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Chapter 1

Introduction

ue to advanced sensor technology, rapidly increasing digitalization capabilities
D and the availability of less and less expensive storage volume the amount of
data has grown tremendously in the last decades. In the years between 1999 and
2002 an increase of stored information about 30% each year was estimated (Lyman
and Varian 2003). Usually this data consists of a variety of measured features lead-
ing to also very high dimensional data sets. Manually inspection of the data be-
comes more costly and automatic methods to help humans to quickly scan through
massive data amounts are desirable. This gave rise to many applications in com-
puter science to process the available data: advanced techniques including data
mining (Han and Kamber 2005), pattern recognition (Duda et al. 2000) and machine
learning (Mitchell 1997, Ripley 1996, Bishop 2006), among others. Even with great
progress in those fields the optimization of existing methods and development of
novel schemes is highly desirable to perform faster and more efficient data analysis.
The field of machine learning concerns the design of algorithms, which aim at the
optimization of adaptive systems on the basis of example data. A model is adapted
to learn complex patterns and process new data coming from the same domain bet-
ter regarding the specified objective. The analysis of patterns involves a number
of tasks including data representation, classification, clustering, density estimation,
regression, feature extraction and dimension reduction, just to name a few. A lot of
data visualization tools have been developed to use cognitive capabilities of humans
for structure detection in visual images. Structural characteristics of the data can be
captured almost instantly by humans despite the amount of data points which are
represented in the visualization. Hence, dimension reduction and visualization are
commonly used modern data mining techniques (Lee and Verleysen 2007). Ma-
chine learning is broadly categorized into reinforcement, supervised and unsuper-
vised learning. Reinforcement learning is inspired by behaviorist psychology and
concerns the finding of suitable actions to maximize some notion of reward (Sutton
and Barto 1998). Supervised techniques involve external supervision, which pro-
vides correct responses to the given inputs. The aim is usually the discrimination
of the categories and to maximize the generalization for novel data. Unsupervised
methods, on the other hand, do not need supervision and their goal is the discov-
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ery of underlying structures and regularities based on the definition of some ba-
sic properties of the data. An elaborate description concerning the history of ma-
chine learning can be found in, e. g. (Bishop 1995, Ripley 1996, Mitchell 1997, Duda
et al. 2000, Bishop 2006).

A very intuitive supervised technique called k-Nearest Neighbor (k-NN) clas-
sifier compares the unknown data to all known examples with respect to some
dissimilarity measure (Duda et al. 2000). Obviously the computational effort and
memory usage scales with the number of known samples. Therefore prototype-
based techniques were developed, which employ representations of data subsets.
The prototypes are vector locations in the feature space. They usually serve as typ-
ical representatives and reflect the characteristics of the data in their direct neigh-
borhood. Some prominent unsupervised examples are the Self-organizing Map
(SOM) (Kohonen et al. 2001) and Neural Gas (NG) (Martinetz and Schulten 1991).
And a popular supervised family of such prototype-based classification methods
is Learning Vector Quantization (LVQ) (Kohonen et al. 2001). All these methods
crucially depend on the distance measure, which is used to adapt the prototype po-
sitions and performs the nearest prototype classification. Therefore the learning of
adaptive metrics with respect to the given problem at hand was investigated (Xing
et al. 2002, Chopra et al. 2005, Frome et al. 2007, Schneider et al. 2009b, Schneider
et al. 2009a).

This thesis investigates adaptive dissimilarities and applications varying from
classification up to supervised and unsupervised dimension reduction.

1.1 Scope of this thesis

The objective of this thesis is manifold, it contains:

o the introduction of prototype-based adaptive dissimilarity learning with lim-
ited rank matrices,

e a new method based on that principle for learning in complex valued data
domains and

e a general view and new algorithms for unsupervised as well as supervised
dimension reduction and visualization.

Adaptive dissimilarities are a powerful tool, which are shown to improve the per-
formance of supervised methods, such as for example LVQ and the k-NN classifiers.
These classification algorithms crucially depend on the distance measure used. Met-
ric adaptation techniques allow the learning of discriminative dissimilarity mea-
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sures from a given set of representative example data. Restrictions in adaptive ma-
trix learning, e. g. the limitation of the rank, enables the learning of discriminative
global or local linear transformations. These transformations can then be used for
supervised dimension reduction and visualization. It also reduces the number of
the effective learning parameters, which might be interesting from the computa-
tional point of view.

In the first part of this contribution previously proposed methods for metric
learning in LVQ are extended to limited rank matrices. Several practical applica-
tions are investigated including Content Based Image Retrieval (CBIR), dimension
reduction and visualization. Furthermore we provide an extension which can be
used on complex valued data shown on an example for texture classification in im-
ages.

The second part of this thesis focuses on dimension reduction and visualization.
We provide a general view on existing dimension reduction methods, which orig-
inally provide just an implicit mapping of the given data points itself. Based on
this general principle we extend these methods to learn the parameters of explicit
mapping functions instead. This provides direct out-of-sample extensions, reduces
computational effort by restricting the learning process just on a small subset of
the possible large data set and enables the formal investigation of the generaliza-
tion ability. Furthermore we provide an unsupervised dimension reduction method,
which in contrast to other techniques exhibit a complexity which scales linear with
the number of data points in every step. It aims in the combination of fast online
learning with the high quality of direct divergence optimization, successfully used
by state-of-the-art techniques.

1.2 Outline

This section briefly addresses the outline of the thesis and the topics of the chapters.
The thesis is divided into two parts. Part [l spans from Chapters 2 to 4 and dis-
cusses adaptive dissimilarity measures especially as extensions of LVQ. The metric
learning defined in this work can be reformulated to learn global or local linear pro-
jections of the data, which smoothly leads over to Part[[Il of the thesis dealing with
dimension reduction.

The chapters are organized as follows: Chapter2lprovides a short introduction to
prototype-based learning and adaptive dissimilarities. Basic algorithms like Gener-
alized LVQ (GLVQ) and Generalized Matrix LVQ (GMLVQ) are described in detail.
The metric adaptation scheme is then modified to use limited rank matrices, which
reduce the number of parameters and thus the computational effort and gives di-
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rect access to supervised dimension reduction. The latter aspect is resumed and
investigated in more detail in Chapter[7in the second part of this thesis.

In Chapter@ladaptive dissimilarity learning is used in an application for CBIR in
Dermatology. The aim is a computer aided diagnosis system which helps the user, e.
g. medical doctors, with targeted searches in image data bases. A learned discrim-
inative distance measure is used to retrieve an arbitrary number of most similar
pictures from a data base of images of skin lesions. Two methods for metric learn-
ing are used and compared: Large Margin Nearest Neighbor (LMNN), which bases
on the k-NN algorithm, and the LVQ based approach. It is shown, that adaptive
dissimilarities can be used to improve the performance of a CBIR system.

Chapter [l introduces a variant of LVQ defined on complex valued data. The
modification is shown on one example application for texture classification in color
images. These variant called Color Image Analysis LVQ (CIA LVQ) combines well
known image analysis filter techniques with prototype-based transformation learn-
ing defined in the Fourier domain.

Chapter [fl provides an introduction to the second part of the thesis: dimension
reduction and visualization. An overview over existing techniques is given and
a general principle is formulated. Based on that principle a general framework is
proposed which extends given dimension reduction techniques to learn an explicit
mapping function. This way those methods, which are originally introduced to pro-
vide implicit point-to-point embeddings can be extended to learn mapping func-
tions instead. Out-of-Sample extensions become immediate, the investigation of the
generalization ability is possible and it can save computational effort, because the
mapping function can be learned on a representative small subset of the data.

In Chapter [/ the adaptive distances and discriminative transformations intro-
duced in Chapter[2lare used for supervised dimension reduction and visualization.
A variety of given unsupervised techniques are extended to use label information
by plugging in the supervised learned distance or the local linear transformations.

Most dimension reduction techniques preserve properties extracted from local
neighborhoods. This requires the computation of pairwise distances, so the compu-
tational effort squares with the number of points. Chapter[§lintroduces a dimension
reduction method which combines the high performance of direct divergence op-
timization with fast online learning, leading to a complexity growing linear with
the number of points. There are numerous divergences offering different proper-
ties. Chapter O gives an overview over the three divergence families and examples
thereof. Using the concept of Fréchet derivatives three algorithms are expanded to
the use of arbitrary divergences.

Finally, Chapter [10] presents a brief summary of the research and a collection of
ideas for future work and investigation.
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Chapter 2

Distance Based Classification

Everything has its beauty but not everyone sees it.

Confucius

Abstract

This chapter introduces the basic Learning Vector Quantization (LVQ) algorithms and
notations used throughout the thesis. We discuss nearest prototype classification and a
set of LVQ learning schemes, which are relevant in the context of this work. Furthermore
we explain the concept of parameterized dissimilarity and metric adaptation proposed in
the literature.

2.1 Introduction

achine learning (Mitchell 1997, Bishop 2006) constitutes a huge field in com-
M puter science expanding into broad distribution of both, application and the-
ory. The term “learning” comprises the biological point of view by modeling the
theory of psychologists of learning in animals and humans. And it also addresses
the development of algorithms aiming at the adjustment to a given objective based
on empirical data. Thus, from a given set of input/output pairs produced by an
complicated unknown process a machine should be able to adjust its internal struc-
ture such that the correct output is reproduced for a large number of samples. This
part of the thesis concentrates a subfield usually referred to as supervised learning:
Samples are given for which the output is (sometimes only approximately) known.
The aim is to find a hypothesis that closely agrees with these given data and gener-
alizes well, i.e. produces the desired output also for new samples.

Learning Vector Quantization (LVQ) and its variants constitute a popular fam-
ily of supervised prototype-based classifiers. The basic algorithm introduced by
(Kohonen 1986) is parameterized by a set of labeled prototypes representing the
classes in the input space in combination with a dissimilarity measure. The classi-
fication takes places by a nearest prototype scheme, i.e. a new sample is assigned
to the class represented by the closest prototype with respect to the given metric.
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These algorithms are naturally suitable for multi-class problems without changing
the learning rules and the complexity is usually dependent on the number of pro-
totypes and only indirect on the number of classes. This classification procedure
is closely related to the popular k-Nearest Neighbor (k-NN) approach (Cover and
Hart 1967), which keeps the given labeled data set as a reference set and classi-
fies every new data point to the class given by the majority among its £ nearest
neighbors. Although the k-NN approach is one of the most intuitive and simplest
classification algorithms it shows often very good performance. Nevertheless, it
might become very expensive in memory usage and computation for very large ref-
erence sets. Prototype methods overcome those problems by defining a clustering
on the data. Another advantage of LVQ is the interpretability of the resulting pa-
rameters: It does not suffer from a “black box” character like an Artificial Neural
Network (ANN) or a Support Vector Machine (SVM). The prototypes reflect the
characteristic class-specific attributes of the input samples.

The basic heuristic algorithm, called LVQ1 (Kohonen 1986), adapts a set of pro-
totypes from labeled training data by implementing Hebbian learning steps. Addi-
tionally, Kohonen introduced two alternative learning schemes: optimized learning-
rate LVQ (OLVQ1) and LVQ2.1, aiming at faster convergence and better approx-
imation of Bayesian decision boundaries, respectively. Furthermore, several LVQ
variants were proposed, which are derived from an explicit cost function (Sato and
Yamada 1996, Seo and Obermayer 2002, Seo et al. 2003). Cost function based ap-
proaches are easily extended to a larger number of adaptive parameters. And meth-
ods of theoretical learning theory can be used to investigate risk bounds and con-
vergence behavior. A mathematical analysis with respect to the cost function is per-
formed in (Sato and Yamada 1998) and the authors of (Crammer et al. 2002) showed
that LVQ aims at margin optimization and therefore good generalization ability
can be expected. Further theoretical analysis of different LVQ variants and statis-
tical physics investigations on simplified model situations can be found in (Ghosh
et al. 2006, Biehl et al. 2007). Further extensions of the LVQ classification scheme in-
cludes the combination with other prototype-based learning schemes. For example
the comprehension of the neighborhood cooperation known from Self-organizing
Map (SOM) or Neural Gas (NG) into the learning process (Kohonen 2002, Hammer,
Strickert and Villmann 2005b).

Particularly interesting for distance-based machine learning methods like men-
tioned before is the employed dissimilarity measure. A very common choice is the
Euclidean distance, which is a special case of the Minkowski metric. Recently, also
divergences known from information theory were used as dissimilarity measure
in vector quantization schemes (Mwebaze et al. 2011, Villmann and Haase 2011).
In supervised settings where auxiliary information, such as labels, is available the
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adaptation of the distance by means of metric learning became popular. Some LVQ
variants have been proposed, which aim at the optimization of the distance measure
for a specific application (Bojer et al. 2001, Hammer and Villmann 2002, Schneider
et al. 2009b, Schneider et al. 2009a). Also methods which aim at the optimization of
the k-NN classification scheme have been developed using adaptive dissimilarities
(Goldberger et al. 2004, Weinberger et al. 2006). Usually a big improvement of the
classification performance can be observed when metric learning is incorporated in
the algorithms. In the following section we will review some machine learning tech-
niques used throughout the thesis, especially, existing metric adaptation schemes
are presented.

2.2 Nearest prototype classification

We assume that the input data X’ consists of n examples {x’}7_, € R" together with
their corresponding labels y* € {1,...,C}, where N denotes the dimension and C
the number of classes or categories. A nearest prototype classifier is parameterized
by a set of labeled prototype vectors w’, also called codebook, and a distance mea-
sure d. The protoytpes w’ are defined on the same feature space as the input data
and they carry the label c(w?) of the class they aim to represent. This implies the
definition

W = {(w, c(w?)) e RN x {1,...,C}}" (2.1)

j=1 >
where the number of prototypes n,, > C, which means that at least one prototype

per class is needed. A popular distance measure is the Euclidean distance, which is
a special case of the general Minkowski metric

N v
dP (z, w) = (Z |z — wi|p> (22)
i=1

with p = 2. Examples of the equidistance lines using the Minkowski metric and
different values for p are shown in Figure 2.1l The classification takes places by a
winner-takes-all scheme, i.e. a new data point x is assigned to the class represented
by the closest prototype:

x « c(w’), with w’ = arg min d(x, w’), (2.3)
J
braking ties arbitrary. The set of protoytpes and the metric is partitioning the input

data space. Each prototype w' has a receptive field R, which is a region in the
feature space where w’ is closer to the data than any other prototype:

R' = {x e X| d(z,w") < d(x,w’),Vi # j} . (2.4)
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Equidistance lines with the Minkowski metric
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Figure 2.1: Visualization of the equidistance lines from the origin using the Minkow-
ski metric with different values of p.

Figure 2.2 shows two examples of nearest prototype classification on a three class
problem using different distance measures. The Euclidean distance leads piecewise
linear decision boundaries and receptive fields. For different values of p in the Min-
kowski metric more general decision boundaries can be realized.

The number of protoytpes is a hyper-parameter of the model and has to be op-
timized by means of a validation procedure. Too few prototypes may not represent
the data structure sufficiently, which yields poor classification performance and too
many prototypes may cause overfitting leading to poor generalization ability of the
classifier. Many machine learning techniques have been proposed based on the
nearest prototype classification scheme. Some of them used in the thesis will be
addressed in the next sections.

2.3 Generalized Learning Vector Quantization

Generalized LVQ (GLVQ) (Sato and Yamada 1996) was proposed as a variant of
the original LVQ algorithms (Kohonen 1986) derived from an explicit cost function.
The method is designed as online-learning algorithm, i.e. the training samples are
presented iteratively in each iteration ¢ causing a parameter update only dependent
on the current example (z’,y%). The aim is to place the prototypes w’ such that
a high classification accuracy on novel data after training is achieved. Assuming
training data {(z’,y")}"_, the cost function is defined by

E Zn] ®(ut), with gt d’ —d* (2.5)
GLVQ = 5 = =% , .
= d’ +dk
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Nearest prototype classification using the Minkowsky metric with different p
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Figure 2.2: Visualization of the decision bounds of a nearest prototype classification
scheme using different distances. The data is consisting of 3 classes and each class is
represented by two prototypes. The Euclidean distance (left panel) shows piecewise
linear boundaries where the gray lines denote the receptive fields of each prototype.
In the right panel the Minkowski metric of order p = 5 is used.

with d/ = d(z’,w’) and d¥ = d(z!,w") denote the squared Euclidean distance
of the closest prototype with the same and a different class label compared to the
actual sample z* respectively. ® is a monotonically increasing function, such as a
sigmoidal function ®(¢) = (1 + exp(—t))~! or the identity ®(¢) = t. The relative dif-
ference distance y can be interpreted as a measure of confidence of the classification.
A negative numerator indicates a correct classification. The smaller the value of the
numerator the larger the distance of the closest wrong prototype and the bigger the
security of the classifiers decision. With the denominator p is scaled to the inter-
val [—1,1]. The cost function is heuristically motivated. Nevertheless, it has been
shown, that it corresponds to large margin optimization, so that good generalization
ability is expected (Hammer, Strickert and Villmann 2005a).

In GLVQ the learning rules are given following a steepest descent procedure
to minimize the costs. It can be shown that GLVQ is a generalized model that, with
respective choice for ® and y, includes the conventional LVQ schemes, such as LVQ1
and LVQ2.1 (Sato and Yamada 1996). The learning rules derived from Eq. (Z5) are
similar to LVQ2.1:

ob(ut)  2d% ;

T oy (o o]

w w’ +T @ T dF 2 (' —w’) (2.6)
i J

wh — wf — T&@(H ) 2d (2t —w") (2.7)

o (a7 + dX)?
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where 7 > 0 is the learning rate or update strength. The closest correct prototype
w” is attracted by the current training sample, while the closest incorrect prototype
w’ is repelled. The learning rule (Z.6) and (2.7) with sigmoidal ® shows particular
powerful and noise tolerant behavior since it combines adaptation near the opti-
mum Bayesian borders like LVQ2.1, while prohibiting the possible divergence of
LVQ2.1 as reported in (Sato and Yamada 1996). The cost function Eq. (2.5) is non-
convex, so, as for the other LVQ variants, the learning dynamics depend on the
initial state of the system and may suffer from local minima. Often the prototypes
are initialized near the class conditional means. The learning is performed until a
stopping criterion is fulfilled, e.g. convergence or the maximal number of iterations
is reached. One sweep through the complete training set is referred to as an epoch.
A short description of the algorithm is given in Algorithm 2.1]

Algorithm 2.1 : Generalized LVQ (GLVQ)
1: initialize the prototypes w’
2: while stopping criterion not reached do
3 randomly select a training sample x’
4 determine closest correct prototype w” = arg mjin d(z!, w’) with y* = c(w’)

and the closest incorrect prototype w = argmin d(z?, w’) with y* # c(w’)

9

J
update the prototypes according to Eq. (2.6) and @2.7)
6: end while

2.4 Adaptive metrics in Learning Vector Quantization

The classification schemes mentioned before crucially depend on the dissimilarity
measure used. A common choice is the (squared) Euclidean distance, which evalu-
ates the similarity of two feature vectors by equally weighted input dimensions: i.e.
equidistance points lie on a hypersphere around the target point. This might be in-
appropriate for data sets in which features are correlated or not equally scaled. Fur-
thermore, noisy dimensions contribute equally to the computation of the distance
and may impair the classification accuracy. Therefore data has to be preprocessed
and scaled appropriately, such that the input dimensions have approximately the
same importance for classification.

Metric adaptation techniques have been investigated to overcome some prob-
lems mentioned before. The aim is to learn a discriminative distance from training
data optimized for the specific application. Early proposals introduce weighting fac-
tors ); to the data dimensions x; which are automatically adapted (Bojer et al. 2001).
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Equidistance lines for d*
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Figure 2.3: Visualization of equidistance lines from the origin using the scaled Eu-
clidean distance d* with different relevances A. The left panel shows the case similar
to the Euclidean distance.

They substituted the squared Euclidean distance by a parameterized dissimilarity
incorporating a relevance vector A with A; > 0 and Zfi 1 Ai = 1. The adaptive vector
introduces a weight for each input dimension:

N
dx, w) = Z (25 —w;)? . (2.8)
i=1

These weights can be interpreted as importance of the respective feature for the clas-
sification: weights of noisy, redundant or non-informative dimensions are reduced,
while discriminative features gain higher values. The illustration of equidistance
lines using d* is depicted in Figure 23 A Hebbian learning step was added to the
original LVQI1 learning rule, which updates the relevance vector A in each iteration.
The new algorithm was called Relevance LVQ (RLVQ) (Bojer et al. 2001). The Heb-
bian learning step inherited from LVQ1 showed some instabilities for large data sets,
which are subject to noise, hence, the GLVQ (sec. 2.3) was extended with respect to
the adaptive metric Eq. (2.8) (Hammer and Villmann 2002). The resulting algorithm
is called Generalized Relevance LVQ (GRLVQ). The relevance update is given by
the derivative of the cost function Eq. (2.5) with respect to A and reads

0D (') a® i
o ((dJ e (o = )" =

& , —wf,i)2) , (29)

>\m<—)\m—€ m(xm

with d’ = d*(z!, w”’) and d¥ = d*(z!, w’) computed using the scaled distance Eq.
(@2.8). The pseudocode for GRLVQ is depicted in Algorithm
Relevances of features might change within the data space. Localized GRLVQ
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Algorithm 2.2 : Generalized Relevance LVQ (GRLVQ)
1: initialize the prototypes w’
2: initialize relevance vector A
3: while stopping criterion not reached do
4 randomly select a training sample z!
5. compute the distances &/ = d*(z*, w?) to the prototypes w’
6:  determine closest correct w’/ = arg mjin d*(z!, w?) with y* = c(w’)

and closest incorrect w’ = arg min d* (z*, w?) with y* # c(w’)
J

7. update the prototypes according to Eq. (Z.6) and (2.7)
8:  update the relevances according to Eq. (2.9)
9: end while

(LGRLVQ) addresses this by localized relevance factors attached to each prototype:
d¥ (@, w?) = TN (2 — w))? (2.10)
i=1

causing an individual update for A" together with their corresponding prototypes
wt for L € {J, K} (Hammer, Schleif and Villmann 2005).

Relevance learning in LVQ has shown to improve not only the classification per-
formance, but also enhance the interpretability of the model. The relevance profile
can directly be interpreted as the contribution of the dimensions for the classifica-
tion problem and can be used to find suitable candidate features for pruning to save
costly measurements. This has turned out particularly suitable in many practical
applications containing irrelevant or inadequately scaled dimensions (Mendenhall
and Merényi 2006, Biehl et al. 2007, Kietzmann et al. 2008). Further, the generaliza-
tion ability have been investigated in (Hammer, Strickert and Villmann 2005a). It
has been shown, that for an adaptive diagonal metric A = diag(\), large margin
generalization bounds can be derived independent from the dimensionality.

The principle of feature weighting can be developed further by taking into ac-
count pairwise correlations of features. Recently, an LVQ extension called Gen-
eralized Matrix LVQ (GMLVQ) was proposed (Schneider et al. 2009b, Schneider
et al. 2009a). It uses an adaptive metric of the form of a Mahalanobis distance

dMw, ) = (£ —w) A (& — w) (2.11)

with a parameter matrix A € IR™*". The matrix A is assumed to be positive (semi-)
definite and we can substitute

A=QTQ withQeRV*N | (2.12)
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Equidistance lines for d*
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Figure 2.4: Visualization of equidistance lines from the origin using the adaptive dis-
tance d* with different relevance matrices A. The left panel shows a metric similar
to the Euclidean distance.

Hence, the measure corresponds to a (squared) Euclidean distance in an appropri-
ately transformed space

dMz, w) = [Q (z — w)]? (2.13)

with an arbitrary matrix (2. Specific restrictions may be imposed on 2 without loss
of generality. Note that, for instance, every positive symmetric A has a symmetric
root Q with A = Q2. The equidistance lines for some example configurations of d*
are visualized in Figure 2.4l Using relevance matrices allows to detect alternative
directions in the feature space and therefore provide more discriminative power to
separate the classes. Also GMLVQ was introduced as an extension of GLVQ and
therefore inherits the same cost function, substituting the squared Euclidean dis-
tance in the original formulation Eq. Z.5) by the adaptive metric:

A A

E =) ®(u'), with p' = dy—di (2.14)
GMLVQ w), H dh 1+ dh
i J K

The quantities d} = d*(z', w”) and d% = d*(z!, wX) correspond again to the dis-
tances of the actual feature vector ' from the closest correct prototype w” and the
closest incorrect prototype w*, respectively. The original GMLVQ algorithm corre-
sponds to a stochastic gradient descent in the cost function, Eq. 2.14), with respect
to the prototype configuration and an arbitrary matrix Q. Gradients are evaluated
with respect to the contribution of single instances x‘, which are presented random
sequentially. The GMLVQ method is summarized in Algorithm 2.3t
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Algorithm 2.3 : Generalized Matrix LVQ (GMLVQ)
1: initialize the prototypes w’
2: initialize matrix 2 and normalize according to Eq.
3: while stopping criterion not reached do
4 randomly select a training sample z!
5 compute the distances d* (x’, w’) to the prototypes w’
6:  determine closest correct w’/ = arg mjin d (z?, w?) with ' = c(w?’)

and closest incorrect w’ = arg min d*(x’, w’) with y* # c(w™)
j

7. update the prototypes according to wl « wﬁ — 7y - avve e (] K}
8:  update the matrix according to  «— Q — 75 - w%%

9:  normalize the matrix according to Eq. 2.21)
10: end while

The derivative of Eqmivq with respect to the prototypes is given by:
aEGMLVQ - ‘b(pj) ) 8M ) ad[]} - (13/ . L ) (?d%

= A = here L K 2.1
owl ouiodd  owk 7 e WhereLe{J K} (219
ou 2d%
withy/ = = ——K___ (2.16)
ody  (d +d¥)?
op —2d%
K J
= - , (2.17)
ody  (dY + di)?
ody TO( — wh
and Tl —-2Q' Q(z" —w”) . (2.18)
The derivatives corresponding to the elements of €2,,,, read:
0Bcvivg (') ot / ; ody K Odi
= = - =0 - (v 2.1
Qo o 0\ A Y ) 219

ady 5 ; i i
aﬂ,,Lm =2 (@ — wi) () — w) =2 [’ —wh)] (2, —wy).  (220)
j

After each learning step the matrix A is normalized to prevent the algorithm from
degeneration. One possibility is to enforce

2 Ay = Z Qi Qi = Z(Qki)2 =1 (2.21)

i ik ik

by dividing all elements of Q by (3, (Q:)?) > The sum of diagonal elements . A;;

coincides with the sum of eigenvalues. This generalizes the normalization of rele-
vances Y. A\; = 1 for a simple diagonal metric.
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Alternatively, similar to the LGRLVQ scheme Eq. (2.10), local matrices A7 can be
attached to every prototype or to the prototypes of each class (Schneider et al. 2009b,
Schneider et al. 2009a). The corresponding dissimilarity measure

a’ (x,w!) = (x — w!) A (x — w!) with AV = QT QY (2.22)

has the potential to take into account correlations varying between different classes
or regions of the feature space. Thus, clusters with ellipsoidal shape and differ-
ent orientations can be presented in the data. The cost function of this Localized
GMLVQ (LGMLVQ) is defined including the localized distances d” = d*’ (z?, w”)
and dl}(K — dM" (@', w"), with the indices J and K again referencing the closest
correct and incorrect prototype respectively:

AT AK
dJ - dK

K (2.23)
dy’ + db”

ELGMLVQ = Z (I)(,u‘focal)v with :ufocal =

%

The LGMLVQ is depicted in Algorithm 2.4l

Algorithm 2.4 : Localized GMLVQ (LGMLVQ)
1: initialize the prototypes w’
2: initialize matrices €/ and normalize according to Eq.
3: while stopping criterion not reached do
4 randomly select a training sample z!
5
6

compute the distances d*’ (2%, w?) to the prototypes w’
determine closest correct w’ = arg min d*’ (x*, w’) with y* = c¢(w”’)
J

and closest incorrect wX = argmin d’ (@', w?) with y* # c(wX)
j

7. update the prototypes according to w’ «— w’ — 7 - aELaC;iMLLm, Le{J K}
:  update the matrices according to Q% « QF — 7, . ZFroyive
9:  normalize the matrices according to Eq. (2.21)

10: end while

The derivative of Eyqurivq with respect to the prototypes is given by:

. . L
OFBravmivg  P(ifgeal) ) Otlocal . 0dy

= . where L € {J, K}, 2.24

T T FTUMN VL I (224
K
J (‘}Mlocal 2d%

= — , 2.25

Nocal adf}J (df}J +d§\(}<)2 ( )
Ottoca —2d4’

g = el _ R (2.26)

ody (dy +adh” )2
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and

od4
owl

The derivatives corresponding to the elements of €2,,,, read:

= 20Tl (2 — wh) . (2.27)

OFE O(ui oul adAL
;Slz/[LVQ _ a(i;ocal) ) a/él%cal =@ AL 6(272 with L € {J, K} (2.28)
mn local mn mn
odA”

J n

N
0L = 22(3:; — wﬁ)Qﬁlj(a:; —wk) =2[Q%(z' — wL)]m (zf —wk). (2.29)
Local matrices increase the capacity of the system by implying nonlinear decision
boundaries. The receptive fields of the prototypes need no longer be convex or

even connected. Example visualizations of global and local matrices are shown in
Chapter[Bland Part[[I of the thesis.

2.5 Large Margin Nearest Neighbor

The £-NN algorithm is a simple and intuitive method which classifies a novel fea-
ture vector by a majority vote among its k nearest neighbors in the training set. Thus,
its performance depends crucially on the metric used for the identification of the
neighbors. The Large Margin Nearest Neighbor (LMNN) (Weinberger et al. 2006)
algorithm extends the k-NN rule by an adaptive distance measure. The aim of the
training process is that a predefined number « of nearest neighbors (called target
neighbors) belongs to the same class like the example data with high probability.
Simultaneously, samples of different classes should be separated by a large mar-
gin. Figure 2.5 illustrates this concept. Therefor, the LMNN algorithm provides a
discriminative distance measure for the k-NN classifier corresponding to

d(x!,x?) = (&' — ) T(x' — ) , (2.30)

where the matrix I' € RV *¥ denotes the counterpart of A used in GMLVQ.

The training procedure has two steps. The first step identifies a set of x simi-
larly labeled target neighbors for each input z. Whereby, the computational effort
depends crucially on the parameter . The second step adapts the Mahalanobis
distance metric such that these target neighbors are closer to ' than differently la-
beled inputs. The semi-definite optimization in LMNN classification arises from an
objective function:

E=(1-b) Y d'("a))+b >, (1-Y")[1+d" (@', a))—d"(«',2")], (231)

i,j v 1,5,
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Figure 2.5: Illustration of the neighborhood before and after LMNN training.

where [z]+ = max(z,0) denotes the standard hinge loss. The constant b defines the
trade-off between the two terms: the first part penalizes large distances between
inputs and their target neighbors, while the second part penalizes small distances
between differently labeled inputs.

The terms in the objective function can be specified with following notation:
Y% e {0,1} indicate whether the inputs @’ and x7 have the same class label. The
notation j v i indicates that =/ is a target neighbor of x*. Also, let the slack vari-
ables X! > ( denote the amount by which a differently labeled input =’ (impostor)
invades the perimeter around input ' and its target neighbors 7. The matrix I in
the quadratic form Eq. (2.30) is obtained by solving the semidefinite program shown
in Algorithm

Algorithm 2.5 : Semidefinite optimization problem in LMNN
PP T (i i i\ Xl gubi .
Minimize (1 —b) Z”WZ d (", a?) +b2 1 —Y")X"" subject to:
(@) d'(z?, x!) — d' (xf, 27) = 1 — X!
(b) X >0
oI'>0

i,jwwi,l(

The constraints of type (a) favor inputs x* closer to their  target neighbors
@’ then to any other differently labeled input =!. When differently labeled x! in-
vade the local neighborhood a positive slack variable X%! is generated. This is
penalized in the second term of the objective function. Constraints of type (b) en-
force non-negativity of the slack variables and constraint (c) enforces positive semi-
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definiteness of I'. Noting that the quadratic form d' is linear in the matrix I, the
above optimization is easily recognized as a semidefinite problem. MATLAB code’
of the algorithm is provided and used for the experiments in this thesis.

lwww.cse.wustl.edu/ ~kilian/code/code.html
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Chapter 3

Limited Rank Matrix LVQ

Projection makes it possible.

The impossible triangle. Shigeo Fukuda

Abstract

We present an extension of the Generalized Matrix Learning Vector Quantization algo-
rithm. In the original scheme, adaptive square matrices of relevance factors parameterize
a discriminative distance measure. We extend the scheme to matrices of limited rank
corresponding to low-dimensional representations of the data. This allows to incorpo-
rate prior knowledge of the intrinsic dimension and to reduce the number of adaptive
parameters efficiently. In particular, for very high dimensional data, the limitation of
the rank can reduce computation time and memory requirements significantly. Fur-
thermore, two- or three-dimensional representations constitute an efficient visualization
method for labeled data sets. The identification of a suitable projection is not treated as a
pre-processing step but as an integral part of the supervised training. Several real world
data sets serve as illustration and demonstrate the usefulness of the suggested method.

3.1 Introduction

n (Schneider et al. 2009b, Schneider et al. 2009a) the concept of GMLVQ is intro-
duced. It uses the quadratic form Eq. 2.I1) as distance including a full matrix
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of relevances, which can account for correlations between different features. An
adaptive self-affine transformation (2 (see Eq. (2.12)) of feature space identifies the
coordinate system which is most suitable for the given classification task. The orig-
inal formulation of GMLVQ employs symmetric squared matrices 2 € R *" and
is summarized in Algorithm[2.3] In the simplest case, one matrix is taken to define
a global distance measure. Extensions to class-wise or local matrices, attached to
individual prototypes Eq. (2.22), are technically straightforward and allow for the
parameterization of more complex decision boundaries.

In this chapter we present and discuss an important modification: the use of rect-
angular transformation matrices Q2 € RM*N with M < N (Bunte et al. 2008, Bunte,
Schneider, Hammer, Schleif, Villmann and Biehl 2011). The corresponding relevance
matrices A are of bounded rank M or, in other words, distances are evaluated in a
space with reduced dimension, see Eq. (2.13). The motivation for considering this
variation of GMLVQ is at least two-fold: (a) prior knowledge about the intrinsic
dimension of the data can be incorporated efficiently and (b) the number of free
parameters in the learning problem may be reduced significantly.

Although unrestricted GMLVQ displays a tendency to reduce the rank of the rel-
evance matrices in the training process, the advantages of restricting the rank explic-
itly are obvious. In particular for nominally very high-dimensional data, e.g. in im-
age analysis or bioinformatics, unrestricted relevance matrices become intractable.
In addition, optimization results can be poor when the search is performed in an un-
necessarily large parameter space. Furthermore, the exact control of the rank allows
for pre-defining the dimension of the intrinsic representation and is, for instance,
suitable for the discriminative visualization of labeled data sets. In contrast with
many other schemes that consider dimension reduction as a pre-processing step,
our method performs the training of prototypes and the identification of a suitable
transformation simultaneously. Hence, both sub-tasks are guided by the ultimate
goal of implementing the desired classification scheme.

Appropriate projections into two- or three-dimensional spaces can furthermore
be used for efficient visualization of labeled data. Visualization enables to use the
astonishing cognitive capabilities of humans for visual perception when extracting
information from large data volumes. Structural characteristics can be captured al-
most instantly by humans, independent of the number of displayed points. Classical
unsupervised dimension reduction techniques represent data points contained in a
high dimensional data manifold by low dimensional counterparts in, for instance,
two or three dimensions, while preserving as much information as possible. Since it
is not clear in advance which parts of the data are relevant to the user, this problem
is inherently ill-posed: depending on the specific data domain and the situation at
hand, different aspects can be in the focus of attention. Prior knowledge, in form of
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label information, can be used to formulate a well-defined objective in terms of the
classification performance.

There exist a few classical dimensionality reduction tools which take class labels
into account: e.g. Classical Fisher Linear Discriminant Analysis (LDA), the recently
introduced local Fisher discriminant analysis (LFDA) (Sugiyama and Roweis 2007),
Neighborhood Component Analysis (NCA) (Goldberger et al. 2004), as well as par-
tial Least Squares regression (PLS). These methods can be extended to nonlinear
projections by kernel methods (Ma et al. 2007, Baudat and Anouar 2000). Adaptive
dissimilarity measures which modify the metric according to the given auxiliary in-
formation have been introduced e.g. in (Kaski et al. 2001, Peltonen et al. 2004, Bunte,
Hammer, Schneider and Biehl 2009, Bunte, Hammer and Biehl 2009, Bunte, Ham-
mer, Wismdiller and Biehl 2010).The resulting metric can be integrated into various
techniques such as SOM, Multidimensional Scaling (MDS), or a recent information
theoretic model for data visualization (Kaski et al. 2001, Peltonen et al. 2004, Venna
et al. 2010). An ad hoc metric adaptation is used in (Geng et al. 2005) to extend
Isomap (Tenenbaum et al. 2000) to class labels. Alternative approaches change the
cost function of dimensionality reduction, for instance by using conditional prob-
abilities, class-wise similarity matrices or introducing a covariance-based coloring
matrix for the side information as proposed in (Iwata et al. 2007, Memisevic and
Hinton 2005, Song et al. 2008). The detailed explanation of the most important su-
pervised and unsupervised dimension reduction techniques is given in Part [l of
this thesis.

In the next section we describe the Limited Rank Matrix LVQ (LiRaM LVQ) as
extension of the original GMLVQ formulation. Afterwards we apply the novel ap-
proach to a benchmark problem and study the influence of the dimension reduc-
tion on the classification performance. We also compare the limited rank version
to the naive approach of taking the first components of the full rank GMLVQ. We
show that reducing the rank after training not only requires more memory and CPU
time, but also yields inferior classification performance compared to LiRaM LVQ.
In Sec.B.4 we present example applications of our algorithm in the visualization of
labeled data. We also compare with visualizations obtained by LFDA and NCA. We
conclude by summarizing our findings and providing an outlook on perspective
investigations.

3.2 Limited Rank Matrix LVQ

In the following we extend the concept of GMLVQ to the use of rectangular matrices
in the distance measure and refer to the corresponding algorithm as LiRaM LVQ.



24 3. Limited Rank Matrix LVQ

Basically, we follow the same procedure as depicted in Algorithm 2.3 for GMLVQ,
but we consider ) from Egs. 2.11) and 2.12) to define a transformation from the
original N-dimensional feature space to IR with M < N so that:

A=QTQ with Qe RM*V, (3.1)

This section addresses the use of one global matrix for the dimension reduction
and visualization. Modifications in the sense of extensions towards local distance
measures will be discussed in the next section.

Note that, in general, the transformation matrix 2 is not uniquely determined.
The distance measure is, for instance, invariant under rotations in feature space. We
can identify a unique QO by decomposing A = Q" in a canonical way: We determine
the normalized eigenvectors v',v?,...,vM corresponding to the M ordered non-
zero eigenvalues of A, A\; = Ay > --- = A\ and define Q as:

0= ([Varw' Ve, v/aa]) (32)

In addition we choose the sign of v;, such that the component of v; with largest
magnitude is positive. Note, that the value M limits the rank of the dissimilarity
matrix A to a maximum of M. Nevertheless, the matrix can be forced to keep the
given rank by recently introduced regularization schemes (Schneider et al. 2010).
With the scheme Eq. (3.2) also a full matrix can be restricted after training. However,
if eigenvectors with eigenvalues bigger than zero are omitted classification accuracy
might get lost. We discuss this in section[3.3l Nominally, the matrix {2 will have more
independent entries than the symmetric A whenever M > (N + 1)/2. However, we
have found no evidence that this ambiguity complicates the optimization problem.
Therefore we consider throughout the following, general, unrestricted matrices 2
with M - N independent entries.

The update rules for the LiRaM LVQ can be obtained by taking the derivatives
of the objective function Egmrvq Eq. 214) with respect to the prototypes w! with
L € {J, K} and the matrix 2 € R™*"_ The derivatives are the same as for GMLVQ
given in Appendix[B.Aland the updates for a given sample z read:

wl —wl + 7841 2.Q"TQ(x" — wl) with L € {J, K} (3.3)
odY od
- - o J J K YK
Qe—Q -7 ® (v ot mmn) (3.4)

Throughout the thesis we consider the scaling function ® being the identity
®(a) = a with derivative &’ = 1.

