of 1000 iterations and run the sim-

ulation on the same machine and all

of them were matlab implementations.

Most of the proposed dimension reduc-

tion techniques show at least quadratic

complexity with the number of points

to process. In those methods, the com-

putation of the pairwise distances of the

image vectors is necessary in every iter-

ation. The structure variant of SONE on

the other hand only requires the com-

putation of the distance of the image

vectors to a given sampling vector in each iteration. Thus, for a sweep through

the sampling set (one epoch) the complexity is dependent on the number of sam-

pling vectors and the number of points, which is less then quadratic, if the number

of sampling vectors is smaller than the data set size.

8.6 Experiments

In this Section we show the results of different versions of two-dimensional SONE

on three exemplary real world data sets. We compare some conventional quality

measures, like the Sammon’s stress (Sammon 1969), Spearmans and Pearsons corre-

lation (ρs and ρp) (Venna 2007) as well as the Nearest Neighbor (1-NN) Error (ENN )

and the Intrusion / Extrusion measure (see Algorithm 6.6) proposed by (Lee and
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Verleysen 2008, Lee and Verleysen 2009), on the embeddings. Some methods we

compare display linear complexity with the number of points, namely PCA and

charting (Lee and Verleysen 2007). Additionally, we compare the results to those

obtained from t-SNE, which is widely accepted as a high quality state-of-the-art

technique, although it exhibits higher complexity and is computationally more ex-

pensive than the other techniques.

SONE t-SONE

Figure 8.4: Example embeddings of the USPS Digits data set. From the upper left till

lower right it shows: First, one result for the SONE with Gaussian g and sampling

vectors forming a regular circle (ENN � 0.13), second, one results of t-SONE using a

regular sampling grid of hexagonal structure (ENN � 0.05), third, an example result

of charting with 6 analyzers (ENN � 0.26), and last, the result of PCA (ENN � 0.37).
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8.6.1 USPS digits

Table 8.1: Quality measures for USPS.

Method t-SONE charting t-SNE

Sammon 0.16 (0.0) 0.25 (0.1) 0.16 (0.0)

ρs 0.54 (0.0) 0.42 (0.1) 0.40 (0.1)

ρp 0.57 (0.0) 0.43 (0.1) 0.44 (0.1)

ENN 0.06 (0.0) 0.29 (0.1) 0.02 (0.0)

The USPS Digits dataset from the UCI

repository (Asuncion et al. 1998) con-

sists of images of hand-written digits

as already explained in previous Chap-

ters. For clarity, we use the digits P

t0, 1, 2, 3, 4u, resulting in 5500 samples.

The parameter settings of all reduction

techniques were optimized for perfor-

mance, and on each parameter we per-

formed 10 independent runs. For charting and t-SNE, we used the code provided by

(van der Maaten et al. 2009). Charting yielded reasonable results for six analysers,

while for t-SNE a perplexity of 45 provided good results. The other parameters were

chosen according to default values provided by (van der Maaten et al. 2009). Some

example embeddings are shown in Fig. 8.4 and the quality with different measures

is shown in Fig. 8.5 and Table 8.1. The results of the SONE algorithm were inves-

tigated using different variants: with and without structure hypothesis and with

Gaussian and t-distribution in the embedding space respectively. The parameter

settings can be found in table 8.2 on page 165.
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Figure 8.5: Values of the overall quality Q

and B versus the number of neighbors k.

The top left panel in Fig. 8.4 shows

an example embedding of the SONE al-

gorithm with a Gaussian neighborhood

function in the embedding space. In the

top right panel an example embedd-

ing of the t-SONE algorithm using a t-

distribution in the embedding space is

presented. Table 8.1 shows the results

for the Sammon’s stress, Spearmans

and Pearsons correlation (ρs and ρp)

for the different dimension reduction

methods and the t-SONE with struc-

ture using t-distribution. Two exam-

ple results for embeddings without a

structure hypothesis are shown in Fig-

ure 8.6. The left side was achieved with

SONE(ws) using a Gaussian neighbor-

hood and the right side is an example

result of t-SONE(ws).
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SONE(ws) t-SONE(ws)

Figure 8.6: Two example embeddings of the SONE algorithm without a structure

hypothesis and an t-SNE example embedding. For the left- and right-hand side, a

Gaussian and a t-distribution was used in the embedding space, respectively.

From Fig. 8.5 and Table 8.1 can be reasoned that the t-SONE embedding can

be identified as a competitive trade-off between high embedding quality and low

computational expense. The different variants result in different behavior of the

embeddings: the incorporation of a Gaussian in the embedding space leads to simi-

larity maps which preserve local neighborhoods, but prevents the image vectors of

being projected onto each other. In addition, it forces image vectors to fill the whole

structure. Using the t-distributed variant, the t-SONE shows the ability of creat-

ing gaps between classes, and, using a small ς the image vectors are not forced to
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spread in empty regions of the sampling space. In contrast to t-SNE (see Fig. 8.6) the

(t-)SONE embeddings with structure hypothesis (see Fig. 8.4) represent the differ-

ent variances of the classes presented by the space they occupy in the embeddings.

The digits equal to one are always confined to a small number of sampling vectors,

whereas the twos and fours occupy a big region.

8.6.2 Relational data

As the SONE algorithm depends on the topology of the observed data only, it can

deal with pairwise distances as input. This is a property that SONE directly inherits

from the original XOM algorithm, which has been applied to the visualization of

non-metric real-world data. These data sets are known as dissimilarity or relational

data sets and they are often found in biological real world problems, in which a data

representation in vector form is not feasible.

cat cortex

 

 

1

2

3

4

protein

 

 

HA

HB

MY

GG/GP

others

Figure 8.7: Embeddings of Cat Cortex

(ENN � 0.09) and Protein (ENN � 0.04).

As two examples we chose the Cat

Cortex data set (Graepel et al. 1999)

preprocessed by Haasdonk (Haasdonk

and Bahlmann 2004) and the Pro-

tein data set (Mevissen and Vingron

1996). The Cat Cortex originates from

anatomic studies of cats’ brains. This

data set is given as a matrix contain-

ing the connection strength between 65

cortical areas spit into four classes cor-

responding to four different regions of

the cortex. The similarity matrix is sym-

metric but the triangle inequality does

not hold. The Protein data contains

the evolutionary distances of 226 globin

proteins (Mevissen and Vingron 1996).

We use the five classes proposed in

(Haasdonk and Bahlmann 2004): HA,

HB, MY, GG/GP and others. The class

others combines small classes form the

original dataset and represents only a

small fraction of the whole data set.

Fig. 8.7 shows two example embed-

dings of the relational data sets. We run

the t-SONE algorithm 10 times for each
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Figure 8.8: The overall embedding quality Q and B for two relational data sets. The

gray shaded area denotes the STD.

data set with random initialization of the image vectors. The embedding quality is

measured by Q and the behavior with B and compared to those from t-SNE with

varying perplexity. The mean values and standard deviation (STD) of these mea-

sures is shown in Fig. 8.8. For t-SNE the best results were achieved with perplexity

25. The parameter setting for the t-SONE for the Cat Cortex and for the Protein data

can be found in table 8.2 on page 165.

The quality of the embeddings of t-SONE and t-SNE is comparable. With the

Cat Cortex data t-SNE shows bigger standard deviation regarding the random ini-

tialization and more extrusive behavior for small neighborhoods. For the Protein

data the quality measured by Q is higher with t-SNE and the embedding shows

highly intrusive behavior. The t-SONE embedding shows in this case extrusive be-

havior. This shows, that despite the close relationship of SNE and SONE even the

behavior of the embeddings may vary a lot. The mean 1-NN Error of the 10 t-SONE

embeddings is ENN � 0.13 with standard deviation of 3% for the Cat Cortex and

ENN � 0.08 with STD=3% for the Protein data set.

8.7 Conclusion

In this contribution, we have introduced an extension of the XOM for structure-

preserving dimensionality reduction. Based on minimizing the Kullback-Leibler

divergence of neighborhood functions in data and embedding space, SONE creates
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Table 8.2: Explicit parameter settings for the SONE variants in the experiments.

method structure hypothesis tmax σi ς Eq. (8.19)

USPS

SONE triangular mesh, in form of a

circle, 562 s

50 σipt1q �perplexity 30

σiptendq �perplexity 3

ς � 1

t-SONE triangular mesh, in form of a

hexagon

500 Eq. (8.17), nkpt1q � 3000

nkptendq � 10

ςpt1q � 107

ςptendq � 5000

SONE(ws) no hypothesis! s drawn from

N pξj , 0.1q
300 σipt1q �perplexity 500

σiptendq �perplexity 5

ς � 1

t-SONE(ws) no hypothesis! s drawn from

N pξj , 10q
300 σipt1q �perplexity 500

σiptendq �perplexity 5

ςpt1q � 107

ςptendq � 0.1

Cat Cortex

t-SONE triangular mesh, in form of a

hexagon, 48 s

500 Eq. (8.17), nkpt1q � 50

nkptendq � 5

ςpt1q � 107

ςptendq � 1000

Protein

t-SONE triangular mesh, in form of a

hexagon, 200 s

500 Eq. (8.17), nkpt1q � 200

nkptendq � 5

ςpt1q � 107

ςptendq � 2000

a conceptual link between fast sequential online learning known from topology-

preserving mappings and principled direct divergence optimization approaches,

such as SNE and t-SNE. Quantitative comparative evaluation on benchmark data

using multiple embedding quality measures identifies SONE as a competitive trade-

off between high embedding quality and low computational expense, which moti-

vates its extended use in real-world settings throughout science and engineering.

We have extended the algorithm to utilize different distributions, namely the Gaus-

sian and the t-distribution following the ideas proposed in t-SNE (van der Maaten

and Hinton 2008). We have analyzed different variants of the SONE algorithm with

and without structure hypothesis and using different distributions, which offers

high flexibility based on application needs. Finally, it allows the user to incorporate

prior knowledge and the tuning of the level of detail the user desires. The extension

of this algorithm to arbitrary divergences will be addressed in the next Chapter.



