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Ouve teu pai, que te gerou, e não

desprezes tua mãe, quando vier a

envelhecer. Compra a verdade, e

não a vendas; e também a

sabedoria, a instrução e o

entendimento. Grandemente se

regozijará o pai do justo, e o que

gerar um sábio, se alegrará nele.

Alegrem-se teu pai e tua mãe, e

regozije-se a que te gerou.

(Bı́blia, Provérbios 23:22-25)

A meus pais, Rogerio e Rosana.
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Douglas de Oliveira Cardoso

Março/2017

Orientadores: Felipe Maia Galvão França
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Aprendizado de Máquina é comumente usado para apoiar a tomada de decisão

em numerosos e diversos contextos. Sua utilidade neste sentido é inquestionável:

existem sistemas complexos baseados em técnicas de aprendizado de máquina cujas

capacidades descritivas e preditivas vão muito além das dos seres humanos. Con-

tudo, esses sistemas ainda possuem limitações, cuja análise permite estimar sua

aplicabilidade e confiança em vários casos. Isto é interessante considerando que a

abstenção da provisão de uma resposta é prefeŕıvel a cometer um eqúıvoco ao re-

alizar tal ação. No contexto de classificação e tarefas similares, a indicação desse

resultado inconclusivo é chamada de rejeição. A pesquisa que culminou nesta tese

proporcionou a concepção, implementação e avaliação de sistemas de aprendizado

orientados à rejeição para duas tarefas distintas: reconhecimento em cenário aber-

tos e agrupamento de dados em fluxo cont́ınuo. Estes sistemas foram derivados da

rede neural artificial WiSARD, que teve a modelagem de rejeição incorporada a seu

funcionamento. Este texto detalha e discute tais realizações. Ele também apresenta

resultados experimentais que permitem avaliar a importância cient́ıfica e prática da

metodologia de ponta proposta.

vii
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Machine Learning is commonly used to support decision-making in numerous,

diverse contexts. Its usefulness in this regard is unquestionable: there are complex

systems built on the top of machine learning techniques whose descriptive and pre-

dictive capabilities go far beyond those of human beings. However, these systems

still have limitations, whose analysis enable to estimate their applicability and con-

fidence in various cases. This is interesting considering that abstention from the

provision of a response is preferable to make a mistake in doing so. In the con-

text of classification-like tasks, the indication of such inconclusive output is called

rejection. The research which culminated in this thesis led to the conception, im-

plementation and evaluation of rejection-oriented learning systems for two distinct

tasks: open set recognition and data stream clustering. These system were derived

from WiSARD artificial neural network, which had rejection modelling incorporated

into its functioning. This text details and discuss such realizations. It also presents

experimental results which allow assess the scientific and practical importance of

the proposed state-of-the-art methodology.
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Chapter 1

Introduction

Because of technological facts of our time as social networks, Internet of Things,

ubiquitous sensing and others, data generation processes became faster and more

numerous. At the same time, the prior availability of labeled observations is now

much less common or guaranteed than before. Thus, while such abundance of data

could be considered ideal for automated computational learning, it still could have

pros and cons.

Despite some possible drawbacks, having more data at hand is generally positive.

In this regard, some training data which is unlabeled can be not only useful but

necessary for the accomplishment of some machine learning tasks. This helps to

understand the importance of the two problems addressed during this research:

open set recognition (SCHEIRER et al., 2013) and data stream clustering (GAMA,

2010). Both concern knowledge obtainment from observations despite not knowing

the ground truth regarding their classes.

Open set recognition is a classification-like task: its accomplishment requires the

identification of observations which belong to some modeled classes, named targeted

classes. Additionally, this task also considers the existence of classes in the problem

domain besides the targeted ones. Observations from these non-targeted classes

should be rejected. That is, rejection means to avoid ruling an observation as an

element of any of the targeted classes. The need for proper handling of elements of

classes beyond those of interest is frequently ignored, even in works in the literature.

This leads to the improper development of learning systems, which may obtain

misleading results when evaluated in their test beds, consequently failing to keep

the performance level while facing some real challenge.

Clustering is one of the most popular subjects of machine learning literature,

addressed in numerous works through the years. Comparatively, its batch version

is significantly different from its realization feeding from a data stream: the first

can be described as trying to determine clusters which represent the entire input

sample, as a single process; the last leads to the definition and continuous update
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of a set of clusters which reflects data current state, considering how observations

are ordered and temporally related. A basic requirement for data stream clustering

is to sensibly associate most recent data to current clusters. Alternatively, it is also

necessary to perceive the absence of such relation, what could be interpreted as some

sort of rejection.

Facing these challenges, WiSARD (ALEKSANDER et al., 1984) was brought

into play as powerful, flexible, multi-purpose learner. This artificial neural network

model provides the means for pattern recognition working as a lazy learner, mem-

orizing and matching parts of its inputs. The original and most frequent use of

this model is standard classification. However, it has been used for other tasks:

unsupervised learning (WICKERT e FRANÇA, 2001), rule induction (COUTINHO

et al., 2014), generative modeling (GRIECO et al., 2010) and natural language pro-

cessing (CARNEIRO et al., 2015; DE CARVALHO et al., 2014) are some recent

examples of those. Despite such variety, the exploration and analysis of WiSARD

for rejection-oriented learning was never performed before this research.

1.1 Research Aims and Objectives

This research originally aimed the development of an approach to data stream clus-

tering which would overcome limitations of existing alternatives regarding data aging

management: a finer control over the influence of past data on current clusters was

desired. After a preliminary analysis, WiSARD was considered an appropriate tool

to support the accomplishment of such goal. However, during an early stage of this

work, the perspective of the sketched WiSARD-based clusterer with respect to re-

jection prompted a closer inspection of the base model in this sense. Consequently,

this allowed to properly include open set recognition in the scope of this research,

as a possibly simpler task in which rejection modeling also played a major role.

Based on the just provided abstract definition of the two research aims, the

following concrete objectives were established:

Identify WiSARD rejection-friendly features.

It was necessary to verify which characteristics of the standard WiSARD would

support the development of the targeted rejection-capable variation of this

model. Such initial step also helped to foresee some challenges to overcome

later in this research.

Qualitatively compare WiSARD to existing rejection tools.

Analyzing how WiSARD differs from other methods which could also be used

for rejection allows to better perceive strengths and weaknesses of the method-

ology being developed. This way, the extent of the contributions of this work

2



could be defined more clearly. This analysis could also suggest some ideal

conditions for application of the methodology.

Outline a stream-oriented information disposal mechanism for WiSARD.

It is necessary to alter how WiSARD manages stored knowledge: information

pieces should be temporally organized, as precisely as possible; this way, they

could be discarded as they become older. Such action has to occur in parallel

with stored knowledge update and increment which happen during stream

processing. Therefore, its efficiency is as important as its effectiveness.

Adapt the proposed open-set rejection criteria to clustering.

Open set recognition is a supervised learning task, in which rejection criteria

can be adjusted based on training data labeling. The same is not true for

clustering, what disallows a straightforward translation from one context to

the other. This prompts the definition of a more specific strategy to accomplish

clustering-oriented rejection.

Implement WiSARD-based systems for the targeted tasks.

This objective represents the conception of two systems: the aforementioned

variation of WiSARD, embedding rejection modeling into its operation, to be

used for open set recognition; another rejection-capable derivation of WiSARD

which should be an unsupervised, stream-oriented learner. For validation pur-

poses, this objective also requires to experimentally evaluate the developed

systems, as well as to report and discuss the obtained results.

1.2 Thesis Outline

The remainder of this text is organized in 4 chapters. First, Chapter 2 introduces the

building blocks of this work: it starts with a description of artificial neural networks,

explaining their biological inspiration and basic concepts; then, the WiSARD model

is presented, what includes comments about its features, operation and the intuition

behind its functioning; at last, there are overviews of open set recognition and

data stream clustering, providing the definition of these problems, key concepts and

terms, works in the literature concerning them, and how they can be related.

Next, Chapter 3 presents the developed approach for open set recognition. The

ideas which support such accomplishment are explained as well: in first place, the in-

terpretation of WiSARD matching operation as an observation-to-sample proximity

meter; also, the computation and use of rejection thresholds which were embedded

into WiSARD functioning. The proposed system was evaluated through a collection

of experiments, whose descriptions and results are detailed and commented.
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Chapter 4 follows, showing how the just-discovered WiSARD rejection power

could also be explored in the context of data stream clustering. In this case, dy-

namic rejection criteria had to be defined, reflecting clusters evolution during stream

processing. Besides explaining the conception of such criteria, this chapter also de-

tails how the base learning model was modified to perform online learning, by the

disposal of outdated knowledge. Like the previous chapter, this one also ends with

the experimental evaluation of the proposed approach, followed by final remarks.

At last, Chapter 5 summarizes all the stages of this research journey, and the de-

cisions which led to each of them. This chapter also highlights the most noteworthy

findings of this work, considering novelty and relevance. Suggestions of unprece-

dented scientific explorations which would be related to this research are also given,

targeting to direct future works.

4



Chapter 2

Research Background

For a better understanding of the accomplishments of this work, an overview of

the concepts on which it was built is indispensable. Moreover, to establish the

relation to other works is especially important here: the covered themes are of great

interest of the research community, and were addressed abundantly in the literature.

Despite this, there is still room for improvements and alternative approaches, as

unprecedented challenges emerge from the review of some classical research targets

under novel perspectives.

Data stream clustering, one of the main subject of this work, is an example of

these targets. That is, clustering is one of the most basic machine learning tasks,

and was analyzed taking into consideration a great variety of premises. Still in this

regard, to cluster a data stream instead of a data set, the most common setup, is an

alternative point of view of the same matter. Among numerous derivations of the

basic clustering task, the one analyzed in this research is remarkable for the great

number of real applications it covers.

Similarly to data stream clustering and batch clustering, open set recognition

is strongly related to classification. However, the first requires handling data ex-

traneous to all known classes in an exclusive manner, while this is not necessary to

perform the last. As it is shown later in this thesis, this proximity between these two

tasks led to questionable problem modelings found in other works, which describe

the inadvertent use of classifiers when extraneous data should be taken into account.

Extraneous data is what separates open set recognition from classification, while it

also makes data stream clustering and open set recognition closer to each other.

The base of the solutions described in this thesis is an artificial neural network

model which was conceived for classification. Through the course of this research

some uncommon properties of this model were explored broadening its use to the

tasks approached. Therefore, it is presented a comparison of this model to other

artificial neural network models focusing on these distinctive characteristics.

This is how this chapter is organized: Section 2.1 provides a brief summary of the
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current knowledge regarding artificial neural network models; Section 2.2 details the

memory-based artificial neural network model which was further developed during

this research; the definition of open set recognition is presented in Section 2.3, as

well as a comparison to classification; at last, Section 2.4 introduces the concepts

and assumptions concerning data stream clustering used through this work.