Note that the learning rates 7; and 7 can be chosen independently. In partic-
ular, we set 7, » 75 which implies that changes of the metric occur on a slower
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Algorithm 3.1 : Limited Rank Matrix LVQ (LiRaM LVQ)
Same as Algorithm 23 with Q € RY*" limiting the rank of A to a maximum M

time scale than those of the prototypes. This setting has proven advantageous in
many implementations of matrix relevance learning (Bojer et al. 2001, Hammer and
Villmann 2002, Schneider et al. 2009b). In all practical examples considered in the
following, we apply a learning rate schedule of the form

Ti@tart

T1 (t) = m and (35)
ra(t) = | TR0 man fort = tu (36)
0 fort < tyy.

Here, ¢ corresponds to the current epoch, i.e. sweep through the training data set,
and 773" denotes the initial learning rates. Non-zero relevance updates are per-
formed only after the first ¢5; epochs of prototype training. The computational costs
scale linearly with the number of prototypes n,,, the dimension of the data NV, the
target dimension M and with the number of training examples n in each epoch
O(nywMNn).

3.2.1 LiRaM LVQ with localized similarities using two matrices

For full rank matrices the LGMLVQ was introduced in (Schneider et al. 2009b, Schnei-
der et al. 2009a) and is depicted in Algorithm [2.4] It is based on the concept of
localized matrices €/ in the distance (see Eq. 2.22) individually adapted for each
prototype or for each class, flexibly increasing the complexity of the LVQ system.
The concept of LiRaM LVQ can also be expanded to the use of localized rectangular
matrices, representing several local linear projections. The global combination of
these local linear patches by means of charting is discussed in (Brand 2002, Bunte,
Hammer, Wismiiller and Biehl 2010) and will be discussed in Part[[Il of this thesis.
In this chapter, we will investigate the use of localized matrices in combination
with global linear dimension reduction. This can be achieved by expanding the def-
inition of the dissimilarity measure Eq. (2.22) with the combination of two matrices:

d%L (z,wh) = (z —w") QT VLTI (2 — wh). 3.7)

Here Q € R *Y performs the dimension reduction with target dimension M, while
the WX € RM*M Jocally attached to the prototypes w’ define a local dissimilarity
measure in the transformed space. Consequently the visualizations show nonlinear
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rather than piecewise linear decision boundaries in the M-dimensional space. In
the experiments we used class-wise dissimilarities ¥© with ¢ € {1,...,C} attached
to the prototypes w’ with equal class label c(wy) = ¢, which may be interesting in
a setting with more than one prototype per class. In the following we will address
this algorithm as Localized LiRaM LVQ (LLiRaM LVQ).

The update rules for the algorithm are obtained by taking the derivatives of
Ecwivq with respect to the prototypes w”, the transformation Q € R™*" and the
localized matrices U € RM*M with L € {J, K} (see Appendix B.B). The updates
can be summarized by:

wh —w? + 1 -0 AL 20T Tl (2 — w) with L e {J, K} (3.8)
odY’ odY”

QHQ—TQQ'(%{,- asJ) +E - ag (3.9)

U Ul — 7y @y 2 U (Q — wh) (2 —wh)T) QT (3.10)

The LLiRaM LVQ is depicted in Algorithm 3.2t

Algorithm 3.2 : Localized LiRaM LVQ (LLiRaM LVQ)
1: initialize the prototypes w’
2: initialize matrix 2 and normalize according to Eq. 2.21)
3: initialize matrices W/
4: while stopping criterion not reached do
5
6
7

randomly select a training sample

compute the distances d}’ (z*, w?) to the prototypes w?

determine closest correct w”’ = arg mjin d}l’j (!, w’) with y* = c(w”)

and closest incorrect w’ = arg min d;-l’j (!, w’) with y* # c(w’)
consider L € {J, K'} ’

8 update the prototypes according to w’ « w’ — 7 - % (Eq. B.9))
9:  update the matrix Q@ — Q — 7 - ’q&i% (Eq- G9)

10:  update the matrices according to W% « WX — 7y . wglpw (Eq- B10))

11:  normalize §2 according to Eq. (2.21)

12: end while

3.3 A classification problem

As an illustrative example, we study the performance of the LiRaM LVQ algorithm
on the image segmentation data set as provided in the UCI repository (Asuncion



3.3. A classification problem 27

et al. 1998). It contains 19-dimensional feature vectors, which have been constructed
from regions of 3 x 3 pixels, randomly drawn from a set of 7 manually segmented
outdoor images. The features encode various attributes of the example patches,
which have to be assigned to one of the following 7 classes: brickface, sky, foliage,
cement, window, path, and grass. The provided data set consists of 210 feature
vectors for training, with 30 instances per class. The test set comprises 300 instances
per class, i.e. 2100 samples in total. We refer the reader to (Asuncion et al. 1998) for
the details. In the data as provided the features 3, 4 and 5 (region-pixel-count, short-
line-density-5 and short-line-density-2) display zero variance. Hence, we omit these
features and consider only the remaining 16 features. After a z-transformation, each
feature displays zero mean and unit variance in the data set.

We apply in the following the LiRaM LVQ algorithm with global matrix A and
parameters 754" = 0.01, Ary = 0.0001, 75'*"* = 0.001, A7 = 0.0001 in the schedule
Egs. B.5) and (3.6), matrix adaptation begins in epoch t); = 100. Similar settings
have proven successful in previous applications of the original GMLVQ algorithm
to the data set (Schneider et al. 2009a).

3.3.1 Performance dependence on M

We first study the simplest GMLVQ classifiers with only one prototype per class.
For several values of M, we perform LiRaM LVQ on the given training set of 210
example data and observe the evolution of training and test accuracies with the
number of epochs. In order to obtain reliable results and as an indication of the ro-
bustness and convergence properties we present averages and standard deviations
with respect to 10 different random initializations of the prototypes and matrix €.
Fig.[B.Ilshows averaged learning curves for the example cases M = 2 and M =
16. We display the training and test accuracies averaged over 10 random initializa-
tions of the algorithm and the estimates of the corresponding standard errors are
on the order 0.01 for M = 2 and below 0.005 for M = 16. Note that training and
test accuracies can display a weak maximum in the course of learning. Therefore,
for each M, we determine the number of epochs that yields the best mean training
accuracy and display the corresponding test accuracy in the right panel of Fig. 3.1l
The non-monotonic behavior could be cured by means of a proper regularization of
GMLVQ), see (Schneider et al. 2010). Here, we resort to the above described early
stopping technique for simplicity. We would like to point out that it relies only on
the observed training accuracy and does not make use of test set information.
Fig.[Bdlalso displays the relevance matrices and their eigenvalue spectra corre-
sponding to the early stopping performances. In the case M = 16 we observe that
only about 9 — 10 eigenvalues remain significantly different from zero. Even GM-
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Figure 3.1: Left panels: learning curves of LiRaM LVQ with one prototype per class
for M = 2 (top) and M = 16 (bottom) when applied to the UCI image segmentation
data set. Right panels: diagonal elements, eigenvalues and off-diagonal elements of
the matrix A as obtained in a single run. The diagonal elements are set to zero for
the matrix plots.

LVQ with unrestricted rank results in an effective low-dimensional representation
of the data. One would expect that LiRaM LVQ with large enough M already yields
the same performance as the unrestricted variant. Fig.[3.2]shows that this is indeed
the case. Only for small M we observe a clear dependence of the test accuracy on
the rank of €, while all M > 5 display essentially the same performance. In the
extreme case M = 2 we observe a significant drop of the generalization ability due
to the serious restriction to only two non-zero eigenvalues of A. At the same time,
the outcome of training displays a large variability: random initializations of €2 can
lead to the selection of very different transformation matrices as reflected in the in-
creased standard deviation. Many nonlinear dimension reduction methods such as
Stochastic Neighbor Embedding (SNE) do not lead to a unique solution, a data set
may visualized differently by the same technique in different runs. It can be argued
(see e.g. (van der Maaten and Hinton 2008)) that this effect is desirable since it mir-
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LiRaM LVQ
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Figure 3.2: Performance of the LiRaM LVQ (upper panel) and GMLVQ with suc-
cessive matrix reduction following Eq. (3.2) (lower panel) using one prototype per
class as a function of M for the UCI image segmentation data set. We display the
test accuracy on average over 10 random initializations, also given as a numerical
value. The light shading corresponds to the interval from worst to best accuracy, the
darker area marks the standard deviations.

rors different possible views of the given data and the ill-posedness of the problem
of dimension reduction. Auxiliary information in the form of class labels can be use-
ful to shape the problem in such settings and to resolve (parts of) the ambiguities
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inherent in the problem. However, if the intrinsic dimension of the data is larger
than the target dimension some ambiguities may not be resolved.

Additionally, we investigate the performance of the full matrix system reducing
the rank after training with Eq. (3.2) using only the first M eigenvalues and eigen-
vectors. The lower panel of Fig. [3.2] shows the test accuracies using the M = 16
matrices and the canonical representation with M eigenvectors for different values
of M. As observed before, keeping less than the 5 eigenvalues in the successive re-
stricted GMLVQ (lower panel of Fig.[3.2) results in a decrease of the classification
accuracy. The drop of accuracy is especially significant when eigenvectors with rel-
atively large eigenvalues are omitted. Just using the eigenvectors of the two largest
eigenvalues for example shows a mean test accuracy which is 11 % smaller than the
corresponding LiRaM LVQ result for M = 2. Despite the computation time and
memory efficiency, the limited rank version yields better preservation of the classi-
fication performance in the restricted setting than the heuristic dimension reduction
after training.

3.3.2 Comparison with other methods

Here we compare the LiRaM LVQ scheme with frequently used standard proce-
dures of comparable complexity. Note, that the complexity of LiRaM LVQ can be
easily controlled by the number of prototypes. GMLVQ with only one prototype
per class appears to be similar in spirit to the well known LDA (Duda et al. 2000,
Friedman 1989, Bensmail and Celeux 1996). In this method, a Multivariate Nor-
mal density (MVN) is fitted to the observed data in each class, here we consider
a pooled estimate of the covariance matrix. Given the density estimates, the best
linear decision boundaries are constructed in order to approximate Bayes optimal
classification (Duda et al. 2000). The well known Nearest Neighbor (1-NN) classifier
serves as a second reference: Based on the standard Euclidean distance measure, any
feature vector is simply assigned to the class of the closest labeled example (Duda
et al. 2000). For the given data set, the extension to k-NN schemes displays only a
weak dependence on k and results will not be presented here.

The most common strategy for dimension reduction is Principal Component
Analysis (PCA). In order to compare with LiRaM LVQ, we apply PCA to the en-
tire data set and obtain a low-dimensional representation in terms of the first M
principal components. The projected training data is then used in LDA or serves
as the reference set of the 1-NN classifier. In the case M = 16, the full data set is
employed without performing a PCA.

In Fig. the achieved test accuracies are displayed for several values of M.
For large enough dimension M, the principal components capture all relevant in-
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Figure 3.3: UCI image segmentation data set. Left panel: test accuracy obtained by
LDA as described in the text. Right panel: test accuracies for the 1-NN classifier
using the PCA-based transformation to M dimensions (solid lines). In addition, the
results after transforming the data with 2 as obtained in LiRaM LVQ, the dotted
lines mark the average over 10 random initialization as in Fig.

formation and the performance of, both, LDA and 1-NN is comparable to that of
the LiRaM LVQ prescription. This finding is consistent with the A/-dependence dis-
cussed in the previous section.

Significant differences can be observed for small M: The dimension reduction
by PCA (or any other unsupervised technique) does not take into account label in-
formation and may focus on features with large variation but little relevance for
the classification. Therefore, the subsequent supervised training does not reach the
quality of the LiRaM LVQ scheme even with only one prototype per class. Here,
the complexity of the system is similar but the identification of a suitable low-
dimensional representation is directly guided by the classification, which facilitates
superior performance. This is easily demonstrated by replacing the PCA based
transformation by the matrix Q obtained in LiRaM LVQ, see Eqgs. 2.13) and (3.1).
Now, the simple 1-NN system performs significantly better, as displayed in the
right panel of Fig. B3l The idea of determining a discriminative transformation
directly within the k-NN classification scheme has been put forward in LMNN
(Weinberger et al. 2006), there without considering dimensional reduction. A more
detailed comparison of LMNN with LiRaM LVQ is given in (Bunte, Biehl, Jonkman
and Petkov 2011) and in Chapter 4 of this thesis.

LiRaM LVQ with several prototypes per class and a global relevance matrix can
implement piecewise linear decision boundaries, the complexity of which can ex-
ceed that of LDA or similar methods significantly. In previous applications of un-
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Figure 3.4: UCI segmentation. Left panel: test accuracies achieved by LiRaM LVQ
with 2 prototypes per class (3 in class 5) for different values of M; other details as
in Fig. Right panel: the corresponding learning curves for M = 2, i.e. mean
training and test accuracy vs. the number training epochs.
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Figure 3.5: Diagonal elements, eigenvalues, and off-diagonal elements of an example
relevance matrix in LiRaM LVQ with two prototypes per class and three in class 5.
Other details as in Fig. B right panels. The diagonal elements are set to zero for
the plots of the relevance matrices.

restricted GMLVQ to the UCI image segmentation data it has proven advantageous
to assign 3 prototypes to class 5 (window) and 2 prototypes to all other classes. Fig.
B4 shows that this setting improves the classification accuracies in comparison to
the above studied case of a single prototype per class, cf. Fig. As expected,
the improvement is particularly pronounced for small M. In Fig. B.5 we visualize
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typical properties of the relevance matrices obtained in the extreme cases M = 2
and M = 16. Note that even the unrestricted matrix displays only three non-zero
eigenvalues. The increased complexity due to the larger number of prototypes fa-
cilitates good performance in spite of a very simple implicit representation of the
data. The use of more eigendirections could be enforced by means of a matrix regu-
larization scheme suggested in (Schneider et al. 2010). We will address this issue in
forthcoming studies.

3.4 Visualization of classification schemes

The LiRaM LVQ prescription with M = 2 or M = 3 can be readily employed as a
tool for the visualization of labeled data sets. In contrast to many standard methods,
the tasks of identifying an appropriate subspace and implementing the actual clas-
sification is addressed in a single training phase. Supervised dimension reduction
has drawn some attention recently, some of the methods have been mentioned in
the Introduction. We explain two of these methods in the next section in more detail
and will compare example visualizations of different data sets thereafter.

3.4.1 Local Fisher Discriminant Analysis

A supervised linear dimension reduction technique named LFDA (Sugiyama and
Roweis 2007) was recently introduced as a combination of the well known Fisher
Discriminant Analysis (FDA) (Fisher 1936) and the unsupervised Locality-Preserv-
ing Projection (LPP) (He and Niyogi 2003). FDA works particularly well, when
each class can be modeled as an unimodal Gaussian. It is based on the within-class
and between-class scatter matrix and finds a transformation matrix 7', such that the
between-class scatter is maximized, while the within-class scatter is minimized. This
optimization problem can be solved by means of a generalized eigenvalue problem
(Fukunaga 1990). The between-class scatter matrix has a rank limited to the number
of classes minus one (C' — 1). This implies that FDA can find at most C' — 1 mean-
ingful features, which constitutes a serious restriction in practice. LPP on the other
hand is an unsupervised dimension reduction technique based on pairwise affini-
ties A; ; € [0, 1] between data points ' and 7. The aim is to find a transformation
matrix T such that local neighborhoods are preserved in the embedding space.

The LFDA efficiently combines the ideas of both methods and facilitates the di-
mension reduction of multi-modal labeled data by maximizing the between-class
separability, while preserving the local structure within classes. The local within-
class and local between-class scatter matrices S(*) and S(*) are defined using pair-
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wise affinities of the data:
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The value n; denotes the number of samples from class {. Therefore, LFDA aims at
finding a transformation matrix 7', such that nearby data pairs of the same class are
also close in the embedding and data points of different classes are separated from
each other. Similar to FDA also LFDA projection can be computed analytically by
solving a generalized eigenvalue problem:

T = argmax [tr ((TTS(“’)T)*lTTS(b)T)] . (3.15)
TERN X M

In contrast to FDA the LFDA does not have the same rank limitation. Therefore a
dimension reduction to arbitrary dimensions is possible. However, the embedding
crucially depends on the computation of the pairwise affinities. In (Sugiyama and
Roweis 2007) four definitions of the affinity matrix are given. In the following ex-
periments we use the “local scaling” method, which is also used in the provided
implementation!. Here the density of the data is taken into account in a heuris-
tic manner: a local scaling based on the k-th nearest neighbor is included. In the
experiments we tried different values of & to find good visualizations.

3.4.2 Neighborhood Component Analysis

Recently, a supervised dimension reduction method called NCA has been intro-
duced (Goldberger et al. 2004). It aims in the maximization of the expected number
of correctly classified samples by a stochastic variant of the nearest neighbor clas-

IMATLAB implementation LFDA: http:/ /sugiyama-www.cs.titech.ac.jp/ ~sugi/software/LFDA /
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sifier. Therefore, NCA seeks a transformation matrix Txca such that the between-
class separability is maximized:

Tnca = argmax Z Z p?ijA (TTT) (3.16)

TeRN*M \ 527 yi—yi

where
exp{f(zci 7w-7)TU(a:i 71:-7)}

PN (U) = S izs exp{—(xi—aF)TU (i —xF)} ifi#j
! 0 ifi =

Thus, similar to LFDA, nearby data pairs from the same class should be close in the

embedding space. This ensures that also multi-modal structure of the data can be
preserved. However, the optimization problem is non-convex and there is no guar-
antee that the global optimum can be obtained. The optimization was proposed
as a gradient ascent method and we use the provided implementation ? for the ex-
periments. Note, that NCA needs to compute the pairwise dissimilarities between
samples of the same class in every step. Although LiRaM LVQ also follows a gradi-
ent procedure it computes only the dissimilarities with respect to the prototypes in
every step. Since the number of prototypes per class is usually much smaller than
the number of samples, the computational costs per gradient step are significantly
lower than for NCA. In the implementation a Polack-Ribiere flavor of conjugate
gradients is used to compute search directions, and a line search using quadratic
and cubic polynomial approximations. There is mainly one parameter to change:
the length of the run. It corresponds to the maximum number of line searches.

3.4.3 The segmentation data set

The above discussed UCI segmentation data may serve as a first illustrative exam-
ple. From the 10 independent runs performed with M/ = 2 to obtain the results
displayed in Fig.[3.2] (single prototype per class) and Fig.[3.4 (several prototypes per
class), we have selected the runs that achieved the best training accuracy in order
to achieve the most discriminative visualization. As mentioned above, the actual
outcome can depend on the random initialization of the LiRaM LVQ system, see
Figs. 3.2l and B.4] for the range of observed accuracies. With a single prototype per
class, a maximum classification accuracy of 88.4% on the entire data set is achieved.
The use of 2 prototypes per class (3 in class 5) yields a best accuracy of 90.4% on the

MATLAB implementation for NCA: http://www.ics.uci.edu/ ~fowlkes/software/nca/
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Figure 3.6: Visualizations of the UCI segmentation data set aquired by the different
methods. For the sake of clarity we display only 50 examples per class. Detailed
explanation can be found in the text.
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entire set. The use of several prototypes with LLiRaM LVQ enhances the accuracy
by realizing more complex piecewise linear decision boundaries.

Furthermore we trained the LLiRaM LVQ under the same conditions ten times
on the training set of the segmentation data and used the resulting transformations
and prototypes to visualize the data. The run showing the best performances is
shown in Fig. [3.6] with the quality given in Table The mean accuracy over all
runs on the training data is 85% with a standard deviation (STD) of 0.04 with one
prototype per class and class-wise dissimilarities ¥¢. LLiRaM LVQ implements non-
linear decision boundaries, which shows already good accuracies using one proto-
type per class. With this particular data set using more prototypes does not improve
the classification significantly.

Additionally, we employ the implementation of LFDA and NCA from the orig-
inal authors with default parameters and tried a range of k¥ and I € [1,30]. We
observed, that both methods crucially depend on the parameter used. The accuracy
on the training set measured by an 1-NN classification on the embedding aquired by
LFDA, for example, ranges from the best accuracy 83.7% with k = 2 and the worst
accuracy 66.6% with k = 25. For NCA the worst accuracy of 56.2% is observed with
[ = 1 and with | > 16 the training accuracy reaches 90%. The number of protoytpes
and the initialization in the LiRaM LVQ setting is less crucial with respect to the
classification accuracy.

Fig.B.@ldisplays the best visualizations of the segmentation data set aquired by
the different techniques explained above. This multi-class problem allows for very
good classification performance already in two dimensions. The localized variant of
LiRaM LVQ can realize more complicated non-linear decision boundaries than the
global version. However, overfitting effects become possible: For one prototype per
class we observe an improvement although empty cells appear in the tessellation.
With two prototypes per class no further improvement is observed. In all visualiza-
tions the classes “sky” and “grass” can be separated quite well. For the other classes
the visualizations differ in arrangement and shape of the clusters. The LiRaM LVQ
visualizations show equal or superior quality compared to the other methods. An
overview of the visualization quality of the different methods on the data sets can be
found in Table B.1] The classification accuracy in the original space is usually larger,
than the accuracy in the low-dimension space after transformation. However, the
numbers show, that in most cases the supervised dimension reduction was able to
preserve high accuracies even in the reduced spaces. We would like to point out
once more, that the computational effort for NCA is much larger than for the LiRaM
LVQ variants. NCA computes all pairwise distances, while the LVQ approaches are
based on a small number of prototypes. In particular for large data sets the compu-
tational effort may be reduced significantly compared to NCA.
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Table 3.1: Classification and 1-NN accuracies (acc. in %) on the visualizations of the
data sets. The quantity P denotes the number prototypes.

method / data set acc. training acc. test
Segmentation data
LiRaM LVQ 7P (classification accuracy) 929 88.0
LiRaM LVQ 7P (1-NN acc. on embedding) 85.7 87.0
LiRaM LVQ 14P (classification accuracy) 91.9 90.3
LiRaM LVQ 14P (1-NN acc. on embedding) 88.6 87.5
LLiRaM LVQ (classification accuracy) 89.0 85.7
LLiRaM LVQ (1-NN acc. on embedding) 88.6 87.4
LFDA (1-NN acc. on embedding) 83.7 85.8
NCA (1-NN acc. on embedding) 90.0 87.1
Colorado data 2D
LiRaM LVQ (classification accuracy) 83.0 80.0
LiRaM LVQ (1-NN acc. on embedding) 79.6 84.6
LLiRaM LVQ (classification accuracy) 78.7 73.8
LLiRaM LVQ (1-NN acc. on embedding) 79.9 83.7
LFDA (1-NN acc. on embedding) 50.4 61.1
NCA (1-NN acc. on embedding) 81.5 89.7
Colorado data 3D
LiRaM LVQ (classification accuracy) 88.9 86.3
LiRaM LVQ (1-NN acc. on embedding) 93.3 96.4
LLiRaM LVQ (classification accuracy) 87.7 85.8
LLiRaM LVQ (1-NN acc. on embedding) 92.8 96.1
LFDA (1-NN acc. on embedding) 89.6 93.8
NCA (1-NN acc. on embedding) 92.6 95.5

3.44 High-dimensional Gene Expression Data

Discriminative visualization can be particularly useful in the context of medical
data. Here we apply the LiRaM LVQ algorithm to two gene expression data sets
which were recently analyzed in (Faith et al. 2006). The first set concerns small
round blue cell childhood tumors, and we refer to it as SRBCT (Faith et al. 2006). It
comprises cDNA microarray expression levels of 50 pre-selected genes in 83 differ-
ent samples (Khan et al. 2001). The target classification assigns every sample to one
of 4 tumor types. We will refer to the second data set as NCI. It contains gene ex-
pression data from 60 cell lines from the National Cancer Institute anticancer drug
screen (Scherf et al. 2000). Again 50 genes have been pre-selected and samples are to
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Figure 3.7: Two-dimensional, visualizations of the SRBCT data set (left column) and
the NCI data (right column) obtained by the different variants of LiRaM LVQ ex-
plained in the text.

be assigned to one of 8 different types of tissue. For details of the data sets we refer
to (Faith et al. 2006) and references therein. The authors present a method termed
Targeted Projection Pursuit (TPP) and compare it with several existing techniques,
including MDS (Ewing and Cherry 2001), VizStruct (Zhang et al. 2004), a dendro-
gram based method (Eisen et al. 1998), and Projection Pursuit (Lee et al. 2005). TPP
is demonstrated to outperform most of these methods or to achieve at least compa-
rable performance on the above data sets. The employed data sets as well as source
codes of TPP implementations are publicly available (Faith et al. 2006). First, we
apply LiRaM LVQ with one prototype per class to the SRBCT data set. Results pre-
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Figure 3.8: Two-dimensional, visualizations of the SRBCT data set (left column) and
the NCI data (right column) obtained by LFDA and NCA. Detailed explanation can
be found in the text.

sented here are obtained after 1000 epochs with respect to the entire data set of 83
samples. We observe almost no variability with respect to random initializations of
the system. A typical outcome is displayed in Fig.[B.7] (top row left panel) the ob-
tained 2D visualization perfectly separates the four classes. Error free visualizations
were also obtained by Faith et al., see (Faith et al. 2006) for comparison.

The analogous application of LiRaM LVQ to the NCI 8-class-problem shows
slightly larger variability of results. In 10 runs with different random initialization
we obtain after 1000 epochs accuracies in the range from 95.1%-100%, with an av-
erage of 97.7%. Fig. B.7Zl (upper row, right panel) displays a perfectly separating
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visualization. For the sake of completeness we show the error-free example results
of the LLiRaM LVQ with one prototype per class in Figure B.7] (bottom row). The
algorithm was trained with the same parameters as the global version on both, the
whole SRBCT and NCI, data set. Again the four-class problem SRBCT can be sepa-
rated in every Run with random initialization, whereas the training on the NCI data
set shows some variation in classification accuracy. In mean we achieved on the
NCI data an accuracy of 94.6% with a standard deviation of 0.02 over the 10 random
initializations.

The visualization of these data sets achieved by LFDA and NCA are shown in
Fig. LFDA was performed on the SRBCT data set with & € [1, 10], all yielding er-
ror free visualizations. On the NCI data set the accuracy varied from 91.8% achieved
with k = 4 to the best accuracy of 96.7% using k = 1. For the training of NCA on the
SRBCT data set with [ varying from one to 10 we observed error free visualizations
for I > 3 and the worst accuracy of 80.7% for I = 1. On the NCI data set an error free
visualization is found for [ > 10 and the worst performance was 59% observed with
[ = 1. In (Faith et al. 2006), error free visualizations of the NCI data are obtained by
means of TPP in combination with PCA, Projection Pursuit and subsequent LDA or
k-NN classification. For a visual inspection of the achieved separation we refer to
Figs. 9 and 11 in (Faith et al. 2006), which display either slightly overlapping classes
or only very small gaps between some of them. Other methods considered in (Faith
et al. 2006) yield less favorable results on this data set. Most of all, we would like
to point out that our method appears very simple and intuitive compared to many
other suggested approaches. However, it yields comparable or even superior results
at comparably low computational costs.

3.4.5 Satellite Remote Sensing data

Here we apply the algorithm to a large real world data set: a multi-spectral satel-
lite image of the Colorado area, focusing of visualizing the class structure. Remote
sensing spectral images consist of an array of multi-dimensional vectors (spectra)
assigned to particular spatial regions (pixels) reflecting the response of a spectral
sensor at various wavelengths. A spectrum is a characteristic pattern that provides a
clue to the surface material within the respective area. The use of these data includes
areas such as mineral exploration, land use, forestry; and many other activities of
economic significance.

We consider a data set that corresponds to an image taken close to Colorado
Springs using satellites of the LANDSAT-TM type. The size of the image is 1907 x
1784 pixels, each of which corresponds to an area of 900m? on the ground. The spec-
trum is represented by a 6-dimensional feature vector. The aim of the classification
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Figure 3.9: Visualizations of a small subset of the Colorado data set aquired by the
different methods.

is to assign each pixel to one of 14 classes, corresponding to specific surface covers
such as different types of forests, alpine vegetation, water, etc., see (Hammer and
Villmann 2002, Villmann et al. 2003) for a detailed description and Table 3.2 for the
list of classes. A labeling of the entire image was provided by experts and serves
as the target classification. For further details of the data set we refer the reader to
(Hammer and Villmann 2002, Villmann et al. 2003) where the authors apply scaled
Euclidean distance in combination with a Growing Self-Organized Map (GSOM).
Test accuracies in the range of 90% have been achieved depending on the specific
method in use.

For the following, we selected 2000 examples per class randomly, used as a train-
ing set. We also give the accuracies evaluated with respect to the whole data set of
3,402,088 data points. We have performed 10 runs of LiRaM LVQ with M = 2,3 and
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Figure 3.10: The labels of a section of the Colorado satellite image (left panel) and the
classification result obtained by the best run of LLiRaM LVQ in the 3D case (right
panel). Detailed information about the class-wise accuracies can be found in the
confusion matrix Tab.

Table 3.2: Short description of the differ-
ent classes of the satellite image and the

number of pixels in each class.

classground cover type

# pixels

O 0 I O\ Ul = W IN =

[ N e
= W N RO

Scotch pine
Douglas fir

Pine / fir

Mixed pine forest
Supple/prickle pine
Aspen/mixed pine forest
Without vegetation
Aspen

Water

Moist meadow
Bush land
Grass/pastureland
Dry meadow
Alpine vegetation
not classified

581424
355145
181036
272282
144334
208152
170196
277778
16667
97502
127464
267495
675048
27556
9

three prototypes per class. After 1500
training epochs we observe only very
little variation due to the random ini-
tialization of the system. The range
of training accuracies is 79.8%-83% for
M = 2 and 87.5%-88.9% for M = 3,
respectively. The classifiers with the
best training set performance achieve
accuracies on the whole set of 80.1%
(M = 2) and 86.3% (M = 3), see Ta-
ble[31] In spite of the low-dimensional
representation and the relatively small
numbers of prototypes we achieve very
good accuracies. This is consistent with
the analysis in (Villmann et al. 2003)
which suggests that good classification
performance requires at least a two-
or three-dimensional representations of
the data.

Here, we are mainly interested in
the discriminative visualization of the

data set. Fig.[3.9shows the data globally projected into two and three dimensions,
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Table 3.3: Confusion matrix of the 3D LLiRaM LVQ on the Colorado data set.

actual class

C 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0 P
1 460594 612 104 5 2376 458 49 883 4 0 0 1498 0 139 0 466722
2 13642 331530 590 11146 0 841 9 79 8 0 0 0 0 0 0 357845
3 0 9379 155775 17306 0 0 1 0 757 0 0 0 0 0 0 183218
4 0 3742 704 231063 0 596 1 7 90 0 0 0 0 0 0 236203
5 14776 0 11 0 122956 0 7793 0 1 0 0 2989 25239 70 0 173835
6 22880 8618 102 12235 5 203917 7 7980 28 0 0 0 0 0 0 255772
7 521 0 3 3 7337 0 111692 360 3 66 554 23873 31728 0 0 176140
8 18380 0 60 14 41 2340 11 256243 8 1 1597 10277 0 0 1 288973
9 14 1210 23613 479 143 0 46 0 15761 0 0 0 0 16 0 41382
10 3 0 5 7 38 0 12842 0 1 86795 7970 7894 7352 0 0 122907
1 0 0 18 1 0 0 285 11660 0 6508 117212 4352 0 0 0 140046
12 48564 54 38 5 8716 0 24687 566 3 2279 130 216576 10522 0 0 312140
13 2045 0 13 8 2611 0 4063 0 3 1853 0 36 582457 148 1 593238
14 5 0 0 0 111 0 8710 0 0 0 1 0 17750 27083 7 53667
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
> 581424 355145 181036 272282 144334 208152 170196 277778 16667 97502 127464 267495 675048 27556 9 3402088

class-wise accuracy of the estimation in %
79.22 93.35 86.05 84.86 85.19 97.97 65.63 92.25 94.56 89.02 91.96 80.96 86.28 9828 0

respectively. We also trained the Localized LiRaM LVQ on 2000 random samples
from each class with slightly different parameters: 300 epochs, learning rates be-
ginning with 75%7=0.001 and A7 = 0.0001 for the prototypes, the matrix  and
the class-wise matrices W¢ respectively. We trained the system with two and three
prototypes per class. The average accuracy on the training data is 75% with STD
0.03 in the two-dimensional case with 28 prototypes. In three dimensions with three
prototypes per class we obtain a mean accuracy of 85.2% and STD 0.02. These re-
sults correspond to the findings in (Hammer and Villmann 2002) where GRLVQ was
applied to the data set: When pruning to three dimensions a classification perfor-
mance of ca. 84% can be achieved, while dropping further dimensions decreases
the accuracy significantly. The visualizations resulting from the best run in two and
three dimensions are shown in Fig. (bottom row). Furthermore, the confusion
matrix for the three-dimensional case containing information about the class-wise
accuracies and misclassification can be found in Table[3.3] We also provide the orig-
inal labeling of the satellite image and the estimated Labels with misclassification.
The corresponding graphics can be found in Fig. The projections facilitate a
detailed interpretation and analysis of the data set. We will present and exploit the
obtained insights in a forthcoming study.

We demonstrate the advantages of LiRaM LVQ and its localized variant over
LFDA and NCA: Fig. B.I1] shows the best visualizations we could achieve with
this methods. We varied the value k and [ in the interval [1,10] and for LFDA we
achieved the best 1-NN error measures on the visualizations with k¥ = 6 and £k = 9
for 2D and 3D respectively. While certain classes (e.g. 14, alpine vegetation) seem
to separate well, the overall discriminativity is limited. Only 50.4% accuracy can be
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Figure 3.11: Visualizations of a small subset of the Colorado data set aquired by the
different methods.

achieved using a 1-NN classifier on the training data in the two-dimensional case
and 89.6% in the three-dimensional case. For this particular data set the value of
the parameter k has no significant influence on the quality of the LFDA-embedding
of the training data. The computation of the 1-NN error on over three million data
points of the test set was not practicable. Therefore we draw 100 000 points ran-
domly from the test set and this reduced set serves as approximation of the test-
error. With the best LFDA we observed 61.3% and 93.75% 1-NN classification ac-
curacy on the reduced test set for two and three dimensions, respectively. Table 3]l
shows the detailed comparison. The use of NCA turned out in-practicable due to
excessive memory use. Therefore, we reduced the training set to 900 samples per
class. We tried different values for the parameter / ranging from one to ten. The best
results are shown in Fig. BT1] (bottom row) for £ = 3 and k£ = 2 in the 2D and 3D
visualization respectively. On this data set the best NCA parametrization showed
comparable or even better results than the LVQ approach. Nevertheless, some pa-
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tience was necessary to get these results due to the computational complexity and
the variation with respect to the parameter was huge. In the two-dimensional case
the 1-NN accuracy ranged between 56.43% and 81.49% on the training set and in
the 3-dim. case accuracies between 67.29% and 92.56% were observed. The other
methods showed to be faster and more robust with respect to the parametrization.

3.5 Summary and outlook

In this Chaper we present the LiRaM LVQ algorithm together with a localized vari-
ant, as a modification of GMLVQ (Schneider et al. 2009a). It employs rectangular
projection matrices to represent N-dim. feature vectors in an M-dim. space inter-
nally. This makes it possible to limit the rank of the relevance matrices used in
GMLVQ which parameterize an adaptive distance measure. Obvious aims are to
incorporate prior knowledge of the intrinsic dimension or to reduce the number
of free parameters while maintaining good classification performance. In particular
for high-dimensional data sets this can reduce the computational effort significantly.
First we illustrate the approach in terms of a multi-class benchmark data set and
compare with other methods of similar complexity. We demonstrate that LiRaM
LVQ is an efficient method for determining discriminative, low-dimensional repre-
sentations of labeled data and facilitates good generalization behavior. In LiRaM
LVQ, the search for the appropriate subspace is guided directly by the classifica-
tion performance in a single supervised training phase. This is in contrast to classi-
cal combinations of unsupervised dimension reduction and subsequent supervised
learning.

A particular attractive application of the concept concerns the visualization of
labeled data sets. Setting M = 2 or 3 in LiRaM LVQ provides us with a discrimina-
tive visualization of the original data set. The algorithm results in linear or piece-
wise linear decision boundaries dependent on the number of prototypes and classes.
With the localized variant LLiRaM LVQ it is possible to visualize even more compli-
cated non-linear decision boundaries. We demonstrate the usefulness of this concept
in the context of several real world multi-class problems. Furthermore we compare
the visualizations to some recent state-of-the-art supervised dimension reduction
techniques, namely LFDA and NCA. The LFDA approach provides an analytical
solution, but also depends on the computation of pairwise dissimilarities within
samples of the same class. The results may differ a lot depending on the number &
of neighbors used. For less complex data sets, like the four class SRCBT cancer data
set error free visualizations are possible. On other data sets LFDA showed worse
results compared to the other methods. NCA showed good results in most cases.
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Its performance is also dependent on random initialization and the number of line
searches I. NCA is based on the computation of pairwise dissimilarities which is
expensive for large data sets. The LiRaM LVQ approach displays in all cases com-
parable or superior results on the investigated data sets. The computational effort
depends on the target dimension, the number of prototypes and the number of sam-
ples for training. Unlike other methods, which require all pairwise dissimilarities,
LiRaM LVQ computes distances of samples with respect to only a few prototypes.
The observed influence of the number of protoytpes on the performance is weak
compared to the dependence on the neighborhood parameter in other methods.

The use of local or class-wise transformation matrices in LLiRaM LVQ allows for
more complex decision boundaries. The decision boundary in the low-dimensional
space is based on local matrices attached to the prototypes. Note, that the dimension
reduction itself is done in terms of a global linear projection. The concept of using
local dissimilarities in combination with non-linear dimension reduction and visu-
alization was recently discussed in (Bunte, Hammer, Wismdiller and Biehl 2010).
In this paper we have not emphasized one particularly attractive feature of rele-
vance learning: The resulting transformation and relevance matrices can be readily
interpreted and carry important information about the structure of the data. For in-
stance, in the visualization of gene expression data, Sec.[3.4.4 we note that several
features (intensities) essentially do not contribute to the highly discriminative linear
combinations defined by (2. This type of information provides valid insights to the
application expert and should be exploited systematically.

In forthcoming projects we will also investigate several extensions of the method.
So far, we only limit the maximum rank of relevance matrices by choice of the pa-
rameter M, the effective dimension of the transformation can become even smaller.
In applications, including visualization, it can be desirable to fix the rank and to
make the system exhaust the bound. This could be done in terms of an efficient
regularization method which we developed recently (Schneider et al. 2010). Most
importantly, we plan to apply the LiRaM LVQ approach in various application do-
mains, including the ones discussed above. An example application in the context
of Content Based Image Retrieval (CBIR) is discussed in (Bunte, Biehl, Jonkman and
Petkov 2011) and Chapter [l of this thesis.
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3.A Derivatives of GMLVQ and LiRaM LVQ

Here we show the derivatives of the GMLVQ costfunction Egmivq for one pre-
sented training example x’, see Eq. (Z14), with respect to the prototypes w’ with
L € {J, K} and the transformation matrix Q € IR**"_ The derivative with respect
to the prototypes can be formulated like following:

N MN '
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The corresponding matrix update reads:
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3.B Derivatives of Localized LiRaM LVQ

Now we describe the derivatives of the LLiRaM LVQ scheme for one presented
training example z’ with respect to the prototypes w’, the transformation matrix
Q e RM*Y and the localized dissimilarities denoted by ¥* e RM*M with I e
{J, K'}. We assume the quantities of the cost function Eq. (2.14) correspond to d’} =
d¥’ (z', w’) and d = d¥" (x!, wX) using the distance measure defined in Eq. 3.2).
The derivative with respect to the prototypes is given by:
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Chapter 4

Adaptive Metrics for Content based Image
Retrieval in Dermatology

“Lunch with a Helmet on”
848 welded forks and spoons that cast a shadow of form.

Shigeo Fukuda 1987

Abstract

In this chapter we investigate the extraction of effective color features for a Content Based
Image Retrieval application in dermatology. Effectiveness is measured by the rate of cor-
rect retrieval of images from four color classes of skin lesions. We employ and compare
two different methods to learn favorable feature representations for this special applica-
tion: Limited Rank Matrix LVQ and the Large Margin Nearest Neighbor approach. Both
methods use labeled training data and provide a discriminant linear transformation of the
original features, potentially to a lower dimensional space. The extracted color features
are used to retrieve images from a database by a k-Nearest Neighbor search. We perform
a comparison of retrieval rates achieved with extracted and original features for eight
different standard color spaces and observed significant improvements in each of them.
LiRaM LVQ and the computationally more expensive LMNN give comparable results
for large values of the method parameter x of LMINN (k > 25) while LiRaM LVQ out-
performs LMNN for smaller values of . We conclude that feature extraction by LiRaM
LVQ leads to considerable improvement in color-based retrieval of dermatologic images.
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4.1 Introduction

n the last decades the availability of digital images produced by scientific, ed-
Iucational, medical, industrial and other applications has increased dramatically.
Thus, the management of the expanding visual information has become a challeng-
ing task. Since the 1990’s Content Based Image Retrieval (CBIR) is a rapidly advanc-
ing research area, which uses visual content to search images from large databases
according to the user’s interest (Smeulders et al. 2000, Miiller et al. 2004, Lehmann
et al. 2004, Datta et al. 2005, Min and Cheng 2009, Giacinto and Roli 2004, Torres
etal. 2009, Jain and Vailaya 1996). A typical CBIR system extracts visual information
from an image and converts it internally to a multidimensional feature vector repre-
sentation. For retrieval, the dissimilarities (distances) between the feature vector of
a query image and the feature vectors of the images in the database are computed.
Then, the database images most similar to the query are presented to the user. CBIR
may especially be interesting in the field of computer aided diagnostics when it is
partly based on images. An intelligent pre-selection of images with a trained sys-
tem might help a medical doctor to efficiently search for patients, who had problems
similar to the actual case.