166 8. Self Organized Neighbor Embedding (SONE)

8.A Derivative of the XOM cost function

We write the derivative of the cost function Eq. (8.5) with respect to ξk:

BEXOM

Bξk
�

»
i̧

BδΨpsq,xi

Bξk j̧

hxi

σ pjq � dEps, ξ
jq ppsqds

�

»
hΨpsq
σ pkq

BdEps, ξ
kq

Bξk
ppsqds. (8.20)

The second term yields the learning rule Eq. (8.2) while the first term vanishes due

to the following considerations: We use the shorthand notation

Φpxi, sq �
j̧

hxi

σ pjq � dEps, ξ
jq . (8.21)

Then, the Kronecker delta can be expressed as

δΨpsq,xi � H

�
ķ

HpΦpxi, sq � Φpxk, sqq � n� 0.5



, (8.22)

where H denotes the Heaviside function and n denotes the number of data points

xi. The derivative of H is given by the delta function δ which is symmetric and

non-vanishing only for input zero. Hence the first term of Eq. (8.20) vanishes:» �
i̧

BδΨpsq,xi

Bξk
Φpxi, sq

�
ppsqds

�

»
i̧

δ

�
ļ

HpΦpxi, sq � Φpxl, sqq � n� 0.5

�
�

ļ

δpΦpxi, sq � Φpxl, sqq��
hxi

σ pkq � hxl

σ pkq
	
�
BdEps,x

kq

Bξk j̧

hxi

σ pjq � dEps, ξ
jq ppsqds (8.23)

�

» �
i̧lj

δ

�
ļ1
HpΦpxi, sq � Φpxl1 , sqq � n�

1

2

�
� δpΦpxi, sq � Φpxl, sqq�

hxi

σ pkq � hxi

σ pjq � dEps, ξ
jq �

i̧lj

δ

�
ļ1
HpΦpxl, sq � Φpxl1 , sqq � n�

1

2

�
� δpΦpxl, sq � Φpxi, sqq � hxi

σ pkq � hxl

σ pjq � dEps, ξ
jq

�
�
BdEps,x

kq

Bξk
ppsqds (8.24)
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�

» �
i̧l

δ

�
ļ1
HpΦpxi, sq � Φpxl1 , sqq � n�

1

2

�
� δpΦpxi, sq � Φpxl, sqq�

hxi

σ pkq � Φpxi, sq �
i̧l

δ

�
ļ1
HpΦpxl, sq � Φpxl1 , sqq � n�

1

2

�
� δpΦpxi, sq � Φpxl, sqq � hxi

σ pkq � Φpxl, sq

�
�
BdEps, ξ

kq

Bξk
ppsqds � 0. (8.25)

8.B Derivative of the SONE cost function

The derivatives of the neighborhood function read in case of a Gaussian Eq. (8.8):

Bgsς pkq

Bξk
�

�
�
gsς pkq

2ς2



BdEps, ξ

kq

Bξk
(8.26)

and in case of a t-distribution Eq. (8.9)

Bgsς pkq

Bξk
�

�
�
ς � 1

2ς



gsς pkq

p1� dEps, ξ
kq{ςq

BdEps, ξ
kq

Bξk
. (8.27)

We write the derivative of the cost function Eq. (8.10) with respect to ξk:

BEGKL

Bξk
�

»
i̧

BδΨGKLpsq,xi

Bξk j̧

�
hxi

σ pjq log

�
hxi

σ pjq

gsς pjq

�
�hxi

σ pjq� gsς pjq



ppsqds

�

»
i̧

δΨGKLpsq,xi �
Bgxς pkq

Bξk

�
1�

hxi

σ pkq

gsς pkq

�
ppsqds , (8.28)

with ΨGKLpsq defined in Eq. (8.11). The latter term yields the learning rule. The first

term vanishes, as can be seen as follows: We use the shorthand notation

ΦNpxi, sq �
j̧

�
hxi

σ pjq log

�
hxi

σ pjq

gsς pjq

�
� hxi

σ pjq � gsς pjq

�
. (8.29)

Then the best match input point can be expressed as

δΨGKLpsq,xi � H
�

ķ

HpΦNpxi, sq � ΦNpxk, sqq � n�
1

2

	
. (8.30)
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Hence the additional first term of Eq. (8.28) vanishes, because of following:»
i̧

BδΨGKLpsq,xi

Bξk
� ΦNpxi, sq ppsqds

�

»
i̧

δ

�
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�
�
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Bξk
(8.31)
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»
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δ
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HpΦNpxl, sq � ΦNpxl1 , sqq � n�

1

2

�
� δpΦNpxl, sq � ΦNpxi, sqq

� pgsς pkq � hxi

σ pkqq �
Bgsς pkq

Bξk
� ΦNpxl, sq ppsqds � 0, (8.33)

because of the symmetry of δ and the fact that δ is nonvanishing only if ΦNpxl, sq �

ΦNpxi, sq.
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Chapter 9

Non-linear Dimension Reduction Employing
Divergences

The nice thing about standards is that there are so many of

them to choose from.

Andrew S. Tanenbaum (Computer Networks, p.254)

Abstract

We present a systematic approach to the mathematical treatment of the Self Organized

Neighbor Embedding, Stochastic Neighbor Embedding and t-distributed SNE. This al-

lows an easy adaptation of the methods or exchange of their respective modules. In partic-

ular, the divergence which measures the difference between distributions in the original

and the embedding space can be treated independently from other components like, e.g.,

the similarity of data points or the distribution. We focus on the extension for different

divergences and propose a general framework based on the concept of Fréchet-derivatives.

This way the general approach can be adapted to the user specific needs. We derive the ex-

plicit learning rules for a wide range of divergences and concentrate on the evaluation of

the Gamma-divergence for t-distributed SNE and Self Organized Neighbor Embedding

on several real-world data sets.

9.1 Introduction

M
any dimension reduction methods have been introduced and discussed in

the previous Chapters based on different objectives. Recently, the Stochas-

tic Neighbor Embedding (SNE) (Hinton and Roweis 2003) and extensions thereof

have become popular for visualization. It approximates the probability distribution
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in the high-dimensional space, defined by neighboring points, with the correspond-

ing probability distribution in a lower-dimensional space. In (van der Maaten and

Hinton 2008) a technique called t-distributed SNE (t-SNE) is proposed, which is a

variation of SNE considering a particular statistical model assumption for the low-

dimensional distribution. The similarity of the distributions is quantified in terms

of the Kullback-Leibler (KL) divergence. A computational efficient combination of

fast sequential online learning and principled direct divergence optimization known

from SNE is called Self Organized Neighbor Embedding (SONE) (Bunte, Hammer,

Villmann, Biehl and Wismüller 2010), see Chapter 8. All these methods measure

the disagreement of a topology defining functions in the high-dimensional space

and the low-dimensional space by means of the KL or the generalized Kullback-

Leibler (GKL) divergence. Functional metrics like Sobolev distances, kernel-based

dissimilarity measures and divergences have attracted attention recently for the pro-

cessing of data showing a functional structure. These metrics were for example in-

vestigated as alternatives to the most common choice, the Euclidean distance (Rossi

et al. 2005, Lee and Verleysen 2005, Ramsay and Silverman 2006, Villmann 2007, Vill-

mann and Schleif 2009). The application of divergences for Vector quantization

and Learning Vector Quantization schemes have been investigated in (Villmann and

Haase 2011, Mwebaze et al. 2011).

In this Chapter, we formulate a mathematical framework based on Fréchet deri-

vatives which allows to generalize the concept of SONE, SNE and t-SNE to arbitrary

divergences. This leads to a new dimension reduction and visualization scheme,

which can be adapted to the user specific requirements in an actual problem. We

summarize the general classes of divergences following the scheme introduced by

(Cichocki et al. 2009) and extended in (Villmann and Haase 2011). The mathemati-

cal framework for functional derivatives of continuous divergences is given by the

functional-analytic generalization of common derivatives, known as Fréchet deriva-

tives (Frigyik et al. 2008, Kantorowitsch and Akilow 1978). It is the generalization of

partial derivatives used for the discrete variants of the divergences. After character-

izing the different classes of divergences and the introduction of Fréchet derivatives,

we introduce a general mathematical view on the SONE, SNE and t-SNE algorithms

incorporating these principles. Real world data sets demonstrate the applicability

of this approach.

9.2 Specifications of divergences

Divergences are functionals Dpp‖qq designed as dissimilarity measures between two

nonnegative integrable functions p and q (Cichocki et al. 2009). In practice, usually



9.2. Specifications of divergences 171

Kullback-LeiblerBregman

generalized Kullback-Leibler

Itakura-Saito

Beta-div.

Eta-div.

Euclidean

Csiszár-f

Alpha-div.

generalized Rényi
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Figure 9.1: Overview over the families of divergences and their relationship to each

other. The shortcut Prob. denotes the special case of probability densities. For sake

of clarity we show the most important relations only and do not claim completeness.

p corresponds to the observed data and q denotes the estimated or expected data.

We assume ppxq and qpxq are positive measures defined on x in the domain V . The

weight of the functional p is defined as

W ppq �

»
V

ppxq dx . (9.1)

Positive measures with the additional constraint W ppq � 1 can be interpreted as

probability density functions. Generally speaking, divergences measure a quasi-

distance or directed difference, while we are mostly interested in separable mea-

sures, which satisfy the condition

Dpp‖qq

#
¡ 0 for p � q

� 0 iff p � q .
(9.2)
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In contrast to a metric, divergences may be non-symmetric Dpp‖qq � Dpq‖pq, and

do not necessarily satisfy the triangular inequality Dpp‖qq ¤ Dpp‖zq � Dpz‖qq. Fol-

lowing (Cichocki et al. 2009) one can distinguish at least three main families of di-

vergences with the same consistent properties: Bregman-divergences, Csiszár’s f -

divergences and Gamma-divergences. Note that all these families contain the KL

divergence as special case, so the KL divergence can be seen as the non empty inter-

section between the sets of divergences.

In general we assume p and q to be positive measures. In case they are nor-

malized we refer to them as probability densities. We review some basic properties

of divergences in the following Sections. For detailed information see (Cichocki

et al. 2009, Cichocki and Amari 2010). An overview of the family of divergences,

examples and their relationship to each other can be found in Figure 9.1.

9.2.1 Bregman divergences

A Bregman divergence is defined as a pseudo-distance between two positive mea-

sures p and q: DBpp‖qq : L � L Ñ IR�. Let φ be a strictly convex real-valued func-

tion with the domain of the Lebesgue-integrable functions L and twice continuously

Fréchet-differentiable (Kantorowitsch and Akilow 1978). Then the Bregman diver-

gence can be defined by

D
φ
Bpp‖qq � φppq � φpqq �

δφpqq

δq
rp� qs , (9.3)

where δφpqq
δq

is the Fréchet derivative of φ with respect to q (Villmann and Haase

2011). Well known fundamental properties of the Bregman divergences are (Cichocki

et al. 2009):

Convexity A Bregman divergence is always convex in its first argument but not

necessarily in its second.

Non-negativity

D
φ
Bpp‖qq ¥ 0 and D

φ
Bpp‖qq � 0 iff p � q (9.4)

Linearity They are linear according to the generating function Φ, i.e. any positive

linear combination of Bregman divergences is also a Bregman divergence:

D
c1φ1�c2φ2

B p.q � c1D
φ1

B p.q � c2D
φ2

B p.q c1, c2 ¡ 0
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Invariance A Bregman divergence is invariant under affine transformations. Thus,

DΓ
Bpp‖qq � D

φ
Bpp‖qq is valid for any affine transformation

Γpqq � φpqq �Ψgrqs � c (9.5)

with linear operator

Ψgrqs �
δΓpgq

δg
� q �

δφpgq

δg
� q (9.6)

for positive measures g and q and scalar c.

Three-point property For any triple p, q, g of positive measures

D
φ
Bpp‖gq �D

φ
Bpp‖qq �D

φ
Bpq‖gq � pp� qq

�
δφpqq

δq
�

δφpgq

δg



holds.