2.1 Artificial Neural Networks

Artificial neural networks are statistical tools whose design was inspired in nervous

systems of living beings, created to emulate some of the learning capability of their

biological counterparts. There exists a great variety of artificial neural network mod-

els, which have different characteristics and are used for several purposes: function

approximation, signal processing, classification, clustering, time series prediction

and others. But all these models share a basic design principle: each of them is de-

fined as a collection of units, called nodes or neurons, which are combined according

to the model definition, working collectively.

2.1.1 Biological Analogy

Biological neurons operate as signal processing units: they receive stimuli through

its dendrites, which are organized as a tree; these stimuli are combined during the

traversal of the dendritic tree; resulting signals of such combination reach the soma,

where a response for such inputs is generated; this response is forwarded trough the

axon to muscles, glands or other neurons whose dendrites are connected to this axon

by synapses. Figure 2.1 indicates these components of a generic neuron.

Dentrites

Axon

Soma

Figure 2.1: A sketch of a biological neuron. ∗

The most popular mathematical abstraction of biological neurons was originally

proposed by MCCULLOCH e PITTS (1943). In such model, the synapses are

∗Adaptation of image licensed under Creative Commons Attribution-Share Alike 3.0 Unported.
Source: http://en.wikipedia.org/wiki/Neuron
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substituted by edges, connecting the nodes of the neural network. The stimuli the

neuron receives is substituted by the input of numerical values. These values are

multiplied by numerical weights associated to the edges they traverse. At last, the

sum of these multiplications is input to some function, whose outcome is used as

the output of the neuron. Such modeling is reasonable from both biological and

mathematical points of view.

2.1.2 Practical Use

From a generic definition of a single neuron, the functioning of a system of those

units can be analyzed. An example of artificial neural network is shown in Fig. 2.2.

It is an instance of the vastly used Multilayer Perceptron model. Here it is a list of

some of its model-specific characteristics:

• there is no cycle in the network;

• the nodes are organized in layers, which are totally ordered;

• a node in a layer is linked to all nodes of the following layer;

• every node applies the same function on the summation of its inputs.

ŷ2

φ(.)

φ(.)

φ(.)

φ(.)

φ(.)

x2

φ(.)

ŷ1

x3

x1

φ(.)

φ(.) φ(.)

Figure 2.2: A hypothetical artificial neural network instance.

The number and type of parameters used to define a network also varies according

to the model being considered. The number of nodes of the network is the most

universal parameter: it is usually a network architecture option, defined depending

on how complex are the concepts to be learned. For layered networks, the number of

nodes and the number of layers are jointly defined by the designation of the number

of nodes per each layer. Another common parameter is the function applied by
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each node on its inputs, named activation function. Some popular choices are: the

logistic function, the hyperbolic tangent, the rectifier and radial basis functions.

What the network depicted in Fig. 2.2 does is to transform a given input vector x

according to the weights of its edges and the function applied by its nodes, producing

an output vector ŷ = f̂(x). Here, to learn means to produce an output vector ŷ

for a given input vector x as close as possible to y = f(x), the true corresponding

output to input x. This is pursued by the adjustment of the weights of the edges,

the only modifiable parts of the network.

In most practical situations, there is a collection of pairs (xi,yi), the training

sample, and it is desired to obtain a network whose error (that is, the difference

between the provided and the desired outputs) is as small as possible. This is

an optimization problem, usually approached using the backpropagation algorithm,

which is briefly described in Algorithm 2.1. The algorithm works combining the

influences of each observation on network state, altering it gradually until being

unable to improve its condition. This optimization can get stuck in a state which

is the best of its neighborhood, but not globally. Despite the lack of guarantee that

the best possible state will be found, the Multilayer Perceptron model combined

with the backpropagation algorithm is, deservedly, one of the most used machine

learning tools, because of its mathematical soundness and practical success.

1: Set the weights of the edges to random values

2: repeat

3: for all training pairs (xi,yi), considered in some random order do

4: Compute ŷi, using xi as an input to the network

5: From last to first, calculate the contribution of each edge to error yi− ŷi

6: Adjust the weights of the edges, according to their contribution

7: until the network state is considered stable

Algorithm 2.1: A simplified description of the backpropagation algorithm.

The most popular artificial neural network models rely on the modification of

weights of its edges by the superposition of the effects of the observations which

compose the training sample. By this mechanism, the knowledge extracted from

data can not be updated straightforwardly: if some observations are added or re-

moved from the training sample, the network state which minimizes the error may

change substantially. This fact hampers the use of artificial neural networks in data

stream mining tasks (MENA-TORRES e AGUILAR-RUIZ, 2014). Although such

applications can be found in literature (PAVLIDIS et al., 2011; RODRIGUES e

GAMA, 2009; SILVA e MARQUES, 2012), none has a precise control over knowl-

edge update: after an observation is used to change the current state of the network,

its influence becomes permanent, never being truly canceled afterwards. Moreover,
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depending on learning rate setting, they may be subject to catastrophic forget-

ting (FRENCH, 1999), being over-sensitive to new information. This problem is

also known as the stability-plasticity dilemma, which was addressed by some works

in the literature (CARPENTER et al., 1991, 1992; GROSSBERG, 1982).

2.1.3 Weightless Modeling

A naive way to extract and store some information regarding a data set is to mem-

orize it. This alternative to the learning mechanism just described is very intuitive,

if not obvious. Moreover, this strategy has at least one indisputable advantage over

the weights-adjustment approach: it ensures that the error over the training sample

is as small as possible, zero. It also copes perfectly with modifications of the training

sample: the addition and removal of handpicked observations is possible, as they

are stored apart.

On the downside, the first issue the consideration of this approach raises re-

gards its feasibility: is it possible, from a practical point of view? This question

concerns two different challenges: to store a possibly enormous amount of informa-

tion, according to the dimensionality and length of the data set; to organize such

observations so that their retrieval is sufficiently efficient.

Another important inquiry about this mechanism is the following: how does it

generalizes the knowledge obtained from the training sample? In other words, if an

observation x which is not part of the training sample is input, how does it provides

a reasonable prediction ŷ with respect to its true corresponding output y? It can

be noted that the previously described weights-based network is natively capable of

performing such generalization.

An action which address these two points (feasibility and generalization) is to

map the input space to a set of smaller cardinality. First, with respect to feasibility,

this reduces the number of possible input vectors, making their storage and retrieval

easier. This also implies some sort of generalization: some distinct elements in the

original space (i.e., the domain) would be transformed into the same element in the

image of the mapping; this way, an observation which do not belong to the training

sample could be mapped to an element to which an observation in the training

sample was previously mapped to. For example, considering x ∈ R, a rounding

function (r : R→ Z, r(x) = bxe) could be used to perform such mapping.

However, the use of a mapping as just detailed allows different input vectors of

the training sample to be transformed into the same element in the image. If their

corresponding output vectors are different, it is impossible to assure the absence of

error on learning the training sample. On the other hand, if these vectors are equal,

to replicate the removal of observations from the training sample it is necessary to
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count how many input vectors in the training sample were mapped to each element

in the image.

Despite drawbacks as those just described, the combination of memorization

and mapping is viable base of a learning system. Weightless artificial neural net-

works (ALEKSANDER et al., 2009) are memory-based alternatives to weights-based

ones. As the name implies, all links of these networks have no weight, acting as the

simplest communication channels, exercising no effect on data traffic. Therefore,

their nodes are responsible for the learning capability these networks exhibit. These

nodes operate as memory units, keeping small portions of information, which are

combined when a query regarding the knowledge the system possesses needs to be

answered. These information pieces are the outcome of mapping the data used as

knowledge source.

The biological inspiration of these nodes is the influence of dendritic trees on

neuron functioning. In the abstraction of MCCULLOCH e PITTS (1943), such

trees were modeled as a weighted edges, which multiply the neuron inputs before

the application of the activation function on their summation. Although practical,

this is a rough simplification of how these trees operate. As a matter of fact, the input

signals of biological neurons, which can be of two types (excitatory or inhibitory),

are combined by the dendritic tree before reaching the neuron soma, where they

prompt the generation of a new signal. This action can be naturally compared to

the definition of a boolean key used to access an index of boolean values, which is

how the most basic neurons of weightless artificial neural network models work.

Before detailing a weightless artificial neural network model in the Section 2.2,

Table 2.1 summarizes the differences between networks on opposite sides with respect

to using the adjustment of the weights of the edges as a learning mechanism.

Aspect Weights-based Weightless
Knowledge storage Edges weights Network nodes
Learning process Iterative adjustment One-shot memorization
Generalization Inherent Mapping-derived

Table 2.1: Differences between artificial neural networks regarding weights.

2.2 WiSARD

The WiSARD (Wilkes, Stonham and Aleksander Recognition Device) is a weight-

less artificial neural network model (ALEKSANDER et al., 1984). The way it works

is arguably the simplest among all artificial neural network models: it implements

the already described mapping-and-memorization scheme in a collection of nodes
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organized in a single layer; the outputs these nodes can provide are limited to the

values 0 and 1; these outputs are aggregated through ordinary summation. In spite

of its simplicity, WiSARD is an effective learning model.

This model was created to be used in classification tasks. Classification can be

seen as an specialization of the general action of learning which is being discussed

so far in this chapter: the generic target is to provide some meaningful prediction ŷ

about the true corresponding output y of a given input x, based on the knowledge

extracted from a sample of pairs (xi,yi); for classification, y is unidimensional (for

this reason, y will be used instead of y in this context), the number of possible

values of y is finite (in general, a few hundreds at most), these values are known a

priori and they are called classes.

Now consider a hypothetical binary (i.e, two classes) classification task. A system

like a Multilayer Perceptron network is adapted to classification by the association

of the values +1 and -1 to each class. These classes will be referred to as the positive

and the negative class, respectively. After training, it is expected that such system

outputs a positive value if the input observation is of the positive class, and the

opposite for the negative class. Thus, this system is mathematically described as a

function f̂ : Rd → R, x 7→ y, and the prediction it provides is ŷ = sgn(f̂(x)).

On the other hand, WiSARD provides for each class a value in the interval [0, 1]:

in the current example, a binary classification task, it would be two values. The

value concerning a class represents how well the provided observation matches the

acquired knowledge regarding that class. It is straightforward to transform a two-

values answer provided by WiSARD to a real number as an output from a Multilayer

Perceptron: the subtraction of the two given values is enough for this. However,

the answer format of WiSARD is more informative: for example, a small difference

between two values close to 1 possibly is an evidence that both classes could be the

true class of the input observation; but the same difference between values close to

0 could be an evidence that none of the classes are good guesses for the true class.