The visual content of an image can be described by color, texture, shape or spa-
tial relationship. A good visual content descriptor should be insensitive to the spe-
cific imaging process, e.g. invariant under changes of illumination. The preva-
lent visual content for image retrieval is color. Frequently used color descriptors
are color moments, histograms, coherence vectors and correlograms (Jau-Ling and
Ling-Hwei 2002, Pass et al. 1996). Before a color descriptor can be selected, the un-
derlying color space has to be specified. There are many different color spaces avail-
able, which may be beneficial in different application domains. The color represen-
tations most commonly used in electronic systems are RGB and CIE-XYZ. CIE-XYZ
and the related CIE-Lab and CIE-Luv are designed to match human perception. In
(Terrillon and Akamatsu 2000) the authors argue, that normalized TSL (Tint, Satura-
tion, Lightness) is superior to other color spaces for skin modeling with a unimodal
Gaussian joint probability density function. The color space YCrCb is adjusted for
efficient image compression, but the transformation simplicity and explicit sepa-
ration of luminance and chrominance components appear attractive for skin color
modeling (Phung et al. 2002, Zarit et al. 1999, Chai and Bouzerdoum 2000). Surveys
on color spaces and their use can be found in (Terrillon and Akamatsu 2000, Vezhn-
evets et al. 2003). We are not aware of a general rule for the choice of the color space
and the representation might follow the users preference. So we decided to investi-
gate eight different color spaces, which are commonly used and may be useful for
the task at hand.
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Figure 4.1: Two example retrievals of the 11 most similar images for a given query
image. The first image in a row is the query image, followed by the images returned
from the retrieval system (Bosman et al. 2010). The green tick marks images with
the same class label like the query.
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Color is an important attribute for primary skin efflorescences (Bolognia et al.
2007). Color features have proven beneficial in many applications and medical sci-
ences, especially for the recognition of skin regions (Felice et al. 2002, Terrillon and
Akamatsu 2000, Vezhnevets et al. 2003, Takiwaki 1998, Shin et al. 2002, Kjeldsen and
Kender 1996, Sobottka and Pitas 1996, Phung et al. 2002, Zarit et al. 1999, Kakumanu
et al. 2007) or the classification of skin cancer (Schmid-Saugeona et al. 2003, Voigt
and Classen 2002, Blum et al. 2004, Hoffmann et al. 2003, Cheng et al. 2008, Um-
baugh et al. 1992). A dermatologist might be interested in pictures of similar skin
lesions in comparison to an actual case to verify the diagnosis or confer with similar
symptoms. This can be interpreted as a problem of CBIR. The authors of (Bosman
et al. 2010) study the use of color features and the effectiveness of different color
spaces in this context. They conclude that the representation of an image by the
difference in the average color of healthy and lesion skin gives better results than
the explicit use of the pair of colors. Fig. 4]l shows two example retrievals for a
CBIR system in the field of skin lesion comparison in Dermatology. In (Bosman
et al. 2010), the best results were achieved with the CIE-Lab color representation.

Of course, it is possible that the use of a combination of a cyclic distance mea-
sure in the case of color spaces containing a “hue”-descriptor might lead to superior
results. We will address this interesting questions in further studies. Since the dif-
ference of two color values is a special case of a linear transformation, the question
arises whether better results can be achieved by more general linear transforma-
tions. One well known technique to achieve a linear projection of feature vectors
to a subspace which minimizes the overlap between different classes is Linear Dis-
criminant Analysis (LDA) (Duda et al. 2000). In this paper we employed and com-
pared two different recent techniques, which are able to find discriminant feature
transformations based on a supervised training procedure. The Large Margin Near-
est Neighbor (LMNN) (Weinberger et al. 2006) (see section [2.5) approach has the
advantage that it is based on a convex cost function, so it returns the global op-
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timum for the current configuration of training data and parameters. The Limited
Rank Matrix LVQ (LiRaM LVQ) (Schneider et al. 2009a, Schneider et al. 2009b, Bunte
etal. 2008, Schneider et al. 2008) (see Chapter[3) on the other hand follows a stochas-
tic gradient descent procedure and may get stuck in local minima, but it has the ad-
vantage of low computational costs. Both algorithms are available in general form
and turned out to be effective classifiers in many applications. In our real world
example application of CBIR in Dermatology, the LiRaM LVQ approach turned out
to be quite robust concerning the initialization and parameter setting. With compa-
rably low computational costs it leads to similar or better results than the LMNN
approach with optimal parameter setting on most color spaces discovered. We im-
prove the correct retrieval rate in CBIR of dermatological images significantly by
applying adaptive linear transformations.

The main aim of this work (Bunte, Biehl, Jonkman and Petkov 2011) is to demon-
strate in terms of a real world example, that an adaptive, i.e. data driven transfor-
mation of original color features can improve the retrieval performance of a CBIR
system significantly. We concentrate on the performance enhancement achieved by
using the most basic, easy and fast acquirable set of important features for the prob-
lem at hand, i.e. color information only. In Section we explain the real world
data set and the feature extraction process. Afterwards, we discuss the results in
Section4.3]and conclude in Section 4.4

4.2 Methodology

This work is based on the scientific findings of (Bosman et al. 2010). It has been
shown, that a three-dimensional feature vector constructed from the difference be-
tween the color values of healthy and lesion skin yields better performance then
using the six-dimensional feature vector of the colors itself. Since the difference
features are acquired by a simple fixed linear transformation A the question arises if
the CBIR system can improve even further using an arbitrary transformation. There-
fore we compare two supervised adaptive distance techniques, namely LiRaM LVQ
and LMNN, which are able to provide discriminative transformations of the feature
space used for CBIR. An illustration of the Methodology is shown in Figure

4.2.1 Data set and feature extraction

We analyze images from a database maintained at the Department of Dermatology
of the University of Groningen. At the time of this study it consisted of 47621 images
from 11361 patient sessions, the number of images grows by about 5000 per year.
Clinical images are obtained under standard light conditions and do not require
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Figure 4.2: Methodology overview for the proposed CBIR system.

(a) Red

(b) White

(¢) Blue

(d) Brown

Figure 4.3: Example images of the four skin lesion classes from (Bosman et al. 2010).

further calibration. A subset of 211 images was provided and manually labeled by a
dermatologist, who assigned each image to one of four classes of lesions. For better
readability we refer to these classes as “red”, “white”, “blue” and “brown”, see Fig.
These terms correspond to the relative tint of lesions which appear reddish,
hypo-pigmented, blue or brownish on the background of the surrounding healthy
skin. We consider a data set with 82, 46, 29 and 54 samples, respectively, which

amounts to a total of 211 images.

Of course there are more characteristics then just color which identify the kind
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of skin lesion, e.g. the shape. The consideration of other types of features will be
addressed in future work, here we concentrate on the quality the most basic set of
features is able to achieve. In this particular problem color seems to be a suitable
indicator for the skin lesion classes. The complete data set also contains other skin
lesions, but in this study we restrict ourselves to the consideration of the above
mentioned classes. Here, emphasis is not on the classification performance itself.
It serves as a basis for improving the retrieval system and the supervised training
yields a suitable distance measure. Further studies should address additional fea-
tures, more general skin lesion classes and the handling of unknown classes.

The original images were not pre-
processed. For each image a region
of lesion and a region of healthy skin
are manually selected and for each of
them the average color values are com-
puted (see Fig. E4). Hence, the ex-
tracted data contains three color com-
ponents for each of the two regions, re-
sulting in a six-dimensional feature vec-
tor € IR®. As a normalization step we
perform a z-transformation resulting in
zero mean and unit variance features.
This normalization is reasonable in the
RGB color space and linear domains.
In case of cyclic descriptors, like the
“hue”, this might not be appropriate.
The combination of cyclic distances and
linear dissimilarities and their normal-
ization concerning this specific task will
be addressed in future studies. Never-
theless, for the sake of comparison and
completeness we show the results on different color spaces under the same condi-
tions.

Figure 4.4: Feature extraction: a represen-
tative region of healthy skin (green) and
lesion skin (red) were manually selected.
The average colors of these regions are
combined in a six-dim. feature vector.

4.2.2 Feature transformation obtained by LiRaM LVQ

In order to obtain discriminative representations of the data we employ LiRaM LVQ
technique, which is explained in Section[3.2l Following Eq. 2.13) we transform the
features into a discriminative space £ = )z, which is then used in the CBIR system.
The results of the LiRaM LVQ algorithm may display a dependence on the initial



4.2. Methodology 57

state of the matrix ( in the training. Hence, we present results on average over sev-
eral random initial configurations. For the training we employ the following cross
validation procedure: The data set is split in ten disjoint subsets with approximately
the same composition of classes. The union of nine subsets is used to determine the
transformation matrix  for the vectors of the remaining subset. In this way, the
matrix 2 which is applied to a given feature vector from the set is obtained with-
out using that feature vector. This procedure is repeated ten times, once for every
possible selection of the subset for which (2 is determined. In addition we repeat
each training process for ten different random initializations of the LiRaM LVQ al-
gorithm, resulting in 100 runs.

We start the matrix learning after ¢, = 50 of altogether 500 epochs ¢ and apply
a learning rate schedule shown in Egs. (3.5) and (3.6), which has proven advanta-
geous in many implementations of relevance learning. In our experiments we chose
et = 0.01, Aty = Ay = 0.0001 and 75*** = 0.001, we do not perform an opti-
mization of these parameters concerning the retrieval rates. In our experiments we
use four prototypes (one per class) and their initial positions w'(¢ = 0) are deter-
mined as the mean over a random selection of 1/3 of the available feature vectors
in class ¢(w?) with small random deviation. Hence, prototypes are initially close
to the class-conditional means in the training data, but with small deviations due
to the random sampling. This has the advantage that in the case of more proto-
types it is ensured that they are not initialized on exactly the same position. Rel-
evance initialization is done by generating independent uniform random numbers
Q;; € [-1,1] and subsequent normalization Eq. (2.21I). Performing independent
runs with random initialization and subsequent normalization prevents that single
features are favored by unlucky initialization. In the experiments we consider ma-
trices (2 € R3¢, which transform the original six-dimensional feature vectors x into
a three-dimensional space. More dimensions do not increase the performance sig-
nificantly, but using less than three caused decreasing retrieval rates. Furthermore,
with three dimensions we can directly compare to earlier experiments.

The Localized GMLVQ (LGMLVQ) (see Algorithm using localized dissimi-
larities Eq. (Z.22) is trained under the same conditions and learning rate schedules,
adapting four matrices Q7 € IR**® together with their associated prototypes w’ in
the supervised training process.

For each subset D°, s = 1,...,10, of the data set X we perform 10 runs over
random initializations i = 1,.. ., 10. For every image #’ with j = 1,...,211 from the
data set we compute the correct retrieval rate by means of the &k nearest neighbors
within X\{z’}. Therefore, we apply for each initialization i the transformation Q*’
or 045% in the localized version, which was learned without the samples € D?, and
obtain a retrieval rate 1} for the query x; € D*. Thus we get for every initialization
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211
j=1 J
we determine the total mean rate r = Zgo 7. The variability with respect to

initialization is quantified by the standard deviation

i a mean retrieval rate 7' = 5 - As an overall estimate of the performance

Lo 3
Tinit = <9 NG r)2> : (4.1)

i=1

In order to quantify the variation of the data set we evaluate the mean retrieval rate
of every image 7; = 15 Zz , 75 and the corresponding standard error of mean:

1 211 % .
€data = (210 ;(Fj — 7’)2> <2117 2. (4.2)

With the original features there is no training process involved and €4at, in Eq. (4.2)
is computed simultaneously with the retrieval rate r; of every image replacing ;.

4.2.3 Feature transformation obtained by LMNN

We also perform the LMNN method (Weinberger et al. 2006) explained in Section
to acquire discriminant transformations of the feature space. The results pre-
sented in the following section were produced with the available code! using default
parameters except for the number of target neighbors «, which varies in our exper-
iments from 1 to 25 and the matrix I' = Y'Y Eq. (230) decomposed by T € R3*6
initialized with elements randomly drawn from the interval [—1, 1]. For a fair com-
parison, LMNN and LiRaM LVQ are applied to the same subsets D® of training data
and performance is evaluated on the same footing as explained before.

4.2.4 Canonical representations

Note that the transformation matrix 2 obtained by LiRaM LVQ and T in LMNN are
not uniquely determined: For instance, the distance measure is invariant under rota-
tions in the feature space. Thus, the training process can yield different transforma-
tion matrices depending on the (random) initialization of the training process. We
identify unique transformations Qand T by decomposing A = Q'Qand ' = YT
in a canonical way based on the sorted eigenvectors v/ following Eq. (3.2):

_ ([@vl,\/gvz,.. ,\/va])TeRMXN . (4.3)

www.cse.wustl.edu/ ~kilian/code/code html (last visited September 2010)

1
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This canonical representation does not alter the retrieval system and it allows direct
comparison of the transformations Qand Y.

It is not obvious how to extend the LMNN scheme for a comparison with the
use of local matrices ¥/ like in the LiRaM LVQ. Localized transformations could
heuristically be put on top of the LMNN scheme by forcing a separation of the fea-
ture space, e.g. based on the class information. Since the LMNN scheme computes
distances within the feature space it is not clear which distance should be used when
comparing two sampes of two different classes:

i

d7 (xf x’) # dr”’ (27, 2") assuming T oYY (4.4

LVQ, on the other hand, contains a quantization process within the learning pro-
cedure, which makes localized transformations within the receptive fields a very
natural and easy extension. The distances are always computed with respect to the
prototypes, not the samples itself.

4.2.5 Retrieval test

As a performance measure for CBIR we use the average correct retrieval rate, also
referred to as precision. It is defined as the percentage of k-Nearest Neighbors (k-
NNs) that belong to the same category as a query image. We determine for each
image its k-NNs in the entire data set using the Euclidean distance measure. For
comparison, we do this both in the original feature space X and in the transformed
feature space £ = Bz with B € {2, T}. Note that in our evaluation for a given query
image, the transformation matrices 2, T and Q7 have been determined from subsets
which do not contain the query.

Using the Generalized Matrix LVQ (GMLVQ) approach the training process op-
timizes j localized transformations 2/ corresponding to the classification task. We
involve this information by projecting every feature vector & with the transforma-
tion 0/ corresponding to the nearest prototype w” with d*’ (w”,z) < d* (w',z)
VJ # l resulting in local linear projections for different areas of the feature space.

Section.3lpresents and compares the resulting retrieval rates as average over all
images. Furthermore, the standard error of the performance with the actual query
image and its dependence on the initialization of LiRaM LVQ are discussed.

4.2.6 Color spaces

We explore the retrieval rates for eight different color representations separately.
The different color spaces vary, as already mentioned, with respect to their useful-
ness in different applications. Possible motivations for the choice of a particular
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Table 4.1: Overview over some color spaces compared for their use in CBIR.

Color space chosen for:

RGB widespread use

normalized RGB invariance (under certain assumptions) to changes of sur-
face orientation with respect to the light source (Skarbek and
Koschan 1994)

TSL successful application in skin detection (Terrillon and
Akamatsu 2000)

CIE-XYZ role as the basis for CIE-Lab and CIE-Luv

CIE-Lab perceptual relevance and relation to melanin and hemoglobin
(Takiwaki 1998)

CIE-Luv & CIE-Lch perceptual relevance

YCrCb simplicity and explicit separation of luminance and chromi-

nance components (Phung et al. 2002, Zarit et al. 1999) and
popularity in skin detection applications (Kakumanu et al.
2007)

color space are summarized in Table Despite the potential difficulty rising from
the cyclic representation of the “Hue” component of the TSL color space and its
relatives HSV and HSL, for completeness, we investigate its behavior for our appli-
cation task in terms of one example, namely TSL.

4.3 Results

4.3.1 Retrieval rates

In this Section we summarize the retrieval results for the different color representa-
tions using transformed features from LMNN, LiRaM LVQ and GMLVQ. We com-
pare them with those obtained in the original feature spaces and with the difference
features from (Bosman et al. 2010) obtained with the transformation & = Ax with:

-1 0 0100
A= 0 -1 00 1 0]. (4.5)
0 0 -1 00 1

The overall mean rates r obtained with LiRaM LVQ and Q € R3*¢ are displayed
in Fig. 5] for each color space as a function of the number %, i. e. the number of
pictures the CBIR system returns to the user. The best correct retrieval rates for this
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Figure 4.5: Mean correct retrieval rates obtained with the LiRaM LVQ transformed
data as a function of the number k of retrieved images for eight color spaces.

algorithm are achieved with the color spaces YCrCb (82.3%), CIE-Lab (82.2%), CIE-
Lch (81.1%), CIE-Luv (81.0%) and RGB (80.7%) where the numbers correspond to
the example case & = 11. All other color representations yield by far lower per-
formances with rates between 68.7% and 75.0%. We chose the example case of 11
returned images for the quantitative analysis to be able to compare to earlier studies
(Bosman et al. 2010) and because it seems a reasonable large number suggested by
the doctor. Of course the system is able to return as many similar images as the data
base contains and the user wishes to see.

Fig. 4.6l shows a comparison of the correct retrieval rates based on the original
features (red lines), the difference features from (Bosman et al. 2010) (green lines)
and the transformed data (blue and black lines) as a function of the neighborhood
size k of the retrieval system. The gray shaded areas mark the standard error of
mean €qat, While the blue shaded area corresponds to oinit of the LiRaM LVQ. Note
that the latter is, of course, absent in the results based on original features and dif-
ference features, as no training process is involved and also absent in the results
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Figure 4.6: Comparison of correct retrieval rates dependent on the number of near-
est neighbors & for each color space. The red lines denote the mean retrieval rates
on the original feature space, the green line stands for the difference features from
(Bosman et al. 2010), whereas the blue and black lines shows the mean results on the
transformed feature spaces. The blue shaded areas indicates the standard deviation
due to the random initializations o;,;; in LiRaM LVQ.

coming from LMNN, because it finds the global optimum for a given parameter set,
independent of the initial state. The variation due to initialization of the GMLVQ
is not displayed; it is comparable to the variation in the global version. We set the
parameter « of the LMNN approach equal to the neighborhood & of the retrieval
system and, in addition, we consider x = 25. The latter is close to the size of the
smallest class in the data set, “blue” (c), with 29 examples. For x = 25 the retrieval
performances of LMNN and LiRaM LVQ are comparable which is also reflected in
the fact that the obtained matrices 2 and T are very similar, cf. Fig. EZand Fig.
4.8 Smaller values for x reduce the computational effort of the optimization at the
expense of performance.
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LGMLVQ achieves the best correct retrieval rate for the most suitable color spaces:
Lab and YCrCb. However, the performance boost compared to the other methods
is only moderate. In TSL, GMLVQ is even outperformed by the simpler techniques
based on global measures. These findings suggest that the latter already extract the
most important information from the original color features. Furthermore, TSL is
cyclic represented by the angle of color components, which may cause instabilities
for naive distance computation. We suggest the performance drop of the difference
features in comparison to the use of the original features is a consequence of the
Hue representation in TSL and its relatives HSL and HSU were we observed the
same effect. However, the adaptive distance is able to compensate for this effect and
still yields a boost of performance also in these color spaces.

In most of the color spaces, including RGB, the LiRaM LVQ result is not very
sensitive to initialization, as indicated by relatively small standard deviations oin; <
2%. The XYZ color representation display the largest dependence on initialization
with oinit > 2.7%. The variation with the data set is approximately the same in orig-
inal and transformed feature spaces. This variability is not an effect of the LiRaM
LVQ training but is characteristic of the data set itself. In the case of the LMNN
optimization, we observe that the use of an adaptive transformation increases the
mean retrieval rate r significantly for all color spaces, for every choice of k and ap-
propriate x. The best results are obtained with CIE-Lab (72% < r < 85%) and
YCrCb (72% < r < 84%). It is interesting to note that the popular RGB representa-
tion exhibits comparable performance (70% < r < 82%) in the transformed feature
space. Thus, we achieve an improvement between 10% and 27% when employing
an adaptive linear transformation of features.

4.3.2 Recommended transformations

Here we inspect the favorable transformations of the feature space as obtained by
LiRaM LVQ and LMNN. We focus on RGB as the by far most frequently used color
space and on CIE-Lab because of its excellent retrieval performance.

Global transformations

We observe that the obtained distance measure represented by A depends only
weakly on the initialization of LiRaM LVQ. However, a continuum of matrices (2
satisfies QTQ = A and, in this sense, the actual outcome ( of the training process
can vary widely. Thus, the canonical representation Q Eq. @.3) is averaged over
all training runs. The mean transformation is explicitly given for RGB in Eq. (4.6)
and visualized in Fig.[4.71 The standard deviation concerning the random initializa-
tion of each component lies between 0.01 to 0.03 for QRGB. Each row of the matrix
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Figure 4.72 Recommendation for the transformation in RGB: (left) Multipliers that
define the new features as linear combinations of the original features earned from
LiRaM LVQ. (right) Multipliers earned from LMNN with x = 25.
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Figure 4.8: Recommendation for the transformation in CIE-Lab: (left) Multipliers
that define the new features as linear combinations of the original features earned
from LiRaM LVQ. (right) Multipliers earned from LMNN with x = 25.

defines a new feature as a linear combination of the original six features.

0.139 -0.192  0.093 —-0.320 0.662 —0.469
Qrep = | 0.127 —-0.082 —0.112 -0.167 0.080 0.276 (4.6)
0.036 —0.064  0.108 —0.047 —0.063 —0.002
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Data transformed with SA)RGB Data transformed with (AZLab
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Figure 4.9: The resulting 3D visualizations of the skin cancer data set transformed
from the RGB and LAB color space with Qrcp (left panel) and Qp . (right panel).

We observe, that the absolute weights corresponding to skin lesions (columns 4,5,6)
are typically 1-2 times larger than the coefficients assigned to the healthy skin fea-
tures (columns 1,2,3). In general, the corresponding coefficients for lesion and healthy
skin features are of opposite sign. Hence, the transformed features correspond to
weighted differences of the lesion and healthy skin color values. Eq. (£7) denotes
explicitly the mean transformation ﬁLab for CIE-Lab; it is visualized in Fig.

—0.115 —0.225 0.140 0.358 0.606 —0.418
Qrab = 0.069 —-0.120 —-0.120 -0.200 0.231 0.164 | . 4.7)
—0.087 —0.063 0.011 0.109 —0.006 0.147

The above discussed properties of {2rgp persist also in the transformation of CIE-Lab
feature vectors. The standard deviations for the mean transformation vary from 0.01
and 0.06 for the random initializations.

The resulting 3D visualizations of the data set with the mean canonical transfor-
mations {) using the RGB and LAB color representation are shown in Fig. It can
be seen that the classes for “white”, “red” and “"brown” skin cancer build a nicely
separable data cloud respectively, whereas the class “blue” lays between the others
and overlaps. With more training samples especially of the difficult class the data
set might be even better separable by supervised adaptive dissimilarity learning.
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Figure 4.10: Local Matrices for RGB corresponding to one prototype of each class.

Local transformations

Also with the localized matrices the above discussed properties persist. For the lo-
cal feature transformation the prototypes are necessary and define the area of the
original feature space, where their transformation is valid. So the samples are trans-
formed with the transformation attached to the nearest prototype w”:
€ = Q'x with ar’ (w”’, ) = min ar’ (w?, x) . (4.8)
J

The mean canonical representations of the local matrices for RGB are shown in
Fig. Note that the definition in Eq. (£8) is only valid in the neighborhood of the
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corresponding prototype. At the borders of the Voronoi cell of each prototype this
definition may be inappropriate. In general it is possible to combine the local lin-
ear patches in a global nonlinear way by charting (Bunte, Hammer, Wismiiller and
Biehl 2010, Brand 2002) or Local Linear Coordination (LLC) (Teh and Roweis 2003).
It can be seen that some class-wise transformations seems to be already well dis-
criminating with one or two features, for example the matrices for the “brown” and
“red” class of skin lesions. However, for the class of white and bluish appearing
skin lesions also the third feature shows a contribution to the transformation. It
would have been possible to have class-wise different target spaces for two and
one dimension in respective transformations, but for reasons of consistency and for
comparison purpose we chose the target dimension to be the same for every class.

In summary, our findings support the basic idea of using differences of color
features presented in (Bosman et al. 2010). We have shown, however, that gen-
eralizing this concept by introducing adaptive coefficients improves the retrieval
performance significantly for this supervised problem.

4.4 Summary and conclusion

In this chapter we show the usefulness of adaptive distances and corresponding
feature space transformations on a real world example application. We observe that
CBIR on color is a powerful tool for analysis of dermatological image databases.
Previously unnoticed color similarities may give new insight into the correlations
between and within various skin diseases. We introduce discriminative color de-
scriptors which are obtained by LiRaM LVQ and LMNN during supervised training,
and we compare and evaluate their performance for CBIR of dermatological images.
Starting from a 6D vector representation of images, we define three new features as
linear combinations of the original six color components of healthy and lesion skin.
The linear combinations are determined by LiRaM LVQ in a training process which
is guided by classification performance and yields a discriminative representation
of the feature space. With new features we achieve considerable improvement of re-
trieval results in all eight color spaces that we studied. In the five best color spaces
(YCrCb, CIE-Lab, CIE-Lch, CIE-Luv and RGB) the increase of the correct retrieval
rate is between 10% and 27% in the range of k£ = 1 to k = 25 retrieved images in
comparison to earlier studies. We conclude that adaptive dissimilarity learning is
favorable independent of the choice of the actual color space. The user may decide
according to his personal preference which color representation is most suitable.
The use of LMNN seems natural, since the retrieval is based on a k-NN ap-
proach. However, our investigation shows that the LiRaM LVQ approach outper-
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forms LMNN if the latter takes only a relatively small number « of neighbors into
account in the training process. For larger « the obtained metric becomes very simi-
lar to that of LiRaM LVQ and, consequently, the retrieval performances are compa-
rable. The computational effort for LiRaM LVQ training is typically lower than that
of the LMNN optimization which grows with k. An important advantage of the
LVQ approach is its potential with respect to extensions. As shown, for example,
local metrics can be attached to the prototypes which are responsible for different
areas of the original feature space. In the most favorable color spaces, the localized
variant GMLVQ increased the retrieval rates even further.

We conclude that LiRaM LVQ is an efficient technique for the extraction of highly
discriminative color features for CBIR of dermatological images. With this approach,
we obtain high mean correct retrieval rates of between 84% for k = 1 and 79% for
k = 25 retrieved images in the five best color spaces. For two of the color spaces,
RGB and CIE-Lab, we discuss in detail the canonical linear transformations of the
original six color components to three new features and showed their superiority to
recently introduced approaches.

Obviously, several important extensions are possible. For instance, the auto-
matic detection of regions of interest or the integration of shape information should
be relevant in practical applications. Forthcoming studies should address, among
other modifications, the use of extended original feature spaces which include, for
instance, shape information.
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Chapter 5

Adaptive Matrices for Color Texture
Classification

Art is the imposing of a pattern on experience,
and our aesthetic enjoyment is recognition of the pattern.

Alfred North Whitehead (1861 - 1947)

Abstract

In this chapter we introduce an integrative approach towards color texture classifica-
tion learned by a supervised framework. Our approach is based on the Generalized
LVQ (GLVQ), extended by an adaptive distance measure which is defined in the Fourier
domain and 2D Gabor filters. We evaluate the proposed technique named Color Image
Analysis LVQ (CIA LVQ) on a set of color texture images and compare results with those
achieved by simple gray value transformation on the color images with a comparable dis-
similarity measure and the same filter bank. The features learned by CIA LVQ improve
classification accuracy and they generalize much better for evaluation data previously
unknown to the system.

5.1 Introduction

exture analysis and classification are topics of particular interest mainly due to

their numerous possible applications, such as medical imaging, industrial qual-
ity control and remote sensing. Despite the absence of a unique definition, texture is
understood as a description of the spatial arrangement of colors or intensities in an
image. A wide variety of methods for texture analysis has been already developed
such as co-occurrence matrices (Haralick et al. 1973), Markov random fields (Wang
and Liu 1999), autocorrelation methods (Pietikdinen et al. 2000, Ojala et al. 2002), Ga-
bor filtering (Turner 1986, Fogel and Sagi 1989, Jain and Farrokhnia 1991, Kruizinga
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and Petkov 1995, Manjunath and Ma 1996, Grigorescu et al. 2002) and wavelet de-
composition (Wang et al. 1998). However, these methods mostly concern intensity
images and since color information is a vector quantity the transfer of traditional
methods to the color domain is not always straightforward. With regards to color
texture the possible approaches can be distinguished in three categories (Palm 2004).
In the parallel approach (Messer and Kittler 1999, Paschos 2000) textural features are
extracted solely from the luminance plane and are used together with color features.
The sequential approach (Hauta-Kasari et al. 1999) involves a quantization of the
color space and subsequently the extraction of statistical features from the indexed
images. The most popular among them is called the integrative approach (Jain and
Healey 1998, Drimbarean and Whelan 2001, Palm 2004, Hoang et al. 2005) and is
an attempt to describe texture by combining color information with the spatial re-
lationships of image regions within each color channel and between different color
channels.

We introduce a novel integrative approach towards color texture classification
and recognition based on 2D Gabor filters and supervised learning (Bunte, Giotis,
Petkov and Biehl 2011). Given a set of labeled color images (RGB) for training and a
bank of 2D Gabor filters the goal here is to learn a transformation of a color image to
a single channel (intensity) image, such that the Gabor responses of the transformed
images will yield the best possible classification. Most signal processing techniques
are based on insights or empirical observations from neurophysiology or optical
physics. The proposed, novel approach incorporates data-driven adaptation of the
system, e.g. example based learning. Furthermore, the filters used in our approach
can be substituted, depending on the data domain and the task at hand. As an
example we explore the use of rotation and scale invariant descriptors based on
Gabor filter responses (Han and Ma 2007). We demonstrate that our novel approach
yields very good generalization ability with respect to previously unknown data.

In Section 5.2 we introduce the LVQ based color texture learning method. The
experiments are shown in Section[5.3land finally we conclude in Section 5.4l

5.2 Adaptive matrices for texture classification

We consider a data set consisting of color image patches of a priorly defined size
(s x s) and a bank of Gabor kernels G with different scales and orientations. We use
for both the image patches and the filter kernels their representation in the Fourier
domain. After vectorizing we end up with complex data points z‘ € CV of dimen-
sion N = s s -3 carrying a label y* € {1,...,C} that belong to one of C classes.
G! € CM with M = s - s is the vectorized kernel of the I-th filter of the bank G. The
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general form of the descriptor for a vectorized patch v given the filter bank G and
parameterized by local transformations QF can be written as for(v,G) : C — C .
Here k corresponds to the index of the prototype w* or the index of its class label
c(w*) for class-wise transformations. For the proposed optimization procedure it is
necessary, that fo is differentiable. In this contribution fq+ corresponds to the sum
of the responses of all filter kernels in G to the vectorized patch, thus defining the
descriptor:

far(v,G) 1 v - rF(v) = Y 0% % G| (5.1)
l

where * denotes the convolution. The filter bank G may be chosen based on the
user’s preference, suitable to the data and the task at hand. The vector v is defined
in the data domain CV and QF € CM*¥ is the local transformation, which maps
the color values to scalar, “intensity” values used for filtering. The dissimilarity
measure is defined by:

de (@', wk) = || [r* (@))]? — [r* (w") | (5.2)

and corresponds to the difference of descriptor magnitudes. This considers two
patches containing the same texture pattern as similar, independent of the position
where the pattern occurs within the patches.

We use the same cost function as in the original GLVQ algorithm Eq. 2.5) includ-
ing the dissimilarity measure defined by Eq. (5.2):

N d%J — d%K 925 QY (i oL
ECIA:ZW, with d% = d& (', w”) for L e {J, K} . (5.3)
i=1 "G G

We follow a stochastic gradient descent procedure and present the samples z’ of
the training set sequentially and update the parameters accordingly. We will refer
to this algorithm as CIA LVQ (see Algorithm [5.]). The detailed description of the
derivatives % and afﬂ# for L € {J, K} defining the learning rules can be found
in Appendix[5.Al A short scheme of the method is also depicted in Fig. 5.1l In the
next section we experiment with the algorithm and show its use in practice.

5.3 Experiments

In order to evaluate the usefulness of the proposed algorithm, we perform classi-
fication on patches of pictures taken from the VisTex database (VisTex 2002). Our
data consists of color images with size 128 x128 pixels from the groups Bark, Brick,
Tile, Fabric and Food. Although in texture classification literature each such image
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Algorithm 5.1 : Color Image Analysis LVQ (CIA LVQ)

: define a filter bank G
. initialize the prototypes w’ and their labels c¢(w?)

—_

. initialize matrices )/

randomly select a training sample '

2

3

4: while stopping criterion not reached do

5

6 compute the distances d (', w) to the prototypes w’
7

determine closest correct w”’ = arg min d (x°,w’) with y* = c(w”’)
J

and closest incorrect w’ = argmin d2' (xf, w’) with y* # c(w
j

)

8. update the prototypes according to wr « wl — 7 - Laa [ e {J K
p P yP g

ow

9:  update the matrices according to QF « Qf — 75 - %
10: end while
é Original Image Extract patches N
3% 7l of size s x s
Define Gabor o
filter bank
Fourier-
0 transform
! 3 channels
G! G!
| o' = [F(R), F(G), F(B)] e C**
CIA LVQ
Initialize Define Optimize
1. prototypes w* 1. image descriptor 7" the costs Ecra
E. transformations QF 2. distance d’ (z, w) with respect to w and (2

Figure 5.1: Methodology overview for the proposed CIA LVQ.

is often considered as a different class, here we distinguish into five different classes
equivalent to the five aforementioned groups. Despite its increased difficulty, this
classification task allows us to better demonstrate the ability of CIA LVQ to describe
general characteristics of real-world texture patterns.

At first we draw 15x15 patches randomly from each image shown in Fig. 5.2
The training set contains 150 patches per image, resulting in 3000 samples in total,
while the test set holds 50 patches from each image. The test set may contain patches
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Bark.

Bark.0006.ppm Tile.0008.ppm Fabric.0013.ppm

9.ppm Brick.0007.ppm Tile.0009.ppm Fabri ¥ Food.0011.ppm

Bark.0007.ppm Brick.0006.ppm Bark.0005.ppm Tile.0003.ppm X F00d.0010.ppm

T

Tile.0004.ppm 11.ppm Food.0007.ppm

Bark.0004.ppm 0002, Food.0002 ppm Bark.0001.ppm Brick.0004.ppm F00d.0006.ppm

Bark.0002.ppm . ! Food.0001 ppm

Bark.0000.ppm F00d.0000.ppm

Figure 5.2: Images, which are used to provide Figure 5.3: Images used to provide
random patches for training and test. random patches for evaluation.

which partially overlap with those used for training. Therefore the images in Fig.
are used in order to create an evaluation set that was never seen in the training
process. The evaluation set consists of 50 randomly drawn patches per image and
is used to show the generalization ability of the approach.

A note is due here to the nature of the filter used. A 2D Gabor filter is defined as
a Gaussian kernel function modulated by a sinusoidal plane wave. All filter kernels
can be generated from one basic wavelet by dilation and rotation. In this experiment
our filter bank consists of 12 Gabor filters of bandwidth equal to 1 at six orientations
6 =0, 30, 60, 90, 120 and 150 degrees and two scales (wavelegths) varying by one
octave: A = 7 and 7+/2. These scales ensure that the Gabor function yields an ade-
quate number of visible parallel excitatory and inhibitory stripe zones. Dependent
on the patch size different scales might be adequate. We set the phase offset ¢ = 0
and the aspect ratio v = 1 for all filters. In this way we create center-on symmetric
filters with circular support. We run the CIA LVQ with class-wise matrices 2¢ ini-
tialized with the identity matrix and 4 prototypes per class for ty.x =300 epochs.
The learning rates were chosen as

71(t) = 0.002 (0.005) "/ fmex (5.4)

t/tmax

72(t) = 107 (107?) : (5.5)

where ¢ is the current epoch. Using more filters and more localized matrices 7 may
cause overfitting effects. So it is advisable to increase the complexity of the system
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Table 5.1: Confusion matrices (eval. set) ‘ ‘
Food - b
CIA-LVQ: F00d.0010 1
1 2 3 4 5 Z FOOd.OOOB[ 1~
Food.0000 L . 1
1 176 10 12 7 2 207 |
2 1 57 11 9 3 81 Fabric . 1
Fabric.0013 e N— 4
318 25 43 31 10 127 0 e ]
4 1 5 23 127 4 160  Fabric.0008 j ) g
5 4 3 11 26 131 175 Fabrcoool ‘ -]
> 200 100 100 200 150 750 Tile s E
: . Tile.0008 .
class-wise accuracy of estimation in % Tile.0003 B oLl

88.00 57.00 43.00 63.50 87.33 [JocF

Brick 1 ’—‘ i
RGB2G: Brick.0004 ] RGB2G ||
1 ) 3 4 5 2 Brick.0003 ] b
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5 41 8 4 18 55 126 20 40 ej;o 80 100
> 200 100 100 200 150 750 accuracy in %

class-wise accuracy of estimation in % Figure 5.4: Class-wise and individual im-

26.00 45.00 51.00 41.50 36.67 age accuracies

carefully. The training error is 10.6% and the error on the test set 28%.

We use the same data sets and the same filter bank to compare with the common
approach of deriving textural information only from the luminance plane of images
(Drimbarean and Whelan 2001). This approach is considered to often outperform
combined color and texture features (Mdenp&d and Pietikdinen 2004). For compar-
ison, we also use an RGB to gray (RGB2G) transformation, which builds intensity
values by a weighted sum of the color components of every pixel:

0.2980 - R + 0.587 - G + 0.114- B . (5.6)

We vectorize all patches = and in this case the image patch descriptor is given by

ro(x) = 2 x * G' . (5.7)
]

We use a Nearest Neighbor (1-NN) classification scheme with a dissimilarity mea-
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sure similar to Eq. (5.2):
da(a’,@’) = || [r2(2")]? = r2(2?)]* |I* . (5.8)

The 1-NN scheme based on the RGB2G transformation shows a test error of 37.5%,
but most interesting is the comparison of the classification errors on the evaluation
set. Here the 1-NN scheme shows an error of 61.9%, while the CIA-LVQ still has an
error of 28.8%. The LVQ scheme displays very good generalization, which is shown
in Table 5.1] and Fig. Note, that the accuracy rates among individual images
of the same class can vary. Brick and Tile are the most difficult classes, because the
texture is large, so it cannot be captured very well with such a small patch size,
since a lot of patches might be drawn from non-textured regions. On the other side,
classes like Food and Bark with less diversity regarding textural structures can be
learned quite well.

The prototypes, which classify the evaluation set are shown in Fig. Addition-
ally we show some example patches from the evaluation set, which are classified
correctly together with their descriptors in Fig. 5.6land some examples of wrongly
classified patches in Fig.[5.7] Some obvious problems occur due to the random sam-
pling and the very small patchsize: a lot of samples of Brick and Tile, for example,
show homogeneous regions coming from the area in-between the textural structure
(see Fig.[5.7). We observe, that classes which vary a lot in the size of the actual struc-
ture (e.g. Brick and Tile) are more difficult to recognize than classes with small vari-
ations in the scale of texture (like Bark and Food). It is interesting to notice that ran-
dom patches drawn from Food.0010.ppm are 100% correctly classified, even though
no patch from this image was ever used to train the algorithm. The learned local
transformation recognizes the channels leading to the orange color and increased
their weights to distinguish this class from others.