Generalized Pythagorean theorem Let PΩpqq � argmin
ωPΩ

D
φ
Bpω‖qq be the Bregman

projection onto the convex set Ω and p P Ω. The inequality:

D
φ
Bpp‖qq ¥ D

φ
Bpp‖PΩpqqq�D

φ
BpPΩpqq‖qq (generalized Pythagorean theorem) (9.7)

holds. If Ω is an affine set it holds with equality.

Optimality In (Banerjee et al. 2005) an optimality property is stated. Given a set

S of positive measures p with mean µ � ErSs and µ P S the unique minimizer

EpPSrDpp‖qqs is minimum for q � µ if D is a Bregman divergence. This property

favors the Bregman divergences for optimization and clustering problems (Banerjee

et al. 2004, Bregman 1967, Dhillon and Sra 2005, Dhillon and Tropp 2007, Murata

et al. 2004).

The Bregman divergence include many prominent dissimilarity measures like

(Cichocki et al. 2009, Villmann and Haase 2011, Eguchi and Kano 2001):

• The generalized Kullback-Leibler (or I-) divergence for positive measures p

and q:

DGKLpp‖qq �

»
p log

�
p

q



dx�

»
pp� qq dx (9.8)

using the generating function

Φpfq �

»
pf � log f � fq dx . (9.9)
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Figure 9.2: Isosurfaces of some Bregman divergences with respect to different refer-

ence points. The first panel of each row contains the plane of probability densities,

the cutoffs in the other panels show the equidistance lines for this plane.
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Figure 9.3: Equidistance lines of Bregman divergences for probability densities with

respect to different reference points.
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Some 3-dim. isosurfaces for the GKL divergence with respect to different ref-

erence points can be found in Figure 9.2. For probability densities p and q, Eq.

(9.8) simplifies to the KL divergence (Kullback and Leibler 1951, Kapur 1994):

DKLpp‖qq �

»
p log

�
p

q



dx , (9.10)

which is related to the Shannon-entropy (Shannon 1948). Equidistance con-

tours for 3-dim. probability densities using KL divergence with respect to

different reference points are displayed in Fig. 9.3.

• The Itakura-Saito (IS) divergence (Itakura and Saito 1968) :

DISpp‖qq �

» �
p

q
� log

�
p

q



� 1

�
dx (9.11)

bases on the Burg entropy, which also serves as the generating function:

Φpfq � �

»
logpfq dx . (9.12)

The IS divergence was originally presented as a measure of the quality of fits

between two spectra and became a standard measure in the speech and im-

age processing community due to the good perceptual properties of the re-

constructed signals. It is known as negative cross-Burg entropy and fulfills

the scale-invariance property DISpc � p‖c � qq � DISpp‖qq, which implies the

same relative weight is given to low and high valued components of p (Bertin

et al. 2009).

• The Eta-divergence is also known as norm-like divergence (Nielsen and Nock

2009) :

Dηpp‖qq �

»
pη � pη � 1q � qη � η � p � qη�1 dx (9.13)

with generating function

Φpfq �

»
fη dx for η ¡ 1 . (9.14)

In the case η � 2 the Eta-divergence becomes the Euclidean distance with

generating function Φpfq �
³
f2 dx.

• The Beta-divergence (Cichocki et al. 2009):

Dβpp‖qq �

»
p
pβ�1 � qβ�1

β � 1
dx�

»
pβ � qβ

β
dx (9.15)
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with β � 0 and β � 1 and the generating function

Φpfq �
fβ � β � f � β � 1

βpβ � 1q
. (9.16)

For specific values of β the divergence becomes:

β Ñ 1 : generalized Kullback-Leibler Eq. (9.8)

β Ñ 0 : Itakura-Saito divergence Eq. (9.11)

β � 2 : Euclidean distance (apart from a factor 1
2

).
Furthermore the Beta-divergence is equivalent to the density power diver-

gence (Basu et al. 1998, Eguchi and Kano 2001, Mihoko and Eguchi 2002) and

a rescaled version of the Eta-divergence.

9.2.2 Csiszár f-divergences

We denote by F the class of convex, real-valued, continuous functions f satisfying

fp1q � 0, with

F � tg|g : r0,8q Ñ IR, g - convexu . (9.17)

For a function f P F the Csizár f -divergence is given by:

Df pp‖qq �

»
q � f

�
p

q



dx (9.18)

with the definitions 0 � f
�
0
0

�
� 0 and 0 � f

�
a
0

�
� lim

xÑ0
x � fp a

x
q � lim

uÑ8
a �

fpuq
u

(Csiszár 1967, Csiszár 1972, Amari and Nagaoka 2000, Taneja and Kumar 2004). The

f -divergence can be interpreted as an average of the likelihood ratio p
q

describing

the change rate of p with respect to q weighted by the determining function f . For

a general f , which does not have to be convex, with f 1p1q � cf � 0, this form is not

invariant and we need to use the generalized f -divergence

DG
f pp‖qq � cf

»
pp� qq dx�

»
q f

�
p

q



dx . (9.19)

For the special case of probability densities p and q the first term vanishes and the

original form of the f -divergences is obtained.

Some basic properties of the Csiszár f -divergence are (Österreicher 2002, Ci-

chocki et al. 2009):

Non-negativity Df pp‖qq ¥ 0 where the equal sign holds iff p � q, which follows

from the Jensen’s inequality.
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Generalized entropy It corresponds to a generalized f -entropy if the form

Hf ppq � �

»
fppprqq dr . (9.20)

Strict convexity The f -divergence is convex in both arguments p and q:

Df ptp1 � p1� tqp2‖tq1 � p1� tqq2q ¤

tDf pp̃1‖q̃1q � p1 � tqDf pp2‖q2q �t P r0, 1s (9.21)

Scalability cDf pp‖qq � Dcf pp‖qq for any positive constant c ¡ 0.

Invariance Df pp‖qq is invariant with respect to a linear shift regarding the function

f : e. g. Df pp‖qq � Df̃ pp‖qq iff f̃puq � fpuq � c � pu� 1q for any constant c P IR.

Symmetry For f, f� P F , where f�puq � u �fp 1
u
q denotes the conjugate function of

f , the relation Df pp‖qq � Df�pq‖pq is valid. It is possible to construct a symmetric

Csizár f -divergence with fsympuq � fpuq � f�puq as determining function.

Upper bound The f -divergence is bounded by

0 ¤ Df pp‖qq ¤ lim
uÑ0�

tfpuq � f�puqu with u �
p

q
. (9.22)

The existence of this limit for probability densities p and q was shown by Liese and

Vajda in (Liese and Vajda 1987). Villmann and Haase showed that these bounds still

holds for positive measures p and q (Villmann and Haase 2011).

Monotonicity The f -divergence is monotonic with respect to the coarse-graining

of the underlying domain D of the positive measures p and q, which is similar to the

monotonicity of the Fisher metric (Amari and Nagaoka 2000).

Some well-known examples of f -divergences are (Cichocki et al. 2009):

• The subset of Alpha-divergences (Cichocki et al. 2009):

Dαpp‖qq �
1

αpα� 1q
�

»
rpαqp1�αq � αp� pα� 1qqs dx (9.23)

is based on the determining function

fpuq � u
upα�1q � 1

α2 � α
�

1� u

α
with u �

p

q
(9.24)
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Figure 9.4: Isosurfaces of some Csiszár f-divergences with respect to different refer-

ence points. The first panel of each row contains the plane of probability densities,

the cutoffs in the other panels show the equidistance lines for this plane.
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Figure 9.5: Equidistance lines of Csiszár f-divergences for probability densities with

respect to different reference points.
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with α P IRzt0, 1u. For specific values of α the divergence becomes:

α Ñ 1 : generalized Kullback-Leibler Eq. (9.8)

α Ñ 0 : reverse Kullback-Leibler

α � �1 : Neyman Chi-square

α � 2 : Pearson Chi-square.
For α ¤ 0 the divergence is zero-forcing, e.g. ppxq � 0 enforces qpxq � 0. On

the other hand, for α ¥ a it is zero-avoiding, i.e. qpxq ¡ 0 whenever ppxq ¡ 0.

For α Ñ 8 qpxq covers ppxq completely and the Alpha-divergence is called

inclusive in this case. Furthermore the Beta-divergences can be generated

from the Alpha-divergences by applying a nonlinear transformation (Cichocki

et al. 2009, Villmann and Haase 2011).

• The generalized Rényi divergence (Amari 1985, Cichocki et al. 2009):

Dα
GRpp‖qq �

1

α� 1
� log

�» �
pαqp1�αq � αp� pα� 1q q

�
dx� 1



(9.25)

with α P IRzt0, 1u is closely related to the Alpha-divergence.

• For the special case of probability densities the generalized Rényi-divergence

reduces to the Rényi-divergence (Rényi 1960, Rényi 1970):

Dα
Rpp‖qq �

1

α� 1
� log

�»
pαqp1�αq dx



(9.26)

which bases on the Rényi entropy.

• The Tsallis-divergences

Dα
Tpp‖qq �

1

1� α

�
1�

»
pαqp1�αq dx



(9.27)

for α � 1 is a widely applied divergence for probability densities p and q based

on the Tsallis entropy. It is also a rescaled version of the Alpha-divergence. In

the limit α Ñ 1 it converges to the Kullback-Leibler divergence Eq. (9.10).

• The Hellinger divergence (Taneja and Kumar 2004):

DHpp‖qq �
1

2

»
p
?
p�

?
qq2 dx (9.28)

with generating function fpuq � 2p1�
?
uq for u � p

q
is defined for probability

densities p and q.
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9.2.3 Gamma-divergence

The Gamma-divergence is very robust with respect to outliers (Fujisawa and Eguchi

2008) and was proposed by Fujisawa and Eguchi:

Dγpp‖qq � log

���³ pγ�1 dx
� 1

γ2�γ �
�³
qγ�1 dx

� 1
γ�1�³

p � qγ dx
� 1

γ

�� (9.29)

It is robust for γ P r0, 1s. In the limit γ Ñ 0 it becomes the Kullback-Leibler diver-

gence DKLpp‖qq for probability densities. For γ � 1 it becomes the Cauchy-Schwarz

divergence

DCSpp‖qq �
1

2
log

�»
q2 dx �

»
p2 dx



� log

�»
p � q dx



, (9.30)

which is based on the quadratic Rényi-entropy. The Cauchy-Schwarz divergence

is symmetric and was introduced considering the Cauchy-Schwarz inequality for

norms. It is frequently applied for Parzen window estimation, especially suitable

for spectral clustering as well as related graph cut problems (Principe et al. 2000,

Jenssen 2005, Jenssen et al. 2006, Villmann and Haase 2011).

Some isosurfaces of the Gamma-divergence for different values of γ are shown

in Fig. 9.6. The equidistance lines for the special case of probability densities can be

found in Fig. 9.7. The Gamma-divergence displays some nice properties (Cichocki

et al. 2009, Villmann and Haase 2011):

Invariance Dγpp‖qq is invariant under scalar multiplication with positive constants

Dγpp‖qq � Dγpc1 � p‖c2 � qq �c1, c2 ¡ 0 . (9.31)

In case of positive measures the equation Dγpp‖qq � 0 holds only if p � c � q with

c ¡ 0. For probability densities c � 1 is required.