The values which compose an answer obtained from WiSARD are computed

from structures called discriminators. Each discriminator is responsible for storing

the knowledge regarding a class, as well as assessing the matching between the class

it represents and any observation whose true class has to be predicted. How a

discriminator learns about its respective class is described in Algorithm 2.2. In a

sentence, it records in its nodes the values resulting from mapping the observations

in the training sample. Mind some notation introduced here: the discriminator of

class ẏ is represented by ∆ẏ; the jth node of ∆ẏ is represented by ∆ẏ,j; the number

of nodes which compose each discriminator is represented by δ.

There are several analogies between hardware systems and WiSARD. Conse-

quently, some parts of its structure are named using terms which belong to this
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1: for all ∆ẏ,j, the network nodes do

2: ∆ẏ,j ← ∅ . All nodes operate as sets, and are initially empty

3: for all pairs (xi, yi), the training sample do

4: Let addressing(xi) = (a1 a2 · · · aδ) be a vector of values of mappings of xi

5: for all addresses aj in addressing(xi) do

6: ∆yi,j ← ∆yi,j ∪ {aj} . Adding address aj to node ∆yi,j

Algorithm 2.2: A description of WiSARD training procedure.

domain. For example, its nodes are called RAM nodes, a direct reference to their

memory-like operation, different from the functional nodes of the weights-based

networks. Like physical RAM modules, their content is retrieved or altered using

addresses, defined by an addressing procedure. Despite this nomenclature, RAM

nodes work identically to sets, well-known mathematical structures, and are com-

monly implemented using hash tables. Likewise, addresses can be seen as simple

vectors, obtained from mapping the observations.

After training, a WiSARD instance can rate the matching between any known

class ẏ and an observation x as shown in expression (2.1a). At last, an observation

x is classified according to expression (2.1b).

matching(x, ẏ) =
1

δ

∑
j

[addressing j(x) ∈ ∆ẏ,j]
† ; (2.1a)

ŷ = argmax
ẏ

matching(x, ẏ) . (2.1b)

There is an extra level of generalization implied by the matching computation.

Consider that a discriminator ∆+ was trained using the observations of a set X+ =

{. . . ,xi, . . . }. For a given observation x, expression (2.2) holds: x perfectly matches

∆+ (i.e, matching(x,+) = 1) iff all addresses of x match addresses of observations in

X+. Thus, the combination of addresses obtained from different observations allow

the recognition of observations which do not belong to the training sample.

∀i,∃x′∈X+ addressing i(x
′) = addressing i(x) ⇐⇒ matching(x,+) = 1 . (2.2)

Figure 2.3 presents the structure of a WiSARD system for binary classification.

This illustration complements the model overview which was just provided.

†The Iverson bracket: [L] = 1 if the logical expression L is true; otherwise, [L] = 0.
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Discriminator -

Node 1
...

Node δ

addressing

Discriminator +

Node 1
...

Node δ

argmax ŷx matching

Figure 2.3: The scheme of a hypothetical WiSARD classifier.

2.2.1 Addressing

An important part of WiSARD was not detailed yet: the addressing procedure. So

far this is a black-box process which receives an observation as input and outputs

a vector of values to be registered by the RAM nodes. This operation plays a

major role in learning effectiveness: it is responsible for the definition of every small

portion of knowledge kept by the nodes. Even the network structure is bonded to

addressing, as the number of nodes in each discriminator is the same as the number

of addresses generated by this procedure. For such reason, this section is dedicated

to further explain this component of the system.

A proverbial rule which is a practical guide for classification is the “duck test”:

“If it looks like a duck, swims like a duck, and quacks like a duck, then

it probably is a duck.”

To ‘look like a duck’, ‘swim’ and ‘quack’ are features of an animal that could be

rationally classified as a duck. If another animal has just one of these three features,

it would be reasonable to be less sure about its classification as a duck. Thus, the

number of features an element (animal) has in common with other acknowledged

class members (ducks) is a measure of how sensible it is to relate that element to

that class. While the evaluation of such number is equivalent to the matching(x, ẏ)

computation, the features to be used for such computation result from addressing.

Now consider a binary classification task regarding black-and-white, m × n im-

ages. Let T denote the training sample. Let T+ and T− denote the respective

subsets of T containing observations of the positive and negative class exclusively.

Let Am×n = [aij] be an image which should be classified.

A row of pixels of A could be used as a feature for its classification: for example,

if no image in T+ has the same first row as A, while such accordance can be found

with respect to T−, this can be considered an evidence that A belongs to the negative
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class. In fact, it is possible to obtain such evidences using any subset of the images:

a row, a column or any collection of pixels can be used for this. This way, an

acceptable definition of addressing for this image classification task follows:

1. Let ck = (· · · (i, j) · · · ) be a collection of pixel coordinates;

2. Let Πck(A) = (· · · ai,j · · · ) be a projection of A regarding ck;

3. Finally, addressing(A) = (Πc1(A) · · · Πcδ(A)).

For a better understanding, Fig. 2.4 shows how the projection Πck(A) works.

In this example, ck = ((1, 1) (2, 2) (3, 3) (4, 4) (5, 5)) and the values 0 and 1 are

associated to white and black (gray) pixels respectively. The result of the projection

is an address, in the form of a bit (i.e., 0-1) vector.

Πck(A)

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)

(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)

(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)

(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)

(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)

(0 0 0 1 1)

Figure 2.4: A projection of a black-and-white image.

How the collections of pixel coordinates c1, . . . , cδ are defined is the natural

follow-up question. There are two important aspects in this regard. The first one is

their size: a ck could refer to a single pixel as well as to all mn pixels. The amount

of information a sole pixel brings is the smallest possible, what likely reduces its

usefulness as a feature: to decide if an animal is a duck or not, it is useless to know

just that the animal has feet, because this is not a distinctive characteristic. On the

other hand, to use all pixels as a single feature harms knowledge generalization: to

decide if an animal is a duck or not, it is useless to know that the animal is not a

perfect clone of a previously known duck. Therefore, the size of ck should balance

the lack and the excess of information it may lead to.

Still about the size of c1, . . . , cδ, remember expression (2.1a): it shows that each

node ∆ẏ,i has the same weight on matching(x, ẏ). This is an indication that the size

of each different ck should be the same: a positive output of a node whose addresses

are mn-dimensional vectors is a stronger classification evidence than that of a node

with 1-dimensional addresses; as the lengths of the addresses are not taken into
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account in expression (2.1a), the collections of pixel coordinates which determine

these addresses should have the same size.

The second aspect of the definition of c1, . . . , cδ is the criterion used for this.

From a human point of view, the most natural collections of pixels are rows, columns

and rectangular windows. However, the combination of disjoint pixels in a feature

generally avoids the redundancy related to neighboring pixels. Moreover, pixels

apparently unrelated can define unexpectedly interesting features. For these reasons,

the collections of pixel coordinates are defined randomly, but guaranteeing that each

pixel coordinate is an element of exactly one of the collections, as described by

expression (2.3).

ci ∩ cj = ∅, i 6= j . (2.3)

As each of the mn pixel coordinates is used only once and δ, the number of nodes

per discriminator, is a parameter of the model, the length of the addresses of the

nodes is fixed: β = mn/δ. This way, the parametrization of a WiSARD instance

can described by the declaration of either δ or β. If mn is not divisible by a desired δ

(or β), the use of addresses with different lengths becomes inevitable: this situation

is acceptable, but this difference should be as small as possible, according to what

was explained in the second previous paragraph.

For a practical understanding of how WiSARD parametrization, addressing and

matching work together, Fig. 2.5 and Table 2.2 show an example of their combina-

tion. In this hypothetical situation, there are two observations which belong to the

positive class and a third observation A which is used to compute matching(A,+).

This computation is performed for different definitions of each collection of pixel co-

ordinates ci used for addressing. As a didactic example, human-friendly collections

of pixel coordinates, as row and column groups, were used.

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)

(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)

(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)

(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

Observation AClass +

Figure 2.5: Observations of the didactic example of WiSARD operation.

It can be noticed the relation between the β, the length of the addresses and

the resulting matching rate: it is harder for the addresses to coincide when they are

lengthier, what leads to smaller matching rates. Nevertheless, in this example the
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β δ Addressing ci setup matching(A,+)

1 30 ci = ith pixel 29/30 = 96.6%
5 6 ci = ith column 5/6 = 83.3%
6 5 ci = ith row 3/5 = 60.0%
10 3 ci = ith column pair 2/3 = 66.6%
15 2 ci = ith column trio 1/2 = 50.0%
30 1 c1 = all pixels 0/1 = 00.0%

Table 2.2: Parameter and addressing definitions, with respective matching rates.

matching rate for β = 10 (66.6%) is still higher than that of β = 6 (60%). Thus,

the relation between β and matching is not purely deterministic.

2.2.2 Binarization

In Section 2.2.1 it was shown how to use WiSARD to classify black-and-white images.

It could be noticed that the addresses obtained from binary observations, as the

0-1 matrices induced by black-and-white images, are bit vectors. The use of such

vectors as addresses is a basic characteristic of WiSARD: the addresses of physical

RAM modules are routinely declared as bit vectors; in this format, the length of the

addresses is directly related to the amount of information each node handles and

the generalization level of the classifier.

For images other than black-and-white ones, there are various binarization meth-

ods specific to such inputs (CHAKI et al., 2014): for example, the transformation

of a grayscale image can be performed by some sort of thresholding (SEZGIN e

SANKUR, 2004); a color image can be converted to black-and-white directly or

to grayscale as an intermediate step. Most of these methods were developed for

image segmentation, targeting to provide simpler descriptions of images while pre-

serving to a certain extent the information they bring, what is interesting from a

machine learning perspective. By the application of such techniques, WiSARD and

other weightless artificial neural network models were successfully used in diverse

computer vision tasks (JUNIOR et al., 2015; NASCIMENTO et al., 2015; STAFFA

et al., 2015).

Despite this strong bond between WiSARD and image-related tasks, the appli-

cation of this model is not limited to this context. Any classification task can be

approached using WiSARD as far as a proper binarization method for the observa-

tions is available. That is, a method to transform observations in its original format

to a binary format preserving structural characteristics of the data, as the pairwise

distance. This description resembles that of dimensionality reduction (VAN DER

MAATEN et al., 2007) techniques as multidimensional scaling and locally linear em-
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bedding. However, it is noticeable that while these just mentioned techniques target

to describe data using less dimensions, the binarization procedures for WiSARD usu-

ally increase the dimensionality of data to compensate the poorer representativeness

of binary dimensions compared to integer or real ones.