5.4 Conclusion and outlook

In this contribution we proposed a prototype based framework for color texture
analysis. In contrary to standard approaches which are either based on a single
channel representation of the images through a fixed transformation or empirical
observations for combining color and textural information, we offer the alternative
of data driven learning of suitable, parameterized image descriptors. The ability
of weighting different color channels automatically according to their importance
for the classification task is the most important factor which distinguishes our ap-
proach. We have formulated a novel general principle: based on a differentiable
convolution and a predefined filter bank the CIA-LVQ algorithm optimizes the clas-
sification. It is also of conceptual value that this adaptation of LVQ is suitable for



76 5. Adaptive Matrices for Color Texture Classification

Tile 11 Tile 12 Fabric 13 Food 17 Food 20

Brick 7 Brick 8

Figure 5.5: Magnitude of the descriptors |r (w”)| of the prototypes which classify
the evaluation set.

example patch of Bark example patch of Brick example patch of Tile example patch of Fabric example patch of Food

P BE

corresponding descriptor corresponding descriptor corresponding descriptor corresponding descriptor corresponding descriptor

Figure 5.6: Magnitude of the descriptors |r” (w’)| of some correct classified example
patches of the evaluation set.

example patch of Bark example patch of Brick example patch of Tile example patch of Fabric example patch of Food

corresponding descriptor corresponding descriptor corresponding descriptor corresponding descriptor corresponding descriptor

Figure 5.7: Magnitude of the descriptors |r’(w’)| of some wrongly classified exam-
ple patches of the evaluation set.
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learning in the complex numbers domain. As an example we used Gabor filters to
classify texture patterns in 15x15 patches randomly drawn from images of the Vis-
Tex database. The results show that the algorithm can learn typical texture patterns
with very good generalization, even from relatively small patches and filter banks.
Similarly to Gabor filters any other family of 2D filters commonly used to describe
gray scale image information could be adapted and applied to color image analysis
with this algorithm. A filter bank with differences of Gaussians for color edge detec-
tion is a possible example. Investigation of the performance of the system on other
filters can be addressed in future. Furthermore, depending on the task it might be
desirable that two patches in which the same texture occurs on different positions
should not be interpreted as similar. In this case another similarity measure should
be used: || |r(z?) — r(w’)| ||, which is not based on the difference of magnitudes.
This might be of advantage for example in the recognition of objects such as traf-
fic signs, were a corner or an edge might have different meanings dependent on its
position in the image.

Furthermore, the algorithm theoretically allows the optimization with respect to
all variables. Using a dissimilarity measure

a2 (z, w) = || |z % F*2 — w2 (5.9)

in the cost function Ecia Eq. (5.3) and performing an optimization with respect
to the prototypes w, matrices 2 and the local filters F showed already promising
results. Here, the matrix F can be initialized e.g. as the sum of differently param-
eterized Gabor filters. During the training unnecessary scales and orientations are
suppressed, which yields individually suitable class-wise filter banks. The investi-
gation of this extension will be addressed in forthcoming projects.
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5.A Derivatives of CIA LVQ

Here we show the derivatives of the CIA LVQ costfunction Ecia, see Eq. (5.3), for
one presented training example ', with respect to the prototypes w’ and the trans-
formation matrices Q* € RM*" with L e {J, K}. In the following we denote the
real part of a variable v by R(v) and the imaginary part by &(v). We have to take
the derivatives with respect to the real and imaginary part, respectively:

O0EcIA _ 0Ecia ; OEc1A _ dEcia ) ad%L i ad%L (5.10)
owl  oR(wh) T oS(wh) 0"\ OR(wl) T oS (wh) '
QL QF
dEcia zaECILA [ ddg 4 Odg (5.11)
ot addr \ OR(QE) T 03(QF)
L AQ5 (i o K
0dg " (@ w?) + 02 (w, wi))
OEcia —2.4% ' w’
G = adﬂi{ T JG (QK ) Ky (5.13)
Odg  (dg (z',w’) +dg" (z', wk))

The derivatives can be written as:

60Eu(]jILA _ _4fyé l[|rL($i)2 . |,,,L(wL)|2] .TL(wL)* % lzl: QL % GIH (5.14)

0Ecia
oNL

with * denoting the complex conjugate. A more detailed description of the deriva-
tives is achieved by rewriting the distance Eq. (5.2):

d& (@, w") = || " @) + S(r"(2))? = R’ (wh))? = ST (") [ (5.16)
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S(ry (v)) =) R(G,) (— RN HEDIICHE §)‘E(Qﬁw‘))

+2,3(Gl,) (Z SCARN (ARSI ECHE W%ﬂ) - (B18)
! J J

The derivatives with respect to the real and imaginary parts of one element of the

prototypes w’ and matrices QL read:
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Chapter 6

Dimension Reduction Mappings

Any intelligent fool can make things bigger and more
complex . .. It takes a touch of genius - and a lot of courage
to move in the opposite direction.

Albert Einstein

Abstract

In recent years a wealth of dimension reduction techniques for data visualization and
preprocessing has been established. Non-parametric methods require additional effort
for out-of-sample extensions, because they just provide a mapping of a given finite set
of points. In this chapter we propose a general view on non-parametric dimension re-
duction based on the concept of cost functions and properties of the data. Based on this
general principle we transfer non-parametric dimension reduction to explicit mappings
of the data manifold such that direct out-of-sample extensions become possible. Further-
more, this concept offers the possibility to investigate the generalization ability of data
visualization to new data points. We demonstrate the approach based on a simple global
linear mapping as well as prototype-based local linear mappings. In addition, we can
bias the functional form according to given auxiliary information. This leads to explicit
supervised visualization mappings which discriminative properties are comparable to
state-of-the-art approaches.

6.1 Introduction

Due to improved sensor technology, dedicated data formats and rapidly increas-
ing digitalization capabilities the amount of electronic data increases dramat-
ically since decades (Frawley et al. 1991). As a consequence, manual inspection of
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digital data sets often becomes infeasible. Automatic methods which help users to
quickly scan through large amounts of data are desirable. In recent years, many
powerful non-linear dimension reduction techniques have been developed which
provide a visualization of complex data sets. This way, humans can rely on their as-
tonishing cognitive capabilities for visual perception when extracting information
from large data volumes: structural characteristics can be captured almost instantly
by humans independent of the number of displayed data points.

In the past years many powerful dimension reduction techniques have been pro-
posed (Lee and Verleysen 2007, van der Maaten et al. 2009, van der Maaten and
Hinton 2008, Venna et al. 2010). Basically, the task of dimensionality reduction is
to represent data points contained in a high-dimensional data manifold by low-
dimensional counterparts in two or three dimensions, while preserving as much
information as possible. Since it is not clear, a priori, which parts of the data are
relevant to the user, this problem is inherently ill-posed: depending on the spe-
cific data domain and the situation at hand, different aspects can be the focus of
attention. Therefore a variety of different methods has been proposed which try to
preserve different properties of the data and which impose additional regularizing
constraints on the methods: Spectral techniques such as Locally Linear Embedding
(LLE) (Roweis and Saul 2000), Isomap (Tenenbaum et al. 2000), or Laplacian Eigen-
maps (Belkin and Niyogi. 2003) rely on the spectrum of the neighborhood graph of
the data and preserve important properties of this graph. In general a unique al-
gebraic solution of the corresponding mathematical objective can be formalized. To
arrive at unimodal costs, these methods often base on very simple affinity func-
tions such as Gaussians. As a consequence their results can be flawed when it
comes to boundaries, disconnected manifolds, or holes. Using more complex affini-
ties such as geodesic distance or local neighborhood relations, techniques such as
Isomap or Maximum Variance Unfolding (MVU) (Weinberger and Saul 2006) can
partially avoid these problems at the prize of higher computational costs. Many
highly non-linear techniques have been proposed as an alternative which often suf-
fer from the existence of local minima. They do not yield unique solutions, and
they require numerical optimization techniques. In turn, due to the greater com-
plexity, their visualization properties may be superior as demonstrated in (Hinton
and Roweis 2003, van der Maaten and Hinton 2008, Carreira-Perpifian 2010).

All methods mentioned above map a given finite set of data points to low-
dimensions. Additional effort is required to include new points into the mapping
and to arrive at out-of-sample extensions: usually, novel points are mapped to the
projection space by minimizing the underlying cost function of the visualization
method while keeping the projections of the priorly given data points fixed. This
way novel coordinates depend on all given data points, and the effort to map new
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data depends on the size of the training set. Moreover, no explicit mapping function
is available and the generalization ability of the techniques to novel data is not clear.

As an alternative, some approaches derive an explicit function that maps the
given data to low-dimension. This way, an immediate extension to novel data be-
comes possible. Linear techniques such as standard Principal Component Analysis
(PCA) or Fisher Discriminant Analysis (FDA) provide an explicit mapping. Auto-
encoder networks can be seen as a non-linear extension of PCA which directly
aims at the inference of a non-linear mapping function and its approximate inverse.
Nonlinear mapping functions have also been considered by (Bae et al. 2010) where
only few points are mapped using a dimensionality reduction technique and an
interpolation to all data is done by means of a k-NN approach. For LLE, a simi-
lar extension has been proposed based on locally linear functions by (Roweis and
Saul 2000) called Locally Linear Coordination (LLC). There, the function parameters
are optimized directly using the LLE cost function. Similarly, t-distributed SNE (t-
SNE) has been extended to a mapping given by deep encoder networks (van der
Maaten 2009), relying on the t-SNE cost function to optimize the mapping func-
tion parameters. In (Suykens 2008) a kernel mappings with a reference point is
used to arrive at high-quality data visualization mappings. They also experimen-
tally demonstrate the excellent generalization ability and visualization properties
of the technique. Albeit these approaches constitute promising directions to arrive
at explicit dimensionality reduction mappings, many of the techniques have been
developed for a specific setting and dimensionality reduction technique only.

In this chapter we propose a general principle to formalize non-parametric di-
mension reduction based on cost optimization. This general principle allows us to
simultaneously extend non-parametric methods to explicit mapping functions for
which out-of-sample extensions are immediate. In this setting, the functional form
of the mapping is fixed a priori and function parameters are optimized within the
dimension reduction framework instead of the coordinates of single point projec-
tions. We demonstrate the suitability of this approach using two different types of
functions: simple linear projections and locally linear functions. Interestingly, it can
be shown that state of the art dimensionality reduction cost functions as provided
by t-SNE, for example, can even improve simple linear dimensionality reduction
functions as compared to classical PCA. Furthermore, the performance of state-of-
the-art techniques such as presented by (van der Maaten 2009) can be achieved using
more complex locally linear functions. Several benefits arise from an explicit dimen-
sion reduction mapping: out-of-sample extensions are immediate and require only
constant time depending on the chosen form of the mapping. Since an explicit map-
ping function is available, approximate inverse mapping is possible at least locally:
locally linear functions, for example, can be inverted using the pseudo-inverse. This
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makes a deeper investigation of the structure of the projection possible. Depend-
ing on the form of the mapping function, only few parameters need to be deter-
mined and implicit regularization takes place. In consequence, only few data points
are necessary to adequately determine these mapping parameters and generalize to
novel data points. Hence, only a small subset of the full data is necessary for train-
ing, an enormous speed-up for large data sets is possible: Instead of a, usually, qua-
dratic complexity to map the data, due to the computation of the pairwise distances,
the mapping function can be determined in constant time complexity. The full data
set can be displayed in linear time complexity. This opens the way to feasible di-
mension reduction for very large data sets. In this contribution, we experimentally
demonstrate the suitability of the approach and we investigate the generalization
ability in terms of several application. Moreover, we substantiate the experimental
findings with an explicit mathematical formalization of the generalization ability of
dimensionality reduction in the framework of statistical learning theory. Albeit we
are not yet able to provide good explicit generalization bounds, we argue that prin-
cipled learnability can be guaranteed for standard techniques. Another benefit of
an explicit mapping function is the possibility to bias the dimensionality reduction
mapping according to given prior knowledge. The task of dimension reduction is
inherently ill-posed, and which aspects of the data are relevant for the user depends
on the situation at hand. One way to shape the ill-posed task of data visualization
is by incorporating auxiliary information as proposed e.g. by (Kaski et al. 2001).

There exist a few classical dimension reducing visualization tools which take
class labeling into account: Feature selection can be interpreted as a particularly sim-
ple form of discriminative dimensionality reduction, see e.g. (Guyon and Elisseeff
2003) for an overview. Classical LDA as well as partial Least Squares regression
(PLS) offer supervised linear visualization techniques based on the covariances of
the classes; kernel techniques extend these settings to non-linear projections (Ma
et al. 2007, Baudat and Anouar 2000). The principle of adaptive metrics used for
data projection according to the given auxiliary information has been introduced in
(Kaski et al. 2001, Peltonen et al. 2004). The obtained metric can be integrated into
diverse techniques such as Self-organizing Map (SOM), Multidimensional Scaling
(MDS), or a recent information theoretic model for data visualization (Kaski et al.
2001, Peltonen et al. 2004, Venna et al. 2010). An ad hoc metric adaptation is used in
(Geng et al. 2005) to extend Isomap to class labels. Furthermore, in Chapter[7]of this
thesis we discuss the combination of some metric adaptation schemes introduced
in Part [ with several examples of dimension reduction techniques (Bunte, Ham-
mer, Wismiiller and Biehl 2010). Alternative approaches change the cost function of
dimensionality reduction, see (Iwata et al. 2007, Memisevic and Hinton 2005, Song
et al. 2008) for examples. In this Chapter, we will show that auxiliary information in
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the form of given class labels can be easily integrated into the dimension reduction
scheme by biasing the functional form accordingly. As a result, one obtains a dis-
criminative dimensionality reduction technique which is competitive to alternative
state-of-the-art approaches.

We first shortly review several popular non-parametric dimensionality reduction
techniques. We put them into a general framework based on the notion of cost func-
tions which compare characteristics of the data and the projections. This general
framework allows us to simultaneously extend the methods to explicit mappings
which do not only lead to a finite set of projection coordinates but employ to an
explicit projection function. We demonstrate this principle using a linear mapping
and locally linear projections the form of which are induced by standard cluster-
ing techniques. We incorporate these functional forms into the cost function of t-
SNE. Interestingly, the results are superior compared to standard linear techniques
such as PCA and alternative mapping functions as presented, e.g., by (van der
Maaten 2009). Furthermore, we demonstrate that the functional form can be bi-
ased towards auxiliary label information by choosing the functional form on top of
supervised classification. Finally, we argue that, based on the notion of a mapping
function, generalization properties of dimension reduction can be formalized in the
framework of computational learning theory.

6.2 Dimension reduction as cost optimization

In this section we shortly review some popular dimension reduction methods pro-
posed in the literature. We assume high-dimensional data points are given: =’ € IR
where i = 1...n. These points are projected to a low-dimensional embedding space
£ e RM, with M < N, usually M e {2, 3} for visualization. The coordinates of the
points in the projection space are referred to as £ € R fori = 1,...,n. Further-
more, E refers to the matrix of all points {£'}7 ,. Often, visualization techniques
refer to the distances or affinities of data in the high-dimensional input space X and
the projection space &, respectively. The pairwise affinities are denoted as dx (z*, z7)
for the original high-dimensional data points and by dg (&', ¢”) for the correspond-
ing dissimilarities in the embedding space. Usually, d¢ is chosen as Euclidean dis-
tance, while dx is chosen according to the data set at hand, e.g. it is given by the
Euclidean or the geodesic distance in the high-dimensional space. A mathematical
formalization of dimensionality reduction can take place in different ways:

Multidimensional Scaling and Extensions:

MDS (Torgerson 1952) is probably one of the oldest dimension reduction methods.
It aims at the preservation of pairwise relations measured in the least square sense.
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The original MDS measures the pairwise relations of the data in terms of dot prod-
ucts in the original and the embedding space respectively and minimizes the cost
function:

Eups = ) (@) "2/ — (£)7¢7)? . (6.1)
ij
The advantage of this formulation is that an analytical solution is available. In later
approaches, the objective has been changed to the preservation of distances, often
called goodness-of-fit or stress measure:

Fups = = 3 wis(dx (@', 27) — de (€, €))° 6.2)
ij
with Euclidean distances dx and d¢ and a normalizing constant a (Lee and Verleysen
2007). The weights can be chosen for example as w;; = 1. In the well-known Sam-
mon mapping (Sammon 1969) they take the form w;; = 1/dx(x’, x7), this way em-
phasizing the preservation of small distances. There, the constant « is set to the sum
of the distances and the optimization takes place by a gradient descent procedure.

Isomap:

Depending on the actual data, the Euclidean distance might not be appropriate to
describe pairwise relations. Therefore, Isomap (Geng et al. 2005) is based on the
approximation of geodesic distances, which measure the relations along the data
manifold. A neighborhood graph is constructed using k neighborhoods or e-balls
and the shortest path lengths in this graph (computed using Dijkstra’s algorithm,
for example) define the pairwise affinities dy in the data space. Afterwards, the
standard MDS procedure is used, which is mentioned above.

Locally Linear Embedding:

LLE (Roweis and Saul 2000) aims at the preservation of local topologies defined by
the reconstruction of data points ¢ by means of linear combination of its neighbors
j. We denote the property that j is neighbor to i by ¢ — j. As for Isomap, local
neighbors can be defined based on k-NNs or e-balls, respectively. To obtain weights

for reconstruction, the objective >, (sc’ — 2 iy Wi )2 in original space is min-
imized under the constraint )’ jWij = 1, in oder to ensure rotation and translation
invariance of the output. Afterwards, the projections are determined such that lo-
cal linear relationships are preserved as well as possible in a least squared sense:

minimize Y, (&' — Y v iy Wi ¢’)? subject to the constraints of centered coordinates
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3, & = 0 with unit covariance E'E = I. Where I is the M x M identity matrix.
Here, the normalization of the reconstruction weights leads to a unique optimum of
the system. The LLE method is summarized in Algorithm[6.]}

Algorithm 6.1 : Optimization problem for Locally Linear Embedding

Step 1: select neighbors ¢ — j
Step 2: obtain reconstruction weights
, N2
Minimize }, (wl =iy wijzcj) subject to:
rotation and translation invariance: },; w;; = 1
Step 3: determine projections
Minimize ) (§' — Y., ,; wijéj)? subject to:
(a) centered coordinates: » . &' =0

—

(b) unit covariance E'E =1

Laplacian Eigenmaps:

Similar to LLE and Isomap, Laplacian Eigenmaps (Belkin and Niyogi. 2003) are
based on the construction of a local neighborhood graph given the k-NNs or an
e-neighborhood, respectively. The connections are weighted by coefficients w;;, e.g.
using a heat kernel. The projection is obtained by solving a generalized eigenvalue
problem given the corresponding graph Laplacian L = A —D with adjacency matrix
A and the degree matrix D of the graph, picking the eigendirections corresponding
to the smallest eigenvalues unequal to 0. This is equivalent to minimizing the em-
bedding objective

Z w;j - dg (¢ ¢ ==L = (considering Euclidean distance d¢) (6.3)
i—j

under constraints E'D E = Iand 2'D 1 = 0, where D is the degree matrix to
remove scaling and translation factors. This objective is summarized in Algorithm
6.2

Algorithm 6.2 : Optimization problem for Laplacian Eigenmaps

Construct neighborhood graph weighting the edges by w;;
and determine graph Laplacian L = A — D
Minimize 27 L E subject to:

(@ E DE=1I

b) ZE'D1=0
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Maximum Variance Unfolding;:

MVU (Weinberger and Saul 2006) is based on a neighborhood graph with k near-
est neighborhood graphs or e-neighborhoods . Projections ¢’ are determined by
maximizing the variance of the projection. The aim is, that neighboring points "
and z/ preserve their affinities also in the low-dimensional space after projection:
de(£',¢7) = dx(x',27). Considering the inner product matrix K = (£ )Z a refor-
mulation as a convex problem is possible and a solution can be found in terms of a
semidefinite program (SDP) (Vandenberghe and Boyd 1994). The variance is max-
imized by maximizing the trace of K (maximum variance unfolding) under con-

straints as summarized in Algorithm[6.3]

Algorithm 6.3 : Optimization problem for Maximum Variance Unfolding

Maximize max tr(K) with K € RM*M subject to:
>

(a) preserv_ation of distances:

de(€',&)) =Ky + Kj; — 2K;j = dy(z',27) V(i,j) e N
(b) centered embedding data:

K1 =0,wherel=(1,...,1)" and 0 = (0,...,0)"
(¢ K>0

Numerous variants of the original formulation exist, where for example the dis-
tances are only allow to shrink or low-rank expansions of K are used to cope with
the computational complexity of semidefinite programming. Furthermore, if a pre-
servation of neighbored distances is not exactly possible, slack variables can be in-
troduced.

Stochastic Neighbor Embedding:

Stochastic Neighbor Embedding (SNE) (Hinton and Roweis 2003) defines the char-
acteristics of the data in terms of probabilities that ¢ would pick j as neighbor in the
original and embedding space respectively:

7dx(a;i,m-7)2
pils = o (252 (6.4
Jie — xt k)2 '
Zk#ieXP<%{))
—de (€7, ¢7)°
g = O (CE(EE) 65)

s oxp (—de (€', €9)2)
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using Euclidean distances as default. The objective

Dils
Esng = —ij\ilog o
i djli

(6.6)

corresponds to the Kullback-Leibler divergence between the probability densities in
the original and the projection space. The bandwidths o; is either set by hand or is
found by a binary search, such that the entropy of the distribution over neighbors
becomes equal to log k. Here k corresponds to the effective number of local neigh-
bors, which is chosen by hand and in the following referred to as “perplexity”. A
gradient descent procedure is used for optimization, based on the derivative:

0FE P
aZIjE = 22(5 - 5‘7)(pj|i — qj|i T Dijj — Qi\j) . (6.7)
J
This can be interpreted as a sum of forces pulling &° toward &’ or pushing it away
depending on whether j is observed to be a neighbor more or less often than desired.

Algorithm 6.4 : Stochastic Neighbor Embedding (SNE)

1: determine o; (e.g. based on the perplexity) and compute probabilities p;|; (6.4)
2: initialize low dimensional images £
3: while stopping criterion not reached do
4 compute probabilities ¢;; Eq. (6.5)
5
6

update the ¢' according to 5?% Eq. €7)
: end while

T-Distributed Stochastic Neighbor Embedding:

t-SNE (van der Maaten and Hinton 2008) modifies the SNE cost function such that
the long tailed student-t distribution is used in the embedding space instead of
Gaussians. The cost function

Ei_snE = ZZPij log (2”) (6.8)
i g v

uses symmetrized conditional probabilities

Pyl T Pi
ij o (6.9)
AV AR
and  gi; L+ de(,£)/5) o (6.10)

TS+ de(€F € )e)
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with n denoting the number of data points and the student-t distribution parame-
terized with ¢ = —1 by default. Again, optimization is done in terms of a gradient
method.

Algorithm 6.5 : t-distributed SNE (t-SNE)
same as for SNE using the student-t distribution in the embedding space
and replacing the probabilities by Egs. (6.9) and (6.10)

Neighborhood Retrieval Visualizer:

In (Venna et al. 2010) a quality measure for dimension reduction is derived from
an information retrieval point of view is proposed. A new dimension reduction
technique based on the new objective accompanies this proposal: the Neighborhood
Retrieval Visualizer (NeRV). The cost function reads:

Pjli
np

qjli

—(1- C)qu‘i log
ij p

(6.11)

ENerv = —CZPJM log
ij i
with probabilities as defined for SNE (Egs. (6.4) and (6.5)) and a weighting param-
eter ¢ € [0, 1] to control the influence of the competing terms related to the tradi-
tional measures precision and recall. The t-distributed NeRV (t-NeRV) extension is
straightforward considering symmetric pairwise probabilities just as in t-SNE (Egs.
(6.9) and (6.10)) in the symmetrized version of the Kullback-Leibler divergence.

6.2.1 A general view

All methods as summarized above obey one general principle. Assume a finite
sample of points X = (z' € RY |i = 1,...,n) = (z',...,z") is given. These
points should be mapped to a low-dimensional embedding space IR* with M < N,
where data point 2’ is mapped to the projection £ € R by means of a non-
parametric mapping. The projections are referred to as & = (¢ |i = 1,...,n) =
(&',...,€™). The sequence of tuples of data points and their projections is referred
to as XE = ((z',&"),..., (", £")). We denote the set of all finite subsequences of
R by S(IR"); more generally S(A) refers to all finite subsequences of a given set
A. Given a sequence X = (z!,...,z"), its length is denoted by n = |X|.

For all methods, the coefficients & are determined based on the same general
principle, using the same basic ingredients, the characteristics derived from the orig-
inal training set X for every data point, corresponding characteristics of its projec-
tion, and an error measure between these two characteristics. The latter is min-
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imized during projection, possibly taking into account further constraints. More
precisely, dimensionality reduction is characterized by the following ingredients:

e A function chary : S(RY) x RY — S(IR) is fixed which maps a data se-
quence X and a point z in the original space IR to a characteristic. Usually,
|charx (X, x)| = |X].

e A function charg : S(IRM x RY) x (RM x RY) — S(IR) is fixed which maps
a finite subset X= of points and their projections, and a given tuple of a point
and its projection to a corresponding characteristic.

Usually |charg (XE, (z7,£"))| = |XE|.

e An error measure is fixed which measures the difference of two such charac-
teristics: error : S(IR) x S(IR) — R.

e Given a finite sequence X € S(IR"), dimensionality reduction takes place by
determining the projection &' of every x* such that the costs

costs(XE) := Z error(chary (X, %), charg (XE, (z°, £")) (6.12)

zieX

are minimized.

e Possibly, additional constraints are imposed on &' to guarantee uniqueness or
invariance of the result. This can be formalized by a constraint function

constraint : S(RM x RY) - R (6.13)

which is optimized simultaneously to the overall costs (6.12) and which can
implement hard constraints by means of an indicator function or soft con-
straints by means of a real-valued function.

The methods differ in the definition of the data characteristics and in the way the
error of the characteristics is defined. Furthermore, they differ in the (implicit or ex-
plicit) computation of the characteristics and the employed (analytical or numerical)
optimization method. The objective (6.12) and the constraints (6.13) might be con-
tradictory, and the way in which these two objectives are combined can be chosen
differently.

Table[6.1]summarizes the properties of the different optimization methods with
respect to this general principle. We explain the formalization and the exact choice
of the relevant functions in more detail in the following;:
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MDS: the characteristics are the pairwise Euclidean distances in the original and
embedding space respectively:

chary (X, x) = (dx(z', x),... dy(x", x))
and

charg (XE, (z,€)) = (de(£',€),...,de(€",€))

In particular, the characteristic chare depends on the projections of the data only
and not the original coefficients in this case. The cost function is the least squared
error, i.e.

error((ay,...,an), (b1,...,b,)) = Z(ai —b;)*/a;
i=1
for a;, b; € IR, where the weighting corresponds to the Sammon mapping. Note that

only sequences of the same length are compared via this function. No constraints
are imposed, i.e. the constraint function (6.13) is trivial.

Isomap: Isomap differs from MDS only in the characteristic chary which is given

by the geodesic distances (dgeodesic(Z*, ), - . . , dgeodesic (™, T)). Geodesic distances
are usually approximated in the data set by means of the following algorithm: A
neighborhood graph is constructed from X = (z',...,z") and « by means of an

e-neighborhood or a k-NN graph with vertices enumerated by =’ and «. Then, all
shortest paths from z to ¢ are computed within this graph. These distances consti-
tute an approximation of the geodesic distances of the underlying data manifold.

LLE: In LLE the characteristics are the local reconstruction weights of points esti-
mated by their neighborhood, i.e.

2
chary (X, ) = argming,, .. (:c — Z loosas wiwl)

Z’LUZ':].
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where 1,_,,: denotes the characteristic function of the neighbors of = in X, exclud-
ing x itself.

2
charg (XE, (z,§)) = argmin g, s.) ({ - Z B @igi)

This characteristic uses both, the projections &', and the data in original space z’ to
define the neighborhood graph. Since the characteristic charg already includes an
approximation, the error can be picked in a trivial way:

0 if Vs a; = bl
1 otherwise

error((ag, ..., an), (b1,...,by)) = {

Because of this definition, minimization of (6.12) is equivalent to a minimization of
S -3 i laioai w;;€”)? where the reconstruction weights w;; and the neighbor-
hood structure 1,:_,,; are taken from the original data space. Since this formulation
is not well posed, 0 being an obvious global optimum, regularization is used. The
constraints enforce that the projection coefficients are centered at the origin and their
correlation matrix is given by the unit matrix. Since these constraints can be fulfilled
exactly, the characteristic function

0 if Y¢'=0and Y, € (&) =n 1

constraint(XE) = { | othorwise

can be used.

Laplacian Eigenmap: The characteristics of the original data space is based on the
local neighborhood structure and an appropriate weighting of distances given in
this neighborhood, e.g. weighting according to the heat kernel:

chary (X, &) = (1g_g1 - exp(—(z — 2')%/0),..., 1ggn - exp(—(z — z")%/0)) .

Characteristics of the projections are similar, but based on the standard Euclidean
distance

charg (XE, (z,£)) = (Lomor - (6 — €)% .. lomsan - (£ = €")%) .

The cost function is given by the dot product:

error((ay,...,an), (b1,...,by)) = Zaibi
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which is minimized. Since this formulation allows the trivial solution 0, constraints
are imposed. Set di; = Y 1giz; exp(—(x’ — 27)?/0), then an arbitrary scaling
factor and translation of the solution is removed by imposing the constraint function

0 if 3, d;&'(€")" =Tand Y, du€' =0

constraint(XE) ={ 1 otherwise

MVU: Similarly,
chary (X, ) = (Igsgt - (x — )2, 1ggn - (2 — 2™)?)

and
CharS(XE» ((B7£)) = <1m—>ml : (é - 51)27 R P (£ - gn)2)
with error

eI‘I‘OI‘((al,”. 7an)7(b17- .- abn)) - { | otk s bl

1 otherwise

and constraint

0 if Zl ‘EZ =0
constraint(XE) = 72(51 — &)’ +
ij c otherwise

with a constant c. The cost term defines a characteristic function which might not
possess a feasible solution because it is in general not possible to exactly preserve
all local distances. Therefore, the cost function should be “smoothed”. In MVU,
the characteristic functions are taken as constraints of an optimization problem and
slack variables are introduced.

SNE: Similarly,

exp (deQ(:;wif)

—de(@,x*)?
Sk ey €XD (7){2(:; : ) -

chary (X, x) =

,n

where entries corresponding to #* = x are set to 0, and

oxp (~de (€, £)°
St yo 0 (—de(6,6")?)

charg (XE, (x,€)) =

1=1,...,n
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again setting entries for ¢ = £ to 0. The bandwidth parameter o, is determined
such that the effective number of neighbors of = in X as measured via an informa-
tion theoretic framework is equal to a predefined value, the perplexity, which con-
stitutes a meta-parameter of the model. The error is given by the Kullback Leibler
divergence

error((ar,...,an), (b1,...,b,)) = Zai log%

No constraints are imposed.

t-SNE: Similar to SNE, we have

i\2
exp (:d)«;:f ) )

_d k)2
> exp (72(2(:;” ) )

rheX,xk+ax

chary (X, ) = 1/(2(|X v {z}])) -

i=1,...,n

+1/Q2(X v {z}])) - E s

dx (xh,x?)
exp (st

zkeXu{x},xk i ® i=1,...,n
where X U {z} refers to the set of elements without duplicates, and
_ 1+ 5 752 2\—1
chise(XE, (2.€)) - e s

z:m"‘#:a:"eXu{:zz}(1 + (5 £ ) ) i=1,...n

.....

setting entries corresponding to = @’ to 0. Again, the Kullback Leibler divergence
is used and no constraints are imposed.

NeRV: NeRV deviates from SNE only in the choice of the cost function which is
a; bz
error((ay,...,an), (b1,...,by)) = CZZ-: a;log b +(1— C)ZZ: b; log -
with appropriate weighting c.
t-NeRV: Similarly, t-NeRV uses the same cost function as NeRV in the t-SNE set-
ting.
These formalizations are summarized in Tab. Note that some of the tech-

niques allow for an explicit algebraic solution or lead to a unique optimum such as
LLE, MVU, and Laplacian eigenmaps, while others require numeric optimization
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such as SNE and its variants. For the latter cases, unique solutions usually do not
exist and multiple local optima may be found depending on the initialization of the
parameters. Visualizations obtained this way can differ significantly from one run
to the next depending on the initialization strategy. However, as argued by (van der
Maaten and Hinton 2008), this fact is not necessarily a drawback of the technique.
Usually, high-dimensional data sets cannot be embedded into low-dimensions with-
out loss of information. Often, there exists more than one reasonable embedding
of data which is inherently ambiguous. Different local optima of the projection
techniques can correspond to different low-dimensional views of the data with the
same quality (as measured e.g. using evaluation measures as proposed by (Lee and
Verleysen 2009, Venna et al. 2010)). This argument is in line with our experimental
observation, that dimension reduction based on t-SNE leads to qualitatively differ-
ent behavior in different runs. However, the quality of the different results usually
does not differ much from each other when using the quality measure proposed by
(Lee and Verleysen 2009), for instance.

6.2.2 Out-of-sample extensions

One benefit of our general formulation is that the optimization steps are separated
from the principled mathematical objective of the actual technique at hand. As an
immediate consequence, a principled framework for out-of-sample extension can be
formalized simultaneously for all techniques. Here, out-of-sample extension refers
to the question of how to extend the projection to a novel point = € R" if a set of
points X is already mapped to projections =. Assume that a dimension reduction
for a given data set is given, characterized by the sequence of points and their pro-
jections XZE. Assume that a novel data point « is considered. Then, a reasonable
projection £ of this point can be obtained by means of the mapping:  — £ such that
the costs
error(chary (X, ), charg (XE, (x, £))

are minimized. This term corresponds to the contribution of « and its projection &
to the overall costs (6.12) assuming that the projections = of X are fixed. Simultane-
ously, the constraints

constraint(XE e (x, £))

need to be optimized where XZ o (x,£) denotes the concatenation of the known
coordinates and the novel projection (x, §), where again, the coefficients Z are kept
fixed and only the novel projection coordinates £ are treated as free parameters. For
simple constraints such as given for MDS, Isomap, and SNE and its variants, this
immediately yields a mathematical formalization of out-of-sample extensions. Nu-
merical optimization such as gradient techniques can be used to obtain solutions.
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For LLE and Laplacian Eigenmaps the constraints are given by an indicator func-
tion, the same holds for the constraint )¢ = 0 for MVU. These constraints can no
longer exactly be fulfilled and should be weakened to soft constraints. This has the
consequence that, in general, explicit algebraic solutions of the optimization prob-
lem are no longer available.

Typically, the complexity of this approach depends on the number n of the given
data points. Hence, this procedure can be quite time consuming depending on the
given data set. Moreover, this mapping leads to an implicit functional prescription
in terms of an optimum of a complicated function, which may display local optima.

In the following, we will substitute the implicit form by an explicit functional
prescription the form of which is fixed a priori. We derive techniques to determine
function parameters by means of the given optimization objectives. The fact that
non-parametric dimensionality reduction is formalized via a general framework al-
lows us to simultaneously extend all these methods to explicit mapping functions
in a principled way.

6.3 Dimension reduction mappings

Due to their dependency on pairwise dissimilarities, the computational effort of
most dimensionality reduction techniques scales quadratically with respect to the
number of data points. This makes them infeasible for large data sets. Even linear
techniques, such as presented in (Bunte, Hammer, Villmann, Biehl and Wismidiller
2011), can reach their limits for very large data sets so that sub-linear or even con-
stant time techniques are required. Furthermore, it might be inadequate to display
all data points given a large data set due to the limited resolution on screens or
prints. Therefore, in the literature, often a random subsample of the full data set
is picked as representative of the data, see e.g. the overviews (van der Maaten
et al. 2009, Venna et al. 2010). If additional points are added on demand, out-of-
sample extension as specified above is necessary.

One crucial property of this procedure consists in the requirement that the map-
ping which is determined from a small subsample is representative for a mapping
of the full data set. Hence, the generalization ability of dimensionality reduction to
novel data points must be guaranteed. To our knowledge, the generalization ability
of non-parametric dimension reduction has hardly been verified experimentally in
the literature (one exception being presented e.g. by (Suykens 2008)), nor do exact
mathematical treatments of the generalization ability exist.

Here, we take a different point of view and address the problem of dimension-
ality reduction by inferring an explicit mapping function. This has several benefits:
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a mapping function allows immediate extension to novel data points by simply ap-
plying the mapping. Hence, large data sets can be dealt with since the mapping
function can be inferred from a small subset only in constant time (assuming con-
stant size of the subset). Mapping all data points requires linear time only. The
generalization ability of the mapping function can be addressed explicitly in ex-
periments. We will observe an excellent generalization ability in several examples.
Furthermore, the generalization ability can be treated in an exact mathematical way
by referring to the mapping function. We will argue that for typical mapping func-
tions guarantees exist in the framework of statistical learning theory. An additional
benefit consists in the fact that the complexity of the mapping function and its func-
tional form can be chosen priorly, such that auxiliary information, e.g. in terms of
class labels, can be integrated into the system.

6.3.1 Previous work

A few dimensionality reduction techniques provide an explicit mapping of the data:
Linear methods such as PCA or neighborhood preserving projection optimize the
information loss of the projection (Bishop 2006, He et al. 2005). Extensions to non-
linear functions are given by autoencoder networks, which provide a function given
by a multilayer feedforward network in such a way that the reconstruction error
is minimized when projecting back with another feedforward network (van der
Maaten et al. 2009). Typically, training is done by standard back propagation, di-
rectly minimizing the reconstruction error. Manifold charting connects local linear
embeddings obtained by local PCA, for example, by minimizing the error on the
overlaps (Brand 2002, Teh and Roweis 2003). This can be formulated in terms of
a generalized eigenvalue problem. Topographic maps such as the self-organizing
map or generative topographic mapping characterize data in terms of prototypes
which are visualized in low-dimensions (Bishop and Williams 1998, Kohonen et al.
2001). Due to the clustering, new data points can directly be visualized by mapping
them to the closest prototype or its visualization, respectively.

Some non-parametric dimension reduction methods, as introduced above, have
been extended to global dimension reduction mappings. For example, LLC (Teh
and Roweis 2003) extends LLE by assuming that local linear projections are avail-
able, such as local PCAs, and combining these using affine transformations. The
resulting points are inserted in the LLE cost function and additional parameters are
optimized accordingly. Kernel maps, based on the ideas of kernel eigenmap meth-
ods, provide direct out-of-sample extensions with excellent generalization ability
(Suykens 2008). Parametric t-SNE (van der Maaten 2009) extends t-SNE towards
an embedding given by a multilayer neural network. The network parameters are
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determined using back propagation, where, instead of the mean squared error, the t-
SNE cost function is taken as objective. These techniques, however, are often specif-
ically tailored to the functional form of the mapping or the specific properties of
the technique. In contrast, we propose a general principle to extend non-parametric
dimension reduction to explicit mappings.

6.3.2 A general principle

As explained above, a dimension reduction technique determines an implicit func-
tion of the full data space to the projection space f : R — IR™. A data point
is projected to low-dimensional counterparts which minimizes the respective cost
function and constraints. Depending on the method, f might have a complex form
and its computation might be time consuming. This computational complexity can
be avoided by defining an explicit dimension reduction mapping function:

fw RN > RM & — & = fuy (o) (6.14)

of fixed form parameterized by W. The general formalization of dimension reduc-

tion as cost optimization allows us to extend non-parametric embedding to an ex-
plicit mapping function fiy as follows: We fix a parameterized function fy : RY -
IR . Instead of the projection coordinates &, we consider the images of the mapping
£ = fw(x)and optimize the parameters W such that the costs

costs(XE) = Z error(chary (X, '), charg (XZ, (z', € ))) (6.15)
xieX

become minimal, under the constraints

constraints(Xé) (6.16)

where XZ refers to the sequence ((z, El — fw(@Y),.... ("€ = fw(z")).

This principle leads to a well defined mathematical objective for the mapping
parameters W for every dimension reduction method as summarized in Tab. [6.1]
For out-of-sample extensions, however, hard constraints such as imposed for LLE,
MVU, and Laplacian eigenmaps can no longer exactly be fulfilled and should be
transferred to soft constraints. This has the consequence that the optimization prob-
lem differs from the on in the original method: A closed form solution as given for,
e.g. spectral methods might no longer be available for a general functional form fy
and soft constraints. The functional form fy need to be specified a priori. It can
be chosen as a global linear function, a combination of locally linear projections, a
feedforward neural network, or any parameterized, possibly non-linear, function. If
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gradient techniques are used for the optimization of the parameters W, fy  has to
be differentiable with respect to W. The functional form of fy, defines the flexibil-
ity of the resulting dimensionality reduction mapping. Naturally, restricted choices
such as linear forms lead to less flexibility than universal approximators such as
feedforward networks or general kernel maps.

Note that this provides a general framework which extends dimensionality re-
duction techniques in order to obtain explicit mapping functions. The ingredients
are formally defined for all methods specified in Table[6.T] This gives a mathematical
objective for all functional forms of fy and all these methods, provided hard con-
straints of LLE and similar are softened in such a way that feasible solutions result.
The objectives can directly be optimized using universal optimization techniques
such as gradient methods or local search techniques. Explicit algebraic solutions as
given for the original spectral techniques are no longer available, however. Further-
more, the numeric optimization task can be difficult in practice.