Pythagorean relation As for Bregman divergences a modified Pythagorean rela-

tion between positive measures can be stated for special choices of p, q, ρ. Let p be

a distortion of q defined as convex combination with a positive distortion measure

φprq

pεprq � p1� εq � qprq � ε � φprq . (9.32)

A positive measure g is denoted as φ-consistent if νg �
�³

φprqgprqα dr
� 1

α is suf-

ficiently small for large α ¡ 0. If two positive measures q and ρ are φ-consistent
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Figure 9.6: Isosurfaces of some Gamma-divergences with respect to different refer-

ence points. The first panel of each row contains the plane of probability densities,

the other panels contain equidistance lines for certain limiting planes.
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Figure 9.7: Equidistance lines of Gamma-divergences for probability densities with

respect to different reference points.
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Figure 9.8: Histograms of intensity values in an example picture. The original image

“moon” together with its histogram is shown on the left side. The following pictures

contain noise in form of a linear monotonically increasing transformation of gray

values (Eq. (9.34) using l � r1, 2, . . . , 9s) corresponding to the Noise-Levels 1 till 9.

with respect to a distortion measure φ, then the Pythagorean relation approximately

holds for q, ρ and the distortion pε of q:

∆ppε, q, ρq � Dγppε‖ρq �Dγppε‖qq �Dγpq‖ρq

� Opενγq with ν � maxtνq, νρu. (9.33)

This property implies the robustness of Dγ according to distortions.

9.2.4 Discussion of Divergences

In this section we examine and compare some introduced divergences by means of

controlled experiments. We investigate the behavior of different divergences for the

comparison of images containing an increasing level of (non-linear) noise. There-

fore, we compute the histograms of gray-value images taken from the Berkley seg-

mentation data set and noisy versions of them.

Linearly monotonically increasing noise

In the first experiment the noisy image I� is obtained by adding a linear monotoni-

cally increasing transformation of gray values to the image I :

I�px, yq � Ipx, yq � rl � pIpx, yq � I0q � 1s , (9.34)

where l denotes the level of noise and I0 corresponds to the minimal intensity in

the original image. Figure 9.8 shows the picture “moon” adding different levels
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Figure 9.9: Matrix of pairwise dissimilarity of the ten histograms shown in figure

9.8 using different divergences. The ideal dissimilarity matrix for this example is

a band matrix shown in the middle of the top row. Some divergences (marked

with an asterisk � in the title) show numerical instabilities in case of zeros in the

signals. In that cases a small constant c � 1 was added to all histograms to prevent

the degeneration. Other divergences, like e.g. the Gamma-divergence are more

robust. The Eta-divergence ignoring the extreme cases and the Gamma-divergence

with γ ¥ 1 exhibit more of the desired band structure for this example compared to

other choices.
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Figure 9.10: Histograms of intensity values in an example picture. The original image

“dolphins” together with its histogram is shown on the left side. The following

pictures contain noise in form of a linear monotonically increasing transformation

of gray values (Eq. (9.34) using l � r0.1, 0.2, . . . , 0.9s) named Noise-Levels 1 till 9.

of noise following Eq. (9.34) together with the gray-value histograms. The noise-

level is ranged from l � 1 to l � 9. Some dissimilarity matrices comparing the ten

histograms with different divergence measures are shown in Figure 9.9. The intu-

itively ideal dissimilarity matrix in this case is a symmetric band matrix shown in

the middle of the top row. Some divergences like the generalized Rényi divergence

show numerical instabilities. Others show quite similar behavior, e.g. Itakura Saito,

Alpha-divergences and the Beta-divergence with β � 0.5, but they do not exhibit

the desired band structure. For the original image and low noise-levels (images 1-

5) the Beta-divergence with β � 1.5, Alpha-divergence with α � 0.5 and also the

generalized KL divergence show a bit of the desired band structure. Ignoring the

last column and last row (the extreme case) in the dissimilarity matrix of the Eta-

divergence shows a good approximation of a band matrix. The Gamma-divergence

is observed to be quite robust in this case and also exhibits a visible band struc-

ture for γ ¥ 1. In the special case of γ � 1 the Gamma-divergence equals the

Cauchy-Schwarz divergence and is symmetric. Another symmetric example is the

Alpha-divergence with α � 0.5.

As a second example we take a picture of a group of dolphins and add some

noise (following Eq. (9.34)) using the levels l � r0.1, 0.2, . . . , 0.9s. The resulting his-

tograms of gray values for the different noise levels are shown in Figure 9.10. As

above we compute the matrices of pairwise similarities between the histograms us-

ing different divergences. The results can be found in Figure 9.11. In this example

the eta-divergence especially with η � 2.5 is a good approximation of the ideal dis-

similarity matrix shown in the middle of the top row. The best symmetric choice

is the Gamma divergence with γ � 1 (Cauchy-Schwarz). Furthermore, dependent
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Figure 9.11: Matrix of pairwise dissimilarity of the ten histograms shown in figure

9.10 using different divergences. The ideal dissimilarity matrix for this example is a

band matrix shown in the middle of the top row. Some divergences (marked with an

asterisk � in the title) show numerical instabilities in case of zeros in the signals. In

that cases a small constant c � 1 was added to all histograms to prevent the degen-

eration. The Eta-divergence especially with η � 2.5 shows a good approximation

of the desired band structure for this example. The Gamma-divergence with γ � 1

(Cauchy-Schwarz) is the best symmetric choice in this case.
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Figure 9.12: Histograms of intensity values in an example picture. The original image

“dolphins” (top row) together with its histogram is shown on the left side. The

following pictures contain additive uniform noise following Eq. (9.35) using l �

r 50
255

, 100
255

, . . . , 450
255

s corresponding to the Noise-Levels 1 till 9.

on the value for γ one can chose between a better “resolution” (local) and a better

preservation of the hierarchy of the histograms (global). Some other divergences,

e.g. the generalized KL and Itakura-Saito, show very poor approximations of the

desired dissimilarity for this example.

Additive uniform noise

In the second experiment the noisy image I� is obtained by adding uniform noise

to the image I :

I�px, yq � Ipx, yq � Up0, lq , (9.35)

where Up0, lq denotes a scalar value drawn from the uniform distribution in the

interval r0, ls.

Figure 9.12 shows the picture of dolphins adding different levels of uniform

noise following Eq. (9.35) together with the more and more flattened gray-value

histograms. The noise-level is ranged from l � 50
255

to l � 450
255

. Some dissimilarity

matrices pairwise comparing the ten images with different divergence measures are

shown in Figure 9.13. Some divergences like the generalized Rényi, Itakura-Saito

and some Alpha- and Beta-divergences fail to approximate the desired band struc-

ture in the pairwise dissimilarity matrix. Others, like the Gamma-, Eta- and some

Alpha- and Beta-divergences are nearly ideal for this example. The Kullback-Leibler

divergence is nearly perfect if the original image is ignored.
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Figure 9.13: Dissimilarity matrices comparing the ten histograms shown in figure

9.12 using different divergences. The ideal dissimilarity matrix for this example is a

band matrix shown in the middle of the top row. Some divergences (marked with

an asterisk � in the title) show numerical instabilities in case of zeros in the signals.

In that cases a small constant c � 1 was added to all histograms to prevent the

degeneration. In this example the Eta-, Beta-, Gamma and the Alpha-divergences

with α � 0.5 show good approximations of the ideal band structure. Ignoring the

original image also KL is nearly perfect. Other divergences like Itakura-Saito and

generalized Rényi fail in this example.
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9.3 The Fréchet Derivative

Suppose V and Z are Banach spaces and U � V is an open subset of V . The function

f : U Ñ Z is called Fréchet differentiable at x P U , if there exists a bounded linear

operator Ax : V Ñ Z, such that for h P U

lim
hÑ0

‖fpx� hq � fpxq �Axphq‖Z
‖h‖V

� 0 . (9.36)

This general definition can be used for functions L : B Ñ IR, defined as mappings

from a functional Banach space B to IR. Further let B be equipped with a norm ‖�‖

and f, h P B are two functionals. The Fréchet derivative δLrfs
δf

of L at point f (i. e. in

a function f ) in the direction h is formally defined as:

lim
ǫÑ0

1

ǫ
pLrf � ǫhs � Lrf sq �:

δLrf s

δf
rhs . (9.37)

The Fréchet derivative in finite-dimensional spaces reduces to the usual partial de-

rivative. Thus, it is a generalization of the directional derivatives.

Following (Villmann and Haase 2011) we introduce the functional derivatives of

divergences in the next paragraphs. An overview is given in Table 9.1.

9.3.1 Fréchet derivatives of Bregman divergences

The Fréchet-derivative of Dφ
B Eq. (9.3) with respect to q is formally given by

δD
φ
Bpp‖qq

δq
�

δφppq

δq
�

δφpqq

δq
�

δ
�
δφpqq
δq

pp� qq
�

δq

with (9.38)

δ
�
δφpqq
δq

pp� qq
�

δq
�

δ2rφpqqs

δq2
pp� qq �

δφpqq

δq
.

For the generalized Kullback-Leibler divergence Eq. (9.8) this simplifies to

δDGKLpp‖qq

δq
� �

p

q
� 1 , (9.39)

whereas for the Kullback-Leibler divergence Eq. (9.10) in the special case of proba-

bility densities it reads

δDKLpp‖qq

δq
� �

p

q
. (9.40)
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For the Itakura-Saito divergence Eq. (9.11) we get

δDISpp‖qq

δq
�

1

q2
pq � pq (9.41)

and for the Eta-divergence Eq. (9.13) the Fréchet-derivative is

δDηpp‖qq

δq
� qpη�2q � p1� ηq � η � pp� qq . (9.42)

In the case of η � 2 it reduces to the derivative of the Euclidean distance �2pp� qq.

The Fréchet-derivative for the subset of Beta-divergences Eq. (9.15) is given by

δDβpp‖qq

δq
� �p � qpβ�2q � qpβ�1q � qpβ�2qpq � pq . (9.43)

9.3.2 Fréchet derivatives of Csiszár f-divergences

For the Csiszár f-divergences Eq. (9.18) the Fréchet derivative is

δDf pp‖qq

δq
� f

�
p

q



� q

Bfpuq

Bu

δu

δq
� f

�
p

q



� q

Bfpuq

Bu
�
�p

q2
, (9.44)

with u � p
q

. For the set of Alpha-divergences Eq. (9.23) we get

δDαpp‖qq

δq
� �

1

α
ppαqp�αq � 1q . (9.45)

The related generalized Rényi divergence Eq. (9.25) yields

δDα
GRpp‖qq

δq
�

�pαqp�αq � 1³
rpαqp1�αq � αp� pα� 1qqsdx� 1

, (9.46)

which reduces in the case of the Rényi divergence for probability densities to

δDα
Rpp‖qq

δq
�

�pαqp�αq³
pαqp1�αq dx

. (9.47)

For the Tsallis divergence Eq. (9.27) the Fréchet derivative reads

δDα
Tpp‖qq

δq
�

�pαqp�αq³
pαqp1�αq dx

(9.48)

and for the well-known Hellinger divergence Eq. (9.28) the derivative is

δDHpp‖qq

δq
� 1�


p

q
. (9.49)
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9.3.3 Fréchet derivative of the Gamma-Divergence

The Fréchet derivative of the Gamma-divergence Eq. (9.29) can be written as

δDγpp‖qq

δq
�

qγ³
qpγ�1q dx

�
p � qpγ�1q³
p � qγ dx

. (9.50)

Considering the important special case γ � 1 the Cauchy-Schwarz divergence Eq.