The most popular data representation is the real-valued feature vector, which is

the input format of models like the Multilayer Perceptron: x ∈ Rd. There exists var-

ious methods to transform this kind of input to a WiSARD-friendly input (KOLCZ

e ALLINSON, 1994; LINNEBERG e JORGENSEN, 1999). One of the simplest and

most widely used alternatives is the unary encoding, also known as bar chart or

thermometer encoding.

A mapping u : [0, 1]n → {0, 1}n×γ is a mathematical interpretation of an unary

encoding. The output matrix of such mapping has one row for each dimension of

the input vector. The number of columns is defined according to γ, a parameter

which represents the desired resolution of the values which compose the input vector.

Algorithm 2.3 details the unary encoding procedure.

1: Let γ ∈ N be the desired resolution of the values

2: procedure UnaryEncoding(x ∈ [0, 1]n)

3: Let A = 0n×γ be a n× γ zero matrix

4: for all xi do

5: v ← bγ xie
6: for all j ∈ {1, 2, · · · , v} do . From 1st to vth column

7: aij ← 1

8: return A

Algorithm 2.3: Binarization of real-valued vectors using unary encoding.

Graphically, an unary encoding produces a black-and-white horizontal bar chart

which naturally refers to x in its original representation. Intuitively, the similarity

between elements is preserved. Figure 2.6 illustrates this fact.

Indeed, increasing γ, the Hamming distance (the number of different entries)

between the unary representations A1 and A2 of any pair of observations x1 and x2

comes closer to the L1 distance between these elements in their original representa-

tion, proportionally. Expression (2.4) mathematically describes this statement, for

some constant k ∈ (0,∞). For classification, however, the smaller γ which allows

to correctly distinguish observations of different classes should be used: this favors

knowledge generalization and reduces computational overhead.

k
∑
i

|x1i − x2i|︸ ︷︷ ︸
L1 distance

=
∑
i, j

|a1ij − a2ij|︸ ︷︷ ︸
Hamming distance

, for a sufficiently large γ . (2.4)
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(1.0 0.0)

(0.8 0.4)

(0.2 0.4)

(0.4 0.4)

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5)

(3, 1) (3, 2) (3, 3) (3, 4) (3, 5)

(3, 1) (3, 2) (3, 3) (3, 4) (3, 5)

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5)

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5)

(3, 1) (3, 2) (3, 3) (3, 4) (3, 5)

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5)

(3, 1) (3, 2) (3, 3) (3, 4) (3, 5)

Figure 2.6: Real-valued feature vectors and their unary counterparts, with γ = 5.

2.2.3 Saturation

When designing a solution to a learning problem, a fundamental matter in this

regard is the complexity of the concept to be learned. Different problems require

the use of different tools, with different adjustments. A system like the Multilayer

Perceptron works explicitly fitting to the training data a function it defines, targeting

to reproduce the underlying data generation process. Thus, the defined function

should conform with this process. Two undesired situations which can happen to

systems of this kind are:

Underfitting

The system is too simple to learn the target concept, providing a too

rough approximation of the data source;

Overfitting

The system is too complex, leading to an approximation based on over-

complicated criteria inferred from the data.

WiSARD is not based on this principle of function fitting, what makes it natively

free of these problems. In spite of this, a WiSARD classifier still needs to be properly
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set up with respect to the complexity of the concepts to be handled. This happens

by the adjustment of β, the length of the addresses used to input and retrieve the

contents of the RAM nodes. This parameter establishes the minimum amount of

information two observations must have in common to be possibly related by the

classifier. This way, the chance of associating an observation being classified to an

observation in the training sample (and, consequently, to its class) is smaller with

a higher β. If the concept is complicated, it is sensible to be more strict about the

generalization of the knowledge obtained from data, requiring a clearer resemblance

to some observation of the training sample to make any inference based on it.

Although the use of a too high β harms the generalization capability of a

WiSARD classifier, the consequence of defining a too low value for this parame-

ter is even worse: the discriminative power is lost, as it becomes detrimentally easy

to relate the observation being classified to observations belonging to any of the

known classes. In other words, the classifier may not be able to rightfully decide

which class best matches the observation in question, because by mere casualty this

observation has β bits in common with observations of any class.

A simple example comes in handy. Consider the observations depicted in Fig. 2.7,

and β = 1 (this way, the number of neurons δ = 30). After training, the observation

A perfectly matches the positive class (matching(A,+) = 1) although there is no ap-

parent similarity between A and any observation of the positive class. This happens

because all 30 neurons, which work with 1-bit addresses, recorded the occurrence of

all possible addresses during training: 0 (from the first positive observation) and 1

(from the second one). Therefore, the response of these neurons to any query regard-

ing their content would be positive. Consequently, not only A but any observation,

with no exceptions, would perfectly match the positive class in this situation.

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)

(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)

(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)

(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

Observation AClass +

Figure 2.7: An example of deceptive data with respect to the setup of β.

In real applications, the observations of a class are usually more similar to each

other than those of the just presented example, although there exist differences be-

tween themselves: peculiarities, noise etc. Moreover, a training sample is usually
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bigger than that of the example, so that it covers a great diversity of these sin-

gularities. Therefore, during training some addresses occur more frequently, for a

greater number of observations than others. If one of the addresses which represent

an observation being classified also represents most of the observations of a given

class, this could be considered a strong evidence that this observation belongs to

that class. However, if this coincidence regards a single observation of that class, it

might be just an accident.

The original WiSARD model does not consider these details, what makes it

subject to saturation: the situation when discriminators can match observations

excessively dissimilar to those used for their training. The most common effect

of saturation is the increased number of draws regarding the identification of the

best matching class during classification. Of the approaches for this problem an-

alyzed during this research, most of them rely on counting the addresses frequen-

cies (BLEDSOE e BISSON, 1962; GRIECO et al., 2010), although there exists

alternatives which are based on modifications of the training algorithm (BRAD-

SHAW e ALEKSANDER, 1996; TARLING e ROHWER, 1993). It was previously

remarked (CARVALHO et al., 2013; LUDERMIR et al., 1999) that these methods

indeed improve WiSARD accuracy, but at the expense of a higher computational

cost.

2.3 Open Set Recognition

From the previously provided definition of classification, it can be noticed that

an enormous variety of situations in human life can be characterized as a task of

this sort. Despite some similarities, a detailed analysis of these situations may

lead to distinct classification variants, which requires specific theoretical treatment,

or at least benefits from it. The fundamental classification problem regards two

classes, and assumes the prior availability of a data sample which reflects most

of the characteristics of the population under consideration. From this landmark,

numerous tasks are derived.

One of these derived tasks is the multi-class classification, which requires the

identification of the best matching class among a collection of more than two classes.

WiSARD can tackle problems of this kind directly, as it can maintain knowledge

regarding all known classes and calculate how well they match an observation to be

classified just like in the two-classes case. Classifiers like the Multilayer Perceptron

need to be adapted to handle multiple classes: suppose there are k classes; it is

possible to consider k(k − 1)/2 binary classification subtasks (one for each pair of

classes); an alternative approach defines k subtasks, so that in each of these one of

the classes is considered positive while all the others are regarded as negative; at
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last, the results of each subtask are aggregated in a global classification verdict.

Another variant is the one-class (or unary) classification (KHAN e MADDEN,

2009). Solutions to problems of this kind should classify observations as elements of a

reference class or outliers to it. The reference class is well-represented in the training

sample, while negative examples may be available or not. If the training sample

contains negative examples, it is improper to tackle a one-class problem as a default

binary classification task: the expectation that negative data provides an overview

of the negative class is valid for the binary case, but not for the unary case; therefore,

the classification should always be done based on the reference class, but negative

training data can be used to adjust the decision criterion. The most common use of

unary classification is for anomaly detection, a task focused on recalling abnormal

data.

These alternatives to the default version of classification regard very clear changes

in the base: for multi-class classification, the number of classes to be modeled is

increased; for one-class classification, the same number is diminished. The number

of classes is one of the most basic and important characteristics of a classification

problem, but the analysis of more subtle variations of other aspects is also valuable.

2.3.1 Closed Set Assumption

A premise of classification is the presence of representatives of all possible classes in

the training sample, what is called the closed set assumption. As the name implies,

this is not necessary for open set recognition: beyond known classes, there could be

an even larger collection of unknown classes whose observations should be identified

as so. The difference between a classification and a recognition task relies on which

are the possible answers to a request for class prediction: a classifier always outputs

its best guess for the true class of an input observation; for recognition, if none

of the known classes appears to be the true class, the response is to consider the

observation an outlier to all known classes. The action of ruling an observation as an

outlier, which occurs in detection and recognition tasks, is referred to as rejection.

Unfortunately, a great number of works which ignore the necessity of rejection

can be found in the literature. These works proposed solutions to problems which

are regarded as regular classification tasks, although dealing with data from non-

targeted classes is not only theoretically possible but expected in practice. This could

lead to poor results when a solution of these is used in a real-world application, out of

its testbed. Such questionable modeling can be found in various contexts: fault de-

tection (MIROWSKI e LECUN, 2012) and human activity recognition (ANGUITA

et al., 2013) are some examples. Table 2.3 summarizes the differences between open

set recognition and its closest relatives.
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Task Target Training Data Predictions

Classification
Discrimination
between classes

Abundant data
of all classes

Label of a
known class

Anomaly
Detection

Recall of
abnormal data

Abundant
normal data;
few or none

outliers

Outlier:
yes or no

Open Set
Recognition

Identification
of data from

targeted classes

Abundant
targeted data;
few or none
non-targeted

Label of a
target class or

‘unknown’

Table 2.3: Differences between open set recognition and related problems.

2.3.2 Openness

An interesting aspect of a task which requires rejection is how important this action

is for its accomplishment. This comes from the fact that for different problems, the

amount of data which should be rejected may differ: for example, rejection is less

useful for the recognition of chickens and ducks among farm animals than among

birds in general, as the last group is broader than the first. From this intuition,

the openness of a given problem is an estimate of the indispensability of rejection

for its proper solution. SCHEIRER et al. (2013) defined this measure as shown in

expression (2.5), using three quantities: Ce, the number of existing classes, which

could have to be handled while performing predictions; Ct, the number of classes

with observations in the training sample (Ct ≤ Ce); and Cr, the number of classes

which should be later recognized (Cr ≤ Ct, as the training sample may contain

strictly negative examples, which do not prompt the modeling of their classes).

Openness = 1−
√

2 Ct
Cr + Ce

. (2.5)

A classification problem is “closed” (Ct = Cr = Ce ⇒ openness = 0%), what is

consistent with the fact that a classifier does not need to reject data. The openness

of a detection problem whose training sample contains just positive observations

(Ct = Cr = 1) grows with the number of all known and unknown classes, Ce. As the

number of classes available during training (Ct) increases, the openness diminishes.