Since every possible dimension reduction techniques and every choice of the
form fi leads to a different method, an extensive evaluation of all possible choices
is beyond the scope of this thesis. In the next section we consider example algo-
rithms for two specific mapping functions: a global linear one and a non-linear
mapping based on local linear projections in the t-SNE formalism. For the latter
setting, we first demonstrate the feasibility of the results in the unsupervised setting
for local linear maps in comparison to feedforward networks used for dimension
reduction. Then, we demonstrate the possibility to integrate supervised label infor-
mation into the technique by means of a bias of the functional form of fyy.

6.4 Linear t-SNE mapping

In this section we derive the formulation based on a linear hypothesis for the map-
ping, optimized according to the t-SNE cost function. In this case the mapping

fwiat =€ = A2 6.17)

is expressed in terms of a rectangular matrix A which defines a linear transformation
from RY — IRM. This matrix can be optimized by following a stochastic gradient
descent procedure using the gradient of the t-SNE cost function (Eq. (6.8)):

3Et SNE _ZZ O0E;_sNE ] aq'ij . 3d£(g7gj)2
i ade(€,€)? o4

-1

s de(€.€)\  ade(€.€)
;pr qﬂ~<1+ ) ey
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Using Euclidean distance dg (EZ , EJ) = ||Az? — Az’]| it follows:
5d€(g,§j)2 _ i (o i
24 =2(Azx’ — Az’ ) (z' — x’),

and hence (see Appendix[6.A.Tlfor details)

0F;_sng s+1 (Pij — qji) ; N ,
= - — . (Ax" — Az’ gl . 6.18
0A < ;;14_%”141:1_141;3”2 ( T 33)(113 JJ) ( )

An example result of this algorithm on a three dimensional benchmark data set

is compared to simple PCA. The data contains three Gaussians arranged on top
of each other (see upper left panel of Figure [6.I). Because of the variance in the
z-direction PCA projects the modes onto each other loosing the cluster information
(see lower left panel in Figure[6.I). The linear mapping obtained by the optimization
of the t-SNE cost function (referred to as DiReduct mapping) on the other hand
shows a much clearer separation of the original clusters (see upper right panel of
Figure [6.I). This is due to the preservation of local structures formulated in the
t-SNE objective rather than the preservation of global variances as used in PCA.

A quantitative evaluation of the two mappings is also included in the lower right
panel of Figure [6.I] based on the quality measure proposed by (Lee and Verleysen
2008, Lee and Verleysen 2009). Basically, it relies on k-intrusions and k-extrusions,
which means it compares k-ary neighborhoods given in the original high-dimen-
sional space with those occurring in the low-dimensional space. Intrusion refers to
samples intruding a neighborhood in the embedding space, while extrusion counts
the number of samples which are missing in the projected k-ary neighborhoods.
The overall quality measure ) measures the percentage of data which is neither
k-intrusive nor k-extrusive. In the optimal case all neighborhoods are exactly pre-
served which results in a value of = 1. B measures the percentage of k-intrusions
minus the percentage of k-extrusions in the projection and therefore shows the ten-
dency of the mapping method: techniques with negative values for B are char-
acterized by extrusive behavior, while those with positive values tend to be more
intrusive. The procedure is summarized in Algorithm[6.6t

Obviously, DiReduct shows a superior quality, in particular for small neighbor-
hood ranges, since it preserves local structures of the data to a larger extent. Further,
unlike PCA which displays a trend towards highly intrusive behavior, it is rather
neutral in the mapping character, being mildly extrusive for medium values of k.
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Figure 6.1: Simulation results on a three class benchmark data set using PCA and a
global linear map optimizing the t-SNE cost function, respectively. The latter leads
to a better separation due to its local nature, which can be formally evaluated using
the measure of intrusion and extrusion on the resulting mapping.

Algorithm 6.6 : Intrusion / Extrusion measure for dimension reduction

1: compute the co-ranking matrix Q = [| {(¢,7) : Ri; = kand R;j = I} |li<k,i<n—1
with R;; and R;; denoting the rank of sample @’ with respect to #/ and the rank
of ¢&" with respect to £’ in the high- and low-dimensional space, respectively

2: use blocks of the co-ranking matrix to identify k-intrusions and k-extrusions

3: obtain the overall quality ) based on the weighted averages that take into ac-
count all k-intrusions and k-extrusions

4: compute B measuring the percentage of k-intrusions minus the percentage of
k-extrusions indicating the overall behavior of the dimension reduction:
negative values imply extrusive and positive values indicate intrusive behavior
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6.5 Local Linear t-SNE mappings

In this section we consider non-linear mapping functions obtained by the principles
outlined above. Again, we employ the t-SNE cost function. The functional form
fw is chosen in two different ways: First, we consider fi given by a multilayer
feedforward network as proposed by (van der Maaten 2009). The update equations
for a feedforward network can be derived from the t-SNE cost function and are
similar to standard back-propagation, see (van der Maaten 2009) for details.

Second, we consider a locally linear projection which is based on local mappings
obtained by prototype-based techniques such as Neural Gas (NG) in combination
with local PCA or mixtures of probabilistic PCA (Moller and Hoffmann 2004). The
latter techniques provide a set of prototypes w* € IR", dividing the data space into
k receptive fields, and corresponding local projections Q% € R™*" with m < N.
We assume that locally linear projections of the data points are derived from one of
these techniques:

x' - ph(xh) = QF (' — w") (6.19)

with local matrices QO and prototypes w*. We assume furthermore the existence of
responsibilities r;;, of the local mapping p* for data point ‘, where >, 7 = 1. In
the following, we choose simple responsibilities based on the receptive fields:

1 ifdy(zf,w") < dy(x!, w?) Yk # j
m—{ if dy(2', w?) < dx (@, w’) Vk # J (6.20)

0 otherwise

More generally, a point « is associated with the responsibilities 74 () in the same
way. A global non-linear mapping function combines these linear projections:

fw iz — €= (A" pH(z) +0F) | (6.21)
k

using local linear projections A¥ € RM*™ with M < m and local offsets oF € RY
to align the local pieces. The number of parameters I that have to be determined,
depends on the number of local projections k and their dimension M. Usually, it is
much smaller than the number of parameters when projecting all points &’ directly.
Hence, it is sufficient to consider a small part of the given training data only, in
order to obtained a valid dimension reduction. We determine the parameters by a
stochastic gradient descent based on the derivative of the t-SNE cost function (see
also Appendix|[6.A.2):

6E2,iNE _S +1 Z (pij —i]iji)Aj . (gz B Ej)(h‘k _ Tjk) (6.22)
oo S TG 1+ Lde(€,6)?
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and

OF; sxg s+ 1 (pij — ji)
k - ~ ~j
o4 © T+ e

. (fi - g)(mpk(wi) —rppp"(a’))  (6.23)

assuming Euclidean distance in the projection space, as before.

As an example, we show the results obtained on the UCI image segmentation
data set. It consists of 7 classes and 2310 instances of 3x3 regions randomly drawn
from 7 hand segmented outdoor images. Three of the 19 features were not taken into
account, because they show no variance. We scaled the features by dividing with
the maximal feature value in the data followed by PCA reducing the dimension
to m = 10. For the locally linear projection, we run the NG algorithm (Martinetz
and Schulten 1991, Cottrell et al. 2006) with 14 prototypes to get a division of the
data space into receptive fields. PCA was applied to every receptive field to define
local transformations QF. Together with the respective prototypes w* this offers the
corresponding data projections p*(z?) (see Eq. (6.19)). The transformations A* e
IR**'% were set as rectangular matrices to perform the dimension reduction from
10 to 2 dimensions. The offsets o* are vectors in IR”>. The mapping parameters
were initialized with small random values and a stochastic gradient descent was
performed with t;,,x = 300 epochs and learning rate

(551

n() = exp | ——
max

log Tf:::)t
m(t) = 75 cexp [ - ————4— (6.25)

tmax

annealed from r5tart = rstart — (.3 to 7¢1d = 7574 = (.01. The perplexity of t-SNE
was set to 50. For the neural network embedding, we use parametric t-SNE with de-
fault parameters as provided in the implementation given by (van der Maaten 2009).
An optimum network architecture was picked varying the number of neurons from
50 to 2000 per hidden layer. The architecture is given by a [100 100 500 2]-layer
neural network. The perplexity was optimized on the data and picked as 25.

The results for a locally linear t-SNE mapping and parametric t-SNE are shown
in Figure In both cases, we used a subset of roughly ten percent for training, and
we report the results of the mapping on training set and test set. Since the data set is
labeled, an evaluation of the projection in terms of the nearest neighbor classification
error is possible. The 5 nearest neighbor error for the whole preprocessed data after
PCA to 10 dimensions is 0.054. After further dimension reduction this error increase
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Figure 6.2: Projection of the UCI image segmentation data set using parametric t-
SNE and DiReduct combining unsupervised clustering and the learning of a map-
ping. The result of the subsample used for training (left panels) as well as the full
data set (right panels) are depicted. The intrusion/extrusion quality on the whole
data set for both methods is shown in the bottom row.
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due to the loss of information. For a locally linear mapping the 5-nearest neighbor
error is 0.21 for the training set and 0.16 for the full data set, the corresponding
projections are shown in the upper panel. The panels in the middle show the cor-
responding mappings achieved by parametric t-SNE (5 nearest neighbor error: 0.5
in training and 0.32 for the whole set, respectively). The bottom panel contains the
evaluation of the mappings using the quality measure depicted in Algorithm[6.6]as
proposed by (Lee and Verleysen 2008, Lee and Verleysen 2009). Interestingly, both
functional forms show a good generalization ability in the sense that the error of the
full data set resembles the error on the test set. However, the results of locally linear
mappings are superior to a feedforward mapping in both cases.

6.6 Supervised dimensionality reduction mapping

Mapping high-dimensional data to low-dimensions is connected to an information
loss and, depending on the dimension reduction technique, different data visualiza-
tions are derived. Since many methods such as t-SNE do not yield a unique solution,
it can even happen that a data set is visualized in different ways with a single visu-
alization technique in different runs. It can be argued (see e.g. (van der Maaten and
Hinton 2008)) that this effect is desirable since it mirrors different possible views
of the given data, reflecting the ill-posedness of the problem. Auxiliary informa-
tion in the form of class labels can be useful to shape the problem in such settings
and to resolve (parts of) the inherent ambiguities. Aspects of the data should be
included into the visualization which are of particular relevance for the given class
labels, while aspects can be neglected if they are not so important due to the given
labeling. Thus, additional information, such as class membership information, can
improve the results of dimension reduction by reducing possible “noise” in the data
and keeping the essential information to discriminate the classes.

This observation has led to the development of a variety of visualization tech-
niques which take given labels into account. These methods still map the original
data to low-dimensions, but they do so using the additional information. Examples
for such methods include LDA and variations, supervised NeRV (sNeRV), super-
vised Isomap, Multiple Relational Embedding (MRE), etc. (Venna et al. 2010), for
example, give a recent overview and compare various methods for supervised data
visualization. Here, we essentially repeat the experiments as proposed in (Venna
et al. 2010) to demonstrate the suitability of our general method to incorporate aux-
iliary information into the data visualization.

In this section we show some examples of the proposed method based on the t-
SNE cost function, employing supervised local linear projections p* (z*) (Eq. (€.19)).
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Here, the parameters Q% and w* are acquired by a supervised, localized prototype
based classifier, LiRaM LVQ (Bunte, Hammer, Wismdiiller and Biehl 2010, Schneider
et al. 2009a) (see Algorithm[Z.3land Algorithm[3.Tlon pages[16land 25). We compare
the results to alternative state of the art techniques on the three data sets mimicking
the experiments by (Venna et al. 2010):

o The Letter recognition data set (referred to as Letter in the following) from the
UCI Machine Learning Repository (Asuncion et al. 1998). It is a 16-dimen-
sional data set of 4 x 4 images of the 26 capital letters of the alphabet. These
26 classes base on 20 different distorted fonts. In total, 20000 data points are
given.

e The Phoneme data set taken from LVQ-PAK (Kohonen et al. 1996) consists of 20-
dimensional feature vectors representing phoneme samples stemming from 13
different classes.

o The Landsat satellite data set is contained in the UCI Machine Learning Repos-
itory. Each of the 6435 36-dimensional vectors corresponds to a 3 x 3 satellite
image measured in four spectral bands. The six classes indicate the terrain
type in the image: red soil, cotton crop, grey soil, damp grey soil, soil with
vegetation stubble, and very damp grey soil.

For these data sets, we consider a projection to two dimensions by means of a locally
linear function, as before, characterized by the functional form Eq. (6.21). Unlike the
previous setting, this form is biased towards the given class information, because
the local projections p”* are determined by means of a supervised prototype-based
projection method: We used LiRaM LVQ with the rank of the localized matrices A*
limited to 10 (for Letter and Phoneme) and 30 (for Landsat), respectively. Based on
this setting, the offsets o* are initialized by means of the prototypes w* centering all
projections, and the projections QF are given directly by the canonical representation
following Eq. (3.2) of the matrices A* obtained by LiRaM LVQ to get good class sep-
aration. Correspondingly, the parameter matrices A* map from 10 or 30 dimensions
to two dimensions in this case. The supervised training of the initial functional form
of the mapping function, Eq. (6.2I), by means of LiRaM LVQ as well as the (unsu-
pervised) training of the free parameters of the mapping function takes place using
only a small subset of the data (7%-18%) while the evaluation of the visualization
takes into account the full data set.

The goal of supervised dimension reduction is the preservation of classification
performance, and, is hence, quite different to classical unsupervised dimension re-
duction. In consequence, the quality assessment of the final embedding should be
done differently. Here, following the approach of (Venna et al. 2010), we measure
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the 5-nearest neighbor classification error (SNN error) of the resulting visualizations
achieved in a 10-fold cross validation scheme. We compare the result obtained by
locally linear projection based on the t-SNE cost function and a functional form bi-
ased by a discriminative prototype based classifier (referred to as DiReduct Map) as
specified above to several state-of-the-art supervised non-linear embedding meth-
ods taken from (Venna et al. 2010):

e sNeRV (Venna et al. 2010) which uses input distances dx (z?, z?) induced by
the Fisher information from a non-parametric supervised classifier.

¢ MRE (Memisevic and Hinton 2005) which is an extension of SNE accommo-
dating additional characteristics of the data space or subspaces provided as
similarity relations priorly known to the user.

e Colored MVU (cMVU) (Song et al. 2008) is an extension of the unsupervised
MVU. Itis also called maximum unfolding via Hilbert-Schmidt independence
criterion (MUHSIC), because it maximizes the dependency between the em-
bedding coordinates and the labels.

o supervised Isomap (S-Isomap) (Geng et al. 2005) is an extension of unsuper-
vised Isomap extending distances to incorporate label information in an ad
hoc manner.

e Parametric Embedding (PE) (Iwata et al. 2007) aims at the preservation of the
topology of the original data by minimizing a sum of Kullback-Leibler di-
vergences between a Gaussian mixture model in the original and embedding
space.

e Neighborhood Component Analysis (NCA) (Goldberger et al. 2004) adapts a
metric by finding a linear transformation of the original data such that the
average leave-one-out k-nearest neighbor classification performance is maxi-
mized in the transformed space (see Section [3.4.2 for details).

Note that these methods constitute representative supervised visualization tech-
niques which enrich dimensionality reduction by incorporating given label infor-
mation in various forms.

The error rates of the nearest neighbor classification (using squared Euclidean
distance) on the whole original high-dimensional data set and after dimension re-
duction with the different methods are shown in Figure In contrast to our
method, the other techniques were evaluated using only a small subset of the data
sets (only 1500 sampled points), because they are based on the embedding of single
points. For our approach, we train on a subsample of 7% only, but also report the
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Figure 6.3: 5-nearest neighbor errors of supervised visualization on three data sets.

results of the full data set obtained by the explicit mapping. Note that the classifica-
tion error obtained by an explicit mapping biased according to auxiliary information
is smaller than the alternatives for all three data sets. It is remarkable, that the error
in the reduced space is also comparable to the error on the high-dimensional data
for most data sets. For the Phoneme data set the supervised dimension reduction
even leads to a better separation of the classes than in the original space. Hence the
proposed method displays excellent generalization, this way offering an efficient
technique to deal with large data sets by inferring a mapping on a small subset only.
Example visualizations of the proposed method are displayed in Figure A clear
class structure is visible especially for the data sets Letter and Phoneme. Interest-
ingly, the Letter clusters arrange in a quite intuitive way: “O”, “Q”, “G” and “C”
stay close together, so do “M”, “N” and “H”. The qualitative characteristic of the
projections is the same for the training data and the full data sets, displaying the
excellent generalization ability of the proposed method.

6.7 Generalization ability and complexity

The introduction of a general view on dimension reduction as cost optimization
extends the existing techniques to large data sets by subsampling. A mapping func-
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Figure 6.4: Examples of supervised visualizations of the data sets in two dimensions.
The result of the subsample used for training as well as the full data set are depicted.
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tion fy based on a small data subset is obtained which extends the embedding to
arbitrary points  coming from the same distribution as the training samples. In
this context it is of particular interest if the procedure can be substantiated by math-
ematical guarantees concerning its generalization ability. We are interested in the
question if a mapping achieves good quality on arbitrary data assuming it showed
satisfactory embeddings on a finite subset, which has been used to determine the
mapping parameters.

A formal evaluation measure of dimensionality reduction has been proposed
by (Lee and Verleysen 2009, Venna et al. 2010), based on the measurement of local
neighborhoods and their preservation while projecting the data. Since these mea-
sures rely on a finite number of neighbors, they are not directly suited as evaluation
measures for arbitrary data distributions in IRY. Furthermore, restrictions on the
applicability of these quality measures to evaluate clusterings, have been published
recently by (Mokbel et al. 2010).

6.7.1 A possible formalization

As pointed out by (Lee and Verleysen 2009) one alternative objective of dimension
reduction is to preserve the available information as much as possible — this ob-
jective is usually hardly used to evaluate non-parametric dimensionality reduction
because it cannot be evaluated due to the lack of an explicit mapping. Given an
explicit mapping, however, it can act as a valid evaluation measure: the error of a
dimensionality reduction mapping f is defined as

E(P) = an — (@) P(w) da (6.26)

where P defines the probability measure according to which the data « are dis-
tributed in X and f~! denotes an approximate inverse mapping of f; an exact in-
verse might not exist in general, but local inversion is usually possible apart from
sets of measure 0. In practice the full data manifold is not available such that this
objective can neither be evaluated nor optimized given a finite data set. Rather, the
empirical error

Bu(e) i= % Yt = 7 (@) 627)

can be computed based on given data samples z'. A dimension reduction mapping
shows good generalization ability iff the empirical error En(z)is representative for
the true error E(P). If the form of f is fixed prior to training, we can specify a func-
tion class F with f € F independently of the given training set. Assuming repre-
sentative vectors x* are chosen independently and identically distributed according
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to P the question is whether the empirical error allows to limit the real error E(P)
we are interested in. As usual, bounds should hold simultaneously for all possible
functions in F to circumvent the problem that the function f is chosen according to
the given training data.

This setting can be captured in the classical framework of computational learn-
ing theory, as specified e.g. by (Bartlett and Mendelson 2003). We can adapt Theo-
rem 8 of (Bartlett and Mendelson 2003) to our setting: We assume that the norm of
the input data is limited to the unit ball. Possibly, prior normalization is necessary,
which would be mirrored by corresponding constants in the bounds. We consider
the loss function

L:XxX—[0,1] , (z,27)—|z'—2|* . (6.28)

Then, as reported by (Bartlett and Mendelson 2003) (Theorem 8), assuming i.i.d.
data according to P, for any confidence ¢ € (0, 1) and every f € F the relation

B(P) < Bu(e) + Ra(Lr) + S22 629
holds with probability at least 1 — § where
Lr:={x— L (f(@),2)| feF} (6.30)

and R, refers to the so-called Rademacher complexity of the function class. The
Rademacher complexity constitutes a quantity which, similar to the Vapnik Cher-
vonenkis dimension, estimates the capacity of a given function class, see (Bartlett
and Mendelson 2003). The Rademacher complexity of many function classes (such
as piecewise constant, piecewise linear functions with a fixed number of pieces, or
polynomials of fixed degree) can be limited by a term which scales as n~ /2. See
(Bartlett and Mendelson 2003) for structural results and explicit bounds for e.g. lin-
ear functions, and e.g. (Schneider et al. 2009a) for explicit bounds on piecewise con-
stant functions as induced by prototype based clustering. This result implies that the
generalization ability of dimension reduction mappings as considered above can be
guaranteed in principle since the Gaussian complexity of the class £ can be limited
in our settings. It remains a subject of future research to find explicit good bounds.

6.7.2 Computational complexity

Assume a set X of points is given. Most dimensionality reduction techniques are
computationally quite demanding due to the form if the overall costs Eq. (6.12):
since, usually, the characteristics map sequences of points to sequences of real values
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of the same length, the computation of Eq. (6.12) is at least O(]X|?). This is infeasible
for large X. Out-of-sample extensions by means of an implicit mapping depend
on a subset Xy, < X only. If the principle as derived in this paper is used, the
corresponding complexity is given by O(|X|? + |Xo|-|X]), since only the subset X,
is mapped using the original method, afterwards, all remaining points are mapped
by separately optimizing the costs of one « € X regarding their relation to X, the
latter being O(|X,|) for every «. Thus, this approach substantially reduces the effort
depending on the size of X, but it does not easily allow a way to control the form
of the mapping, or to integrate prior label information. By choosing an explicit
functional form, the complexity is further reduced to O((|Xo| - [W])? + |[W] - |X]),
assuming an effort O(|W|) to evaluate fy. Since, usually, |X| » [Xo| » |W], this
constitutes a further considerable reduction of the time required to map all points.

6.8 Conclusion

In this contribution we reformulated dimension reduction as an optimization prob-
lem based on structural characteristics. As a consequence many popular nonpara-
metric dimension reduction techniques can simultaneously be extended to learn an
explicit mapping function. The optimization of a parametrized mapping function
for dimension reduction is beneficial in several ways: large data sets can be dealt
with because the mapping function can be learned on a small random subset of the
data. Furthermore this framework allows us to consider the generalization ability
of dimension reduction since an explicit cost function is available in terms of the re-
construction error. Interestingly, bounds as derived in the context of computational
learning theory can be transferred to this setting.

We showed the suitability of the approach based on the integration of global
linear and locally linear projections into the t-SNE dimension reduction method on
different data sets. Furthermore we show the integration of auxiliary (e.g. class) in-
formation into the framework. The proposed general framework is very flexible and
can be combined with every possible form of the mapping function. The investiga-
tion of alternative dimension reduction mappings based on other cost functions and
other functional forms of the mapping, as well as the derivation of explicit bounds
on its generalization ability will be the subject of future work. At present, the set-
tings have been restricted to Euclidean data only due to the form of the mapping
fw. Naturally, more general forms could be considered which can take more com-
plex, non-Euclidean data as inputs, such as mappings which are based on general
dissimilarity characterization. Since it is not possible to embed such data in any
Euclidean vector space, possibly qualitatively different results may occur.
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6.A Derivatives for dimension reduction mappings

6.A.1 Derivatives of the linear t-SNE mapping

Here we show the derivatives of the t-SNE cost function Eq. (6.8) assuming a linear
mapping function fy of the high-dimensional data points x, see Eq. (6.17). We use
the following abbreviations

g = (L+de(€ €))% (%)= g
j Zk¢z(1+d£(£k7g)/) En Zk#l(1+%)7 2 Dt 98

(6.31)

in the context of the probabilities of neighborhoods in the low-dimensional space.
The rectangular matrix A defines the linear mapping from IRY — R*. This matrix
may be optimized using a stochastic gradient descent procedure using following
gradient:
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With Euclidean distance d;; = de¢ (g” , {A]) = ||Az® — Az7||? follows:

odi; _ i YO J
74 =2(Ax' — Az’)(x' — ') (6.32)
OBi_sng o +1 (pij — i) ; N (ot ol
= , — (Ax' — Az ) (' — /) . 6.33
OA c ;;1+%\|Awl—flaﬂ||2( T ) (x' — ) ( )

6.A.2 Derivatives of local linear t-SNE mappings

The derivatives of the t-SNE cost function using a local linear mapping function
following Eq. (6.21) based on the linear projections Eq. (6.19) can be achieved in
analogy to above:

O0E;_sNE :Z 0E_sng 0% . 5d5(g7§])2
do* i 0qij 6dg(g,g)2 oot
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Chapter 7

Adaptive Local Dissimilarity Measures for
Discriminative Dimension Reduction and
Visualization

You learn more quickly under the guidance of experienced
teachers. You waste a lot of time going down blind alleys if
you have no one to lead you.

W. Somerset Maugham (1874 - 1965)

Abstract

Since embedding in lower dimensions necessarily includes a loss of information, methods
to explicitly control the information kept by a specific dimensionality reduction technique
are highly desirable. The incorporation of class information constitutes an important spe-
cific case. The aim is to preserve and potentially enhance the discrimination of classes in
lower dimensions. In this chapter we use the extension of prototype-based local distance
learning introduced in Part[lof this thesis, which results in a discriminative dissimilar-
ity measure for a given labeled data manifold. The adapted local distance measure can
be used as basis for unsupervised dimensionality reduction techniques, which take into
account neighborhood information. We show the combination of different dimension-
ality reduction techniques with a discriminative similarity measure learned by LiRaM
LVQ using local projections Q? and their behavior with different parameter settings. The
methods are discussed in terms of artificial and real world data sets.

7.1 Introduction

n the last decades an enormous number of unsupervised dimensionality reduc-
tion methods has been proposed. In general, this constitutes an ill-posed prob-
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lem since a clear specification which properties of the data should be preserved, is
missing. Standard criteria, for instance the distance measure employed for neigh-
borhood assignment, may turn out unsuitable for a given data set, and relevant
information often depends on the situation at hand. If data labeling is available, the
aim of dimensionality reduction can be defined clearly: the preservation of the clas-
sification accuracy in a reduced feature space. Supervised linear dimension reducers
are for example the LiRaM LVQ (Bunte, Schneider, Hammer, Schleif, Villmann and
Biehl 2011) introduced in Section 3.2 LDA (Fukunaga 1990), Targeted Projection
Pursuit (TPP) (Faith et al. 2006), and discriminative component analysis (Peltonen
et al. 2006). Often, however, the classes cannot be separated by a linear classifier
while a non-linear data projection better preserves the relevant information. Exam-
ples for nonlinear discriminative visualization techniques include, extensions of the
SOM incorporating class labels (Villmann et al. 2006) or more general auxiliary in-
formation (Peltonen et al. 2004). In both cases, the metric of SOM is adjusted such
that it emphasizes the given auxiliary information and, consequently, SOM displays
the aspects relevant for the given labeling. Further supervised dimensionality re-
duction techniques are model-based visualization (Kontkanen et al. 2000), sNeRV
(Venna et al. 2010), MRE (Memisevic and Hinton 2005), cMVU (Song et al. 2008),
S-Isomap (Geng et al. 2005), PE (Iwata et al. 2007) and NCA (Goldberger et al. 2004),
already mentioned in Section B.4.2land Section[6.6] In addition, linear schemes such
as LDA can be kernelized yielding a nonlinear supervised dimensionality reduc-
tion scheme (Baudat and Anouar 2000). These models have the drawback that they
are often very costly (squared or cubic with respect to the number of data points).
Recent approaches provide scalable alternatives, sometimes at the cost of non con-
vexity of the problem (Kulis et al. 2007, Vasiloglou et al. 2008, Collobert et al. 2006).
However, in most methods, the kernel has to be chosen prior to training and no
metric adaptation according to the given label information takes place.

Here, we aim in the identification and investigation of principled possibilities to
combine an adaptive metric and recent visualization techniques towards a discrim-
inative approach. We will exploit the discriminative scheme exemplary for different
types of visualization, necessarily restricting the number of possible combinations
to exemplary cases. A number of alternative combinations of metric learning and
data visualization as well as principled alternatives to arrive at discriminative vi-
sualization techniques (such as e.g. colored Maximum Variance Unfolding (Song
et al. 2008)) were addressed for example in Section In this Chapter we com-
bine prototype-based matrix learning schemes, which result in local discrimina-
tive dissimilarity measures and local linear projections of the data, with different
neighborhood based nonlinear dimensionality reduction techniques and a charting
technique. In a first step the dissimilarity measure is learned using the LGMLVQ
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(see Algorithm [24) based on localized matrices A7, possibly limiting the rank as
proposed in Chapter Bl In the second step unsupervised techniques like manifold
charting (Brand 2002), Isomap (Tenenbaum et al. 2000), LLE (Roweis and Saul 2000),
the Exploration Observation Machine (XOM) (Wismdiller 2009d) and SNE (Hinton
and Roweis 2003) are performed incorporating the supervised information from the
Learning Vector Quantization (LVQ) approach. This leads to supervised nonlinear
dimensionality reduction and visualization techniques.

The following section gives a short overview over the techniques. We focus on
the question in how far local linear discriminative data transformations as provided
by LGMLVQ and LiRaM LVQ offer principled possibilities to extend standard unsu-
pervised visualization tools to discriminative visualization. Section[Z.3|discusses the
different approaches for one artificial and three real world data sets and compares
the results to popular supervised as well as unsupervised dimensionality reduction
techniques. Finally we conclude in section[Z.4l

7.2 Supervised Nonlinear Dimension Reduction

For general data sets a global linear reduction to lower dimensions may not be suf-
ficient to preserve the information relevant for classification. In (van der Maaten
et al. 2009) it is argued that the combination of several local linear projections to a
nonlinear mapping can yield promising results. We use this concept and learn dis-
criminative local linear (probably low-dimensional) projections from labeled data
using an efficient prototype based learning scheme, LGMLVQ (see Algorithm 2.4)
possibly limiting the rank using local transformations @/ € R™*Y with M < N
(following the principle of LiRaM LVQ Section [3.2). Locally linear projections ob-
tained from this first step provide transformations of the data points, which aims
in the preservation of the information relevant for the classification. Instead of the
local coordinates, local distances d*’ Eq. @.22) induced by these local representation
of data can be considered. As a consequence, visualization techniques which rely on
local coordinate systems or distances, respectively, can be combined with this adapt-
ive dissimilarity to arrive at a discriminative global nonlinear projection method.
This way, an incorporation into techniques such as manifold charting (Brand 2002),
Isomap (Tenenbaum et al. 2000), LLE (Roweis and Saul 2000), SNE (Hinton and
Roweis 2003), and the XOM (Wismiiller 2009d), among others becomes possible.

7.2.1 LiRaM LVQ for discriminative visualization

In contrast to Localized LiRaM LVQ (LLiRaM LVQ) (see Section[3.2.T) we do not con-
sider an adaptive matrix composed of two matrices A7 = QT W/ T W/ in this Chap-
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ter. Instead we adopt the localized dissimilarity measure ¢’ Eq. 2.22) of LGMLVQ
(summarized in Algorithm assuming a possible limit of the rank of A7 = Q77Q)
by @/ € RM*Y with M < N. As for the GMLVQ method the LGMLVQ algorithm
and its derivatives do not change in case of a limited rank. Because of the kinship
we refer to this adaptation of LGMLVQ also as LiRaM LVQ, having in mind that we
do not address global linear projections 2, but local linear €/ in this Chapter.

For every prototype, a low-dimensional embedding ¢’ of each data point ?, akin

to Eq. (6.19) is given by:
pia') = QFa’ = ¢ . (7.1)

This projection is a meaningful discriminative projection in the neighborhood of a
prototype. For a data point ' usually the projection Q7 of its closest prototype w’
is considered. This way, a naive mapping is given as

z' — p’(z') = Oz with d’ (z', w’) = min (', wh) (7.2)

We will address this local linear mapping rule in the following as LiRaM LVQ pro-
jection. However, the cost function Eq. (2.23) together with the distance definition
Eq. €22) does not ensure that these local projections align correctly and that they
do not overlap when shown in one coordinate system. Rather, the projections pro-
vide widely unconnected mappings to low dimensions which offer only a locally
valid visualization. Nevertheless the mapping defined by Eq. (Z.2) can give a first
intuition about the problematic samples and distinguish “easy” classes from more
difficult ones. Therefore, we will use this projection for comparison in the experi-
ments.

In order to achieve interpretable global nonlinear mappings of the data points
we have to align the local information provided by the local projections. This can
be done in different ways, using an explicit charting technique of the maps or using
visualization techniques based on the local distances provided by this method. In
the following, we introduce a few principled possibilities to combine the informa-
tion of LiRaM LVQ and unsupervised visualization techniques to achieve a global
non-linear discriminative visualization.

Local coordinates

As already stated, LiRaM LVQ gives rise to local linear projection maps p* as defined
in Eq. (Z1), which assign local projection coordinates to every data point z‘. These
projections can be accompanied by values which indicate the responsibility r;;, of
mapping k for data point i. Crisp responsibilities are obtained by means of the
receptive fields, setting r;; to 1 iff w" is the winner for ' and 0 otherwise (see
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Eq. (€.20)). Alternatively, soft assignments can be obtained by centering Gaussian
curves of appropriate bandwidth at the prototypes and successive normalization,
such that >, 7 = 1.

These two ingredients constitute a sufficient input for data visualization meth-
ods which rely on local linear projections of the data only, such as manifold charting,
LLC (van der Maaten et al. 2009) and Local Tangent Space Alignment (LTSA) (Zhang
and Zha 2002). Basically, those methods arrive at a global embedding of data based
on local coordinates by gluing the points together such that the overall mapping is
consistent with the original data points as much as possible. The methods differ in
the precise cost function which is optimized: Manifold charting relying on the sum
squared error of points at overlapping pieces of the local charts, while LLC focuses
on the local topology and tries to minimize the reconstruction error of points from
their neighborhood. Both approaches provide explicit maps of the data manifold to
low dimensions, such that out-of-Sample extensions are immediate. As an exam-
ple for this principle, we will investigate the combination of local linear maps and
manifold charting in Section[7.2.2]

Global distances

The LVQ-based learning procedure provides discriminative local distances induced
by the matrices A7 in the receptive field of prototype w’. In contrast to the charting
approach, the ranks of the distance matrices A7 can be chosen larger than the em-
bedding dimension M in these cases, using e.g. full ranks and therefore the original
LGMLVQ formulation or the intrinsic dimension of the data manifold. We use the
resulting parameters to define a discriminative dissimilarity measure for the given
data points. We define the dissimilarity of a point «* to a point z:

d(z',z) = (z' — @) A (@' — z) where &’ (z, w”) = min @' wt) (73

using the distance measure A’ induced by the closest prototype w” of z*. Note that
this definition leads to asymmetric dissimilarities, where d(z’, %) + d(z/,z’) can
hold, for samples falling into different receptive fields. It is block wise symmetric for
data samples with the same winner prototype in the classification task. Further, due
to the nature of the LGMLVQ cost function, the dissimilarity measure constitutes
a valid choice only within or near receptive fields. The dissimilarity of far away
points which are not located in the same or proximate receptive fields can be seen
only as a rough estimation of a valid dissimilarity.

The global dissimilarities defined by Eq. (Z.3) can be used directly within visual-
ization schemes which are based on distance preservation. If necessary, the dissimi-
larity matrix can be symmetrized prior to the mapping. Distance based visualization
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methods include classical MDS, Sammon’s map, SNE, t-SNE, and the XOM, to name
just a few (van der Maaten et al. 2009, Hinton and Roweis 2003, van der Maaten
and Hinton 2008, Wismiiller 2009d). It can be expected that the combination of the
global discriminative dissimilarities as given by Eq. (Z.3) yields to an appropriate vi-
sualization of the data only if the visualization method mainly focuses on the close
points, since the dissimilarity of far away points can only be seen as a guess in this
case. Thus, classical MDS is likely to fail, while SNE or XOM seem more promising
due to their focus on local topologies. As an example, we will investigate the com-
bination of the global dissimilarity matrix with SNE and XOM, respectively, in the
following.

Local distances or neighborhood

The problem that the dissimilarity measure as defined in Eq. (Z3) should preferably
only be used to compare data within a receptive field or in neighbored receptive
fields is avoided by visualization techniques which explicitly rely on local distances
only. Instances of such visualization techniques are given by Isomap, Laplacian
Eigenmaps, LLE (van der Maaten et al. 2009) and MVU (Weinberger and Saul 2006),
explained in Section[6.2l These methods use the local neighborhood of a data point,
i.e. its k-NN or the points in an e-ball (e-neighborhood), and aim at the preservation
of properties of these neighborhoods. Obviously, local neighborhoods can readily
be computed based on the dissimilarities given by Eq. (Z.3), thus a discriminative
extensions of these methods is offered this way.

Isomap extends local distances within the local neighborhoods to a global mea-
sure by means of the graph distance, using simple MDS after this step. Laplacian
Eigenmaps use the neighborhood graph and try to map data points such that close
points remain close in the projection. LLE also relies on the local neighborhood,
but it tries to preserve the local angles of points rather than the distances. Obvi-
ously, these methods can be transferred to discriminative visualization techniques
by using the local neighborhood as given be the local discriminative distances and,
if required, the local discriminative distances themselves. As an example, we will
investigate the combination of Isomap and LLE with this discriminative technique.

Now we introduce four exemplary discriminative projection methods, covering
the different possibilities to combine the information given by LiRaM LVQ and di-
verse visualization techniques. We will compare these methods to a naive embedd-
ing directly given by the local linear maps as a baseline, LDA (Fukunaga 1990) (if
applicable) as a classical linear discriminative visualization tool, and t-SNE as one
of the currently most powerful unsupervised visualization techniques. Further, we
will emphasize the effect of discriminative information by presenting the result of
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the corresponding unsupervised projection method.

7.2.2 Combination of Local Linear Patches by Charting

The charting technique introduced in (Brand 2002) provides a frame for unsuper-
vised dimension reduction by decomposing the sample data into locally linear pat-
ches and combining them into a single low-dimensional coordinate system. This
procedure can be turned into a discriminative visualization scheme by using the
low-dimensional local linear projections p’(x’) € IR™ for every data point ' and
every local projection €/ provided by localized LiRaM LVQ. Afterwards, the chart-
ing method can directly be used to combine these locally linear patches: The local
projections p’ (') are weighted by their responsibilities r;; which quantify the over-
lap of neighbored charts. Here we choose responsibilities induced by Gaussians
centered at the prototypes, since a certain degree of overlap is needed for a mean-
ingful charting step:

Tij O exp(—(z" — 'wj)TAj (' — wj)/aj) , (7.4)

where ¢; > 0 constitutes an appropriate bandwidth. Further, we have to normalize
these responsibilities }; r;; = 1 in order to apply charting. Since the combination
step needs a reasonable overlap of neighbored patches, the bandwidth o; must be
chosen to ensure this property. We set ¢, to a fraction a (0 < a < 1) of the mean
distance to the k nearest prototypes in the original feature space

o = % . Z ddi (wi, wt) | (7.5)
wleN (wd)

where N, (w?) denotes the k closest prototypes of w?.

Manifold charting minimizes a convex cost function that measures the amount
of disagreement between the linear models on the global coordinates of the data
points. The charting technique finds affine mappings A’ from the data representa-
tions p’ (x') to the global coordinates that solves a weighted least-squares problem:

AL, AT = arg min 3|47 (0 () — AR ()] (7.6)
=1

This function is based on the idea that whenever two linear models possess a high
responsibility for a data point, the models should agree on the final coordinates of
that point. The cost function is formulated as the squared error corresponding to a
sum of all patch-to-anchor and patch-to-patch inconsistencies and can be rewritten
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as a generalized eigenvalue problem. An analytical solution can be found in closed
form. The final projection is given by the mapping

x> =i A () (7.7)

J

We refer to (Brand 2002) for further details. Interestingly, an explicit map of the
data manifold to low dimensions is obtained this way. Further, the charting step is
linear in the number of data points n. We refer to the extension of charting by local
discriminative projections as charting™ in the following.

7.2.3 Discriminative Locally Linear Embedding

LLE (Roweis and Saul 2000) aims in the preservation of topologies induced by local
k-ary neighborhoods. The idea is to reconstruct each point z’ by a linear combi-
nation of its nearest neighbors and to project data points into lower dimensions,
such that this local representation of the data is preserved as much as possible. The
method is summarized in Algorithm[6.Tlin Section[6.2] Step 1 of the LLE algorithm is
the determination of neighbors \; for each data point z*. Following the ideas of su-
pervised LLE (Wang et al. 2006) and probability-based LLE (Zhao and Zhang 2009)
we take the label information into account by using the distance measure defined
in Eq. (Z3) to determine the k-NNs of each point. The rest of the LLE approach re-
main unchanged. We refer to this discriminative extension of LLE by LLE" in the
following.