(9.30), the Fréchet derivative reads

δDCSpp‖qq

δq
�

q³
q2 dx

�
p³

p � q dx
. (9.51)

9.4 Derivation of the general cost function gradient for

t-SNE and SNE

Generally, dimensionality reduction methods convert a high dimensional data set

X � tx, zu P IRN into low dimensional data Ξ � tξ, ζu P IRM . A probabilis-

tic approach to visualize the structure of complex data sets, preserving neighbor

similarities is SNE, proposed by (Hinton and Roweis 2003). In (van der Maaten and

Hinton 2008) van der Maaten and Hinton presented a technique called t-SNE, which

is a variation of SNE considering another statistical model assumption for data dis-

tributions. Both methods have in common that a probability distribution over all

potential neighbors of a data point in the high-dimensional space is analyzed and

described by their pairwise similarities. Both, t-SNE and the symmetric variant of

SNE (van der Maaten and Hinton 2008) originally minimize the Kullback-Leibler

divergence between a joint probability distribution in the high-dimensional space

and its counterpart in the low-dimensional space as the underlying cost function,

using a gradient descent method (see Algorithm 6.4 and Algorithm 6.5). We rewrite

the pairwise similarities Eqs. (6.4) and (6.9) in the high-dimensional original data

space:

p � pxz �
pz|x � px|z

2 �
³
1 dz1

(9.52)

with conditional probabilities

pz|x �
exp

�
�}x� z}

2
{2σ2

x

	³
exp

�
�}x� z1}

2
{2σ2

x

	
dz1

.

The variances σx, which define the neighborhood corporation, are found by a line-

search procedure parameterized by the so called perplexity. The perplexity is usu-

ally set to a value between 5 and 50 dependent on the data set size. Higher values
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mean more neighbors are taken into account. For more information we refer to

(van der Maaten and Hinton 2008). SNE and t-SNE differ in the model assumptions

according to the distribution in the low-dimensional mapping space, defined more

precisely in section 9.4.1.

9.4.1 The t-SNE gradient

Let D pp‖qq be a divergence for non-negative integrable measure functions p � p prq

and q � qprq with a domain V and ξ, ζ P E distributed according to ΠE (Cichocki

et al. 2009). Further, let r pξ, ζq : E � E Ñ IR with the distribution Πr � φ pr,ΠEq. We

use the squared Euclidean distance in the low-dimensional space:

r � rξζ � r pξ, ζq � }ξ � ζ}
2

. (9.53)

For t-SNE, q is obtained by means of a Student t-distribution, such that

qprpξ1, ζ1qq �

�
1� r

�
ξ1, ζ1

���1³ ³
p1� r pξ, ζqq

�1
dξdζ

, (9.54)

which we will abbreviate for reasons of clarity as

qpr1q �
p1� r1q

�1³ ³
p1� rq

�1
dξdζ

. (9.55)

The general t-SNE gradient is derived in Appendix 9.A and reads:

BD

Bξ
�4

»
δD

δr
pξ � ζq dζ

�4

»
�qprq

1� r

�
δD

δqprq
�

»
δD

δqpr1q
qpr1qΠr1 dr

1
�
� pξ � ζq dζ . (9.56)

We now have the obvious advantage that we can derive BD
Bξ for several divergences

D pp‖qq directly from Eq. (9.56), if the Fréchet derivative δD
δqprq of D with respect to

qprq is known.

9.4.2 The SNE gradient

In symmetric SNE, the pairwise similarities in the low dimensional-map are analo-

gously defined following (van der Maaten and Hinton 2008)

q1SNE � qSNE

�
r
�
ξ1, ζ1

��
�

exp
�
�r
�
ξ1, ζ1

��³ ³
exp p�r pξ, ζqq dξdζ

,
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which we will abbreviate below for reasons of clarity as

qSNE

�
r1
�
�

exp p�r1q³ ³
exp p�rq dξdζ

� g
�
r1
�
� J�1 . (9.57)

We obtain the general formulation of the SNE cost function gradient (Appendix 9.B):

BD

Bξ
�4

»
δD

δr
pξ � ζq dζ (9.58)

�� 4

»
qSNE prq pξ � ζq �

�
δD

δqSNE prq
�

»
δD

δqSNE pr1q
qSNE

�
r1
�
Πr1 dr

1

�
dζ

using the Fréchet-derivatives of the applied divergences as above for t-SNE.

9.5 t-SNE gradients for various divergences

In this section we explain the t-SNE gradients for various divergences. There exists

a large variety of divergences, as mentioned in Section 9.2, which can be collected

into several classes according to their mathematical properties and structural be-

havior. We extend the methods to arbitrary divergences by plug the corresponding

Fréchet-derivatives into the general gradient Eq. (9.56) for t-SNE. Clearly, one can

convey these results easily to the general SNE gradient Eq. (9.58) in complete anal-

ogy, because of its structural similarity to the t-SNE formula Eq. (9.56).

A technical remark should be made here: In the following we will abbreviate

p prq by p and p pr1q by p1. Further, because the integration variable r is a function

r � r pξ, ζq an integration requires the weighting according to the distribution Πr.

Thus, the integration has formally to be carried out according to the differential

d Πr prq (Stieltjes-integral). We abbreviate this by dr but keeping this fact in mind,

i.e. by this convention, we will drop the distribution Πr, if it is clear from the context.

9.5.1 Bregman divergences

In the following we will provide the gradients for some examples of Bregman di-

vergences introduced in Section 9.2.1. As a first example we show that we obtain

the same result as (van der Maaten and Hinton 2008) for the Kullback-Leibler di-

vergence Eq. (9.10). The Fréchet-derivative of DKL with respect to q is given in Eq.

(9.40). From Eq. (9.56) we see that

BDKL

Bξ
�4

»
qpξ � ζq

p1� rq

�
p

q
�

»
p1

q1
q1Πr1 dr

1



dζ

�4

»
qpξ � ζq

p1� rq

�
p

q
�

»
p1Πr1 dr

1



dζ. (9.59)
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Since the Integral I �
³
p1Πr1 dr

1 in Eq. (9.59) can be written as an double integral

over all pairs of data points I �
³ ³

p1dξ1dζ1, we see from Eq. (9.52) that the integral

I equals 1. So, Eq. (9.59) simplifies to

BDKL

Bξ
�4

»
q

p1� rq

�
p

q
� 1



pξ � ζq dζ

�4

»
p1� rq

�1
pp� qq pξ � ζq dζ . (9.60)

This is exactly the differential form of the discrete version as proposed for t-SNE in

(van der Maaten and Hinton 2008).

The Kullback-Leibler divergence used in original SNE and t-SNE belongs to the

more general class of Bregman divergences (Bregman 1967). Another representative

of this class of divergences is the Itakura-Saito divergence DIS Eq. (9.11) with the

Fréchet-derivative Eq. (9.41). For the calculation of the gradient BDIS

Bξ we substitute

the Fréchet-derivative in Eq. (9.56) and obtain

BDIS

Bξ
�� 4

»
q

1� r

�
1

q2
pq � pq �

»
q1 � p1

q1
Πr1 dr

1

�
pξ � ζq dζ (9.61)

�

»
4 pξ � ζq

1� r

�
p

q
� 1� q

» �
1�

p1

q1

�
Πr1 dr

1


dζ. (9.62)

One more Bregman divergence is the norm-like or Eta-divergence Eq. (9.13). The

Fréchet-derivative of Dη with respect to q is given in Eq. (9.42). Again, we are inter-

ested in the gradient
BDη

Bξ , which is

BDη

Bξ
�4ηpη � 1q

»
ξ � ζ

1� r

�
pp� qqqη�1 � q �

» �
p1 � q1

�
q1pη�1qΠr1 dr

1



dζ .

(9.63)

The last example of Bregman divergences we handle in this paper is the class of Beta-

divergences defined in Eq. (9.15). We use Eq. (9.56) and insert the Fréchet-derivative

of the Beta-divergences, given by Eq. (9.43). Thereby the gradient
BDβ

Bξ reads as

BDβ

Bξ
�4

»
ξ � ζ

1� r

�
qβ�1pp� qq � q �

»
q1pβ�1q �p1 � q1

�
Πr1 dr

1

�
dζ . (9.64)

9.5.2 Csiszár’s f-divergences

Now we will consider some divergences belonging to the class of Csiszár’s f -divergences

(see Section 9.2.2). A well-known example is the Hellinger divergence defined in Eq.
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(9.28), with the Fréchet-derivative Eq. (9.49). The gradient of DH with respect to ξ is

BDH

Bξ
�4

»
1

1� r

�
?
p q � q � q

» �a
p1q1 � q1

	
Πr1 dr

1


pξ � ζq dζ

�4

»
ξ � ζ

1� r

�
?
p q � q

» a
p1q1Πr1 dr

1


dζ. (9.65)

For the Alpha-divergence, see Eqs. (9.23) and (9.45), we get

BDα

Bξ
�
4

α

»
qpξ � ζq

1� r

�
pαqp�αq � 1�

» �
p1αq1p�αq � 1

	
q1Πr1 dr

1

�
dζ

�
4

α

»
ξ � ζ

1� r

�
pαqp1�αq � q

»
p1αq1p1�αqΠr1 dr

1


dζ. (9.66)

For the Tsallis divergence, Eqs. (9.27) and (9.48), we get

BDT
α

Bξ
�

»
4pξ � ζqq

1� r

��
p

q

�α
�

» �
p1

q1

�α
q1Πr1dr

1


dζ

�4

»
ξ � ζ

1� r

�
pαqp1�αq � q

»
p1αq1p1�αqΠr1dr

1


dζ, (9.67)

which is also clear from Eq. (9.66), since the Tsallis divergence is a rescaled version

of the Alpha-divergence for probability densities.