The opposite happens for the number of target classes, Cr. Those who defined this

measure claim that its value always conveniently between 0% and 100%, but this is

not true: for example, if Cr = 1, openness is negative if more than half of all classes

are represented in the training sample (i.e., Ct > Ce/2); generalizing this principle,

openness is negative whenever 2Ct > Cr + Ce, an ordinary condition.
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2.3.3 From Classification to Open Set Recognition

Open set recognition requires learning not only the differences between target classes

but also what differs data of these classes to extraneous data. It is reasonable to

consider the adaptation of existing classifiers to this last requirement, as the first

is already covered by their functioning: attached to each class prediction it could

be provided some sort of confidence rate of such inference. Ideally, this adaptation

allows the use of the possibly complex decision criterion established by the classifier

in this alternative application. Moreover, the additional computational cost can be

reduced by such integration.

A margin classifier, as the Multilayer Perceptron, receives such denomination for

the way it operates: it defines a function f : Rd → R, x 7→ y which provides class

predictions ŷ = sgn(f(x)); consequently, it also defines a hypersurface f(x) = 0,

called decision boundary, which divides the feature space delimiting two regions

related to each class. For any x ∈ Rd, f(x) is nothing but the signed distance

between x and the margin, what naturally induces the idea of using this value to

identify outliers: the farther x is from the margin, the stronger is the evidence that

it does not belong to the known classes.

Although this last statement is sensible, to be distant from the decision boundary

is a sufficient but not necessary condition to be an outlier. Figure 2.8 illustrates a

situation in which a linear-kernel Support Vector Machine, another margin classifier,

defined a decision boundary using the observations denoted by circles and squares

as the training sample. The distance to the margin of both observations denoted

by stars is roughly the same, but the observation closer to the training data is less

extraneous than the other one. However, the only information any margin classifier

can provide is this observation-to-margin distance. The decision boundary is defined

according to the provided data aiming to be a criterion for class prediction as broad

as possible: if an observation which is really different from the training sample has

to be classified, this should be done as well as possible. This way, the margin which

is defined is not optimized for rejection.

As just explained, a confidence rate to be used for rejection is hard to compute

for a class prediction realized by a margin classifier. As a matter of fact, this

limitation can be related to the kind of probabilistic model a margin classifier is:

it tries to approximate argmaxy P (y|x) using the learned decision function f(x).

Classifiers which work directly with the conditional probability P (y|x) are known

as discriminative classifiers. On the other hand, generative classifiers estimate the

joint probability P (x, y), from which the conditional probability can be computed.

Interestingly, it seems to be acceptable to use the probability P (x, y) as the desired

confidence rate for the association of x to class y.
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Figure 2.8: Observations represented by stars: equidistant from the margin, but in
different conditions regarding being outliers.

However, generative classifiers can not be readily used for open set recognition.

That is because they are usually based on probabilistic principles as the Law of Total

Probability and Bayes’ theorem. The fact that prior probability of the classes is

generally unknown in open set problems disallows the use of these tools (SCHEIRER

et al., 2014). Besides this, the computation of a good probability density estimation

targeting rejection would require a large, noise-free data set (TAX e DUIN, 2008),

richer in the informative aspect than a data set to be used just for classification.

There exist approaches for open set recognition in the literature. Many of

these are based on discriminative principles: rejection-adapted support vector clas-

sifiers (FUMERA e ROLI, 2002; GRANDVALET et al., 2008; JAIN et al., 2014;

SCHEIRER et al., 2014; ZHANG e METAXAS, 2006) and ensembles of one-class

classifiers based on support vectors (CHEN et al., 2009; HANCZAR e SEBAG, 2014;

HOMENDA et al., 2014) are possibly the most common descriptions of methods re-

cently proposed for this task. This can be considered a natural consequence of the

popularity of these techniques, previously used in huge variety of closed set tasks.

However, for open set recognition, a solution with a generative background could fit

in more naturally thanks to its embedded confidence estimation: the adaptation of

a solution of this kind looks less painful than the same for a discriminative solution.

A promising alternative is the development of a distance-based (TAX e DUIN, 2008)

or prototype-based (FISCHER et al., 2015) method, which would have some capa-

bilities similar to generative methods, while avoiding the probabilistic bases which
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should not be used in open set tasks.

2.4 Data Stream Clustering

The most basic notion of learning regards the reproduction and generalization of

an unknown mapping given some examples in the form of a given input and the

desired respective output. Classification is an example of a process of this kind, in

which the classes are the elements of the image of such mapping, and this image

is entirely known before learning takes place. A classifier works trying to identify

features which are alike between observations of the same class and distinct if their

classes differ. It is interesting to notice that these same features would still exist for

the same data set even if there was no information regarding to which classes the

observations in the training sample belong to.

Clustering is the learning activity concerning the discovery of data features which

indicate the existence of relations between observations. As a result of this activity,

it is possible to define data clusters, grouping observations based on their accor-

dance on the discovered features. The definition of such groups of observations

can be interpreted as some sort of “reversed classification”: instead of looking for

discriminative characteristics of previously defined groups, as a classifier does to

class-labeled data, now these characteristics have to be identified so these groups

can be defined. This way, the set of features a classifier defines after processing a

given training sample is possibly discoverable by clustering the same observations

while ignoring to which class they belong to. However, clustering may also lead to

other features, which could not be useful for classification, but provide interesting

insights of the data under consideration.

Still comparing classification and clustering, an interesting aspect is how these

processes are guided while being performed. The performance of a classifier can be

unequivocally computed and adjusted according to previously known examples: if

the class predicted for some observation is not the expected, this is a unquestion-

able mistake; a hypothetical perfect classifier would be able to reasonably avoid all

mistakes. On the other hand, to estimate how good is the outcome of a clustering

procedure is more complicated, as it does not exist a standard criterion for such

evaluation. In other words, a clustering problem can have more than one solution,

and the best among those can vary according to the chosen interpretive point of

view. For these reasons, classification is considered a supervised learning activity,

while clustering is labeled as unsupervised learning.
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2.4.1 Learning from Data Streams

A premise of most machine learning tasks is the existence of a data set from which

the knowledge should be extracted. In this default scheme, learning happens once

only, as a step of system functioning whose start and finish are clearly defined. Al-

ternatively, a data stream can replace a data set as knowledge source, serving as

an unbounded information provider of the population it regards. In this case, the

way learning is carried on needs to be adapted, as it can no longer be realized as a

single step. The least which can be done is to incrementally expand and refine the

obtained knowledge as new observations become known. An even more challenging

use of data streams considers that the attributes of the underling population are not

static, so that the more recent observations are more important for its characteriza-

tion. Therefore, not only learning should be performed incrementally but outdated

information should be discarded as well. To learn under these last constraints is

what is called data stream mining.

The notion of a data stream is less intuitive than that of a data set. Formally, a

data stream S = (s1, s2, . . . ) can be described as a unbounded sequence of elements.

Each si = (xi, ti) is a pair consisting of a n-dimensional real vector xi ∈ Rd repre-

senting an observation, and the time stamp ti ∈ R of the instant the observation

was input to the learning system. It is worth noticing that two elements si and si+1

can be enormously apart in the temporal sense, despite the minimal difference of

their indexes. Hiatus as well as bursts of observations can happen during stream

processing. To consider ti = i is a commonly used simplifying assumption (JIN

et al., 2014; ZLIOBAITE et al., 2014), also considered during this research to make

easier the comparison of the results obtained to those of other works. However, as

desirable, it was not established any dependence to such stricter condition.

Clustering a data stream requires more than defining reasonable collections of

observations, as in the static version of the problem. Incremental learning is realized

updating the previously defined groups by the addition of novel observations as they

arrive. This can prompt not only the enlargement and density increase of these

groups, but also the merging of groups separated until then. The emergence of new

groups also needs to be considered in this incremental functioning. The disposal

of obsolete information works the opposite way, shrinking and reducing the density

of groups as well as prompting splits and vanishings. The continuous combination

of information addition and removal results in the displacement of the maintained

groups in the feature space. All this should happen still taking into account the

temporal information which is attached to each observation.
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2.4.2 Modeling Options

The just mentioned characteristics, common to most data stream clustering tasks,

still allow different implementations of some of its parts. One of these parts regards

the definition of data obsolescence, and an aging model is responsible for such defini-

tion. Any of these models is described through two characteristics: the range of the

data stream it encompasses and the weight each covered observation has on current

knowledge. For example, the sliding window model (DATAR e MOTWANI, 2016)

always considers the ω most recent observations equally important to knowledge

definition (ω is a model parameter). Therefore, whenever a novel stream element

si is received, it should be used to update current clustering definition, becoming

as important in this regard as si−1, while the influence of si−ω should be canceled.

Another option is the damped window model (CAO et al., 2006), which covers all

stream items previously seen, assigning weights proportionally to how recent the

inputs are, according to a decay factor.

The landmark window (ZHU e SHASHA, 2002) works incrementally adding novel

inputs to its range until it is detected a concept drift: a change in the properties of

the underlying population, what makes previously seen data less useful for the defi-

nition of up-to-date knowledge. When this happens, the window is restarted, so that

the information maintained until then is discarded and redefined from scratch, as

the data window grows. Handling concept drift in a smother manner, the adaptive

window model (BIFET e GAVALDÀ, 2007) expands its range using new observa-

tions until change is noticed. This triggers the gradual reduction of window size

until the covered data, the most recent items of the stream, are considered stable,

drift-free. These two methods assign equal weights to all covered inputs. They also

rely heavily on effective drift detection, what can be integrated to the model or

performed separately.

Beyond the previously presented formal characterization of a data stream, a

practical aspect of their use is the high input rate exhibited by some streams. This

shows that, with respect to efficiency, handling data streams is more challenging than

the same for data sets: each input has to be processed without considering previous

inputs individually, in an unrestricted manner; they can be arbitrarily numerous,

even in recent history. Such condition can be translated into this constraint: the

stream item si is available just until the item si+1 becomes known. The adequate

strategy to this setting is to use each item to update a data summary maintained

by the learning system. The entire system functioning depends on this summary

depth, upkeep cost and support to incremental learning and forgetting.

Any implementation of this data summary is valid, as long as it properly sup-

ports learning under the aforementioned conditions. Despite this freedom of choice,
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possibly all existing alternatives for this matter were derived from the same ba-

sic idea: to maintain a collection of micro-clusters, structures which represent tiny

groups of observations which are similar to each other in the spatio-temporal sense.

These micro-clusters fill the gap between raw input, the stream items, and high-level

system output, a description of the present data clusters: they compose an inter-

mediate layer which fulfils the efficiency requirements of stream processing while

maintaining enough information to suitably feed the definition of the true clusters;

a direct connection between these ends would probably fail in both aspects.