7.24 Discriminative Isomap

Isomap (Tenenbaum et al. 2000) is an extension of metric MDS using graph distances
as an approximation of the geodesic distances in the high-dimensional space. For
this purpose, a weighted neighborhood graph is constructed by connecting points 4
and j if their distance is smaller than € (e-Isomap), or if j is one of the k-NNs of ¢ (k-
Isomap). Global distances between points are computed using shortest paths in this
neighborhood graph, see also Section The local neighborhood graph can serve
as an interface to incorporate discriminative information provided by LiRaM LVQ.
We use the distances defined by Eq. (Z.3) to determine the £-NNs and to weight the
edges in the neighborhood graph. Afterwards, we simply apply the same projection
technique as original Isomap. We refer to this discriminative extension of Isomap as
Isomap™ in the following.
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7.2.5 Discriminative Stochastic Neighbor Embedding

SNE constitutes an unsupervised projection which follows a probabilistic approach.
It aims in the preservation of local topologies induced by the probability densities in
the original space p;|; and the projection space ¢;;, see Section[6.2l SNE tries to find
a low-dimensional data representation that minimizes the mismatch between those
distributions. This is done by the minimization of the sum of the Kullback-Leibler
divergences Eq. (6.6). It is easily possible to incorporate discriminative information
into SNE by choosing the distances dx (z*, z7) in Eq. as discriminative distances
as provided by Eq. (Z3). Then, the subsequent steps can be done in the same way
as in standard SNE.

7.2.6 Discriminative Exploration Observation Machine (XOM)

XOM has recently been introduced as a novel computational framework for struc-
ture-preserving dimension reduction (Wismiiller 2009¢c, Wismdiller 2009a). It can be
seen as an extension of the SOM changing the interpretation of the variables. The
XOM aims in the preservation of a topology in the high-dimensional space denoted
by neighborhood couplings dx (', z7) between the input data points , represented
by a so-called cooperativity (or neighborhood) function, e.g. a Gaussian. The low-
dimensional counterparts £ of every data point are moved in the low-dimensional
space according to this neighborhood function, such that local neighborhoods are
preserved. This algorithm will be explained in more detail in Chapter [§ where
it is also extended further. Obviously, discriminative information can be included
into XOM by substituting the distances dx(z?, z7) by the discriminative distances
as provided by Eq.

7.2.7 Discriminative Maximum Variance Unfolding (MVU)

MVU (Weinberger and Saul 2006) is based on a neighborhood graph with k near-
est neighborhood graphs or e-neighborhoods A. Projections &' are determined by
maximizing the variance of the projection. The aim is, that neighboring points x*
and @/ preserve their affinities also in the low-dimensional space after projection:
de(&',€7) = dx(x',27). The method is summarized in Algorithm B.3]in Section 6.2
To include supervision in this dimension reduction technique the distance defined
by Eq. (Z3) can be used to determine the k nearest neighbors. Afterwards we sim-
ply apply the same optimization as original MVU. For our experiments we used the
library for semi-definite programming called CSDP! and the MVU implementation

1htt%p: / /infohost.nmt.edu/~borchers/csdp.html
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provided by Kilian Q. Weinberger?.

7.2.8 Further embedding techniques

We will compare the results obtained within this discriminative framework to a few
standard embedding techniques. More precisely, we will display the results of LDA
(Fukunaga 1990) as a classical linear discriminative projection technology, t-SNE
as an extension of SNE which constitutes one of the most promising unsupervised
projection techniques available today.

LDA constitutes a supervised projection and classification technique. Given data
points and corresponding labeling, it determines a global linear map such that the
distances within classes of projected points are minimized whereas the distances
between classes of projected points are maximized. This objective can be formalized
in such a way that an explicit analytical solution is obtained by means of eigenvalue
techniques. It can be shown that the maximum dimension of the projection has to be
limited to C' — 1, C being the number of classes, to give meaningful results. Hence,
this method can only be applied for data sets with 3 or more classes. Further, the
method is restricted to linear maps and it relies on the assumption that classes can be
represented by unimodal clusters, which can lead to severe limitations in practical
applications. t-SNE constitutes an extension of SNE, which achieved very promising
visualization for a couple of benchmarks (van der Maaten and Hinton 2008). The
probability densities in the low-dimensional space ¢;; are defined using a student-t
distribution instead of a Gaussian, see Eq. (6.10). Further details can be found in
Section

7.3 Experiments

7.3.1 Three Tip Star

This artificial dataset consists of 3000 samples in IR'” with two overlapping classes
(C1 and C2), each forming three clusters as displayed in Fig. The first two
dimensions contain the information whereas the remaining eight dimensions con-
tribute high variance noise. Following the advise “always try Principal Component
Analysis (PCA) first”® we achieve a leave-one-out 1-NN error of 29% in the data set
mapped to two dimensions (the result is shown in Fig.[Z2left panel). The best em-
bedding of t-SNE was achieved by setting the perplexity to 35 and is shown in the
right panel. The localized LiRaM LVQ was trained for ¢max = 500 epochs, with three

thtp: / /www.weinbergerweb.net/Downloads/MVU.html
3John A. Lee, private communication, 2009.
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2 dimensions of the original data

Figure 7.1: The two informational dimensions of the original Three Tip Star data set.
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Figure 7.2: Example Visualizations of the Three Tip Star data set.

prototypes per class and local matrices of target dimension M = 2. Each of the pro-
totypes was initialized close to one of the cluster centers. Initial elements of {7 were
generated randomly according to a uniform distribution in [—1, 1] with subsequent
normalization of the matrix following Eq. (2.21). The learning rate for prototype vec-
tors follows the schedule Eq. 3.5) 71 (¢) = 0.01/(1+ (¢max—1)-0.001) and metric learn-
ing starts at epoch ¢, = 50 with learning rate 72 (¢) = 0.001/(1 4 (¢max — 50) - 0.0001).
We repeat localized LiRaM LVQ with 10 independent random initializations of the
prototypes and matrices. The resulting mean classification error on the Three Tip
Star data set is 9.7%.
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Figure 7.3: 1-NN Errors of the Three Tip Star data set for different methods and

parameters. A “+” appended to the name of the method indicates incorporation of
local LiRaM LVQ distances with rank M matrices.



7.3. Experiments 131

LiRaM LVQ (Run 8) charting (Run 8, a=0.1)
ﬂ'&, | O prototypes | M v
T v ¥ k&
'.v@v @wﬂ %",{ J
®
XOM (0,=80, Init. 4) XOM+ (6,=10, Run 4, Init. 8)

v
- \
r -y v e
W e C1 i
g v
v
Vi g W v
v

Isomap (K=47) Local Isomap+ (Run 7, K=35)

3

I
¥ g v v v
v aid
- ..
v vv w

v
Y

v"'
LLE (K=12) LLE+ (Run 8, K=5)
’qu:':; "“ad vV "’;’k&ﬁ

Local MVU+ (k=5, Run 8)

b Vv v e wm .
w, y ;:v v e
W
Figure 7.4: Embeddings of the Three Tip Star data set. A “+” appended to the name
of the method indicates the incorporation of local LiRaM LVQ.




132 7. Adaptive Dissimilarity Measures for Dimension Reduction

The 1-NN errors and standard deviations of the two-dimensional projections of all
methods with either Euclidean or supervised adapted distance are shown in Fig.
A “+” appended to the name of a method indicates the use of the learned distance,
in addition the reduced target dimension in matrix learning M is given. From top
to bottom in Fig.[7.3the following methods are compared:

1. The 1-NN errors of the LiRaM LVQ projections based on Eq. (Z.2) are shown
on top. In particular, run 2 and 6 illustrate the problem that regions which are
well separated in the original space can be projected onto overlapping areas in
low dimension when local projection matrices €/ are employed naively. Fre-
quently, however, a discriminative visualization is found, as an example the
outcome of run 8 is shown in Fig.[Z.4] (upper left panel). Note that the aim of
the LiRaM LVQ algorithm is not to preserve topology or distances, but to find
projections which separate the classes efficiently. Consequently, clusters four
and six, for instance, may be merged in the projection, as they carry the same
class label. Nevertheless, the relative orientation of all six clusters persists in
the low-dimensional representation.

2. The 1-NN errors of the LiRaM LVQ projections followed by charting with dif-
ferent choices of the responsibilities, cf. o; Eq. (Z.5). The z-axis corresponds to
the factor o which determines o; Eq. (Z.5) from the mean distance of the & near-
est prototypes. Graphs are shown for several values of k, and bars mark the
standard deviations observed over the 10 runs. For large o and k the overlap
of the local charts increases, yielding larger 1-NN error in the final embedd-
ing. Small values of «, k lead to better projection results. The best result is
shown in Fig. [Z4 (upper right panel) using o = 0.1 and k = 3 nearest proto-
types. The quality of the projection is not affected by rotations or reflections,
consequently the actual positions and orientations of clusters can vary.

3. XOM was trained for ty.x = 50000 iterations using a learning rate schedule
Eq. for the image vectors ¢ with 75" = 0.9 and 7{"d = 0.05. The
cooperativity function is chosen as Gaussian and like the learning rate 7 (t)
the variance o is changed by an appropriate annealing scheme

o(t) = oy - (— exp (log <Z;) /tmax> -t) . (7.8)

The sampling vectors are initialized randomly in 5 independent runs. The pa-
rameter o, is approximately set to the maximum distance in the data space:
1500 and o9 is chosen as values between the interval [10,100]. The actual
value of o, appears to influence the result only mildly. The 1-NN errors of
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the XOM projections with different values of the parameter o, are shown in
Fig.[7.3l The incorporation of the trained local distances improves the perfor-
mance significantly. Example projections are shown in Fig. [Z4] (second row)
using Euclidean distances (left panel) and for adaptive distance measure (right
panel). The former, unsupervised version cannot handle this difficult data set
satisfactorily, while supervised adaptation of the metric preserves the basic
structure of the cluster data set.

4. Tt follows, the 1-NN errors of the Isomap projection with different numbers
k of nearest neighbors taken into account. Also here the incorporation of the
learned local distance reduces the 1-NN error on the two-dimensional em-
bedding significantly. The parameter k has to be large enough to ensure that
a sufficient number of points is connected in the neighborhood graph. Oth-
erwise several subgraphs emerge which are not connected and lead to many
missing points in the final embedding. Appropriate example embeddings are
shown in Fig.[74]in the third row, corresponding to Euclidean distance in the
left panel and adaptive metrics in the right panel. In the former, purely unsu-
pervised case, the 3 main clusters are reproduced, but the classes are mixed.
When the adaptive distance measure is used, the cluster structure is essentially
lost, but the two classes remain separated.

5. The 1-NN errors of the LLE embedding are shown for various numbers &
of nearest neighbors considered. LLE displays very limited performance in
this data set, hardly any structure is preserved. Even the incorporation of the
learned distance measure does not lead to significant improvement, in gen-
eral. Only for very small values of k the 1-NN error decreases in comparison
with the usage of the Euclidean distance. LLE tends to collapse large portions
of data onto a single point when the target dimension is too low. Hence, even
a small 1-NN error may not indicate a good and interpretable visualization.
The best embeddings are shown in Fig.[Z4]in the forth row.

6. The 1-NN errors of SNE and t-SNE are slightly better than the other unsuper-
vised methods. Both methods preserve the main cluster structure, but not the
class memberships. Like already observed with Isomap™ also with the super-
vised version of SNE (SNE*) the cluster structure is essentially lost, but the
two classes are separated as much as possible and a remarkable increase in
the 1-NN error of the embedded data is observed. Example embeddings are
shown in Fig. [Z4l (fifth row) and for t-SNE in Fig.[7Z.2lright panel.

7. The 1-NN errors of MVU are comparable to the SNE and t-SNE results. Like
them the main cluster structure is visible, but not the class memberships. In the
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supervised variant MVU™ the cluster structure is essentially lost as observed
with Isomap* and SNE™ too, but the two classes are separated relatively well.
This leads to a remarkable decrease in the 1-NN error of the embedded data
points. The best embeddings are shown in Fig.[Z4bottom row.

Note that, due to the presence of only two classes, standard LDA would yield a
projection to one dimension only. We have also applied kernel PCA with Gaussian
kernel and different values of o, but we obtained only poor 1-NN errors on the em-
bedded data with a best value of about 41%. As expected, purely unsupervised
methods preserve hardly any class structure in the obtained projections. For several
methods, however, the performance with respect to discriminative low-dimensional
representation can be improved dramatically by taking into account label informa-
tion in the local distance measures.

Figure [7.5 shows the computation times vs. the number of points to be embed-
ded of different dimension reduction techniques on the Three Tip Star data set. We
only measure the time necessary to embed the data after learning the local metrics

Running time for different number of data points
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Figure 7.5: The running time of different dimension reduction methods depending
on the number of samples to embed.
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Figure 7.6: Example embeddings of the Wine data set for PCA and LDA.

with LiRaM LVQ. The algorithms were performed on the same Windows XP 32bit
version machine* using Matlab R2008b. The LiRaM LVQ algorithm was applied us-
ing six prototypes and 100 epochs. The other parameters were chosen as mentioned
above. The charting technique uses the six local linear projections provided by the
LVQ approach with responsibilities computed by Eq. (Z4). XOM is trained for 1500
steps and above mentioned parameters, LLE uses k = 35, Isomap k£ = 35 and MVU
k = 3 nearest neighbors. SNE was performed with a perplexity of 30. The LVQ
based approach, charting and XOM show a linear relationship between the num-
ber of points and the necessary computation time, whereas the other methods show
quadratic or even worse complexity.

7.3.2 Wine data set

The wine data from (Aeberhard et al. 1992) available at (Asuncion et al. 1998) con-
tains 178 samples in 13 dimensions divided in three classes. As proposed in (Rogers
and Girolami 2007) we first transformed the data to have zero mean and unit vari-
ance features. Maximum Likelihood Estimation (MLE) (Levina and Bickel 2005)
approximate the intrinsic dimension to 4. We set the reduced target dimension to
two. PCA achieves a leave-one-out 1-NN error of 28% in the mapped data set. In
comparison, supervised LDA (Fukunaga 1990) leads to a relatively small 1-NN error
of 1%. Fig.[7.6lshows the two-dimensional representations of the data set obtained
by PCA and LDA, respectively.

4ntel(R) Core(TM)2 Quad CPU Q6600 @2.40GHz, 2.98 GB of RAM
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Localized LiRaM LVQ was trained for ¢,,.x = 300 epochs, with one prototype per
class. Each prototype was initialized close to class centers, elements of the matrices
)/ were initialized with values between [—1, 1] with subsequent normalization. The
learning rate for prototype updates follows the schedule 71 (¢) = 0.1/(1+(¢—1)-0.01);
metric learning starts at epoch 5, = 30 with the learning rate 7»(¢) = 0.01/(1 + (¢t —
50) - 0.001). We run the localized LiRaM LVQ 10 times with random initializations
and with rank M = 2 and M = 4 of the relevance matrices, respectively. In all
runs we observe 100% correct classification for this data set. The resulting matrices
are used to embed the data into the two-dimensional space. In order to compare
the different approaches we compute the 1-NN errors in the projected data under
various parameter settings, results are shown in Fig.[7.7land the best projections can
be found in Fig.[Z.8 The incorporation of trained distances in some unsupervised
methods are indicated by a “+” appended to the name, together with the maximum
rank M.

1. In the direct LVQ-based mapping following Eq. (Z.2), two prototypes project
into the same area in some of the runs, but most runs result in a clear sepa-
ration of the three classes. The charting technique is combined with the three
local projections obtained from the localized LiRaM LVQ (M = 2) and com-
puted with various parameters « to fix the responsibilities (see Eq. (Z4)). A
reasonable overlap of the local projections is required: If « is chosen too small
the 1-NN error displays large variations in the runs. For this data set a value
of a = 0.4 is sufficiently large to yield discriminative visualizations.

2. XOM was trained like with the previous data set for ¢,,,x = 50000 iterations
with the same learning rate schedule for 7 Eq. (6.24) and o Eq. (Z8). The
parameter o, is set to 2 and o3 to 0.15. The sampling vectors are initialized
randomly in 10 independent runs. The results of XOM and XOM* in com-
bination with adaptive local distances are analogous to those for the Three
Tip Star data. The improvement due to the incorporation of label information
through the distance measure is even more significant, the method yields very
small 1-NN errors in the Wine data set.

3. The k-Isomap with Euclidean distance performs worse on this data set with an
1-NN error of about 30%. With the incorporation of the learned distance mea-
sure and a sufficiently large neighborhood value & all mappings separate the
classes very well. For smaller values of % the neighborhood graph is not con-
nected. In the worst case the procedure yields three unconnected subgraphs,
where only samples are connected which belong to the same prototype. When
all samples are connected the approach is very robust and shows no variation
with respect to the LVQ run.
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Figure 7.7: 1-NN Errors of the Wine data set for different methods and parameters.
A “+” appended to the name of the method indicates incorporation of local LiRaM
LVQ distances with rank M matrices.



138 7. Adaptive Dissimilarity Measures for Dimension Reduction

LiRaM LVQ (Run 1) charting+ (Run 7, 0=0.5)

ctl] iy W

. --/- * C2 °
C3
XOM (Run 8) XOM+ (Run 5, Initialization 1)
o 'I-.'::.:-.- '...' -' o ° | e Becmepe. ..
T . ° * P oo cmme *° Yo

Isomap+ (Run 1, k=16)

LLE+ (Run 1, k=6)

SNE+ (M=2, Perplexity 20, Run 4)

(-\,
~
0]

MVU (k=9) MVU+ (M=2, k=15, Run 8)

-
o X . 1
. . .

g

.o .

e e I LA -
R, (htle | \

Figure 7.8: Example embeddings of the Wine data set. A “+” appended to the name
of the method indicates the incorporation of local LiRaM LVQ distances.



7.3. Experiments 139

4. The performance of LLE depends strongly on the number % of nearest neigh-
bors taken into account. For large k the advantage of using a supervised
learned distance measure essentially vanishes. The variations between dif-
ferent runs are particularly pronounce for rank A/ = 2 and no significance im-
provement over the purely unsupervised LLE is achieved. However, for small
k (e.g. k = 5,6,7) and with rank M = 4 very low 1-NN errors are obtained.

5. The SNE and t-SNE show already in the unsupervised versions good results
as shown in Fig.[Z7l The 1-NN error is not that much dependent on the chosen
perplexity, only slight changes can be observed. With the incorporation of the
learned distance measure the visualizations can be improved further and the
dependence on the perplexity is even less.

6. The unsupervised MVU showed a strong dependence on the number £ of
neighbors taken into account. With a sufficient big % the algorithm show al-
ready good results when it is used in an unsupervised way. The incorporation
of the class labels however shows only a weak dependence on the number of
neighbors and in most of the results the classes are perfectly separated.

7.3.3 Segmentation

The Segmentation data set (available at the UCI repository (Asuncion et al. 1998))
consists of 19 features which have been constructed from randomly drawn regions
of 3 x 3 pixels in a set of 7 manually segmented outdoor images. Every sample is
assigned to one of seven classes: brickface, sky, foliage, cement, window, path and
grass (referred to as C1, ..., C7). The set consists of 210 training points with 30 in-
stances per class and the test set comprises 300 instances per class, resulting in 2310
samples in total. We did not use the features (3,4,5) as they display zero variance
over the data set. For preprocessing we normalized the data by a z-Transformation
resulting in zero mean and unit variance features. An Maximum Likelihood estima-
tion yields an intrinsic dimension of about 3, so we use rank limits of M € {2, 3} for
the computation of the local distances in this data set. LDA yields a classification er-
ror of approx. 20% for a projection into two dimensions while PCA displays a 1-NN
error of 31%.

Localized LiRaM LVQ was trained for ¢ma.x = 500 epochs, with one prototype
per class. Each prototype was initialized close to class center, and elements of the
matrices 7 are drawn randomly from [—1, 1] according to a uniform density with
subsequent normalization of the matrices. The learning rate for prototypes follows
the schedule 74 (t) = 0.01/(1 + (¢ — 1) - 0.001). Metric adaptation starts at epoch
ty = 50 with learning rates 7 () = 0.001/(1 + (¢ — 50) - 0.0001). We run localized
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Figure 7.9: Example embeddings of the Segmentation data set for PCA and LDA.

LiRaM LVQ 10 times with random initialization and with a rank limit of M = 2 and
M = 3, respectively. For M = 2 we achieve a mean classification error of about 8%
in all runs and with M = 3 the mean classification error is 7%. The obtained 1-NN
errors are shown in Fig.[7Z.10land some example visualizations are given in Fig.[7.11l

1. The quality of direct LiRaM LVQ projections vary from run to run. One favor-
able projection is shown in Fig.[Z1Tin the first row on the left side. The classes
C2 and C6 are well separated with large distances from the other classes. Also,
most samples of C4 and C1 are clustered properly, while class C3 is spread and
overlaps with class C7. This outcome is not too surprising, since C3 and C7
correspond to foliage and grass, respectively, two classes that may be expected
to have similar characteristics in feature space.

2. In the combination with a charting step results are rather robust with respect
to the parameter settings (o, k). Here, the best result is achieved with o = 0.1
and k = 1 (Fig.[Z1]} top right panel). Again, three classes are well separated
from the others. The remaining four classes are projected into a relatively small
area. Three of these classes are very close: window, brickface, and cement.

3. XOM was trained for ¢max = 50000 iterations with the same learning rate
schedule for 7, and o like for the other data sets. We set the parameters to
mtart = 0.9, 7#2d = 0.05 and o0 to nearly the maximum distance in the data
space: 1500 and o3 is chosen as values between the interval [5, 70]. The sam-
pling vectors are initialized randomly in 5 independent runs. In the applica-
tion of XOM we observe once more a clear improvement when incorporating
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1-NN Errors of the Segmentation data set for different methods and

parameters. A “+” appended to the name of the method indicates incorporation of
local LiRaM LVQ distances with rank M matrices.
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the adaptive local metrics obtained in LiRaM LVQ. Example projections are
shown in Fig. (second row).

4. For Isomap a minimum value of & > 48 is necessary to obtain fully con-
nected neighborhood graphs and, hence, embed all points. The incorporation
of adaptive local distances leads to a clear improvement of the 1-NN error in
the mapping. As expected, a low rank M of the local matrices results in in-
ferior 1-NN errors if M is smaller than the intrinsic dimension of the data.
When incorporating adaptive distances with very large k, a fully connected
graph can be obtained and all data are mapped. However, then, closer classes
would highly overlap in the projections and the visualization would not be
discriminative. If, on the other hand, a smaller k is chosen, some of the classes
are absent in the graph and, consequently, in the visualization. As a conse-
quence of this effect, in Fig. (third row, right panel) class C2 subgraph is
absent.

5. Like in the previous examples, LLE performs relatively poor. The 1-NN er-
ror can be decreased by using adaptive distances but points tend to be col-
lapsed in the projection due to the discriminative nature of the distance mea-
sure. Most visualizations with relatively low 1-NN errors display an almost
linear arrangement of all classes, cf. Fig.[Z11](fourth row, left panel). An exam-
ple visualization after incorporation of adaptive metrics is shown in the right
panel. While the visualization appears to be be better, qualitatively, the above
mentioned basic problem of LLE persists.

6. The last row of Fig. displays the two-dimensional representations pro-
vided by SNE and SNE™ for perplexities in the interval [30 60]. The unsuper-
vised variant performs already quite well, but the incorporation of the learned
local distances improves it even further especially for higher perplexities and
bigger values for the limited rank M of the LiRaM LVQ algorithm (see Fig.

[7.10).

Classes C2 (sky) and C7 (grass) are obviously separable by all applied methods,
both unsupervised and supervised. On the other hand, the discrimination of classes
C4 (foliage) and C5 (window) appears to be difficult, in particular in unsupervised
dimension reduction. Since the patches are randomly drawn from the images they
might contain pixels belonging to more than one class and the overlap is compre-
hensible to some extend.

We could not evaluate MVU on this data set, because this would require the
costly incorporation of in minimum k = 46 neighbors. It appears, that a part of
the data is already well separated, so that the neighborhood graph is not connected
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with smaller values of k. The provided code demands a fully connected graph, so
the number of constraints of the SDP becomes too large to be solved in reasonable
time and needs more memory than we have.

7.3.4 USPS Digits

The USPS (United States Postal Service) data set consists of images of hand written
digits of a resolution of 16x16 pixel. We normalized the data to have zero mean
and unit variance features and used a test set containing 200 observations per class.
Since it is a digit recognition task , we have the classes € [0, ..., 9] resulting in 2000
samples for the embedding. The 1-NN errors of all compared methods are shown
in Fig.

Localized LiRaM LVQ was trained for ¢,,.x = 500 epochs, with one prototype per
class and the same initialization scheme for the prototypes and matrices, learning
rates and learning schedules like explained in Section[7.3.3]

1. The direct LiRaM LVQ projections separate the classes nearly perfectly and
one favorable projection is shown in Fig. in the first row on the left side.

2. In the combination with a charting step the best result is achieved with o = 0.1
and k = 2 (Fig. top right panel). Four classes appear to be squeezed
together, but the overlap is still small if zoomed.

3. XOM was trained in the same way like mentioned in Section[7.3.3with o5 cho-
sen as values between the interval [0.01,2]. The incorporation of the adaptive
local metrics obtained in LiRaM LVQ once more improve the results of the
XOM dramatically. Example projections are shown in Fig. (second row).

4. For Isomap the incorporation of adaptive local distances improves the 1-NN
error in the mapping. Like mentioned with the other data sets some data
points appear to be too separated from the others if the local distances are
used, so the mapping may miss them with a small neighborhood parameter
k. Like in the previous examples, LLE performs relatively poor, but can be en-
hanced by using the local dissimilarities given by LiRaM LVQ (Fig.[Z13] fourth
row).

5. SNE performs relatively well, but t-SNE showed a remarkable better 1-NN
error on this data set. Still the class structure is hardly recognizable on the
unsupervised mapping, while it becomes clear if the local distances are incor-
porated (Fig.[Z13] fifth row, right panel). The supervised SNE™ results in 10
nicely recognizable clusters.
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Figure 7.12: 1-NN Errors of the USPS Digits data set for different methods and pa-
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Figure 7.13: Example embeddings of the USPS Digits data set. A “+” appended to
the name of the method indicates the incorporation of local LiRaM LVQ.
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6. The last row of Fig. displays the two-dimensional representations pro-
vided by MVU and LDA. MVU does not perform very well on this data set
and LDA yields a classification error of 35%. We could not apply MVU with in-
corporation of the local distances provided by LiRaM LVQ, because the classes
are separated so well in this case that a huge value of nearest neighbors &
would be necessary to get a connected graph.

7.4 Conclusions

We introduced the concept of discriminative nonlinear data visualization based on
local matrix learning. Unlike unsupervised visualization schemes, the resulting
techniques focus on the directions which are locally of particular relevance for an
underlying classification task such that this additional label information is preserved
by the visualization as much as possible. Interestingly, local matrix learning gives
rise to auxiliary information which can easily be integrated into visualization tech-
niques: as local discriminative coordinates of the data points for charting techniques
and similar methods, as global metric information for XOM, SNE, MDS, etc., or as
local neighborhood information for LLE, Isomap, MVU and similar schemes. We
have introduced these different paradigms and we exemplary presented the behav-
ior of these schemes for six concrete visualization techniques, namely charting, LLE,
Isomap, XOM, SNE and MVU. An extension to further methods such as t-SNE, dif-
fusion maps, etc. could be done along the same lines.

Interestingly, the resulting methods have quite different complexity: while chart-
ing uses the fact that information is compressed in the prototypes resulting in an
only linear scheme depending on the number of data, LLE, SNE, and Isomap end up
with quadratic or even cubic complexity. Further, charting techniques and similar
provide the only methods in this collection which yield an explicit embedding map
rather than an embedding of the given points only. The behavior of the resulting dis-
criminative visualization techniques has been investigated in one artificial and three
real life data sets. The best results for all methods and data sets are summarized in
Table[Z1l According to the different objectives optimized by the visualization tech-
niques, the results are quite diverse and no single method which is optimum for
every case can be identified. In general, discriminative visualization as introduced
in this paper improves all the corresponding unsupervised methods and also alter-
native state-of-the-art schemes such as t-SNE. Further, the techniques presented in
this Chapter are superior to discriminative LDA which is restricted to linear em-
bedding. It seems that charting offers a good choice in many cases, in particular
since it is a method with only linear effort which provides an explicit embedding
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Table 7.1: 1-NN errors (and Standard deviation) on the different data sets.

Method 3 Tip Star Wine Segmentation USPS Digits
LiRaM LVQ 0.06 (0.0) 0.00 (0.0) 0.07 (0.0) 0.01 (0.0)
charting 0.14 (0.1) 0.01 (0.0) 0.13 (0.0) 0.06 (0.0)
XOM 0.49 (0.0) 0.04 (0.0) 0.25 (0.0) 0.64 (0.0)
XOM+(M=2) 0.25 (0.0) 0.00 (0.0) 0.11 (0.0) 0.02 (0.0)
XOM+(M=3) - - 0.11 (0.0) -
Isomap 0.36 (0.0) 0.25 (0.0) 0.23 (0.0) 0.53 (0.0)
Isomap+(M=2) 0.20 (0.1) 0.00 (0.0) 0.18 (0.1) 0.01 (0.0)
Isomap+(M=3) - - 0.13 (0.1) -
LLE 0.47 (0.0) 0.28 (0.0) 0.36 (0.0) 0.57 (0.0)
LLE+(M=2) 0.34 (0.1) 0.18 (0.2) 0.25(0.1) 0.11 (0.1)
LLE+(M=3) - 0.03 (0.0) 0.19 (0.0 -
SNE 0.45 (0.0) 0.03 (0.0) 0.11 (0.0) 0.34 (0.0)
SNE+(M=2) 0.14 (0.1) 0.00 (0.0) 0.10 (0.0) 0.01 (0.0)
SNE+(M=3) - - 0.09 (0.0) -
t-SNE 0.41 (0.0) 0.04 (0.0) 0.85 (0.0) 0.08 (0.0)
MVU 0.40 (0.0) 0.04 (0.0) - 0.56 (0.0)
MVU+(M=2) 0.16 (0.1) 0.00 (0.0) - -
LDA - 0.01 (0.0) 0.20 (0.0) 0.35(0.0)
map.

Interestingly, a direct projection of the data by means of the local linear maps of
LiRaM LVQ displays good results in many cases, although an appropriate coordi-
nation of these maps cannot be guaranteed in this technique. It seems promising
to investigate the possibility to introduce the objective of valid coordination of the
local projections directly into the LiRaM LVQ learning scheme. This issue as well
an exhaustive comparison of more extensions of unsupervised methods (such as
t-SNE) to incorporate discriminative information are the subject of ongoing work.
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Chapter 8

Self Organized Neighbor Embedding for
Dimension Reduction and Visualization

The important thing in science is not so much to obtain new
facts as to discover new ways of thinking about them.

Sir William Bragg (1862 - 1942)

Abstract

We present an extension of the Exploration Observation Machine for structure-pre-
serving dimensionality reduction. Based on minimizing the Kullback-Leibler diver-
gence of neighborhood functions in data and image spaces, this Self Organized Neighbor
Embedding (SONE) creates a link between fast sequential online learning known from
topology-preserving mappings and principled direct divergence optimization approaches.
We quantitatively evaluate our method on real world data using multiple embedding
quality measures. In this comparison, SONE performs as a competitive trade-off between
high embedding quality and low computational expense, which motivates its further use
in real-world settings throughout science and engineering.

8.1 Introduction

arious dimension reduction techniques have been introduced based on differ-
Vent properties of the original data to be preserved. A detailed description of
an handpicked amount of unsupervised and supervised methods can be found
in Chapter[6l For a comprehensive review on nonlinear dimensionality reduction
methods, we refer to (Lee and Verleysen 2007). In Chapter 3 and [/l we proposed
further methods for supervised linear and non-linear dimension reduction and vi-
sualization.
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Recently, a novel computational approach to topology learning has attracted at-
tention for advanced data processing: The Exploration Observation Machine (XOM)
(Wismdiller 2006, Wismdiller 2009d, Wismiiller 2009b, Wismiiller 2001, Wismiiller
2011) (and references therein) systematically reverses the data-processing work flow
in topology-preserving mappings. By consistently exchanging functional and struc-
tural components of topology-preserving mappings, XOM can be seen as a com-
putational framework that computes graphical representations of high-dimensional
observations by a strategy of self-organized model adaptation. Although simple
and computationally efficient, XOM enjoys a surprising flexibility to simultaneously
contribute to several different domains of advanced machine learning, scientific
data analysis, and visualization. In particular, it supports both structure-preserving
dimensionality reduction and data clustering.

The complexity of most non-linear dimension reduction techniques grows at
least quadratically with the number of points to embed. The aim of Self Organized
Neighbor Embedding (SONE) proposed in this Chapter is to create a conceptual
link between fast sequential online learning known from topology-preserving map-
pings and principled direct divergence optimization approaches, such as Stochastic
Neighbor Embedding (SNE) and t-distributed SNE (t-SNE). So it can be seen as a
trade-off between low computational costs and high quality of the final embedd-
ing. The complexity is linear with the number of points and can be easily controlled
by the user. Furthermore, prior knowledge and task specific requirements can be
incorporated to the embedding result.

We will describe the basic XOM algorithm and the SONE extension in Section
B2l and Section 8.3l We discuss the parameters in section [8.4] and furthermore we
spend some words on the complexity in comparison with other techniques in Sec-
tion discuss the embedding results on two benchmark data sets in Section
and conclude in Section

8.2 The Exploratory Observation Machine

XOM maps a finite number of high-dimensional data points * € X in the observa-
tion space X to low-dimensional image vectors &' € € in the embedding space £.
The embedding space is associated with a structure hypothesis, given by a number
of sampling vectors s € £, which corresponds to the final structure in which the data
is embedded. These can be seen as a generalization of the prototypes as included
in the Self-organizing Map (SOM). Reasonable choices for the sampling vectors s
are: the location on a regular lattice structure in &, discrete positions in £ as rep-
resentation of a finite number of class centers, drawn from a mixture of Gaussian
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to represent a finite number of clusters, or uniformly sampled in a region of £ to
indicate that the visualization of the data should occupy the full projection space.
Unlike SOM, XOM does not project the sampling vectors s to the data space, rather
it projects the data to the embedding space. Nevertheless, the sampling vectors de-
fine receptive fields by a decomposition into points mapped closest to the sampling
vectors. An approximate back projection of the sampling vector can be defined as
the best match input vector

W(s) = =’ where dg (s, £") is minimum. (8.1)

The images &' are initialized randomly and adapted iteratively during the training
triggered by the structure of the embedding space. All & are adapted into the di-
rection of the actual s according to the distances between the best match input ¥ (s)
and their counterparts  in the observation space X. For a given sampling vector s
the adaptation rule is given by:

6d5(s Ek)

¢ = €8 — 7 o (da(V(s),2") —=— | (82)
3

where 7 > 0 denotes the learning rate, dx refers to the distance in the observation
space, e.g. the Euclidean distance and

o iy —dy(x', x’ _
he(dx (2, 2?)) = hY = exp (W) witho >0 (8.3)
g
defines the neighborhood cooperation. In this way the projections & are arranged
around the priorly chosen structure elements s such that image vectors are close to
the same sampling vector if their corresponding data points « are neighbored in the

data space. The method is summarized in Algorithm 8.1}

Algorithm 8.1 : Exploratory Observation Machine (XOM)
1: choose a structure hypothesis, given by sampling vectors s € £
: initialize the image vectors &, e.g. randomly or by means of a PCA.
: compute the neighborhood function , e.g. a Gaussian Eq. (8.3)
: while stopping criterion not reached do
present a sampling vector s from the structure hypothesis
find the best matching input vector following Eq. (8.1)
perform the update of all image vectors with the adaptation rule Eq. (8.2)
: end while
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8.2.1 Formalization of a cost function

As the SOM, XOM in its original form does not correspond to a cost function. How-
ever, as proposed in (Bunte, Hammer, Villmann, Biehl and Wismiiller 2010), a vari-
ation following (Heskes 1999) by setting the best match input data vector to the
average

TU(s) = «' where 2 ho(dx (!, 27))de (s, &%) is minimum . (8.4)
J
This leads to the cost function:
N

Bxou ~ | ¥ du(oa 2 holdx(a, ) - 5,8 6) . 85)

where § denotes the Kronecker delta. The derivative of Exowm with respect to § k can
be found in[B.Al and yields the XOM learning rule given in Eq. (82). Thus, XOM
tries to minimize the distortion of sampling vectors s and projections &’ whereby
this term is weighted according to a Gaussian function depending on the distance
of the inverse images ¥(s) and z7 in the data space.

8.3 SONE using generalized Kullback-Leibler

XOM, unlike SNE and many other embedding algorithms, exhibits the interesting
property that it allows to impose a prior structure on the projection space, which is a
property that can also be found in SOM. Like many other visualization techniques,
SNE has a computational and memory complexity that grows quadratically with the
number of data points, because it bases on the computation of pairwise affinities in
the projection space (for detailed description see Algorithm [6.4]in Section[6.2). The
complexity of XOM can be easily controlled by the structure definition and is linear
with the number of data points and the number of sampling vectors. We propose
to combine the ideas of XOM with the concept of direct divergence optimization as
proposed by SNE, to merge the advantages of both methods.

By means of the cost function Eq. (8.5) we are able to define new learning rules
for the XOM algorithm based on the generalized Kullback-Leibler (GKL) divergence
for not normalized positive measures p and ¢ with 0 < p,¢ < 1:

Daxc pl) = | [p<m> log (223)] o )~ a@)do . (5.6)

We consider the use of normalized and symmetrized probability densities (proposed
for SNE) as unnecessary restriction and define our concept in a more general way.
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In contrast to (Villmann and Haase 2011, Mwebaze et al. 2011), however, we do not
use the GKL divergence as a distance measure within the original or the embedd-
ing space, but as a dissimilarity measure between the two spaces. The cooperativity
functions h, (dx (2, 27)) and g.(de (s, £”)) used as positive measures, can be defined

analogously to Eq. (8.3):

; _ xt CEk
1) = ho(dr(@',a)) = exp (45 7)
92 (k) = go(de(s, €")) = exp <d£212£)> : (8.8)

They model the neighborhoods in the original space and the embedding space,
similar to the probability densities p and ¢ in the SNE formulation. Following the
ideas of t-SNE (see Algorithm [6.5]in Section [6.2) the neighborhood function of the
embedding space g.(dg(s,£”)) could be chosen as a heavy-tailed distribution, e.g.
the Student-t-distribution similar to Eq. (6.10):

g2 (k) = (1 + de(s, £5) /) (=) (8.9)

This should avoid the crowding problem (van der Maaten and Hinton 2008), which
may occur due to the volume difference between high-dimensional and low-dimen-
sional spaces. The following formulas will give the most general definitions for
flexible use of distances dx and d¢ and positive measures h and g in the high- and
low-dimensional space, as well as explicit examples of them. Based on these set-
tings, we define a novel cost function using the divergence Dgkr, Eq. (8.6):

w )
Ecky ~ JZ 0w (s),2i Z hyexes) (j)log [ —F———

- 9¢(J)
— hYox () (5) 4+ gf(j)}p(s) ds | (8.10)
where the best match data point for s is defined as:
Uckr(s) = «' such that (8.11)
hy ()
2 hYexe(s)(j)log [ =2 — — hYexr(®)(5) 4 g2(5) | is minimum.
. 9¢(j)

The derivative of the cost function with respect to the images & yields the online
learning update rule for a given sampling vector s (see[8.Blfor details):

0Eqki, 092 (k) <1 - hg’GKL(s)(k.)>

ot 0k, g¢(k)

(8.12)
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In case of a Gaussian g2 (k) Eq. (8.8) the derivative reads:

OEckL _ 1 wga(s)(ny s ode (s, &)
set =g (M) - g2) T (613)
k
:% WekL(s) _ .8 adf(s’ﬁ ) — i
5 (hg (k) gg(k)) pro I (8.14)
and with a t-distributed g2 (k) defined in Eq. (8.9) the update is:
OFgkrL <+1 1 ok (s) 6d5(3,£k)
- pYa(e)(k) — g5 (k)) DS ) (8.15)
o€* 2% (1+dg(s,&M)/) ( W)=t )) 0&"
k
_ WekL(s) s adg(s,f ) — L
= hYa k) — gk , = 8.16
3 (hre ) - g20) T - s 819)

and we refer to this variant as t-distributed SONE (t-SONE).