For the Rényi divergence, Eqs. (9.26) and (9.47), the derivative reads

BDα
R

Bξ
�

4³
p1αq1p1�αqdr1

»
ξ � ζ

1� r
�

�
pαq1�α � q

»
p1αq1p1�αqΠr1 dr

1


dζ

�4

»
ξ � ζ

1� r

�
pαqp1�αq³

p1αq1p1�αqdr1
� q



dζ . (9.68)

9.5.3 Gamma-divergence

The Fréchet-derivative of Dγ pp‖qq with respect to q is given in Eq. (9.29) and can be

rewritten as

δDγ pp‖qq

δq
�qpγ�1q

�
q³

qpγ�1qdr
�

p³
p qγdr

�
�

qγ

Qγ

�
p qpγ�1q

Vγ

�
qγVγ � p qpγ�1qQγ

QγVγ

.
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Once again, we use Eq. (9.56) to calculate the gradient of Dγ with respect to ξ:

BDγ

Bξ
�

�4

QγVγ

»
qpξ � ζq

1� r

�
qγVγ � pqpγ�1qQγ�» �

q1γVγ � p1 q1pγ�1qQγ

	
q1Πr1 dr

1

�
dζ

��
4

QγVγ

»
qpξ � ζq

1� r

�
qγVγ � p qpγ�1qQγ � Vγ»

q1pγ�1qΠr1 dr
1 �Qγ

»
p1q1γΠr1 dr

1

�
dζ

��
4

QγVγ

»
qpξ � ζq

1� r

�
qγVγ � p qγ�1Qγ � VγQγ �QγVγ

�
dζ

�4

»
ξ � ζ

1� r

�
p qγ³
p1q1γdr1

�
qpγ�1q³
q1pγ�1qdr1



dζ. (9.69)

For the special choice γ � 1 the Gamma-divergence becomes the Cauchy-Schwarz

divergence Eq. (9.30) and the gradient BDCS

Bξ for t-SNE can be directly derived from

Eq. (9.69):

BDCS

Bξ
� 4

»
ξ � ζ

1� r

�
p q³

p1q1 dr1
�

q2³
q12dr1



dζ . (9.70)

Moreover, similar derivations can be made for any other divergence, since one only

needs to calculate the Fréchet-derivative of the divergence and apply it to Eq. (9.56).

9.6 SONE using arbitrary divergences

Similar to the SNE and t-SNE methods, also the SONE (see Algorithm 8.2) can be

generalized to employ different divergences. Based on the special case of the GKL

divergence employed in Eq. (8.10) we define a cost function for arbitrary Diver-

gences Dpp‖qq:

ESONE �

»
i̧

δΨDpsq,xi �

j̧

D
�
hΨDpsq
σ pjq

∥

∥gsς pjq
	

ppsqds , (9.71)

where the best matching data point ΨDpsq for s is defined as:

ΨDpsq � xi such that
j̧

D
�
hΨDpsq
σ pjq

∥

∥gsς pjq
	

is minimum. (9.72)
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Here, we reused the definitions of Chapter 8, i.e. the Kronecker delta δ�,�, the sam-

pling vectors s, the neighborhood cooperation in the original space h
ΨDpsq
σ pjq Eq.

(8.7) and the low-dimensional space gsς pjq Eqs. (8.8) or (8.9).

The derivative of the cost function (9.71) with respect to the image vectors ξk can

be done using the Fréchet derivative Eq. (9.37):

BESONE

Bξk
�

» ��δD
�
h
ΨDpsq
σ

∥

∥gsς

	
δgsς

rls �
Bgsς

Bξk

�� dl (9.73)

�

» ��δD
�
h
ΨDpsq
σ

∥

∥gsς

	
δgsς











l

� δl,k �
Bgsς

Bξk

�� dl (9.74)

�
δD
�
h
ΨDpsq
σ

∥

∥gsς

	
δgsς











k

�
Bgsς pkq

Bξk
. (9.75)

This yields the online learning update rule for a given sampling vector s and learn-

ing rate τ :

ξk � ξk � τ �
BESONE

Bξk
� ξk � τ∆ξk . (9.76)

Since the Fréchet derivatives of a wide selection of divergences is investigated in

previous sections we can immediately write down learning rules for all divergence

families. The explicit formulas in case of Gaussian and t-distributed neighborhood

function gsς and different divergences can be found in Table 9.3.

9.7 Experiments

9.7.1 t-SNE incorporating Gamma-divergence vs. original t-SNE

In this section we demonstrate the applicability of the Gamma-divergence in the t-

SNE method on the real world examples, namely the Olivetti faces 1 and the COIL-

20 data set (Nene et al. 1996). The Olivetti data set consists of intensity-value pic-

tures of 40 individuals with small variations in viewpoint, large variation in expres-

sion and occasional addition of glasses. The data set contains 400 images (10 per

person) of size 64 � 64. The COIL-20 data set contains images of 20 different ob-

jects viewed from 72 equally spaced orientations. In total we have 1,440 images of

32 � 32 � 1, 024 pixels. Like suggested in (van der Maaten and Hinton 2008) we

1The Olivetti faces data set is publicly available from http://cs.nyu.edu/�roweis/data.html
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Figure 9.14: 1-NN errors of the 2 dim. Olivetti faces embeddings using the Gamma-

divergence in comparison with KL for different perplexities.
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Figure 9.16: Embeddings of the Olivetti faces based on the same initialization for

different divergences and perplexity 35.
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preprocessed the data by extracting the mean and reducing the dimension to 30 us-

ing PCA and successive transformation to unit variance features. We constructed

10 independent random initializations for the experiments, which we reused in the

algorithm with different divergences and values of the divergence parameter. To

compare the different embeddings we use the 1-NN classification error using the

persons as labels. A quantitative evaluation based on the quality measure as pro-

posed by (Lee and Verleysen 2008, Lee and Verleysen 2009) (see Algorithm 6.6) is

included.

Figure 9.14 shows the nearest neighbor errors of the embeddings of the Olivetti

data as mean and standard deviation over the 10 random initializations for dif-

ferent perplexities and Gamma-divergences with γ varying in the interval r0.2 2s.

Dependent on the perplexity the influence of the divergence varies. For small per-

plexities, greater values of γ show better classification accuracy, while for large per-

plexities lower γ yield better performance. Nevertheless, in this data set the use of

the Gamma-divergence leads, in most cases, to a slight improvement of the nearest

neighbor classification compared to the Kullback-Leibler divergence.

Figure 9.15 shows the quantitative evaluation on Olivetti using the intrusion-

and extrusion measure mentioned above as mean over the 10 random initializations

in the example case of perplexity 35. Again we observe small deviations in the be-

havior depending on the choice of the divergence. Some example visualizations

are shown in Figure 9.16. For comparison all visualizations are based on the same

initialization. Note that, for example, the data points representing person 35 are

widely scattered in the embedding space when using the Kullback-Leibler diver-

gence, while they remain close together when using the Gamma-divergence.

Figure 9.17 shows the 1-NN errors of the embeddings for COIL-20 as a mean

and standard deviation over the 10 random initializations for different perplexi-

ties and Gamma-divergences with γ varying in the interval r0.2 2s. Dependent on

the perplexity the influence of the divergence varies. For small perplexities error

free visualizations are possible in all cases. For big perplexities in this data set the

usage of the Gamma-divergence leads to an improvement of the 1-NN classifica-

tion in comparison with Kullback-Leibler. Furthermore, it is clearly visible that the

Gamma-divergence is quite robust for γ ¡ 0.4 in this case.

Figure 9.18 shows the quantitative evaluation using the intrusion- and extrusion

measure (see Algorithm 6.6) as mean over the 10 random initializations in the ex-

ample case of perplexity 25. Again we observe small deviations in the behavior de-

pendent on the choice of the divergence. Some example visualizations based on the

same initialization are shown in Figure 9.19. Note that, for example, the data points

representing object 1 are chained on a bended line using the Kullback-Leibler di-

vergence, while it is visualized in a closed loop using the Gamma-divergence with
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Figure 9.19: Embeddings of the COIL-20 data set based on the same initialization for

different divergences and perplexity 25.
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Figure 9.20: Best t-SNE similarity map of the Bacteria data set using perplexity 15.

γ � 0.2. For bigger values of γ the quality of embeddings with respect to small

neighborhoods increases in comparison to the original formulation using KL. From

visual inspection one observes, that the maps show more local details comparable to

the similarity maps of SONE in Chapter 8. This comes at the cost of loosing quality

for bigger neighborhoods, i.e. some global aspects might get lost. It can be seen for

γ � 1.2, where the chains of object 1 and 19 completely brake.

9.7.2 Bacteria similarity map generated by SONE

The identification of bacteria is an important task in medicine or biology and is of-

ten done using large data bases with reference signatures (Maier et al. 2006). The

reference spectra of the different bacteria species are in parts very similar and multi-

modal as an additional challenge for the identification methods. To maintain these

data bases efficient exploration and visualization tools are necessary. Common tasks

are the identification of outliers, strong overlapping and therefore hard to distin-

guish data clusters or erroneous measurements.

Here we consider a database of n � 3048 bacteria samples measured and pre-

pared in accordance to (Barbuddhe et al. 2008, Maier et al. 2006). Each sample is

given as a vector x P IRN , with dimensionality N (number of peaks), considered as

a function p. Overall the data contain around 200 species in accordance to the taxon-

omy of bacteria and are quite challenging for visualization. For each x a labeling is

available in the following abbreviated by a three letter code. The map obtained with

original t-SNE (Fig. 9.20) is able to separate some clusters of bacteria, but the center

is more crowded than the SONE map, see Fig. 9.21. The SONE embedding was ob-
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Figure 9.21: SONE embedding of the Bacteria data set and two zoomed regions.

tained using uniformly distributed sampling vectors s. The KL divergence was used

to spread the samples globally on the map. Afterwards we trained for further 100

epochs using the Gamma-divergence with γ � 0.5, which controls the granularity

and results in higher quality for small neighborhoods. In contrast to other meth-

ods SONE enforce spreading of the data samples on the given structure hypothesis

and allows to influence the granularity, which enhances visibility of single samples.

The quality of both the SONE and t-SNE embedding measured by intrusions and

extrusions behaves quite similar for this data set.

The SONE representation was already quite effective in representing the many

bacteria spectra and similar samples are indeed plotted near to each other, which is

in good agreement to the expectations of the experts (Maier et al. 2006). The map

also allows to identify isolated clusters like the one depicted in the right zoomed

regions of Fig. 9.21. This plot contains most of the Listeria spectra from the database

which are known to be very distinctive. For the second zoomed region (left) a large

cohort of Vibrio spectra is shown. It is more diverse and very well represented,

but we can also identify more distant Vibrio items which by closer inspection are

indeed special cases. The map allows the biochemical expert to navigate through

the similarity space and to analyze spectra found to be (dis-)similar by the model.
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9.8 Conclusion and outlook

The original SNE, t-SNE and SONE formulation employ the Kullback-Leibler diver-

gence to measure the disagreement of the topology in the high- and low-dimensional

space, respectively. In this Chapter we provide a mathematical foundation for the

use of arbitrary divergences and their derivatives such that they can immediately

be plugged into the existing algorithms. This provides the reader with alternative

measures, which can be used if the results using Kullback-Leibler are not satisfying.

Therefore, we characterize main subclasses of divergences following (Cichocki

et al. 2009): Bregman-, Csiszár f- and Gamma-divergences. We used the mathe-

matical methodology of Fréchet derivatives to obtain the generalized gradients for

the methods. And we derived the t-SNE and SONE gradients for a wide range of

important divergences as summarized in Table 9.2 and Table 9.3.