This micro-clustering strategy establishes two separate procedures in system op-

eration (SILVA et al., 2013): the data abstraction (or online) step, regarding the

continuous stream processing and consequent update of the micro-clusters; and the

clustering (or offline) step, regarding the description of the current clusters. The

clustering step is performed on demand, triggered by some external interaction or au-

tomatically, for example, when concept drift is detected (WAN et al., 2009). As this

step does not handle the stream directly, it does not have the efficiency constraints

of the data abstraction step. Consequently, this step is commonly implemented as a

regular clustering algorithm whose input data are the micro-clusters. On the other

hand, the data abstraction step can be briefly described as a loop wherein it is up-

dated the micro-cluster to which the most recent observation best fits. Algorithm 2.4

presents the general form of such procedure.

1: for all xi, the observations from the stream do

2: Discard information obtained from outdated observations

3: Discard micro-clusters which are no longer useful

4: Find the micro-cluster mcj which better encloses xi

5: if mci is close enough to xi then

6: Update mcj definition using xi

7: else

8: Start a new micro-cluster based on xi

Algorithm 2.4: A generic data abstraction procedure.

In literature (BARDDAL et al., 2015a; BHATNAGAR et al., 2014; CARDOSO

et al., 2012; KRANEN et al., 2011) the micro-clusters were described using different

structures (e.g., clustering features, grid cells), with their own attribute sets and

organization schemes (e.g., tree, linked list, graph). Despite such variety, all alter-

natives have the same pre-clustering purpose. But they still differ between each

other in some aspects: for example, how the best fitting micro-cluster is identified,

or the conditions which prompt the creation or elimination of a micro-cluster.

As just stated, the processing of each stream item results in the update of a single

micro-cluster. By default, this one-to-one relation is also maintained in the clustering
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step: each micro-cluster is used in the composition of a single top-level cluster. In

other words, the clusters represent a partition of the observations. This standard

is known as hard clustering. Its alternative is called soft clustering (WAN et al.,

2008), wherein each observation belongs, in different degrees, to all clusters. It can

be noticed that this partitioning scheme has a closer resemblance to a classification

setup, which requires the assignment of each observation to a single class, ignoring

possible intersections between classes.

2.4.3 Relation with Open Set Recognition

The described routine of a system for data stream clustering is an instance of the con-

cept of prequential learning (DAWID, 1984): the inputs become known sequentially;

for each incoming observation, a decision is made for it; then, the same observation

is used to update the decision criterion of the learning system. Regarding data

stream clustering, the decision is the identification of the micro-cluster which better

encompasses the observation. And the decision criterion update happens when the

chosen micro-cluster incorporates the characteristics of the observation: it conse-

quently becomes more apt to absorb other observations similar to the current one

in the future; at the same time, the opposite goes for dissimilar observations.

It is also possible that no existing micro-cluster is considered an appropriate

match for the observation in question. Such event can have various explanations:

the observation is just noise, not being useful for knowledge update; or the formation

of a novel cluster in an unpopulated region of the feature space just started. Taking

into account this ‘no match found’ outcome, this micro-cluster querying is similar to

the decision taking performed for open set recognition: the micro-clusters play the

role of the modeled classes, and a rejection happens when none of them is accepted

for absorbing the observation. In some sense, the substitution of a data set by a

data stream make clustering more similar to open set recognition. However, the

first activity requires knowledge update and disposal of outdated information, has

harder efficiency constraints and is unsupervised.

BENDALE e BOULT (2015) proposed recently a solution for a learning task

called ‘open world recognition’, which is similar to open set recognition, but con-

siders the addition of new classes after initial training based on external support.

Such activity resembles data stream clustering, but lacks some of its requirements:

once a class is added to the knowledge base, its definition is not updated when an

observation is ruled as an element of that class; no time factor is considered, so

that knowledge can be incremented but it is never forgotten; there is no restriction

regarding the availability of past observations after novel ones become known. A

data stream clustering system can be easily adapted for open world recognition: for
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example, it is enough to use active learning to assign classes to the micro-clusters

maintained during stream processing (IENCO et al., 2013).

30



Chapter 3

WiSARD for

Open Set Recognition

Recapping what was previously stated in this text, classification is an activity which

naturally models numerous everyday situations. The formal description of default

classification considers the existence of just two priorly known classes. The most

natural variant is multi-class classification, in which the number of classes is greater

than two. Another popular derived task is the identification of elements of a single

well-known class among a collection of observations, known as one-class classifica-

tion, or anomaly detection. As it can be perceived, all these alternatives differ by

the number of classes the learning system has to model.

Another task based on classification is open set recognition, in which observations

of some classes should be recognized accordingly while inputs which do not belong

to the known classes should be rejected, that is, ruled as outliers. To use a classifier

for open set recognition, it is necessary to make it capable of identifying extraneous

data. Discriminative classifiers, which work based on the conditional probability

P (y|x), can only provide the distance between a given observation x and the decision

margin defined during training. This information is somewhat poor for the purpose

of rejection. Generative classifiers seem to be naturally more appropriate to the

situation in question: the joint probability P (x, y) they model could be readily used

evaluate the pertinence of x to y. However, the probabilistic foundation of these

models does not comprise the reduced notion of the prior probabilities of the classes.

A WiSARD classifier is composed by a collection of discriminators, which are

used to evaluate how well an observation fits the classes they represent. Despite

the name of such structures (discriminators), WiSARD exhibits some generative

capabilities: for example, it is possible to generate prototypes of the known classes

through a procedure called DRASiW (GRIECO et al., 2010), a reference to the

reversal of the ordinary system operation. To produce such prototypes is possible

thanks to how learning is realized by this model, explicitly collecting pieces of infor-
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mation from training data for later use. Such generative trait of WiSARD motivated

the analysis of its applicability in open set recognition tasks.

As a matter of fact, matching(x, y) can be interpreted as a proximity measure-

ment between observation x and class y. Such point of view, which was not explored

in depth prior to this research, is particularly important here, where to make deci-

sions based on distances is preferred over some probabilistic computations, as ex-

plained in Section 2.3.3. While the notion of distance between objects of the same

type, as two observations, is more straightforward, this element-to-set proximity

has more facets to be considered. Hence it allows a greater diversity of approaches,

and this matching computation can be seen as one of those. A comparison be-

tween WiSARD matching and other well-known alternatives is presented ahead in

Section 3.1, targeting to highlight some idiosyncrasies of the first.

To perform open set recognition, it is necessary to define a rejection criterion,

which regulates the outcome of a classification according to a confidence associated

to this action. With respect to WiSARD, this confidence is represented by the

estimated observation-to-class proximity. But to learn from available data how

to rightfully reject extraneous data requires some further development: how close

an observation must be to its predicted class to such classification be considered

reasonable? In other words, how to define boundaries which ideally encompass data

from target classes only? Section 3.2 is dedicated to these questions.

Section 3.3 presents experiments for practical evaluation of the proposed

WiSARD-based system. The procedures which describe these experiments impose

the need for rejection in a similar way to what can be encountered in real-world ap-

plications. Indeed, some data sets used here were originally used for plain classifica-

tion, neglecting the intrinsic necessity of handling extraneous data for the problems

in question. Therefore, through the experiments not only effectiveness in open set

recognition is assessed but the importance of adequate identification and modeling

of tasks of this kind is also stressed.

At last, Section 3.4 sums up what was discovered through this research. This

includes comments regarding open set recognition as a machine learning task which

deserves particular attention despite its relation with classification. It also addresses

how the proposed methodology proved to be an useful tool, considering its accuracy

and interpretability in the proposed experiments.

3.1 Proximity Measurement

In this section, WiSARD matching is analyzed as a proximity measure. First, the

features considered in this analysis are enumerated, together with a brief description

of their importance and the subjects they cover. Then, based on the just mentioned
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features, an in-depth characterization of WiSARD is given. Next, the considered

alternatives for proximity assessment are presented and compared in the proposed

terms. At last, the alternatives are compared graphically through various test cases,

targeting to provide a better intuition of their characteristics.

3.1.1 Featured Aspects

The first point of view from which the alternatives to be compared are analyzed con-

cerns how the proximity computation procedure is carried on, qualitatively. This

perspective prompts various interesting questions. For example, how granular is

the output of this procedure? Also, how meaningfully does this procedure provides

different answers to distinct queries, or how does it uniquely handles an observa-

tion and data set input? And, how sensitive is this procedure to the presence of

extraneous elements in the data set? At last, are there parameters which can be

used to adjust the execution of such procedure, and how they alter such execution?

To observe the available options from this angle can be seen as the most basic and

essential analysis to be realized, as it regards their core functionality.

The second aspect which is taken into account is the time complexity of the

process, or processes, which are realized in order to obtain a desired proximity

measurement. It is interesting to consider separately the cost associated to a pre-

processing or training phase and the actual proximity computation, as the context

considered here is that of open set recognition, where training is performed once

followed by the answering of one or more prediction requests. Depending of the

existence of efficiency constraints for the target application, how computationally

expensive is proximity evaluation may be considered even more important than the

precision of such computation, assuming a trade-off between these points.

The last feature to consider is similar to the previous one: the memory complexity

of the proximity measure. During preprocessing/training phase, it is usual to feed

some data structure which is later used during prediction phase. If the resources

available for task realization are limited, one alternative may be preferred over other

one if the last requires the storage of a too large amount of data. Thus, it is

interesting to know how much data could be stored at most, and the relation between

this quantity and the size of the data set.

3.1.2 WiSARD Matching as Proximity Measure

WiSARD matching is the first option for proximity assessment to be described.
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Core Functionality

The granularity of WiSARD matching output is controlled by a model parameter:

the number of nodes per discriminator, δ, is the number of distinct proximity degrees

which can be assigned. Recalling the examples in Section 2.2.1, if it is assumed that

the number of bits which describe an observation is mn, the original WiSARD

model requires δ ≤ mn, so that for the length of the addresses, β = mn/δ, the

inequality β ≥ 1 holds. However, it is possible to increase this granularity through

oversampling, using every bit more than once for addressing, as proposed next.

Let C be the set of combinations of β elements from a pool of mn bit references,

so that |C| =
(
mn

β

)
. Any collections of bit references c1, · · · , cδ used for addressing

are nothing but a random sample of C for which expression (2.3) holds. If this

constraint is dismissed, it is established a new condition, δ ≤ |C|, which allows

a much higher granularity. Indeed, considering that matching∗(y,x) denotes the

matching rate when δ = |C| (that is, {c1, · · · , cδ} = C), it can be noticed that

matching(x, y), for any δ < |C|, is an approximation of matching∗(x, y), based on

a sample of C, so that E[matching(x, y)] = matching∗(x, y). The bigger δ is, the

better such approximation is. Therefore, for a given β, it is not strictly necessary

to consider δ = mn/β as stated for the original WiSARD model.