Algorithm 8.2 : Self Organized Neighbor Embedding (SONE)

1: choose a structure hypothesis, given by sampling vectors s € £
: initialize the image vectors &, e.g. randomly or by means of a PCA.
: compute the neighborhood function, e.g. h' (5) Eq. B7)
: while stopping criterion not reached do
present a sampling vector s from the structure hypothesis
compute the neighborhood cooperation g2 (k) in £ V&*
find the best matching input vector ¥k, (s) following Eq. (8.11)
perform the update of all image vectors ¢* « ¢F — 7. ag%

following Eq. (8.13) or Eq. (8.15) dependent on the function g2 (k)

9: end while

P N DD k@

While the original XOM approach is based on attraction forces only (see Eq.
(8.2)), the prototype update in Eq. (8.12) includes repulsion as well. This is due to the
possibility of a change of the sign dependent on the fraction between the coopera-
tivity function h and g. The XOM update emphasizes attraction and predominantly
optimizes “continuity”, such that small distances in X lead to small distances in £.
In contrast to the XOM adaptation rule, the SONE adaptation is able to push less
similar samples out of a region of a sampling vector, if the pulling force of the actual
winning sample is weaker than the repulsive force of the sampling vector. This also
prevents image vectors of collapsing onto one point which is stated to be a problem
in Locally Linear Embedding (LLE) (van der Maaten et al. 2009). Furthermore the
parameter ¢ in the t-distributed version Eq. (8.I5) can be used to control the gran-
ularity of the final embedding. Further information about the parameters can be
found in section
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8.3.1 SONE without structure hypothesis

It is also possible to use this algorithm without a defined structure. One could sim-
ply change the definition of the sampling vectors, as inspired by (Wismiiller 2001,
Lee et al. 2003), in such a way that they are selected in close proximity to the image
vector positions.

Therefore, instead of choosing a sampling vector randomly according to a given
distribution, we visit the images £ sequentially and choose a sampling vector s/ =
€’ drawn from a distribution centered around the actual images ¢’. Examples could
be a Gaussian, a localized uniform, or a t-distribution. In our experiments we denote
the use of this variant with the term (ws) added to the method name. And we used
a normal distribution with variance w: NV (¢’, ). The algorithm thus changes to:

Algorithm 8.3 : SONE without structure hypothesis
1: initialize the image vectors §, e.g. randomly or by means of a PCA.
: compute the neighborhood function, e.g. h' () Eq. B2)
: while stopping criterion not reached do
randomly pick an image vector ¢’
find a sampling vector drawn from N(¢7, @) centered around ¢’
compute the neighborhood cooperation g (k) in £ V¢*
find the best matching input vector ¥y, (s) following Eq. (8.11)

perform the update of all image vectors " « ¢* — 7. Hg%

2
3
4
5:
6:
7
8
9

. end while

The final positions of the vectors £ represent the output of the algorithm. How-
ever, in this variant the SONE is not longer bounded to a predefined structure, but
creates its own similarity map. Note, that in this variant the parameters have to be
tuned carefully, so that the repulsive forces do not dominate the embedding. Fur-
thermore the algorithm without structure hypothesis may be computationally more
expensive if the number of data samples grows over the number of vectors, which
would be used in a predefined structure.

8.4 Parameter setting

In this Section we will shortly discuss the parameters and their influence on the fi-
nal embedding of the SONE algorithm. First, the dissimilarity measures dx and d¢
of the observation and embedding space have to be chosen. In our experiments we
used the squared Euclidean distance for both of them. Further, one has to decide
which neighborhood function g should be used in the embedding space. We show
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in this section the different behavior of the algorithm for two example cases: Gaus-
sian and t-distribution. As in XOM, the sampling vectors s may be chosen to match
application-specific user needs. They could for example be drawn from a uniform
distribution, a Gaussian, several Gaussian clusters or they could build a regular grid
of any shape. In our experiments we used triangular grids generated by DISTMESH
(Persson and Strang 2004). The list of parameters, which are candidates for adapta-
tion during training, contains:

o the variance of the neighborhood cooperation # in the observation space X,

¢ the variance of the neighborhood cooperation g in the embedding space &,

7  the learning rate in the gradient decent optimization.

The parameter o resembles the variance of the neighborhood function from the
original SOM and XOM algorithms and is decreased during training. In our ex-
periments, we used a different o; for every data sample =’ such that an e-ball of
variance o; would contain a fixed number nj of neighbors. This ensures, that also
data samples in less dense regions have an effect on the embedding. All o, follow
an annealing scheme of the n;, during training:

log (7t ) e

tmax

ng(t) = nk(t1) - exp , (8.17)

with ny(¢1) and ny (tend) being the number of neighbors at the beginning and at the

end of training and ¢,.x the total number of epochs (sweeps through the sampling
vectors or number of iterations for randomly chosen s). It is also possible to find
appropriate o; by using the “perplexity” proposed for the SNE approach (Hinton
and Roweis 2003).

From Eq. (8.3) follows that the winner always gets the maximal attraction force
of one. Therefore, it is quite possible that for a sampling vector always the same
data point  becomes the winner. To increase the probability that different samples
become the winners to one sampling vector we adjusted the value of

hE (i) < 0.9 max (hfj (j)) . (8.18)
This way different samples become winner and therefore more data points influence
the final embedding.

Figure [8.1] shows the influence of the parameter ¢ on the repulsive forces g and
the learning rate o, in dependence of the distance between image and sampling
vectors in the embedding space. Fig. shows the influence of the value ¢ for
the repulsive forces addressed by g and the learning rate factor «, in case of a Gaus-
sian used as neighborhood function in the embedding space. The repulsion forces
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(a) Gaussian neighborhood cooperation function in the embedding space
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(b) t-distributed neighborhood cooperation function in the embedding space

Figure 8.1: Influence of the parameter ¢ on the repulsion forces g and the learning
rate factor a, in SONE for given distances d¢. In (a) the neighborhood function ¢
is Gaussian and «, the resulting factor, see Eq. (8.14), which influences the learning
rate 7. In (b) g is given by Eq. 89), « is defined in Eq. (8.16).

which may cause instabilities can be easily suppressed by big distances between the
sampling vectors and a small ¢ € [1, 2]. For bigger ¢, the update would become van-
ishingly small. In this case, the ¢ can be fixed during training, while the learning rate
7 is decreased following an annealing scheme. One may also start with high repul-

sive forces denoted by a bigger value of ¢ and decrease it during training following
an annealing scheme:

s(t1)
_ log (c(teid)) t
s(t) =<(t1) -exp | ———— |, (8.19)

tmax
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Figure 8.2: The influence of the parameter ¢ for the learning rate factor o, in t-SONE
using a t-distribution in the embedding space. The sampling vectors lie on a regular
grid of hexagonal shape. For big values of ¢, all image vectors are updated with
nearly equal strength. With smaller values the update strength of image vectors
outside the direct neighborhood of a sampling vector is suppressed.

with ¢(¢1) and ¢(tena) being the value of ¢ in the beginning and the end of the train-
ing. Note that in this case the learning rate 7 should be adapted inversely propor-
tional to the factor o, so that the resulting learning rate factor 7 - o, is decreased
during training.

The application of a t-distribution in the embedding space shows an interesting
behavior of the update strength o, in dependence of the distance d¢ (s, &) (see Fig.
BI(b)). Here, the localization of the update in the embedding space can be controlled
with ¢. A high value of ¢ ensures the same update strength for all samples. For
lower values only samples in the direct neighborhood of the actual sampling vector
are updated, see Fig. With the parameter ¢ for the t-distribution we can control
the granularity or level of detail in the final similarity map. The influence of the
learning rate 7 is negligible in this case and it is fixed to one. The value of ¢ is
decreased during training with a similar annealing scheme as Eq. (8:19).

In summary, the parameter which depends on the actual data set at hand is o for
the neighborhood function in the observation space X. The other parameters like
the sampling distribution s are dependent on the needs and preferences of the user,
but not on the data itself. As in original XOM, prior knowledge may be integrated
in the choice of the structure. The parameter ¢ for the cooperativity function in the



8.5. Complexity 159

embedding space is adjusted according to the choice of the structure hypothesis and
the level of detail the user desires.

8.5 Complexity

The complexity of the structure variant of SONE depends on the dimension M of

the embedding space £, the number of samples to embed n, the number of sampling

vectors ns (which is usually much smaller than n) and the number of epochs ¢,ax.

So, every epoch calculations of the complexity O(M - n - ng) have to be computed.
Fig. shows the computational

advantage of the simplest variant of Running time for different number of data points

SONE in dependence of the number 500 +vcharvting
of data points to be embedded. For 200 —e— SONE |
SNE and SONE we used the same num-  » —4— Sammon
ber of 1000 iterations and run the sim- § 300 —=SNE
ulation on the same machine and all §

of them were matlab implementations. g 200

Most of the proposed dimension reduc- 100

tion techniques show at least quadratic

complexity with the number of points 0

to process. In those methods, the com- samples q,°° S @Q\&Q,\@Q\@Q\@Q\@°@@
putation of the pairwise distances of the

image vectors is necessary in every iter- Figure 8.3: The running time of different
ation. The structure variant of SONE on  dimension reduction methods depending
the other hand only requires the com- on the number of samples to embed.
putation of the distance of the image

vectors to a given sampling vector in each iteration. Thus, for a sweep through
the sampling set (one epoch) the complexity is dependent on the number of sam-
pling vectors and the number of points, which is less then quadratic, if the number
of sampling vectors is smaller than the data set size.

8.6 Experiments

In this Section we show the results of different versions of two-dimensional SONE
on three exemplary real world data sets. We compare some conventional quality
measures, like the Sammon’s stress (Sammon 1969), Spearmans and Pearsons corre-
lation (ps and p,) (Venna 2007) as well as the Nearest Neighbor (1-NN) Error (Enn)
and the Intrusion / Extrusion measure (see Algorithm [6.6) proposed by (Lee and



160 8. Self Organized Neighbor Embedding (SONE)

Verleysen 2008, Lee and Verleysen 2009), on the embeddings. Some methods we
compare display linear complexity with the number of points, namely PCA and
charting (Lee and Verleysen 2007). Additionally, we compare the results to those
obtained from t-SNE, which is widely accepted as a high quality state-of-the-art
technique, although it exhibits higher complexity and is computationally more ex-
pensive than the other techniques.

2358 >
2 a 3
SONE B4 o, Rancr mb TS
445«1& = ;iia,-‘;l"ll‘ b
2 323 22 a2

Figure 8.4: Example embeddings of the USPS Digits data set. From the upper left till
lower right it shows: First, one result for the SONE with Gaussian g and sampling
vectors forming a regular circle (Exn = 0.13), second, one results of t-SONE using a
regular sampling grid of hexagonal structure (€ = 0.05), third, an example result
of charting with 6 analyzers (x5 = 0.26), and last, the result of PCA (Exn = 0.37).
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8.6.1 USPS digits

The USPS Digits dataset from the UCI

repository (Asuncion et al. 1998) con- )
sists of images of hand-written digits __Table8.1: Quality measures for USPS.

as already explained in previous Chap- Method  t-SONE  charting t-SNE
ters. For clarity, we use the digits ¢ Sammon 0.16 (0.0) 025(0.1) 0.16(0.0)

{0,1,2,3,4}, resulting in 5500 samples. ps 0.54(0.0) 042(0.1) 040(0.1)
The parameter settings of all reduction pp 057(0.0) 043(0.1) 044(0.1)
techniques were optimized for perfor- Enn_0.06(0.0)0 029(0.1) 0.02(0.0)

mance, and on each parameter we per-

formed 10 independent runs. For charting and t-SNE, we used the code provided by
(van der Maaten et al. 2009). Charting yielded reasonable results for six analysers,
while for t-SNE a perplexity of 45 provided good results. The other parameters were
chosen according to default values provided by (van der Maaten et al. 2009). Some
example embeddings are shown in Fig.[8.4]and the quality with different measures
is shown in Fig. 8.5 and Table The results of the SONE algorithm were inves-
tigated using different variants: with and without structure hypothesis and with
Gaussian and t-distribution in the embedding space respectively. The parameter
settings can be found in table[8.2lon page

The top left panel in Fig. [84 shows
an example embedding of the SONE al-

Intrusion/Extrusion diagram

gorithm with a Gaussian neighborhood 1
function in the embedding space. In the
top right panel an example embedd-
ing of the t-SONE algorithm using a t-

e . . 05p
distribution in the embedding space is
presented. Table B.I] shows the results ey
for the Sammon’s stress, Spearmans —e—-BISNE
and Pearsons correlation (p, and p,)  orF¥FEET FEE=SZ :':Slfg: H
for the different dimension reduction —+— Q charting
methods and the t-SONE with struc- :(B)f_r';gmg
ture using t-distribution. Two exam- —v—-Bt-SONE
ple results for embeddings without a '0'50 1000 2000 3000 4000 5000

structure hypothesis are shown in Fig- K

ure The left side was achieved with
SONE(ws) using a Gaussian neighbor-
hood and the right side is an example
result of t-SONE(ws).

Figure 8.5: Values of the overall quality @
and B versus the number of neighbors k.
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SONE(ws) A ca t-SONE(ws) °

Figure 8.6: Two example embeddings of the SONE algorithm without a structure
hypothesis and an t-SNE example embedding. For the left- and right-hand side, a
Gaussian and a t-distribution was used in the embedding space, respectively.

From Fig. and Table can be reasoned that the t-SONE embedding can
be identified as a competitive trade-off between high embedding quality and low
computational expense. The different variants result in different behavior of the
embeddings: the incorporation of a Gaussian in the embedding space leads to simi-
larity maps which preserve local neighborhoods, but prevents the image vectors of
being projected onto each other. In addition, it forces image vectors to fill the whole
structure. Using the t-distributed variant, the t-SONE shows the ability of creat-
ing gaps between classes, and, using a small ¢ the image vectors are not forced to
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spread in empty regions of the sampling space. In contrast to t-SNE (see Fig.[8.6) the
(t-)SONE embeddings with structure hypothesis (see Fig.[8.4) represent the differ-
ent variances of the classes presented by the space they occupy in the embeddings.
The digits equal to one are always confined to a small number of sampling vectors,
whereas the twos and fours occupy a big region.

8.6.2 Relational data

As the SONE algorithm depends on the topology of the observed data only, it can
deal with pairwise distances as input. This is a property that SONE directly inherits
from the original XOM algorithm, which has been applied to the visualization of
non-metric real-world data. These data sets are known as dissimilarity or relational
data sets and they are often found in biological real world problems, in which a data
representation in vector form is not feasible.

As two examples we chose the Cat
Cortex data set (Graepel et al. 1999) :
preprocessed by Haasdonk (Haasdonk .
and Bahlmann 2004) and the Pro- . v v ° .
tein data set (Mevissen and Vingron .
1996). The Cat Cortex originates from | = e e
anatomic studies of cats’” brains. This .
data set is given as a matrix contain- I N 0
ing the connection strength between 65 4
cortical areas spit into four classes cor-
responding to four different regions of
the cortex. The similarity matrix is sym-
metric but the triangle inequality does
not hold. The Protein data contains Y
the evolutionary distances of 226 globin | IO S S
proteins (Mevissen and Vingron 1996). . s s, . Vo
We use the five classes proposed in | * . i\‘# se <o v
(Haasdonk and Bahlmann 2004): HA, L
HB, MY, GG/GP and others. The class I .
others combines small classes form the e
original dataset and represents only a ca/apl
small fraction of the whole data set. ‘ ‘ ‘ others

cat cortex

>

'4

>
= > 40
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n L

<4
> 40
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s}

Fig.[8.71shows two example embed-
dings of the relational data sets. Werun Figure 8.7: Embeddings of Cat Cortex
the t-SONE algorithm 10 times for each (énn = 0.09) and Protein (Exn = 0.04).



164 8. Self Organized Neighbor Embedding (SONE)
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Figure 8.8: The overall embedding quality @) and B for two relational data sets. The
gray shaded area denotes the STD.

data set with random initialization of the image vectors. The embedding quality is
measured by @) and the behavior with B and compared to those from t-SNE with
varying perplexity. The mean values and standard deviation (STD) of these mea-
sures is shown in Fig. For t-SNE the best results were achieved with perplexity
25. The parameter setting for the t-SONE for the Cat Cortex and for the Protein data
can be found in table[8.2 on page

The quality of the embeddings of t-SONE and t-SNE is comparable. With the
Cat Cortex data t-SNE shows bigger standard deviation regarding the random ini-
tialization and more extrusive behavior for small neighborhoods. For the Protein
data the quality measured by @ is higher with t-SNE and the embedding shows
highly intrusive behavior. The t-SONE embedding shows in this case extrusive be-
havior. This shows, that despite the close relationship of SNE and SONE even the
behavior of the embeddings may vary a lot. The mean 1-NN Error of the 10 t-SONE
embeddings is & v~ = 0.13 with standard deviation of 3% for the Cat Cortex and
Enn = 0.08 with STD=3% for the Protein data set.

8.7 Conclusion
In this contribution, we have introduced an extension of the XOM for structure-

preserving dimensionality reduction. Based on minimizing the Kullback-Leibler
divergence of neighborhood functions in data and embedding space, SONE creates
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Table 8.2: Explicit parameter settings for the SONE variants in the experiments.

method structure hypothesis tmax oi s Eq

USPS

SONE triangular mesh, in form of a 50 oi(t1)  =perplexity 30 =1
circle, 562 s 0i(tena) =perplexity 3

t-SONE triangular mesh, in form of a 500 Eq. @I, nk(t1) = 3000 s(t1) = 107
hexagon ng(tenda) = 10 S(tena) = 5000

SONE(ws) no hypothesis! s drawn from 300 oi(t1) =perplexity 500 s=1
N(&7,0.1) 0;(tena) =perplexity 5

t-SONE(ws) no hypothesis! s drawn from 300 o;i(t1) =perplexity 500 s(t1) = 107
N(&7,10) 0i(tena) =perplexity 5 S(tena) = 0.1

Cat Cortex

t-SONE triangular mesh, in form of a 500 Eq. @10, nk(t1) =50 s(t1) = 107
hexagon, 48 s ng(tend) = 5 S(tend) = 1000

Protein

t-SONE triangular mesh, in form of a 500 Eq. @10, ni(t1) = 200 s(t1) = 107
hexagon, 200 s ng(tend) = 5 S(tend) = 2000

a conceptual link between fast sequential online learning known from topology-
preserving mappings and principled direct divergence optimization approaches,
such as SNE and t-SNE. Quantitative comparative evaluation on benchmark data
using multiple embedding quality measures identifies SONE as a competitive trade-
off between high embedding quality and low computational expense, which moti-
vates its extended use in real-world settings throughout science and engineering.
We have extended the algorithm to utilize different distributions, namely the Gaus-
sian and the t-distribution following the ideas proposed in t-SNE (van der Maaten
and Hinton 2008). We have analyzed different variants of the SONE algorithm with
and without structure hypothesis and using different distributions, which offers
high flexibility based on application needs. Finally, it allows the user to incorporate
prior knowledge and the tuning of the level of detail the user desires. The extension
of this algorithm to arbitrary divergences will be addressed in the next Chapter.
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8.A Derivative of the XOM cost function

We write the derivative of the cost function Eq. (8.5) with respect to & k.

OE 0y (s) i o .
e = | ST D) delo. ) s
J h(s (k)a‘li%“ p(s)ds. (8.20)

The second term yields the learning rule Eq. (8.2) while the first term vanishes due
to the following considerations: We use the shorthand notation

Z K= (5) - de(s, &) . (8.21)
Then, the Kronecker delta can be expressed as
wi = H(ZH — o(z*, 5)) —n+0.5> : (8.22)

where H denotes the Heaviside function and n denotes the number of data points
z'. The derivative of H is given by the delta function § which is symmetric and
non-vanishing only for input zero. Hence the first term of Eq. (8.20) vanishes:

65q,(s)w@ i
J lz ?Cb(w 73)1 p(s)ds
=JZ§<ZH(<I>(:B1,S)—(I>(503Z s —n+05> 26 —d(z!, 5))-
i 1

(n5" ) =0z k) - adga(Zth:’" () de(s.€) p(s)ds  (8.23)

=”Z5<ZH _ o, s))—n+;) L 5(B(a, 5) — B(a, ).

ilj
h= (k) - b (5) - de(s, &) Z(S(ZH — oz’ s)) — n+;>
ilj
i 1 . S :Ijk
(B(a',s) B, s)) - b2 (k) B2 () - dg<s,sﬂ>] - adg(ggk) p(s)ds  (824)
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= J lZ(S (ZH(‘I’(‘”i’S) — (', 5)) —n+ ;) S5(®(xt, ) — (2!, 5))-

h?(kz) (', 8) — 26 (Z H(®(z!,s) — (!, s)) —n + ;)
il Iz
adé’(svék)

Y p(s)ds =0. (8.25)

S(®(a',s) — D(a',8)) - B2 (k) - D(a, s>] ~

8.B Derivative of the SONE cost function

The derivatives of the neighborhood function read in case of a Gaussian Eq. (8.8):

092 (k) _ (_g2(k) ode(s,€")
pre ( 2§2) Y (8.26)

and in case of a t-distribution Eq. (8.9)

dg(k) [ <+1 g2 (k) dde (s, €")
o¢* ( % ><1+d5<s,£’“>/<> ogh 527

We write the derivative of the cost function Eq. (810) with respect to £*:

J

0g® x
+ J’Z(S‘I/GKL(S)ﬂEi. gaqé.(kk) (1 - };ch((:))> p(s)ds , (8.28)

S

ok a6 GKL(s),x? xty - hgz j xl . s/ -
D G (gfjf) —1 ) +a20)) plo)is

with Ugkr, (s) defined in Eq. (8.11). The latter term yields the learning rule. The first
term vanishes, as can be seen as follows: We use the shorthand notation

¥ (@' 5) = 3 <h§“' (4) log (W) — 2 (j) + g?(j)) : (829)

Then the best match input point can be expressed as

. 1
6\I’GKL(S),€Di = H(; H(@N(ml’ s) — (I)N(a}k7 S)) —n + 5) . (830)
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Hence the additional first term of Eq. (8.28) vanishes, because of following:

——2" . (2", s) p(s)ds
[P (a',5) p(s)

— JZ(S lz H(®N(x',s) — dN(z!,5)) —n + ;1 26 (@N(x', s) — @N(z!, 5))

(o2 ) = 1 ) = (28 = ' )] £ g3y

oe”
» (h log (Z) SR () + gso)) p(s)ds
fEa (ZH (@N(z',s) — dN(z!,s)) —n + ;) 5N (2, 5) — V(! 5))
ilj

a2 =g ) L (h () 1og (hg gf) SAORY m) pls)ds

JZ& <ZH (N (z!,s) — dN(z!,5)) —n + ;) 5N (2!, ) — dN (2, s))

ily

a2 — g 1) 2L (h () log (Z gf) AOE gsm> pls)ds

g (8.32)
f25 ( H(®N(z,s) — oN(z",s)) —n + ;) S5(@N (', s) — N (!, 8))

(g2 (k) 1 (R)) - agaﬁf) oN(at, 5) p(s)ds

JZ& < <I>N :c ,8) — @N(wl/,s)) —n+ 1) ~5(‘I>N(33l,3) - q)N(wi’S))

2

(g2 (k) — b2 () - a%i(f) N s) pls)ds =0, (8.33)

because of the symmetry of § and the fact that § is nonvanishing only if ®N(z!, s)
PN (z, 5).
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Chapter 9

Non-linear Dimension Reduction Employing
Divergences

The nice thing about standards is that there are so many of
them to choose from.

Andrew S. Tanenbaum (Computer Networks, p.254)

Abstract

We present a systematic approach to the mathematical treatment of the Self Organized
Neighbor Embedding, Stochastic Neighbor Embedding and t-distributed SNE. This al-
lows an easy adaptation of the methods or exchange of their respective modules. In partic-
ular, the divergence which measures the difference between distributions in the original
and the embedding space can be treated independently from other components like, e.g.,
the similarity of data points or the distribution. We focus on the extension for different
divergences and propose a general framework based on the concept of Fréchet-derivatives.
This way the general approach can be adapted to the user specific needs. We derive the ex-
plicit learning rules for a wide range of divergences and concentrate on the evaluation of
the Gamma-divergence for t-distributed SNE and Self Organized Neighbor Embedding
on several real-world data sets.

9.1 Introduction

any dimension reduction methods have been introduced and discussed in
the previous Chapters based on different objectives. Recently, the Stochas-
tic Neighbor Embedding (SNE) (Hinton and Roweis 2003) and extensions thereof
have become popular for visualization. It approximates the probability distribution
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in the high-dimensional space, defined by neighboring points, with the correspond-
ing probability distribution in a lower-dimensional space. In (van der Maaten and
Hinton 2008) a technique called t-distributed SNE (t-SNE) is proposed, which is a
variation of SNE considering a particular statistical model assumption for the low-
dimensional distribution. The similarity of the distributions is quantified in terms
of the Kullback-Leibler (KL) divergence. A computational efficient combination of
fast sequential online learning and principled direct divergence optimization known
from SNE is called Self Organized Neighbor Embedding (SONE) (Bunte, Hammer,
Villmann, Biehl and Wismiiller 2010), see Chapter All these methods measure
the disagreement of a topology defining functions in the high-dimensional space
and the low-dimensional space by means of the KL or the generalized Kullback-
Leibler (GKL) divergence. Functional metrics like Sobolev distances, kernel-based
dissimilarity measures and divergences have attracted attention recently for the pro-
cessing of data showing a functional structure. These metrics were for example in-
vestigated as alternatives to the most common choice, the Euclidean distance (Rossi
etal. 2005, Lee and Verleysen 2005, Ramsay and Silverman 2006, Villmann 2007, Vill-
mann and Schleif 2009). The application of divergences for Vector quantization
and Learning Vector Quantization schemes have been investigated in (Villmann and
Haase 2011, Mwebaze et al. 2011).

In this Chapter, we formulate a mathematical framework based on Fréchet deri-
vatives which allows to generalize the concept of SONE, SNE and t-SNE to arbitrary
divergences. This leads to a new dimension reduction and visualization scheme,
which can be adapted to the user specific requirements in an actual problem. We
summarize the general classes of divergences following the scheme introduced by
(Cichocki et al. 2009) and extended in (Villmann and Haase 2011). The mathemati-
cal framework for functional derivatives of continuous divergences is given by the
functional-analytic generalization of common derivatives, known as Fréchet deriva-
tives (Frigyik et al. 2008, Kantorowitsch and Akilow 1978). It is the generalization of
partial derivatives used for the discrete variants of the divergences. After character-
izing the different classes of divergences and the introduction of Fréchet derivatives,
we introduce a general mathematical view on the SONE, SNE and t-SNE algorithms
incorporating these principles. Real world data sets demonstrate the applicability
of this approach.

9.2 Specifications of divergences

Divergences are functionals D(p||¢) designed as dissimilarity measures between two
nonnegative integrable functions p and ¢ (Cichocki et al. 2009). In practice, usually
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Figure 9.1: Overview over the families of divergences and their relationship to each
other. The shortcut Prob. denotes the special case of probability densities. For sake

of clarity we show the most important relations only and do not claim completeness.

p corresponds to the observed data and ¢ denotes the estimated or expected data.
We assume p(x) and ¢(z) are positive measures defined on z in the domain V. The
weight of the functional p is defined as

W) = | pla)do ©.1)

Positive measures with the additional constraint W (p) = 1 can be interpreted as
probability density functions. Generally speaking, divergences measure a quasi-
distance or directed difference, while we are mostly interested in separable mea-
sures, which satisfy the condition

f
mmw{>0“p#q 92)

—0iffp=gq .
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In contrast to a metric, divergences may be non-symmetric D(p|lq) # D(¢|lp), and
do not necessarily satisfy the triangular inequality D(p||¢) < D(p||z) + D(z|/¢). Fol-
lowing (Cichocki et al. 2009) one can distinguish at least three main families of di-
vergences with the same consistent properties: Bregman-divergences, Csiszar’s f-
divergences and Gamma-divergences. Note that all these families contain the KL
divergence as special case, so the KL divergence can be seen as the non empty inter-
section between the sets of divergences.

In general we assume p and ¢ to be positive measures. In case they are nor-
malized we refer to them as probability densities. We review some basic properties
of divergences in the following Sections. For detailed information see (Cichocki
et al. 2009, Cichocki and Amari 2010). An overview of the family of divergences,
examples and their relationship to each other can be found in Figure

9.2.1 Bregman divergences

A Bregman divergence is defined as a pseudo-distance between two positive mea-
sures p and ¢: Dg(pllq) : £ x L — IR™. Let ¢ be a strictly convex real-valued func-
tion with the domain of the Lebesgue-integrable functions £ and twice continuously
Fréchet-differentiable (Kantorowitsch and Akilow 1978). Then the Bregman diver-
gence can be defined by

_ 99(q)

D§(plla) = ¢(p) — 6(q) Tq[p —q] , (9.3)

where &z—? is the Fréchet derivative of ¢ with respect to ¢ (Villmann and Haase

2011). Well known fundamental properties of the Bregman divergences are (Cichocki
et al. 2009):

Convexity A Bregman divergence is always convex in its first argument but not
necessarily in its second.

Non-negativity

DE(pllg) = 0and DE(pllq) = 0iff p = g (9.4)

Linearity They are linear according to the generating function ®, i.e. any positive
linear combination of Bregman divergences is also a Bregman divergence:

D]CB1¢1+C2¢2(.) = ClDﬁl(.) + CQD%Q(.) C1,Co > 0
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Invariance A Bregman divergence is invariant under affine transformations. Thus,
DL (p|lq) = Dﬁ(p”q) is valid for any affine transformation

I(g) = é(g) + ¥yla] + ¢ (9.5)
with linear operator

_0l(g)  09(9)
- dg e dg

Pylq] q (9.6)

for positive measures g and ¢ and scalar c.

Three-point property For any triple p, ¢, g of positive measures

D (pllg) =D§(plla) + D (allg) + (p — q) <5<§gq) - 5‘?9’”) holds.

Generalized Pythagorean theorem Let Py(¢) = arg min D% (wl|q) be the Bregman
e

projection onto the convex set Q2 and p € Q). The inequality:
Dg(qu) > Dﬁ(pHPg(q))—kD%(Pg(q)||q) (generalized Pythagorean theorem) (9.7)

holds. If Q2 is an affine set it holds with equality.

Optimality In (Banerjee et al. 2005) an optimality property is stated. Given a set
S of positive measures p with mean p = E[S] and p € S the unique minimizer
Epes[D(pllg)] is minimum for ¢ = p if D is a Bregman divergence. This property
favors the Bregman divergences for optimization and clustering problems (Banerjee
et al. 2004, Bregman 1967, Dhillon and Sra 2005, Dhillon and Tropp 2007, Murata
et al. 2004).

The Bregman divergence include many prominent dissimilarity measures like
(Cichocki et al. 2009, Villmann and Haase 2011, Eguchi and Kano 2001):

o The generalized Kullback-Leibler (or I-) divergence for positive measures p
and ¢:

Do (plo) = [ plog (g) ir= [0 g ds 98)

using the generating function

B(f) = J (f log f — f) da . 9.9)
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Figure 9.2: Isosurfaces of some Bregman divergences with respect to different refer-
ence points. The first panel of each row contains the plane of probability densities,
the cutoffs in the other panels show the equidistance lines for this plane.
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Figure 9.3: Equidistance lines of Bregman divergences for probability densities with
respect to different reference points.
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Some 3-dim. isosurfaces for the GKL divergence with respect to different ref-
erence points can be found in Figure For probability densities p and ¢, Eq.
©.8) simplifies to the KL divergence (Kullback and Leibler 1951, Kapur 1994):

Dxw(pllg) = fp log (2) dr , (9.10)

which is related to the Shannon-entropy (Shannon 1948). Equidistance con-
tours for 3-dim. probability densities using KL divergence with respect to
different reference points are displayed in Fig.

The Itakura-Saito (IS) divergence (Itakura and Saito 1968) :
Dis(pllq) = J [Z — log (]q)> - 1] dz (9.11)

bases on the Burg entropy, which also serves as the generating function:

O(f) = —flog(f) dz . (9.12)

The IS divergence was originally presented as a measure of the quality of fits
between two spectra and became a standard measure in the speech and im-
age processing community due to the good perceptual properties of the re-
constructed signals. It is known as negative cross-Burg entropy and fulfills
the scale-invariance property Dis(c - pllc - ¢) = Dis(p|l¢), which implies the
same relative weight is given to low and high valued components of p (Bertin
et al. 2009).

The Eta-divergence is also known as norm-like divergence (Nielsen and Nock
2009) :

Dy(plle) = [ £+ (= 1)-a" = n-p- " da ©.19
with generating function
O(f) = ff” dx forn>1 . (9.14)

In the case n = 2 the Eta-divergence becomes the Euclidean distance with
generating function ®(f) = { f? dx.

o The Beta-divergence (Cichocki et al. 2009):

B8-1 _ ,B—1 B _ 8
LA — —fp iy (9.15)

e
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with 8 # 0 and § # 1 and the generating function

S Bf4B1
BB-1

For specific values of 3 the divergence becomes:

f — 1: generalized Kullback-Leibler Eq. (9.8)

B — 0 : Itakura-Saito divergence Eq. (9.11)

B8 =2 : Euclidean distance (apart from a factor %).

Furthermore the Beta-divergence is equivalent to the density power diver-
gence (Basu et al. 1998, Eguchi and Kano 2001, Mihoko and Eguchi 2002) and
a rescaled version of the Eta-divergence.

o(f) (9.16)

9.2.2 Csiszar f-divergences

We denote by F the class of convex, real-valued, continuous functions f satisfying
f(1) = 0, with

F ={glg : [0,0) > IR, g - convex} . (9.17)

For a function f € F the Csizar f-divergence is given by:

Dy (pllg) = Jq f <§> dx (9.18)

with the definitions 0 - f(2) = 0and 0- f (%) = lim z- f(3) = lima- f(w)
(Csiszar 1967, Csiszar 1972, Amari and Nagaoka 2000, Taneja and Kumar 2004). The
f-divergence can be interpreted as an average of the likelihood ratio ~ describing
the change rate of p with respect to ¢ weighted by the determining function f. For
a general f, which does not have to be convex, with f'(1) = ¢; # 0, this form is not

invariant and we need to use the generalized f-divergence

DY (pllg) = ¢y f(p —q) dz + Jq f (g) d . (9.19)

For the special case of probability densities p and ¢ the first term vanishes and the
original form of the f-divergences is obtained.

Some basic properties of the Csiszar f-divergence are (Osterreicher 2002, Ci-
chocki et al. 2009):

Non-negativity D (p|l¢) = 0 where the equal sign holds iff p = ¢, which follows
from the Jensen’s inequality.
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Generalized entropy It corresponds to a generalized f-entropy if the form
Hy(p) = —Jf (p(r)) dr . (9.20)

Strict convexity The f-divergence is convex in both arguments p and g¢:

Dy (tpr + (1 — t)palltqr + (1 — t)g2) <
tDf(p1llq1) + (1 — t)Dys(pallgz) Vte [0,1] (9.21)

Scalability ¢Dy(p|l¢) = Dcf(p||q) for any positive constant ¢ > 0.

Invariance Dy(pl|¢) is invariant with respect to a linear shift regarding the function
fre.g. D(plla) = Ds(pllg) iff f(u) = f(u) +c- (u—1) for any constant c € IR.

Symmetry For f, f* € F, where f*(u) = u- f(1) denotes the conjugate function of
[, the relation D (p|lq) = D« (q¢||p) is valid. It is possible to construct a symmetric
Csizar f-divergence with foym(u) = f(u) + f*(u) as determining function.

Upper bound The f-divergence is bounded by

0<Ds(pllg) < 1irg+{f(u) + f*(u)} with u = (9.22)
The existence of this limit for probability densities p and ¢ was shown by Liese and
Vajda in (Liese and Vajda 1987). Villmann and Haase showed that these bounds still
holds for positive measures p and ¢ (Villmann and Haase 2011).

Monotonicity The f-divergence is monotonic with respect to the coarse-graining
of the underlying domain D of the positive measures p and ¢, which is similar to the
monotonicity of the Fisher metric (Amari and Nagaoka 2000).

Some well-known examples of f-divergences are (Cichocki et al. 2009):

e The subset of Alpha-divergences (Cichocki et al. 2009):

Da(pllg) = m ' J[paq(l*“) —ap+ (a—1)q] dz (9.23)

is based on the determining function

(e=1) _ 1 1_-
flu) = u 3 + Y withu=2 (9.24)
a2 —a e! q
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with a € IR\{0, 1}. For specific values of « the divergence becomes:

a — 1 :generalized Kullback-Leibler Eq. (9.8)

a — 0 :reverse Kullback-Leibler

a = —1: Neyman Chi-square

o =2 :Pearson Chi-square.

For a < 0 the divergence is zero-forcing, e.g. p(x) = 0 enforces g(z) = 0. On
the other hand, for o > a it is zero-avoiding, i.e. ¢(x) > 0 whenever p(z) > 0.
For &« — o ¢(z) covers p(z) completely and the Alpha-divergence is called
inclusive in this case. Furthermore the Beta-divergences can be generated
from the Alpha-divergences by applying a nonlinear transformation (Cichocki
et al. 2009, Villmann and Haase 2011).

o The generalized Rényi divergence (Amari 1985, Cichocki et al. 2009):

Dn(ple) = - dox ([ [17407 < ap s (o= 1] o 1) 025)

with « € R\{0, 1} is closely related to the Alpha-divergence.
e For the special case of probability densities the generalized Rényi-divergence

reduces to the Rényi-divergence (Rényi 1960, Rényi 1970):

1
Di(pllg) = —— - log <Jp“q“‘“) d:c> (9.26)
which bases on the Rényi entropy.

o The Tsallis-divergences

1 —a
Df () = 1= (1 ~ [ dx) 927)

for o # 1is a widely applied divergence for probability densities p and ¢ based
on the Tsallis entropy. It is also a rescaled version of the Alpha-divergence. In
the limit & — 1 it converges to the Kullback-Leibler divergence Eq. (9.10).

o The Hellinger divergence (Taneja and Kumar 2004):

Dulpla) = 5 (V5 —v@)* da 9.28)

with generating function f(u) = 2(1 — y/u) for u = £ is defined for probability
densities p and gq.
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9.2.3 Gamma-divergence

The Gamma-divergence is very robust with respect to outliers (Fujisawa and Eguchi
2008) and was proposed by Fujisawa and Eguchi:

(974 da] 75 - [+ da] T
(Sp . q"/ diL) Bl

It is robust for v € [0, 1]. In the limit v — 0 it becomes the Kullback-Leibler diver-
gence Dy, (pl|q) for probability densities. For v = 1 it becomes the Cauchy-Schwarz
divergence

Des(pla) 3 o ([ do- 57 do) —10g ([ -qar) . 9:30)

which is based on the quadratic Rényi-entropy. The Cauchy-Schwarz divergence
is symmetric and was introduced considering the Cauchy-Schwarz inequality for
norms. It is frequently applied for Parzen window estimation, especially suitable
for spectral clustering as well as related graph cut problems (Principe et al. 2000,
Jenssen 2005, Jenssen et al. 2006, Villmann and Haase 2011).

Some isosurfaces of the Gamma-divergence for different values of v are shown
in Fig. The equidistance lines for the special case of probability densities can be
found in Fig. The Gamma-divergence displays some nice properties (Cichocki
et al. 2009, Villmann and Haase 2011):

(9.29)

D, (pllq) = log

Invariance D, (p||¢) is invariant under scalar multiplication with positive constants

D,(pllg) = Dy(c1-pllca-q) Yer,e2 >0 . (9.31)

In case of positive measures the equation D, (p|/¢) = 0 holds only if p = ¢ - ¢ with
¢ > 0. For probability densities ¢ = 1 is required.

Pythagorean relation As for Bregman divergences a modified Pythagorean rela-
tion between positive measures can be stated for special choices of p, ¢, p. Let p be
a distortion of ¢ defined as convex combination with a positive distortion measure

(r)

pe(r)=(1—¢)-q(r)+e-o(r) . (9.32)

i

A positive measure g is denoted as ¢-consistent if v, = (§¢(r)g(r)* dr)® is suf-
ficiently small for large o > 0. If two positive measures ¢ and p are ¢-consistent
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Figure 9.6: Isosurfaces of some Gamma-divergences with respect to different refer-
ence points. The first panel of each row contains the plane of probability densities,
the other panels contain equidistance lines for certain limiting planes.
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Figure 9.7: Equidistance lines of Gamma-divergences for probability densities with
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Figure 9.8: Histograms of intensity values in an example picture. The original image
“moon” together with its histogram is shown on the left side. The following pictures
contain noise in form of a linear monotonically increasing transformation of gray
values (Eq. (0.34) using [ = [1,2,...,9]) corresponding to the Noise-Levels 1 till 9.

with respect to a distortion measure ¢, then the Pythagorean relation approximately
holds for ¢, p and the distortion p. of ¢:

Ape: 4, ) = Dy(pellp) — Dy (pella) — DA (gllp)
= O(ev”) with v = max{vg,v,}. (9.33)

This property implies the robustness of D, according to distortions.