We studied the behavior of the divergences in some experiments inspired by

image processing. From the experiments it is clearly visible that the divergences

show different behavior for different problems. Although we are not yet able to

deliver an overall recipe for chosing a particular divergence in a given task, we

can still argue that it might be advantageous to try alternative measures if the re-

sults are not satisfying. As an example, we discuss the t-SNE method using the

Gamma-divergence, considering the publicly available Olivetti faces and COIL-20

data sets. Performances are compared in terms of the 1-NN classification error of

the embeddings, the quality as measured by intrusion- and extrusion behavior (Lee

and Verleysen 2008, Lee and Verleysen 2009) and by visual inspection. The exten-

sion of SONE is illustrated by means of a similarity map in the domain of Bacteria

diversity.

The investigation of further divergences on more data sets will be addressed in

further studies. Furthermore, divergences like Alpha-, Beta-, Eta-, Gamma-, general-

ized Rényi, and generalized Kullback-Leibler divergence do not require probability

densities as inputs, but can be applied to positive measures. Through normalization

information might get lost, so the use of generalized divergences on non-normalized

neighborhood functions for SNE and t-SNE improves performances, potentially.

This will be investigated in forthcoming projects.
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9.A Derivative of the general t-SNE gradient

In this Section we derive the general form of the t-SNE gradient using the definitions

introduced in Section 9.4.1. Furthermore, we will abbreviate Eq. (9.54) for reasons

of clarity as

qpr1q � f
�
r1
�
� I�1 . (9.77)

Let us consider the derivative of D with respect to ξ:
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The collection of all terms lead to the general derivative BD
Bξ Eq. (9.56).
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9.B Derivative of the general SNE gradient

Based on the definitions of Section 9.4.2 we derive the general formulation of the

SNE gradient for arbitrary divergences. For the computation of the Fréchet deriva-

tive we can use the results from above for t-SNE. The only term that differs is the

derivative of qSNE pr
1q with respect to r. For reasons of clarity we abbreviate qSNE

Eq. (9.57) by:
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The collection of all terms lead to the general derivative BD
Bξ Eq. (9.58).



Chapter 10

Conclusion

Ideas are like rabbits. You get a couple and learn how to

handle them, and pretty soon you have a dozen.

John Steinbeck (1902 - 1968)

10.1 Summary

This thesis presents several extensions of the Generalized LVQ (GLVQ) algo-

rithm based on the concept of adaptive similarity measures. The metric learn-

ing gives rise to a variety of applications, including Content Based Image Retrieval

(CBIR), supervised dimension reduction and advanced texture learning in image

analysis, just to name a few. The detailed investigation of dimensionality reduction

is addressed in the second half of the thesis. It includes the investigation of gen-

eralized explicit dimension reduction mappings for unsupervised and supervised

dimension reduction. A novel technique for efficient unsupervised non-linear di-

mension reduction is proposed combining the concept of fast online learning and

optimization of divergences. Finally, three divergence based algorithms are gener-

alized and investigated for the use of arbitrary divergences.

In Chapter 2 the required background for adaptive metric learning and proto-

type-based classification is provided. Then, the Limited Rank Matrix LVQ (LiRaM

LVQ) is introduced in Chapter 3, which aims at efficient optimization of classifi-

cation especially for very high-dimensional data sets. By limiting the rank of the

adaptive matrix, which is part of the used distance, the number of free parameters

can be controlled explicitly. We show, that, besides the computational efficiency, lim-

iting the rank shows superior quality in comparison to alternative approaches based

on the eigenvalue decomposition after training, in particular if the target dimen-

sion is below the intrinsic dimensionality of the data set. Furthermore, this concept

allows discriminant linear dimension reduction, aiming at the preservation of the

classification accuracy in low dimensions. By decomposing the distance measure

into global and local or class-wise matrices more complex decision boundaries can

be realized into the visualization. This combines linear dimension reduction with
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localized similarity measures in the low-dimensional space, defining non-linear de-

cision boundaries of the receptive fields. The dimension reduction with LiRaM LVQ

shows comparable or better results than alternative state-of-the-art techniques. Fur-

thermore, the approach is also computationally efficient. In contrast to other high-

quality techniques it does not require the computation of pair-wise affinities of the

data points, but their distance with respect to the (few) prototypes, which typically

accounts for much less computations. Several experiments on real-world data sets

are presented and confirm our claims.

Chapter 4 presents an example application of the LiRaM LVQ in the context of

CBIR. In many medical applications the amount of data is growing tremendously

in recent years. Therefore, computer aided diagnosis systems, which automatically

browse data bases and pre-select potentially interesting data for a given task are

highly desirable. This work addresses CBIR in the context of Dermatology. In a joint

project the Department of Dermatology of the University Medical Center Groningen

provided an image data base with different types of skin lesions. The aim is to find

a predefined number of similar pictures from the data base given a query image.

With adaptive metrics we are able to increase the correct retrieval rates significantly

for arbitrary color spaces. We compare two distance learning techniques: the Large

Margin Nearest Neighbor (LMNN) and LiRaM LVQ approach. Interestingly, the

LiRaM LVQ outperformed the LMNN based in sample settings. With growing com-

plexity and time consumption of LMNN, similar results could be achieved.

In Chapter 5 we introduce a complex variant of GLVQ for texture classification,

called Color Image Analysis LVQ (CIA LVQ). This flexible approach combines dis-

criminative local linear projections in Fourier domain with linear filtering, e.g. with

Gabor filters. Linear filtering operations are frequently defined on intensity values.

Some heuristic techniques have been proposed for filter operations on color images

combining responses or energies of color channels in some meaningful way. Our

approach differs in nature, because it is based on an automatic learning procedure

guided by supervised training. Therefore, a Gabor filter bank is a priori collected,

using scales and orientations fitting the texture recognition task. We extract random

patches from known classes of colored images and for each of them we transform

the color channels separately into Fourier domain. The transformations of the color

values to intensity values is learned by the CIA LVQ system optimizing the discrim-

ination of the filter responses on these transformed patches. In particular for natural

textures like bark and food structures, the proposed technique outperformed alter-

native approaches and the naive usage of an RGB to gray transformation, which is

often used in practice. Furthermore, the CIA LVQ shows excellent generalization

ability with respect to evaluation images which were never shown to the system

before.
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Part II of this thesis addresses different aspects concerning dimension reduction.

In Chapter 6 a novel general view is proposed, which facilitates the adaptation of

a variety of dimension reduction methods for explicit mappings. Instead of the

implicit optimization of the positions of the low-dimensional data points we pre-

define the form of a mapping function fW parameterized by W and optimize the

parameters with respect to a specific objective. This has the advantage that the

training can be performed on a small subset of the data only and a direct out-of-

sample extension for all data points is immediately available. Furthermore, a the-

oretical investigation of the generalization ability for dimension reduction becomes

possible. We demonstrate the concept of dimension reduction mappings based on

the t-distributed SNE (t-SNE) cost function and different alternatives for the map-

ping function fW . This includes unsupervised linear as well as non-linear mappings

based on local PCA and supervised mappings using discriminative local linear pro-

jections. We compare the approach with several state-of-the art techniques, show

the excellent generalization ability for several data sets and finally address the the-

oretical investigations of dimension reduction mappings. In all cases our approach

displays comparable or even superior results.

Chapter 7 investigates supervised dimension reduction based on adaptive dis-

tances and local linear projections obtained by GMLVQ and LiRaM LVQ. It allows

the integration of the dimension reduction into the optimization procedure aiming

at discriminative visualizations. We show in terms of several examples that exist-

ing dimension reduction methods can be extended to a supervised setting using the

learned metrics and discriminative transformations of LVQ.

In Chapter 8 an unsupervised dimension reduction technique is proposed, which

combines fast sequential online learning and direct divergence optimization as used

by SNE and t-SNE. The technique is called Self Organized Neighbor Embedding

(SONE) and it exhibits several interesting properties: In its original formulation

SONE is based on a structure hypothesis, which enables the user to control the ap-

pearance of the final embedding and adjust the computational effort. Many dimen-

sion reduction techniques require the computation of all pair-wise affinities of the

low-dimensional image vectors during one optimization step. This leads to a com-

putational complexity Opn2q, where n denotes the number of data points. SONE

computes distances to one sampling vector drawn from the given hypothesis in

each iteration for the adaptation of all points. Thus, the computational complex-

ity is linearly dependent on the number of points and sampling vectors given by

the hypothesis. Even though the method is less complex than SNE and t-SNE, it

displays comparable quality as demonstrated in terms of several examples.

Chapter 9 addresses a systematic approach to the mathematical treatment of di-

vergence based dimension reduction, such as SNE, t-SNE and SONE to exchange
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their respective modules. Besides the independent treatment of the distribution in

the low-dimensional space, e.g. using a Gaussian for SNE and a t-distribution in t-

SNE, we concentrate on the divergence which measures the difference between dis-

tributions in the original and the embedding space. Therefore, we review the fam-

ilies of divergences and their properties. We propose a general framework based

on the concept of Fréchet-derivatives and derive the explicit learning rules for a

wide range of divergences. In the experiments we concentrate on the evaluation

of the Gamma-divergence for t-SNE and SONE in several real-world data sets. We

observed that the Gamma-divergence enhances the quality of the embeddings for

small neighborhoods in comparison with the original formulation using Kullback-

Leibler.

10.2 Future work

This work can be extended in several directions. Future projects may concern the

enhancement of the computer aided diagnosis system based on CBIR. This could

be achieved by the incorporation of more elaborate features. Furthermore, the CIA

LVQ for classification as well as all proposed approaches regarding dimension re-

duction are constructed in a generic way, which allows for easy adaptation and ex-

change of the modules. This enables flexible customization with respect to the user

specific needs and the desired application. In particular, we suggest the following

topics for future research:

• Learning Vector Quantization (LVQ) has shown to be particularly attractive for

interdisciplinary applications in medical or biological domains. Apart from

the application of the proposed LVQ variants to other data sets, we intent to

put forward the CBIR system for dermatological images introduced in Chap-

ter 4. It is based on the most simple features for color images: the mean color

values of lesion and healthy skin. Extensions may also take into account shape

and texture information of lesions, e.g. using shape extraction methods and

the CIA LVQ proposed in Chapter 5. Furthermore, color histograms could be

extracted and investigated by divergence LVQ (Mwebaze et al. 2011). More-

over, the color classes of the lesions may be subdivided into more detailed

disease classes leading more precise retrievals.

• The CIA LVQ as introduced in Chapter 5 needs an a priory defined filter bank

as input. Similarly to Gabor filters any other family of 2D filters commonly

used to describe gray scale image information could be adapted and applied

to color image analysis with this algorithm. A filter bank with differences of



10.2. Future work 217

Gaussians for color edge detection is a possible example. The investigation of

the performance of the system for other filters can be addressed in future.

Furthermore, depending on the task it might be desirable that two patches in

which the same texture occurs on different positions should not be interpreted

as similar. In this case another similarity measure should be used which is

not based on the difference of magnitudes. This might be of advantage for

example in the recognition of objects such as traffic signs, where a corner or an

edge might have different meanings dependent on its position in the image.

Note, that the incorporation of prior knowledge in form of a predefined filter

bank might not always be feasible. Actually, the algorithm theoretically allows

the optimization with respect to all variables. Thus, it is possible to include

the local filters into the optimization process. First experiments based on that

concept showed already promising results. The investigation of this extension

will be addressed in forthcoming projects.