If the observations are originally represented as real vectors, they can be encoded

to a WiSARD-friendly format using as many bits as desired, using Algorithm 2.3

or a similar procedure. As the number of bits used to represent the observations

grows, a similar effect to that of oversampling can be achieved while still using

the original bit sampling policy: the granularity of the output is increased while

its stochasticity is reduced. However, oversampling can be used for any binary-

represented data, and counters stochasticity more explicitly. Moreover, it reveals

an interesting probabilistic aspect of WiSARD functioning. At last, the processing

overhead grows with the number of bits used to represent the observations.

Another noteworthy peculiarity of WiSARD matching can be pointed out as

follows. First, extending the notation already introduced, consider matching(x, X)

the WiSARD-based matching rate of a set of observations X = {· · · ,xi, · · · } and

an observation x. Then, expression (3.1) can be used to declare that the matching

rate monotonically increases as the referenced data set becomes larger.

matching(x, X ∪ {x′}) ≥ matching(x, X) . (3.1)

This is directly related to the mapping-and-memorization scheme of WiSARD,

as well as to the condition of saturation described in Section 2.2.3. Some effects of

such monotonicity are positive, while others are not. For example, it is impossible
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to move away x from X (that is, reduce their matching) adding observations to X,

what makes such computation “outlier-proof” in this regard. On the other hand,

matching(x, X) = 0 ⇒ matching(x, X ∪ {x′}) = matching(x, {x′}) ,

and this last matching rate can be as big as 1, what discredits WiSARD matching

as a global proximity measure given how strong can be the influence of a single

observation on its calculations. That is, other alternatives should be preferred when

the target application requires something in the sense of an average proximity.

One last detail to highlight is related to nomenclature: WiSARD matching in-

deed represents proximity, or similarity, and not distance. Measures of both kinds

provide information about the difference between locations in a space, but a distance

grows with this difference while the opposite happens to a similarity measurement.

Moreover, the output range of a similarity measure is a bounded interval (e.g., [0, 1]),

while a distance is just half-bounded as a non-negative value. As these differences

were not relevant to the applications analyzed during this research, in this text the

term proximity is used to refer to measures of both kinds.

Still in this regard, it is interesting to comment how the length of the addresses,

β, alter proximity calculation. While the number of nodes in each discriminator, δ,

is related to the granularity of the provided matching rates, β defines what could

be understood as the atomic matching amount. The smaller is β, the larger is

the region defined from a base data set X that covers observations as x for which

matching(X,x) > 0. Therefore, while the output of WiSARD matching always lies

inside [0, 1], this interval is somehow stretched according to the model parameter β.

Time Complexity

WiSARD has a well-defined training procedure, already presented in Algorithm 2.2.

For element-to-set proximity assessment, this can be seen as a preprocessing step.

For a training sample X, the time complexity of such procedure is

O(|X| δ β) . (3.2)

That is, for each of the |X| observations, δ node updates are realized, and the cost

of each of these updates comes down to the definition of a key of β bits. It can

be noticed that there is no dependence between such cost and the dimensionality

of the observations. However, this dependence is established if data requires to be

binarized and a procedure like Algorithm 2.3 is used for this. In turn, the proximity

measurement itself, which is carried out as a single matching computation as shown

in expression (2.1a), costs O(δ β), based on the same reasoning used for analyzing
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the training procedure.

Memory Complexity

The discriminator nodes register the occurrence of addresses which are β-bits strings.

There are 2β possible values for these strings. This can be used to asymptotically

define the memory complexity of a WiSARD discriminator: O(δ β 2β). This bound

can be considered too “pessimist”, since it is quite uncommon for a node to register

O(2β) addresses: first, such condition presumes that |X| ≥ O(2β), while in com-

monly used WiSARD setups, |X| � 2β; second, it also presumes that the number

of distinct addresses to be obtained from observations in X will be of the order of

2β, but this is hardly feasible, because in practice observations input to the same

discriminator, as examples of a given class, are expected to have addresses in com-

mon. An alternative bound is O(|X| δ β), which can be tighter but still does not

take into account addresses coincidences properly.

The expected number of different addresses to be obtained from X can be defined

based on a version of the birthday problem (SIEGRIST, 1997): assuming an year

has d days and birthdays are uniformly distributed, how many distinct dates are

expected to be birthdays of p people? Consider b = (1 − 1/d)p as the probability

that a certain date is nobody’s birthday. Therefore, the expected number of distinct

dates that are birthdays is d(1 − b). Back to WiSARD, d = 2β and p = |X|.
Consequently, the memory complexity is of the order of

δ β 2β

(
1−

(
1− 1

2β

)|X|)
.

3.1.3 Comparison to Alternatives in Literature

Mahalanobis Distance

As previously stated, the proximity between two observations is a clearer concept

than the proximity between an observation and a data sample. An strategy to per-

form computations of this last type is to define a sample representative in the form

of a virtual observation, and then use it for computations of the first type. The cen-

troid (i.e., the arithmetic mean position) of the sample is the most straightforward

candidate for representative, as it is a reasonable summary of the sample. Moreover,

the distance to the centroid is closely related to the average distance to each element

of the sample:

x− X̄ = x−

(
1

|X|
∑
x′∈X

x′

)
=

1

|X|

(
|X|x−

∑
x′∈X

x′

)
=

1

|X|
∑
x′∈X

x− x′ .
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Compared to WiSARD matching, this distance-to-centroid alternative can be

considered superior with respect to both time and memory complexity, for its con-

stant computational cost (besides the O(|X|) cost for centroid definition) and also

constant storage space requirement. Its output has a higher granularity than that of

WiSARD matching, since it is a “strictly” real value rather than a rate of an integer

value. As the influence of a single observation of the sample on centroid definition

is inversely proportional to the size of the sample, so it is the sensitivity to outliers,

what can be considered just slightly inferior to WiSARD performance in this sense.

One bad aspect of this centroid method is its insensitivity to variations of the

data set, as long as these variations are symmetrical with respect to the centroid:

X ′ = X ∪ {X̄−x, X̄+x} ⇒ X̄ = X̄ ′. This way, observations can be indiscriminately

added to the base data sample without affecting proximity computation. Another

question is the lack of locality, as the proximity between an observation and sample

(i.e., its centroid) is minimally related to the proximity to neighboring elements of

the sample, what is the exact opposite of WiSARD behavior in this regard.

Mahalanobis distance (XIANG et al., 2008) takes into account not only the

sample mean but also how its varies in across different dimensions: with the centroid

as origin, consider all possible coordinate axes; the sample observations can be spread

in some axes while condensed in others. To depart from the centroid over an axis of

the first kind is to move away from data in a slower pace than to do the same using

an axis of the second kind. This notion can be used to provide some additional

context to the default distance-to-centroid measurement. For a covariance matrix S

of the data sample, the Mahalanobis distance is defined as

DM(x) =
√

(x− X̄)T S−1 (x− X̄) .

The need to define the inverse of the covariance matrix is one of the challenges

associated to this method, as it may not exist, above all on high-dimensional sit-

uations. Approximations of this inverse are valid alternatives. With respect to

locality and outliers, Mahalanobis distance is similar in this sense to the centroid-

only method. The time and memory complexities of both methods are also similar,

differing basically by the extra preprocessing cost of defining S−1. The value of

DM(x) is as granular as possible, and is more sensitive to changes in the base data

sample, thanks to the extra information the covariance matrix provides.

Nearest Neighbors

To evaluate the proximity of an observation to a data sample based on which items

of the last are the closest to the first is a viable alternative. The nearest neighbors

method works based on the identification of these closest in-sample observations,
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providing the average distance between these and the query observation. Conse-

quently, this method requires storing the entire data set, what means an O(|X|)
memory complexity, at least. For a reduced computational cost, spatial data struc-

tures (SAMET, 1995) are used for indexing: some of these structures allow nearest

neighbors lookups in O(log |X|) steps only, while requiring O(|X| log |X|) steps to

be fed. From the memory perspective, WiSARD can be considered superior for its

sub-linear complexity on the size of the data sample. Regarding time complexity,

none of the two approaches clearly dominates the other.

The locality sense of the centroid method contrasts with that of the nearest

neighbors method, which can be considered closer to WiSARD in this regard. As

a matter of fact, such behavior depends on the single parameter of this method: k,

the number of neighbors to find for each query. If k = |X|, the average distance to

the neighborhood is simply the average distance to every element in the sample. In

most applications, k � |X|. The setup k = 1 is common, despite being the most

exposed to outliers. As k grows, the influence of changes in the sample becomes

wider, but weaker. Regardless of k, the output granularity is always the highest.

Naive Bayes Modeling

Despite the already described drawbacks related to using conventional probabilistic

models for open set recognition, for the sake of completeness one of these models is

included in this comparison. A Naive Bayes model (LOWD e DOMINGOS, 2005)

can provide an estimate of the likelihood of an event based on past events: here,

the query observation is the target event and the data sample contains the past

events. Such estimation is based on how likely is the value of each component of x,

independently of the others: p(x) = Π p(xi). The value p(xi) is defined according

to statistics over the i-th component of sample observations.

The granularity of p(x) depends on how each observation component is modeled:

for example, a model based on counting frequencies of the values of each component

can be less granular than a model based on an assumption of the data distribution.

However, to assume a data distribution can be considered risky, unless such option

is well justified. A decision on this matter also reflects on preprocessing cost, since

estimating distribution parameters may be necessary, and diverse methods can be

used for this. Ideally, such methods should be based on robust statistics, what

guarantees their proper functioning in the presence of extraneous data in the sample.

Still about computational cost, for x ∈ Rd, time and memory complexity are O(d),

what makes this model the best among those considered here in these aspects. At

last, how far the query observation is from observations in the sample does not

reflects on the measurement the Naive Bayes method provides.
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One-class Support Vector Machine

As one of the most used methods for outlier detection, a one-class support vector

machine (SCHÖLKOPF et al., 2001) represents another kind of proximity measure,

which learns a decision boundary from data through optimization, similarly to a

margin classifier during its training. Here, optimization leads to the identification of

support vectors, the most marginal observations in the base sample. These support

vectors are used to define the limits of the area wherein data is considered regular.

Model configuration affects the number of support vectors which are chosen and

how bound to the vectors is the margin. Among the considered proximity measures,

including WiSARD, none besides one-class support vector machine was designed as

a rejection tool.

The time complexity of this method is twofold: training cost is up to O(|X|3),
what possibly disallows handling even moderate-sized data sets; one the other hand,

computing the distance to the margin takes O(v) steps, where v is the number of

support vectors, and v � |X| usually holds. Memory complexity is also O(v).

The granularity of a measurement is not only the highest possible, but, as a signed

number, it also provides an insight of the pertinence of the query observation to the

sample. The support vectors are responsible for the locality aspect of the method,

since observation-to-sample proximity can be related to the proximity to those that

are most external elements of the sample, which establish the decision boundary.