9.2.4 Discussion of Divergences

In this section we examine and compare some introduced divergences by means of
controlled experiments. We investigate the behavior of different divergences for the
comparison of images containing an increasing level of (non-linear) noise. There-
fore, we compute the histograms of gray-value images taken from the Berkley seg-
mentation data set and noisy versions of them.

Linearly monotonically increasing noise

In the first experiment the noisy image /* is obtained by adding a linear monotoni-
cally increasing transformation of gray values to the image I:

I*(z,y) = I(z,y) - [l - (I(z,y) — Ip) + 1] , (9.34)

where | denotes the level of noise and Iy corresponds to the minimal intensity in
the original image. Figure shows the picture “moon” adding different levels
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Figure 9.9: Matrix of pairwise dissimilarity of the ten histograms shown in figure
using different divergences. The ideal dissimilarity matrix for this example is
a band matrix shown in the middle of the top row. Some divergences (marked
with an asterisk * in the title) show numerical instabilities in case of zeros in the
signals. In that cases a small constant ¢ = 1 was added to all histograms to prevent
the degeneration. Other divergences, like e.g. the Gamma-divergence are more
robust. The Eta-divergence ignoring the extreme cases and the Gamma-divergence
with v > 1 exhibit more of the desired band structure for this example compared to
other choices.
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Figure 9.10: Histograms of intensity values in an example picture. The original image
“dolphins” together with its histogram is shown on the left side. The following
pictures contain noise in form of a linear monotonically increasing transformation
of gray values (Eq. ©.34) using [ = [0.1,0.2,...,0.9]) named Noise-Levels 1 till 9.

of noise following Eq. (9.34) together with the gray-value histograms. The noise-
level is ranged from [ = 1 to [ = 9. Some dissimilarity matrices comparing the ten
histograms with different divergence measures are shown in Figure The intu-
itively ideal dissimilarity matrix in this case is a symmetric band matrix shown in
the middle of the top row. Some divergences like the generalized Rényi divergence
show numerical instabilities. Others show quite similar behavior, e.g. Itakura Saito,
Alpha-divergences and the Beta-divergence with § = 0.5, but they do not exhibit
the desired band structure. For the original image and low noise-levels (images 1-
5) the Beta-divergence with § = 1.5, Alpha-divergence with o« = 0.5 and also the
generalized KL divergence show a bit of the desired band structure. Ignoring the
last column and last row (the extreme case) in the dissimilarity matrix of the Eta-
divergence shows a good approximation of a band matrix. The Gamma-divergence
is observed to be quite robust in this case and also exhibits a visible band struc-
ture for v > 1. In the special case of v = 1 the Gamma-divergence equals the
Cauchy-Schwarz divergence and is symmetric. Another symmetric example is the
Alpha-divergence with o = 0.5.

As a second example we take a picture of a group of dolphins and add some
noise (following Eq. (9.34)) using the levels I = [0.1,0.2,...,0.9]. The resulting his-
tograms of gray values for the different noise levels are shown in Figure As
above we compute the matrices of pairwise similarities between the histograms us-
ing different divergences. The results can be found in Figure In this example
the eta-divergence especially with = 2.5 is a good approximation of the ideal dis-
similarity matrix shown in the middle of the top row. The best symmetric choice
is the Gamma divergence with v = 1 (Cauchy-Schwarz). Furthermore, dependent
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Figure 9.11: Matrix of pairwise dissimilarity of the ten histograms shown in figure
P10 using different divergences. The ideal dissimilarity matrix for this example is a
band matrix shown in the middle of the top row. Some divergences (marked with an
asterisk * in the title) show numerical instabilities in case of zeros in the signals. In
that cases a small constant ¢ = 1 was added to all histograms to prevent the degen-
eration. The Eta-divergence especially with = 2.5 shows a good approximation
of the desired band structure for this example. The Gamma-divergence with v = 1
(Cauchy-Schwarz) is the best symmetric choice in this case.
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Figure 9.12: Histograms of intensity values in an example picture. The original image
“dolphins” (top row) together with its histogram is shown on the left side. The
following pictures contain additive uniform noise following Eq. ©.35) using [ =

[29, 109 ..., 250] corresponding to the Noise-Levels 1 till 9.

on the value for v one can chose between a better “resolution” (local) and a better
preservation of the hierarchy of the histograms (global). Some other divergences,
e.g. the generalized KL and Itakura-Saito, show very poor approximations of the
desired dissimilarity for this example.

Additive uniform noise

In the second experiment the noisy image I* is obtained by adding uniform noise
to the image I:

I*(z,y) = I(z,y) + U0,1) , (9.35)

where U(0,1) denotes a scalar value drawn from the uniform distribution in the
interval [0, [].

Figure shows the picture of dolphins adding different levels of uniform
noise following Eq. (0.35) together with the more and more flattened gray-value
histograms. The noise-level is ranged from | = 2% to [ = 352, Some dissimilarity
matrices pairwise comparing the ten images with different divergence measures are
shown in Figure Some divergences like the generalized Rényi, Itakura-Saito
and some Alpha- and Beta-divergences fail to approximate the desired band struc-
ture in the pairwise dissimilarity matrix. Others, like the Gamma-, Eta- and some
Alpha- and Beta-divergences are nearly ideal for this example. The Kullback-Leibler
divergence is nearly perfect if the original image is ignored.
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Figure 9.13: Dissimilarity matrices comparing the ten histograms shown in figure
0.12l using different divergences. The ideal dissimilarity matrix for this example is a
band matrix shown in the middle of the top row. Some divergences (marked with
an asterisk * in the title) show numerical instabilities in case of zeros in the signals.
In that cases a small constant ¢ = 1 was added to all histograms to prevent the
degeneration. In this example the Eta-, Beta-, Gamma and the Alpha-divergences
with & = 0.5 show good approximations of the ideal band structure. Ignoring the
original image also KL is nearly perfect. Other divergences like Itakura-Saito and
generalized Rényi fail in this example.
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9.3 The Fréchet Derivative

Suppose V and Z are Banach spaces and U < V is an open subset of V. The function
f : U — Z is called Fréchet differentiable at = € U, if there exists a bounded linear
operator A, : V — Z,such thatfor h e U

o 1@+ B) — £(@) — Az

h—0 1Py

0. (9.36)

This general definition can be used for functions L : B — IR, defined as mappings
from a functional Banach space B to IR. Further let B be equipped with a norm ||-||
and f, h € B are two functionals. The Fréchet derivative 6{;5;’0 lof L at point f (i. e. in

a function f) in the direction h is formally defined as:

tim 2 (115 + ] - 217 = 2]

The Fréchet derivative in finite-dimensional spaces reduces to the usual partial de-
rivative. Thus, it is a generalization of the directional derivatives.

Following (Villmann and Haase 2011) we introduce the functional derivatives of
divergences in the next paragraphs. An overview is given in Table

[h] . (9.37)

9.3.1 Fréchet derivatives of Bregman divergences

The Fréchet-derivative of D% Eq. (0.3) with respect to ¢ is formally given by

DLmle) o) ol 0| R —a)]

5q dq dq dq
with ©:38)
i ] T TP 20)
5q o 1 oq

For the generalized Kullback-Leibler divergence Eq. (9.8) this simplifies to

Dexrle) _ » 9.39)

dq q
whereas for the Kullback-Leibler divergence Eq. (9.10) in the special case of proba-
bility densities it reads

Dxrlple) _ » (9.40)

dq q
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For the Itakura-Saito divergence Eq. (O.11) we get

dDrs(pllg) _ 1
= — 9.41
5 2P (941)
and for the Eta-divergence Eq. (9.13) the Fréchet-derivative is
oD _
716(5@_(1(77 D.1=n)n-(p—q) . (9.42)

In the case of n = 2 it reduces to the derivative of the Euclidean distance —2(p — q).
The Fréchet-derivative for the subset of Beta-divergences Eq. (9.15) is given by

éDs(pllg)

I — . g2 4 gD _ B2 (g _p) | (9.43)

9.3.2 Fréchet derivatives of Csiszar f-divergences

For the Csiszar f-divergences Eq. (9.18) the Fréchet derivative is

D _
Dsela) _ (), A0 ou_ (0 i) ©0.44)
0q q ou dq q u q
with u = . For the set of Alpha-divergences Eq. (9.23) we get
Dalplle) _ L apcar_q) (9.45)
dq o

The related generalized Rényi divergence Eq. (0.25) yields

dD&r(plle) _ —pg 1 9.46)
0q Sl =) —ap+ (a = 1)gldz + 1 '
which reduces in the case of the Rényi divergence for probability densities to
DR (plle) _ _—p*q=
e v =y (9.47)
For the Tsallis divergence Eq. (9.27) the Fréchet derivative reads
D% (pllg) _ _—pq"
5¢  fprqt-)da ©49)

and for the well-known Hellinger divergence Eq. (9.28) the derivative is

Du(plle) _ \/5 , (9.49)
oq q
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9.3.3 Fréchet derivative of the Gamma-Divergence

The Fréchet derivative of the Gamma-divergence Eq. (0.29) can be written as

oD, (pllg) q" p-q™Y

dq § g0+ dx B Sp-qdx

(9.50)

Considering the important special case v = 1 the Cauchy-Schwarz divergence Eq.
(©.30), the Fréchet derivative reads

dDcs(plle) g P (9.51)

dq _Sq2dx_gp~qda:

9.4 Derivation of the general cost function gradient for
t-SNE and SNE

Generally, dimensionality reduction methods convert a high dimensional data set
X = {z,z} € R" into low dimensional data E = {£,¢} € R™. A probabilis-
tic approach to visualize the structure of complex data sets, preserving neighbor
similarities is SNE, proposed by (Hinton and Roweis 2003). In (van der Maaten and
Hinton 2008) van der Maaten and Hinton presented a technique called t-SNE, which
is a variation of SNE considering another statistical model assumption for data dis-
tributions. Both methods have in common that a probability distribution over all
potential neighbors of a data point in the high-dimensional space is analyzed and
described by their pairwise similarities. Both, t-SNE and the symmetric variant of
SNE (van der Maaten and Hinton 2008) originally minimize the Kullback-Leibler
divergence between a joint probability distribution in the high-dimensional space
and its counterpart in the low-dimensional space as the underlying cost function,
using a gradient descent method (see Algorithm[6.4land Algorithm[6.5). We rewrite
the pairwise similarities Eqs. (6.4) and (6.9) in the high-dimensional original data
space:

Pz|x + Pzx|z

2-{1dz ©-52)

b= DPzz =
with conditional probabilities
exp (= | — 2| /203)
exp (— |z — Z/H2/2O'%) dz'

The variances o, which define the neighborhood corporation, are found by a line-
search procedure parameterized by the so called perplexity. The perplexity is usu-
ally set to a value between 5 and 50 dependent on the data set size. Higher values

Pzjxa =
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mean more neighbors are taken into account. For more information we refer to
(van der Maaten and Hinton 2008). SNE and t-SNE differ in the model assumptions
according to the distribution in the low-dimensional mapping space, defined more
precisely in section[0.4.1]

9.4.1 The t-SNE gradient

Let D (p||q) be a divergence for non-negative integrable measure functions p = p (r)
and ¢ = ¢(r) with a domain V and &, ¢ € € distributed according to II¢ (Cichocki
et al. 2009). Further, let r (&€, ¢) : £ x £ — IR with the distribution IT,. = ¢ (r, II¢). We
use the squared Euclidean distance in the low-dimensional space:

r=ree=1(€¢) =€-¢|* . (9.53)

For t-SNE, q is obtained by means of a Student t-distribution, such that

(1+r (5’,4’)7)71

Q(T(gla C/)) = ) (954)
J5(1+r(.0) " dedg
which we will abbreviate for reasons of clarity as
n—1
q(r') = Chs T,)l : (9.55)
§§(L+7r)" dédC
The general t-SNE gradient is derived in Appendix[9.Aland reads:
D 0D
% =45, (€-¢) d¢
_,[—alr) [ éD 6D , e
—a [ T4 [ oo~ | st |- (€= ) ac. (9.56)

We now have the obvious advantage that we can derive %—Ig for several divergences
D (pl|q) directly from Eq. (@.56), if the Fréchet derivative %Pr) of D with respect to
q(r) is known.

9.4.2 The SNE gradient

In symmetric SNE, the pairwise similarities in the low dimensional-map are analo-
gously defined following (van der Maaten and Hinton 2008)

’ Y exXp (—7” (6/’ CI))
aswe = asve (7 (€5.¢) = 770 e )y dede
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which we will abbreviate below for reasons of clarity as

Cew)
= TTow (-rydgac ~ 207 057

We obtain the general formulation of the SNE cost function gradient (Appendix[0.B):

oD oD
Pl F (RO (9.58)

= _4JQSNE (r)(€—=¢)- l

4dSNE (7")

oD
dgsne (7

6D
) - f SasnE (7") JSNE (T/) 1L, dr’ d¢

using the Fréchet-derivatives of the applied divergences as above for t-SNE.

9.5 t-SNE gradients for various divergences

In this section we explain the t-SNE gradients for various divergences. There exists
a large variety of divergences, as mentioned in Section[0.2] which can be collected
into several classes according to their mathematical properties and structural be-
havior. We extend the methods to arbitrary divergences by plug the corresponding
Fréchet-derivatives into the general gradient Eq. (9.56) for t-SNE. Clearly, one can
convey these results easily to the general SNE gradient Eq. (9.58) in complete anal-
ogy, because of its structural similarity to the t-SNE formula Eq. (9.56).

A technical remark should be made here: In the following we will abbreviate
p(r) by p and p (') by p’. Further, because the integration variable r is a function
r = r (&, ¢) an integration requires the weighting according to the distribution II,..
Thus, the integration has formally to be carried out according to the differential
d II,. (r) (Stieltjes-integral). We abbreviate this by dr but keeping this fact in mind,
i.e. by this convention, we will drop the distribution II,, if it is clear from the context.

9.5.1 Bregman divergences

In the following we will provide the gradients for some examples of Bregman di-
vergences introduced in Section As a first example we show that we obtain
the same result as (van der Maaten and Hinton 2008) for the Kullback-Leibler di-
vergence Eq. (.10). The Fréchet-derivative of Dk, with respect to ¢ is given in Eq.

(©.40). From Eq. (0.56) we see that

Dk _ (a€=C) (p (P /
o€ _4J (1+7) (q Jq'qlnr' dr) “

» J 9(§—¢) (p _ J I dr/> ac. (9.59)

(1+7) \g¢
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Since the Integral I = {p'IL,» dr’ in Eq. (.59) can be written as an double integral
over all pairs of data points I = { {p'd¢'d{’, we see from Eq. (9.52) that the integral
I equals 1. So, Eq. (0.59) simplifies to

o] (e

:4f(1 ) ) (E—¢) dC. (9.60)

This is exactly the differential form of the discrete version as proposed for t-SNE in
(van der Maaten and Hinton 2008).

The Kullback-Leibler divergence used in original SNE and t-SNE belongs to the
more general class of Bregman divergences (Bregman 1967). Another representative
of this class of divergences is the Itakura-Saito divergence Dis Eq. (0.11) with the
Fréchet-derivative Eq. (9.41). For the calculation of the gradient 0?515 we substitute
the Fréchet-derivative in Eq. (9.56) and obtain

0D1g q 1 Q'—p’ ’

= =‘4fl+r<qz<q—p>—fq/ Hrfdr)@—@ i ©.61)
_[4E€-¢) (p A W
_J e (q 1+q”1 q,]nr,d>d¢. (9.62)

One more Bregman divergence is the norm-like or Eta-divergence Eq. (.13). The

Fréchet-derivative of D, with respect to ¢ is given in Eq. 0.42). Again, we are inter-
ested in the gradient D which is

o€’
% =4n(n—1) f;f <(p —a)d" —q- J (' =)@ I dr,) “

(9.63)

The last example of Bregman divergences we handle in this paper is the class of Beta-
divergences defined in Eq. (0.I5). We use Eq. (9.56) and insert the Fréchet-derivative
of the Beta-divergences, given by Eq. (9.43). Thereby the gradient % reads as

D _
a@% =4 gi +§ (qﬁl(p . q) —q- J‘q/(ﬁfl) (p’ — q/) 11, d’l"l> dC . (964)

9.5.2 Csiszar’s f-divergences

Now we will consider some divergences belonging to the class of Csiszér’s f-divergences
(see Section@.2.2). A well-known example is the Hellinger divergence defined in Eq.
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(©.28), with the Fréchet-derivative Eq. (9.49). The gradient of Dy with respect to £ is

(?a’f_gli(m—q—qj(\/ﬁ—q')nwdr') (€-¢) d¢

é C(\/— qf«/pqﬂ dr)d( (9.65)

For the Alpha-divergence, see Egs. (0.23) and (9.45), we get

e e )

£-¢ <p = g f pq/ (L, dr’) d¢. (9.66)
1+7r

For the Tsallis divergence, Egs. (9.27) and (9.48), we get

aDg _ 4(€ - C)q p “ P’ “ ’ ’
% —f I ([q] ‘JM qHT"”)“

£-¢ < 0g1-0) _ g j g O‘)Hrldr’> ac. (9.67)
1+7r

which is also clear from Eq. (9.66), since the Tsallis divergence is a rescaled version
of the Alpha-divergence for probability densities.
For the Rényi divergence, Eqs. (9.26) and (9.47), the derivative reads

aD% _ 4 € — C a l—a ra, H(1—a) /
23 _Sp’aq’(lfa)dr’ 1+r b qu q [ dr” ) d¢
E—C ([ poqt e
Lo \[pogiaar 1) % (9.68)

9.5.3 Gamma-divergence

The Fréchet-derivative of D., (p||¢) with respect to ¢ is given in Eq. (9.29) and can be
rewritten as

D (pllg) _q(yl)[ ¢ _p ]_ ¢ pgV
dq §q0tDdr  (pgrdr Q- v,

@V, —p q(“/—l)Q7

B QyVy
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Once again, we use Eq. (0.56) to calculate the gradient of D, with respect to &:

by, - q(§ = ¢) (D
6€V _QvVvJ 1+7r (q’YV,Y pa Qs

J (q’”Vy —p/ q’”‘”QV) ¢ dr') d¢

4 Jq(ﬁ—C)

Qv ) 1+r (QWW—PQ”_”QW—VW
Yy

Jq'(7+1)HT/ dr' + Q4 Jp'q’"’HT/ dr') d¢

_ 4 q(§ —¢) _ -1n _
- o7 | (Vs = D@7 7'Qy = Vo Qs + Qo V3)dC

1+7r
E-¢( pq gty
=4 — dc. 9.69
1+7r Sp’q/’)’dr/ Sq/(’Y"‘l)dr’ C ( )

For the special choice v = 1 the Gamma-divergence becomes the Cauchy-Schwarz
divergence Eq. (9.30) and the gradient Olgscs for t-SNE can be directly derived from
Eq. 0.69):
D _ 2
Des _, (E=C(_pa  _4a dc .
o0& L+r \§p¢ dr  §q2dr

Moreover, similar derivations can be made for any other divergence, since one only
needs to calculate the Fréchet-derivative of the divergence and apply it to Eq. (9.56).

(9.70)

9.6 SONE using arbitrary divergences

Similar to the SNE and t-SNE methods, also the SONE (see Algorithm [8.2) can be
generalized to employ different divergences. Based on the special case of the GKL
divergence employed in Eq. (8.10) we define a cost function for arbitrary Diver-
gences D(pl|q):

Bsons = | Nbupierat- 11D (1E7O0)|920)) plo)ds . ©.71)

where the best matching data point P (s) for s is defined as:

Up(s) = x' such that ZD (th(s) (j)Hg?(j)) is minimum. 9.72)
J
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Here, we reused the definitions of Chapter[§] i.e. the Kronecker delta 4. ., the sam-
pling vectors s, the neighborhood cooperation in the original space har(®) (7) Eq.
(8.7) and the low-dimensional space g2(j) Eqs. (8.8) or (8.9).

The derivative of the cost function (9.71) with respect to the image vectors & * can
be done using the Fréchet derivative Eq. (9.37):

[ Up(s) s
aEWSONE _ J oD (hg ||g<) [l] . ag? dl (973)
oek ogs otk
oD (h]|2) 00
9e
= || —— : di 9.74
J 0g¢ .ot O7
oD (nr"lg2) g2 (k) 075
692 A '

This yields the online learning update rule for a given sampling vector s and learn-
ing rate 7:

€k _ Ek . aE;sgokNE _ Sk - TAfk ) (9.76)

Since the Fréchet derivatives of a wide selection of divergences is investigated in
previous sections we can immediately write down learning rules for all divergence
families. The explicit formulas in case of Gaussian and t-distributed neighborhood
function g? and different divergences can be found in Table

9.7 Experiments

9.7.1 t-SNE incorporating Gamma-divergence vs. original t-SNE

In this section we demonstrate the applicability of the Gamma-divergence in the t-
SNE method on the real world examples, namely the Olivetti faces ! and the COIL-
20 data set (Nene et al. 1996). The Olivetti data set consists of intensity-value pic-
tures of 40 individuals with small variations in viewpoint, large variation in expres-
sion and occasional addition of glasses. The data set contains 400 images (10 per
person) of size 64 x 64. The COIL-20 data set contains images of 20 different ob-
jects viewed from 72 equally spaced orientations. In total we have 1,440 images of
32 x 32 = 1,024 pixels. Like suggested in (van der Maaten and Hinton 2008) we

1The Olivetti faces data set is publicly available from http:/ /cs.nyu.edu/~roweis/data.html
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Nearest Neighbor errors of the olivetti data embeddings
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Figure 9.14: 1-NN errors of the 2 dim. Olivetti faces embeddings using the Gamma-
divergence in comparison with KL for different perplexities.
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0.8 T

T o T
_——073

0.725
0.7

0.6 B
0.5 — — KL

—@— =02

0.4 —m—y=04
%‘ ——| —4—1=06
5 —p»—y=08

0.3 A0 ]
y=1.2

0.2 ——y=1.4 [
—%—y=16

0.1F —A—y=138 |]
—*—y=2.0

10 20 30 40 50 60 70 80 90 100
Neighbors k

Figure 9.15: Quality of the 2 dim. embeddings using the Gamma-divergence on the
Olivetti faces data in comparison with the original formulation using KL.
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preprocessed the data by extracting the mean and reducing the dimension to 30 us-
ing PCA and successive transformation to unit variance features. We constructed
10 independent random initializations for the experiments, which we reused in the
algorithm with different divergences and values of the divergence parameter. To
compare the different embeddings we use the 1-NN classification error using the
persons as labels. A quantitative evaluation based on the quality measure as pro-
posed by (Lee and Verleysen 2008, Lee and Verleysen 2009) (see Algorithm [6.6)) is
included.

Figure shows the nearest neighbor errors of the embeddings of the Olivetti
data as mean and standard deviation over the 10 random initializations for dif-
ferent perplexities and Gamma-divergences with v varying in the interval [0.2 2].
Dependent on the perplexity the influence of the divergence varies. For small per-
plexities, greater values of v show better classification accuracy, while for large per-
plexities lower v yield better performance. Nevertheless, in this data set the use of
the Gamma-divergence leads, in most cases, to a slight improvement of the nearest
neighbor classification compared to the Kullback-Leibler divergence.

Figure shows the quantitative evaluation on Olivetti using the intrusion-
and extrusion measure mentioned above as mean over the 10 random initializations
in the example case of perplexity 35. Again we observe small deviations in the be-
havior depending on the choice of the divergence. Some example visualizations
are shown in Figure For comparison all visualizations are based on the same
initialization. Note that, for example, the data points representing person 35 are
widely scattered in the embedding space when using the Kullback-Leibler diver-
gence, while they remain close together when using the Gamma-divergence.

Figure shows the 1-NN errors of the embeddings for COIL-20 as a mean
and standard deviation over the 10 random initializations for different perplexi-
ties and Gamma-divergences with ~ varying in the interval [0.2 2]. Dependent on
the perplexity the influence of the divergence varies. For small perplexities error
free visualizations are possible in all cases. For big perplexities in this data set the
usage of the Gamma-divergence leads to an improvement of the 1-NN classifica-
tion in comparison with Kullback-Leibler. Furthermore, it is clearly visible that the
Gamma-divergence is quite robust for v > 0.4 in this case.

Figure shows the quantitative evaluation using the intrusion- and extrusion
measure (see Algorithm [6.6) as mean over the 10 random initializations in the ex-
ample case of perplexity 25. Again we observe small deviations in the behavior de-
pendent on the choice of the divergence. Some example visualizations based on the
same initialization are shown in Figure Note that, for example, the data points
representing object 1 are chained on a bended line using the Kullback-Leibler di-
vergence, while it is visualized in a closed loop using the Gamma-divergence with
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-3 Nearest Neighbor errors of the coil data embeddings
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Figure 9.17: 1-NN errors of the 2 dim. COIL-20 embeddings using the Gamma-
divergence in comparison with KL for different perplexities.
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Figure 9.18: Quality of the 2 dim. embeddings using the Gamma-divergence on the
COIL-20 data in comparison with the original formulation using KL.
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Figure 9.19: Embeddings of the COIL-20 data set based on the same initialization for
different divergences and perplexity 25.
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Figure 9.20: Best t-SNE similarity map of the Bacteria data set using perplexity 15.

v = 0.2. For bigger values of v the quality of embeddings with respect to small
neighborhoods increases in comparison to the original formulation using KL. From
visual inspection one observes, that the maps show more local details comparable to
the similarity maps of SONE in Chapter[8l This comes at the cost of loosing quality
for bigger neighborhoods, i.e. some global aspects might get lost. It can be seen for
v = 1.2, where the chains of object 1 and 19 completely brake.

9.7.2 Bacteria similarity map generated by SONE

The identification of bacteria is an important task in medicine or biology and is of-
ten done using large data bases with reference signatures (Maier et al. 2006). The
reference spectra of the different bacteria species are in parts very similar and multi-
modal as an additional challenge for the identification methods. To maintain these
data bases efficient exploration and visualization tools are necessary. Common tasks
are the identification of outliers, strong overlapping and therefore hard to distin-
guish data clusters or erroneous measurements.

Here we consider a database of n = 3048 bacteria samples measured and pre-
pared in accordance to (Barbuddhe et al. 2008, Maier et al. 2006). Each sample is
given as a vector ¢ € IR", with dimensionality N' (number of peaks), considered as
a function p. Overall the data contain around 200 species in accordance to the taxon-
omy of bacteria and are quite challenging for visualization. For each x a labeling is
available in the following abbreviated by a three letter code. The map obtained with
original t-SNE (Fig. is able to separate some clusters of bacteria, but the center
is more crowded than the SONE map, see Fig. The SONE embedding was ob-
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Figure 9.21: SONE embedding of the Bacteria data set and two zoomed regions.

tained using uniformly distributed sampling vectors s. The KL divergence was used
to spread the samples globally on the map. Afterwards we trained for further 100
epochs using the Gamma-divergence with v = 0.5, which controls the granularity
and results in higher quality for small neighborhoods. In contrast to other meth-
ods SONE enforce spreading of the data samples on the given structure hypothesis
and allows to influence the granularity, which enhances visibility of single samples.
The quality of both the SONE and t-SNE embedding measured by intrusions and
extrusions behaves quite similar for this data set.

The SONE representation was already quite effective in representing the many
bacteria spectra and similar samples are indeed plotted near to each other, which is
in good agreement to the expectations of the experts (Maier et al. 2006). The map
also allows to identify isolated clusters like the one depicted in the right zoomed
regions of Fig. This plot contains most of the Listeria spectra from the database
which are known to be very distinctive. For the second zoomed region (left) a large
cohort of Vibrio spectra is shown. It is more diverse and very well represented,
but we can also identify more distant Vibrio items which by closer inspection are
indeed special cases. The map allows the biochemical expert to navigate through
the similarity space and to analyze spectra found to be (dis-)similar by the model.
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9.8 Conclusion and outlook

The original SNE, t-SNE and SONE formulation employ the Kullback-Leibler diver-
gence to measure the disagreement of the topology in the high- and low-dimensional
space, respectively. In this Chapter we provide a mathematical foundation for the
use of arbitrary divergences and their derivatives such that they can immediately
be plugged into the existing algorithms. This provides the reader with alternative
measures, which can be used if the results using Kullback-Leibler are not satisfying.

Therefore, we characterize main subclasses of divergences following (Cichocki
et al. 2009): Bregman-, Csiszdr f- and Gamma-divergences. We used the mathe-
matical methodology of Fréchet derivatives to obtain the generalized gradients for
the methods. And we derived the t-SNE and SONE gradients for a wide range of
important divergences as summarized in Table[9.2land Table

We studied the behavior of the divergences in some experiments inspired by
image processing. From the experiments it is clearly visible that the divergences
show different behavior for different problems. Although we are not yet able to
deliver an overall recipe for chosing a particular divergence in a given task, we
can still argue that it might be advantageous to try alternative measures if the re-
sults are not satisfying. As an example, we discuss the t-SNE method using the
Gamma-divergence, considering the publicly available Olivetti faces and COIL-20
data sets. Performances are compared in terms of the 1-NN classification error of
the embeddings, the quality as measured by intrusion- and extrusion behavior (Lee
and Verleysen 2008, Lee and Verleysen 2009) and by visual inspection. The exten-
sion of SONE is illustrated by means of a similarity map in the domain of Bacteria
diversity.

The investigation of further divergences on more data sets will be addressed in
further studies. Furthermore, divergences like Alpha-, Beta-, Eta-, Gamma-, general-
ized Rényi, and generalized Kullback-Leibler divergence do not require probability
densities as inputs, but can be applied to positive measures. Through normalization
information might get lost, so the use of generalized divergences on non-normalized
neighborhood functions for SNE and t-SNE improves performances, potentially.
This will be investigated in forthcoming projects.
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9.A Derivative of the general t-SNE gradient

In this Section we derive the general form of the t-SNE gradient using the definitions
introduced in Section Furthermore, we will abbreviate Eq. for reasons
of clarity as

q(r'y = f (') - IT7" . 9.77)

Let us consider the derivative of D with respect to &:
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Substituting these results in Eq. (0.79), we get
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The collection of all terms lead to the general derivative 2 % D Eq. (@.56).
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9.B Derivative of the general SNE gradient

Based on the definitions of Section we derive the general formulation of the
SNE gradient for arbitrary divergences. For the computation of the Fréchet deriva-
tive we can use the results from above for t-SNE. The only term that differs is the
derivative of gsng (r') with respect to 7. For reasons of clarity we abbreviate gsng

Eq. @.57) by:
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Chapter 10

Conclusion

Ideas are like rabbits. You get a couple and learn how to
handle them, and pretty soon you have a dozen.

John Steinbeck (1902 - 1968)

10.1 Summary

his thesis presents several extensions of the Generalized LVQ (GLVQ) algo-

rithm based on the concept of adaptive similarity measures. The metric learn-
ing gives rise to a variety of applications, including Content Based Image Retrieval
(CBIR), supervised dimension reduction and advanced texture learning in image
analysis, just to name a few. The detailed investigation of dimensionality reduction
is addressed in the second half of the thesis. It includes the investigation of gen-
eralized explicit dimension reduction mappings for unsupervised and supervised
dimension reduction. A novel technique for efficient unsupervised non-linear di-
mension reduction is proposed combining the concept of fast online learning and
optimization of divergences. Finally, three divergence based algorithms are gener-
alized and investigated for the use of arbitrary divergences.

In Chapter [2] the required background for adaptive metric learning and proto-
type-based classification is provided. Then, the Limited Rank Matrix LVQ (LiRaM
LVQ) is introduced in Chapter 8] which aims at efficient optimization of classifi-
cation especially for very high-dimensional data sets. By limiting the rank of the
adaptive matrix, which is part of the used distance, the number of free parameters
can be controlled explicitly. We show, that, besides the computational efficiency, lim-
iting the rank shows superior quality in comparison to alternative approaches based
on the eigenvalue decomposition after training, in particular if the target dimen-
sion is below the intrinsic dimensionality of the data set. Furthermore, this concept
allows discriminant linear dimension reduction, aiming at the preservation of the
classification accuracy in low dimensions. By decomposing the distance measure
into global and local or class-wise matrices more complex decision boundaries can
be realized into the visualization. This combines linear dimension reduction with
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localized similarity measures in the low-dimensional space, defining non-linear de-
cision boundaries of the receptive fields. The dimension reduction with LiRaM LVQ
shows comparable or better results than alternative state-of-the-art techniques. Fur-
thermore, the approach is also computationally efficient. In contrast to other high-
quality techniques it does not require the computation of pair-wise affinities of the
data points, but their distance with respect to the (few) prototypes, which typically
accounts for much less computations. Several experiments on real-world data sets
are presented and confirm our claims.

Chapter @] presents an example application of the LiRaM LVQ in the context of
CBIR. In many medical applications the amount of data is growing tremendously
in recent years. Therefore, computer aided diagnosis systems, which automatically
browse data bases and pre-select potentially interesting data for a given task are
highly desirable. This work addresses CBIR in the context of Dermatology. In a joint
project the Department of Dermatology of the University Medical Center Groningen
provided an image data base with different types of skin lesions. The aim is to find
a predefined number of similar pictures from the data base given a query image.
With adaptive metrics we are able to increase the correct retrieval rates significantly
for arbitrary color spaces. We compare two distance learning techniques: the Large
Margin Nearest Neighbor (LMNN) and LiRaM LVQ approach. Interestingly, the
LiRaM LVQ outperformed the LMNN based in sample settings. With growing com-
plexity and time consumption of LMNN, similar results could be achieved.

In Chapter [§lwe introduce a complex variant of GLVQ for texture classification,
called Color Image Analysis LVQ (CIA LVQ). This flexible approach combines dis-
criminative local linear projections in Fourier domain with linear filtering, e.g. with
Gabor filters. Linear filtering operations are frequently defined on intensity values.
Some heuristic techniques have been proposed for filter operations on color images
combining responses or energies of color channels in some meaningful way. Our
approach differs in nature, because it is based on an automatic learning procedure
guided by supervised training. Therefore, a Gabor filter bank is a priori collected,
using scales and orientations fitting the texture recognition task. We extract random
patches from known classes of colored images and for each of them we transform
the color channels separately into Fourier domain. The transformations of the color
values to intensity values is learned by the CIA LVQ system optimizing the discrim-
ination of the filter responses on these transformed patches. In particular for natural
textures like bark and food structures, the proposed technique outperformed alter-
native approaches and the naive usage of an RGB to gray transformation, which is
often used in practice. Furthermore, the CIA LVQ shows excellent generalization
ability with respect to evaluation images which were never shown to the system
before.
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Part[Ill of this thesis addresses different aspects concerning dimension reduction.
In Chapter [6la novel general view is proposed, which facilitates the adaptation of
a variety of dimension reduction methods for explicit mappings. Instead of the
implicit optimization of the positions of the low-dimensional data points we pre-
define the form of a mapping function fy parameterized by W and optimize the
parameters with respect to a specific objective. This has the advantage that the
training can be performed on a small subset of the data only and a direct out-of-
sample extension for all data points is immediately available. Furthermore, a the-
oretical investigation of the generalization ability for dimension reduction becomes
possible. We demonstrate the concept of dimension reduction mappings based on
the t-distributed SNE (t-SNE) cost function and different alternatives for the map-
ping function fy. This includes unsupervised linear as well as non-linear mappings
based on local PCA and supervised mappings using discriminative local linear pro-
jections. We compare the approach with several state-of-the art techniques, show
the excellent generalization ability for several data sets and finally address the the-
oretical investigations of dimension reduction mappings. In all cases our approach
displays comparable or even superior results.

Chapter [7 investigates supervised dimension reduction based on adaptive dis-
tances and local linear projections obtained by GMLVQ and LiRaM LVQ. It allows
the integration of the dimension reduction into the optimization procedure aiming
at discriminative visualizations. We show in terms of several examples that exist-
ing dimension reduction methods can be extended to a supervised setting using the
learned metrics and discriminative transformations of LVQ.

In Chapter[§an unsupervised dimension reduction technique is proposed, which
combines fast sequential online learning and direct divergence optimization as used
by SNE and t-SNE. The technique is called Self Organized Neighbor Embedding
(SONE) and it exhibits several interesting properties: In its original formulation
SONE is based on a structure hypothesis, which enables the user to control the ap-
pearance of the final embedding and adjust the computational effort. Many dimen-
sion reduction techniques require the computation of all pair-wise affinities of the
low-dimensional image vectors during one optimization step. This leads to a com-
putational complexity O(n?), where n denotes the number of data points. SONE
computes distances to one sampling vector drawn from the given hypothesis in
each iteration for the adaptation of all points. Thus, the computational complex-
ity is linearly dependent on the number of points and sampling vectors given by
the hypothesis. Even though the method is less complex than SNE and t-SNE, it
displays comparable quality as demonstrated in terms of several examples.

Chapter[@laddresses a systematic approach to the mathematical treatment of di-
vergence based dimension reduction, such as SNE, t-SNE and SONE to exchange
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their respective modules. Besides the independent treatment of the distribution in
the low-dimensional space, e.g. using a Gaussian for SNE and a t-distribution in t-
SNE, we concentrate on the divergence which measures the difference between dis-
tributions in the original and the embedding space. Therefore, we review the fam-
ilies of divergences and their properties. We propose a general framework based
on the concept of Fréchet-derivatives and derive the explicit learning rules for a
wide range of divergences. In the experiments we concentrate on the evaluation
of the Gamma-divergence for t-SNE and SONE in several real-world data sets. We
observed that the Gamma-divergence enhances the quality of the embeddings for
small neighborhoods in comparison with the original formulation using Kullback-
Leibler.

10.2 Future work

This work can be extended in several directions. Future projects may concern the
enhancement of the computer aided diagnosis system based on CBIR. This could
be achieved by the incorporation of more elaborate features. Furthermore, the CIA
LVQ for classification as well as all proposed approaches regarding dimension re-
duction are constructed in a generic way, which allows for easy adaptation and ex-
change of the modules. This enables flexible customization with respect to the user
specific needs and the desired application. In particular, we suggest the following
topics for future research:

e Learning Vector Quantization (LVQ) has shown to be particularly attractive for
interdisciplinary applications in medical or biological domains. Apart from
the application of the proposed LVQ variants to other data sets, we intent to
put forward the CBIR system for dermatological images introduced in Chap-
ter @ It is based on the most simple features for color images: the mean color
values of lesion and healthy skin. Extensions may also take into account shape
and texture information of lesions, e.g. using shape extraction methods and
the CIA LVQ proposed in Chapter[5l Furthermore, color histograms could be
extracted and investigated by divergence LVQ (Mwebaze et al. 2011). More-
over, the color classes of the lesions may be subdivided into more detailed
disease classes leading more precise retrievals.

e The CIA LVQ as introduced in Chapter Blneeds an a priory defined filter bank
as input. Similarly to Gabor filters any other family of 2D filters commonly
used to describe gray scale image information could be adapted and applied
to color image analysis with this algorithm. A filter bank with differences of
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Gaussians for color edge detection is a possible example. The investigation of
the performance of the system for other filters can be addressed in future.

Furthermore, depending on the task it might be desirable that two patches in
which the same texture occurs on different positions should not be interpreted
as similar. In this case another similarity measure should be used which is
not based on the difference of magnitudes. This might be of advantage for
example in the recognition of objects such as traffic signs, where a corner or an
edge might have different meanings dependent on its position in the image.

Note, that the incorporation of prior knowledge in form of a predefined filter
bank might not always be feasible. Actually, the algorithm theoretically allows
the optimization with respect to all variables. Thus, it is possible to include
the local filters into the optimization process. First experiments based on that
concept showed already promising results. The investigation of this extension
will be addressed in forthcoming projects.

e Obviously, the general framework introduced in Chapter [@] gives rise to the
investigation of alternative dimension reduction mappings based on other cost
functions and other functional forms of the mapping. Moreover the derivation
of explicit bounds concerning the generalization ability may be the subject of
future work.

At present, the setting has been restricted to vectorial data only due to the
form of the mapping f. Naturally, more general forms could be considered
which can take more complex, non-vectorial data as inputs, such as mappings
which are based on general dissimilarity characterization. A corresponding
investigation will be the subject of forthcoming projects.

o Chapter [@lintroduces the extension of divergence-based dimension reduction
to a general framework using arbitrary divergences. The investigation of fur-
ther divergences on more data sets could be addressed in further studies. Fur-
thermore, various divergences including the generalized Kullback-Leibler di-
vergence do not require probability densities as inputs, but can be applied to
positive measures. Through normalization information might get lost, so the
use of generalized divergences in non-normalized neighborhood functions for
SNE and t-SNE improves performances, potentially. This can be investigated
in future projects.
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