• Obviously, the general framework introduced in Chapter 6 gives rise to the

investigation of alternative dimension reduction mappings based on other cost

functions and other functional forms of the mapping. Moreover the derivation

of explicit bounds concerning the generalization ability may be the subject of

future work.

At present, the setting has been restricted to vectorial data only due to the

form of the mapping fW . Naturally, more general forms could be considered

which can take more complex, non-vectorial data as inputs, such as mappings

which are based on general dissimilarity characterization. A corresponding

investigation will be the subject of forthcoming projects.

• Chapter 9 introduces the extension of divergence-based dimension reduction

to a general framework using arbitrary divergences. The investigation of fur-

ther divergences on more data sets could be addressed in further studies. Fur-

thermore, various divergences including the generalized Kullback-Leibler di-

vergence do not require probability densities as inputs, but can be applied to

positive measures. Through normalization information might get lost, so the

use of generalized divergences in non-normalized neighborhood functions for

SNE and t-SNE improves performances, potentially. This can be investigated

in future projects.
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Samenvatting

Deze thesis presenteert een aantal extensies van het GLVQ algoritme gebaseerd op

het concept van adaptive similarity measures. Deze metric learning kan worden

gebruikt in een grote verscheidenheid aan applicaties, waaronder CBIR, supervised

dimension reduction en advanced texture learning bij image analysis, om een paar

te noemen. Het gedetailleerde onderzoek naar dimensionality reduction komt uit-

gebreid aan bod in de tweede helft van de thesis. Dit omvat onderzoek naar gen-

eralized explicit dimension reduction mappings voor unsupervised en supervised

dimension reduction. Een nieuwe techniek voor efficient unsupervised non-linear

dimension reduction wordt voorgesteld die de concepten van fast online learning

en optimalisatie van divergenties combineert. Tot slot worden drie op divergen-

tie gebaseerde algoritmes gegeneraliseerd en onderzocht op het gebruik van wille-

keurige divergenties.

In Chapter 2 wordt de benodigde achtergrond voor adaptive metric learning en

prototype-based classification gegeven. Vervolgens wordt LiRaM LVQ geı̈ntrodu-

ceerd in Chapter 3, een algoritme gericht op efficiënte optimalisatie van classificatie,

met name bij zeer hoog-dimensionale datasets. Door de rank van de adaptieve ma-

trix, een onderdeel van de gebruikte afstand, te begrenzen, kan het aantal vrije pa-

rameters expliciet worden gereguleerd. We laten zien dat naast computationele ef-

ficiëntie, het begrenzen van de rank een hogere kwaliteit laat zien vergeleken met

alternatieve methoden gebaseerd op de decompositie van eigenwaarden na train-

ing, met name wanneer de target-dimensie lager is dan de intrinsieke dimension-

aliteit van de dataset. Daarnaast staat dit concept discriminant linear dimension

reduction toe, gericht op het behoud van de classification accuracy bij lagere di-

mensionaliteit. Door de distance measure in globale en lokale of klasse-specifieke

matrices te ontbinden kunnen complexere decision boundaries worden bewerkstel-

ligd in de visualisatie. Dit combineert linear dimension reduction met localized
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similarity measures in laag-dimensionale ruimte, wat resulteert in non-linear deci-

sion boundaries van de receptieve velden. De dimension reduction met LiRaM LVQ

toont vergelijkbare of betere resultaten dan alternatieve state-of-the-art technieken.

Bovendien is de methode ook computationeel gezien efficiënt. In contrast met an-

dere high-quality technieken vereist het niet de berekening van pair-wise affinities

van de datapunten, maar slechts hun afstand tot het (kleine) aantal prototypes, wat

over het algemeen minder berekeningen vereist. Verschillende experimenten op

real-world datasets worden gepresenteerd en bevestigen onze claims.

Chapter 4 presenteert een voorbeeldapplicatie van LiRaM LVQ in de context van

CBIR. Voor veel medische applicaties is de hoeveelheid data enorm gestegen in de

afgelopen jaren. Daarom zijn computer aided diagnosis systems, die geautoma-

tiseerd databases doorzoeken om potentieel interessante data voor een bepaalde

taak voor te selecteren, zeer wenselijk. Dit werk behandelt CBIR in de context van

dermatologie. In een samenwerkingsverband heeft de afdeling Dermatologie van

het Universitair Medisch Centrum Groningen een database met afbeeldingen van

verschillende typen huidletsels beschikbaar gesteld. Het doel is om gegeven een

afbeelding een bepaald aantal vergelijkbare afbeeldingen op te leveren. Met het ge-

bruik van adaptive metrics waren we in staat om het aandeel correct opgeleverde af-

beeldingen aanzienlijk te verhogen, voor willekeurige color spaces. We vergelijken

twee technieken voor distance learning: de LMNN en de LiRaM LVQ methode. Het

is opmerkelijk dat LiRaM LVQ hierbij beter presteerde dan LMNN met typische in-

stellingen. Door de complexiteit en het tijdsverbruik van LMNN te laten toenemen

konden vergelijkbare resultaten worden behaald.

In Chapter 5 introduceren we een complexe variant op GLVQ voor texture clas-

sification, genaamd CIA LVQ. Deze flexibele methode combineert discriminative

local linear projections in het Fourierdomein met linear filtering, e.g. met Gabor

filters. Lineaire filteroperaties zijn vaak gedefinieerd op intensiteitswaarden. In

het verleden zijn enkele heuristieke methoden voor filteroperaties op kleurenaf-

beeldingen voorgesteld die de response- of energiewaarden van kleurkanalen op

een betekenisvolle manier combineren. Onze methode is van verschillende aard

omdat het gebaseerd is op een automatisch lerende procedure gestuurd door su-

pervised training. Hiervoor wordt a priori een Gabor filterbank verzameld met

gewichten en oriëntaties passend bij de texture recognition taak. We nemen wille-

keurige segmenten van kleurenafbeeldingen van bekende klassen en voor elk van

deze transformeren we de kleurkanalen afzonderlijk naar het Fourierdomein. De

transformaties van kleurwaarden naar intensiteitswaarden worden geleerd door het

CIA LVQ systeem om de filterresponses op deze getransformeerde segmenten beter

te kunnen onderscheiden. In het bijzonder bij textures die zich in de natuur voor-

doen zoals schors en voedselstructuren presteert de voorgestelde techniek beter dan
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alternatieve methoden waaronder het naı̈eve gebruik van een RGB naar grijswaar-

den transformatie, hetgeen in de praktijk vaak gebruikt wordt. Bovendien toont

CIA LVQ uitstekende eigenschappen met betrekking tot evaluatie-afbeeldingen die

niet eerder aan het systeem getoond zijn.

Deel II van deze thesis behandelt verschillende aspecten die betrekking hebben

op dimension reduction. In Chapter 6 wordt een nieuwe algemene opvatting voor-

gesteld die de aanpassing van verschillende methoden voor dimension reduction

voor explicit mappings vergemakkelijkt. In plaats van een impliciete optimalisatie

van de posities van laag-dimensionale datapunten predefiniëren we de vorm van

een mapping-functie fW geparametriseerd door W , en optimaliseren we de param-

eters ten behoeve van een specifiek doel. Dit heeft het voordeel dat de training

uitgevoerd kan worden op slechts een klein deel van de data en een rechtstreekse

out-of-sample extensie voor alle datapunten is direct beschikbaar. Daarnaast wordt

een theoretisch onderzoek naar de generalisatie-eigenschappen van dimension re-

duction mogelijk. We demonstreren het concept van dimension reduction map-

pings gebaseerd op de t-distributed SNE (t-SNE) kostenfunctie en verschillende al-

ternatieven voor de mapping-functie fW . Dit omvat zowel unsupervised linear en

non-linear mappings gebaseerd op local PCA alsook supervised mappings die ge-

bruikmaken van discriminative local linear projections. We vergelijken de methode

met verschillende state-of-the-art technieken, tonen de uitstekende generalisatie-

eigenschappen voor verschillende datasets en behandelen tenslotte het theoretische

onderzoek naar dimension reduction mappings. In alle gevallen geeft onze meth-

ode vergelijkbare of zelfs betere resultaten.

Chapter 7 onderzoekt supervised dimension reduction gebaseerd op adaptieve

afstanden en local linear projections verkregen door GMLVQ and LiRaM LVQ. Dit

maakt de integratie van dimension reduction in de optimalisatieprocedure gericht

op discriminative visualizations mogelijk. We laten zien met behulp van verschil-

lende voorbeelden dat bestaande methoden voor dimension reduction uitgebreid

kunnen worden naar een supervised setting gebruikmakend van de geleerde met-

rics en discriminative transformations van LVQ.

In Chapter 8 wordt een methode voor unsupervised dimension reduction voor-

gesteld, die fast sequential online learning combineert met direct divergence opti-

mization zoals gebruikt in SNE en t-SNE. Deze techniek heet Self Organized Neigh-

bor Embedding (SONE) en vertoont enkele interessante eigenschappen: in zijn oor-

spronkelijke formulering is SONE gebaseerd op een structuurhypothese die de ge-

bruiker in staat stelt om het uiterlijk van de uiteindelijke embedding en de compu-

tationele inspanningen aan te passen. Veel technieken voor dimension reduction

vereisen de berekening van alle pair-wise affinities van laag-dimensionale afbeeld-

ingsvectoren in een optimalisatiestap. Dit heeft een computationele complexiteit
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van Opn2q tot gevolg, waarbij n staat voor het aantal datapunten. SONE berekent

de afstanden naar één sampling vector uit de gegeven hypothese in iedere iteratie

voor de aanpassing van alle punten. Daarmee is de computationele complexiteit

lineair afhankelijk van het aantal punten en sampling vectors gegeven door de hy-

pothese. Ondanks het feit dat de methode minder complex is dan SNE en t-SNE,

toont het een vergelijkbare kwaliteit zoals gedemonstreerd wordt aan de hand van

een aantal voorbeelden.

Chapter 9 behandelt een systematische aanpak voor de wiskundige behandeling

van divergence based dimension reduction, zoals SNE, t-SNE en SONE, ten beho-

eve van de uitwisseling van hun respectievelijke modules. Naast de onafhankelijke

behandeling van de verdeling in laag-dimensionale ruimte, e.g. het gebruik van een

Gaussian voor SNE en een t-verdeling in t-SNE, concentreren we ons op de diver-

gentie waarmee het verschil tussen verdelingen in de originele en de embedding-

ruimte gemeten wordt. Daarom bekijken we de divergentie-families en hun eigen-

schappen. We stellen een algemeen framework voor gebaseerd op het concept van

Fréchet-afgeleiden en leiden de expliciete learning rules voor een breed scala aan

divergenties af. In de experimenten concentreren we ons op de evaluatie van de

Gamma-divergentie voor t-SNE en SONE in een aantal real-world datasets. We za-

gen dat de Gamma-divergentie de kwaliteit van de embeddings voor small neigh-

borhoods verbetert vergeleken met de originele formulering met behulp van Kull-

back-Leibler.
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