The one-class support vector machine is insensitive to changes in the data sample

which do not alter the selected support vectors.

3.1.4 Graphical Analysis

This subsection is devoted to analyze the performance of WiSARD as a proximity

measure in some toy examples. The previously described alternatives to WiSARD

are used to provide baseline results. The comparison presented in the preceding

subsection, Like the comparison presented in the preceding subsection, this practi-

cal comparison the observation-to-sample proximity assessment capabilities, as the

definition-oriented comparison of the preceding subsection. This practical compar-

ison is still focused on the observation-to-sample proximity assessment capabilities,

as the definition-oriented comparison of the preceding subsection.

Each test case follows the same routine: given a base data sample of 100 two-

dimensional observations and a delimited area in the space, estimate the proximity

between each point in this area and the sample. This proximity was indeed computed

for a grid of 10,000 (100 × 100) points uniformly distributed inside the considered

region, a sufficiently big set for a good overview of how differently each proximity

alternative works in the same circumstances. The measurements were scaled in
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order to indicate the proximity to the sample, as values from 0 to 1, the farthest

to closest, respectively. Using these proximity rates, a contour plot was drawn to

highlight subareas in which the assessed proximity is similar. A dotted line was used

to delimit where proximity rate is greater than zero.

The experiments were implemented in Python. The scipy (OLIPHANT, 2007)

and scikit-learn (PEDREGOSA et al., 2011) modules provided the implementations

of the considered alternatives to WiSARD: the Mahalanobis distance; the nearest

neighbors method, with k = 5; a Naive Bayes system, which assumes that values in

each of the two dimensions follow a Gaussian distribution; and a one-class support

vector machine, with nu = 0.1 and γ = 200. Besides this description, default

parameter settings were used. The WiSARD instance uses β = 20, δ = 200 and

γ = 400. The previously introduced idea of oversampling was used: each observation

x ∈ Rd was represented using γ × d = 800 bits; from these bits, δ = 200 addresses

of β = 20 bits were generated; this way, each input bit was used δ × β/(γ × d) = 5

times.

The first test case employs a data sample randomly generated from a Gaussian

distribution. Figure 3.1 shows the respective results. At first sight, the most evi-

dent difference between WiSARD matching and its alternatives is the irregularity

of the provided contour levels. Microscopically, this is an undeniable fact, which is

related to WiSARD lower granularity compared to the other methods. However,

in a broader sense, WiSARD reflects data idiosyncrasies arguably better than all,

thanks to its distinct knowledge matching principle. Such mechanism is inherently

discontinuous, contrasting with the smoothness most alternative methods target.

Data N. Neighbors Mahalanobis

Naive Bayes One-class SVM WiSARD
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Figure 3.1: The ‘Gaussian blob’ toy example.

In the second test case a toy data set consisting of two concentric circles of
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observations was used. The results are presented in Fig. 3.2. Again, WiSARD

roughness is clear, but also its overall proper data representation, clearly superior

to those of Mahalanobis and Naive Bayes options. An adequate approach for this

test should have an improved sense of locality and enough precision to separate both

circles, what was successfully accomplished by WiSARD. Comparing all approaches

which could handle the task: the nearest neighbors method concentrated most of

its measurements in the interval [0.6, 1.0]; on the opposite side, the measurements

from the one-class support vector machine are mostly under 0.2, while the range

[0.2, 0.8] is underused; WiSARD seems to distribute the measurements more evenly,

providing an alternative, possibly more meaningful, proximity assessment.

Data N. Neighbors Mahalanobis

Naive Bayes One-class SVM WiSARD

0.0

0.2

0.4

0.6

0.8

1.0

R
e
la
ti
ve

 p
ro

xi
m
it
y 
to

 d
a
ta

Figure 3.2: The ‘two circles’ toy example.

Figure 3.3 brings the results of the third test case, in which a data set popularly

known as ‘two moons’ was used. This test confirms what the first two tests show:

assuming the independence between observation attributes, the Naive Bayes method

is unable to measure proximity to data; Mahalanobis distance (and presumably any

method based on global average distance or centroid) lacks locality, what leads

to poor results when handling complex, detail-rich data sets; the nearest neighbors

method provides adequate results, but is unable to highlight minutiae of the sample;

as a proximity measure, the one-class support vector machine yields smooth contours

and great deal of detail, but concentrates its measurements on the extremes of the

scale, either close to 0 or 1; WiSARD’s most patent characteristics are its meaningful

proximity assessment and precise reproduction of data peculiarities, but also its

irregularity.

Now, analyzing the influence of each parameter on WiSARD matching, each

parameter is varied while the others remain as originally set: β = 20, δ = 200 and
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Figure 3.3: The ‘two moons’ toy example.

γ = 400. Figure 3.4 shows results for seven different setups of β. As previously

stated, this parameter controls matching flexibility, as it indicates how much infor-

mation (i.e., number of bits) must coincide for the occurrence of a positive feedback

from a discriminator node. Therefore, as its value is increased, matching becomes

more strict, bound to data sample. From a machine learning perspective, β defines

how prone to generalization a WiSARD instance is.
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Figure 3.4: Influence of β on WiSARD matching.

The effect of parameter δ setup is illustrated by Fig. 3.5. The contour plots

seem to converge to a definitive image following δ increase. Moreover, smoothness

is improved during this process. The first proposition is in accordance with the

probabilistic interpretation of WiSARD functioning: a larger δ leads to a better

approximation of matching∗(x, y), as well as a more deterministic behavior from the
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system. The second proposition is related to granularity: as matching(x, y) gets less

coarse, it becomes possible to represent properly gradual departure from data.
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Figure 3.5: Influence of δ on WiSARD matching.

Parameter γ, which defines the number of bits of the binary representations of

numeric values, affects WiSARD functioning in a very particular way. As shown in

Fig. 3.6, setting this parameter to an excessively low value (in this case, 16 or 32)

harms data representability, leading to a poor reproduction of its characteristics.

On the other hand, there is no need to set this parameter to an unnecessarily

high value (512 or 1024), leading to additional overhead without clear performance

improvement. Ideally, γ should be small as possible while still allowing an adequate

characterization of the sample.
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Figure 3.6: Influence of γ on WiSARD matching.
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3.2 Computation of Rejection Thresholds

After verifying the validity of matching computation as an observation-to-data prox-

imity measure, it is possible to move on to the next step in the development of a

rejection-capable WiSARD. As originally defined, classification comes down to the

identification of the best matching class, based on the knowledge kept by its respec-

tive discriminator. Therefore, the matching rates of the classes were used just to

separate each other in the feature space. Now, considering the general proximity

information these measurements provide, it is acknowledged that their use can be

extended, for example, to the identification of extraneous data.

One mechanism to label possible outliers is to consider as so any observation x

for which matching(x, ŷ) < α, where α ∈ [0, 1] is an additional parameter which

controls how prone to rejection is the system (CHOW, 1970). This would work if

the distributions of matching scores of all classes were the same. However, these

distributions generally differ, according to characteristics of training data respec-

tive to each class, as sample size, density and homogeneity. Thus, a scheme using

individual thresholds aẏ for each targeted class ẏ is preferred, allowing to handle un-

balanced and noisy data sets properly (FUMERA et al., 2000). Expression (3.3) is

the rejection-capable alternative to expression (2.1b) which represents such scheme.

The ultimate target is to learn these thresholds from data, making their definition

as flexible as possible.

ŷ =


y′ if {y′ = argmax

ẏ
matching(x, ẏ)} ∧ {matching(x, y′) > ay′}

‘unknown’ otherwise

(3.3)

The multiple-threshold rejection scheme proposed here was developed in two

steps. First, it was analyzed how to efficiently infer some knowledge about the

matching of a class and its own elements, according to available training data.

From such analysis, it was derived one rejection mechanism which resembles the

aforementioned naive alternative, but provides thresholds adapted to each class. The

next step comes down to identifying, for each class, the threshold which maximizes

a measure of classification effectiveness defined according to a model parameter.

These optimal thresholds, whose definition is based on the information obtained

in the first step, are employed by a second rejection method also introduced here.

Sections 3.2.1 and 3.2.2 are dedicated to each of these parts.
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3.2.1 Manual Thresholding

Consider, for a certain class ẏ and some training data, that matching(x, ẏ) is a

random variable, since it depends on x, another random variable. Suppose that

although the distribution of matching(x, ẏ) is not fully determined, the minimum

value this variable can assume for observations whose true class is ẏ is known.

The intuition behind the rejection method presented next is to use such value for

thresholding:

aẏ = min
x:f(x)=ẏ

matching(x, ẏ) .

In practice, this minimum is indeterminable: the set {x : f(x) = ẏ} is impossible

to realize without complete knowledge of data from class ẏ. However, it could be

estimated from the training sample: denoting by Xẏ the subset of observations in

the training sample which belong to class ẏ, it could be computed

aẏ = min
x∈Xẏ

matching(x, Xẏ \ {x}) . (3.4)

Naively, this calculation requires performing regular WiSARD training |Xẏ| times,

as a leave-one-out rotation of the data sample. From expression (3.2), this means a

O(|Xẏ|2δβ) time complexity. This quadratic relation to the size of the data set would

reduce WiSARD usual applicability for larger data sets. Therefore, it would be

interesting to avoid its establishment. This was possible by means of the exploration

of some peculiarities of this model.

In order to reduce the computational cost of aẏ calculation, it is proposed a

modification of WiSARD training procedure to embed such calculation, avoiding

to perform it separately. Expression (3.4) hints to compute the matching of each

observation in Xẏ, one at a time. As a matter of fact, this can be realized collectively,

keeping track of addresses obtained from observations in Xẏ but not shared between

them. This enables to compute expression (3.5a) efficiently, and subsequently to

provide a specialized redefinition of matching: expression (3.5b).

exclusive(x, Xẏ) = {i : @x′∈Xẏ\{x} addressing i(x) = addressing i(x
′)} ; (3.5a)

matching(x, Xẏ \ {x}) = 1− 1

δ
|exclusive(x, Xẏ)| . (3.5b)

Algorithm 3.1 describes the modified training procedure of WiSARD. In a com-

parison to its original version (Algorithm 2.2), there are basically two changes: every

time an address is to be written, its ‘ownership’ status is updated; and after all ad-

dresses are written, a loop over all exclusive addresses is used to compute incremen-

tally |exclusive(xi, Xyi)| for all observations. The additional operations represent

an increase of the computational cost of WiSARD training, but its time complexity
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remains O(|X|δβ), what is as good as possible in this case. After this procedure is

concluded, EXCLUSIVEi = |exclusive(xi, Xyi)|.

1: Let OWNER be an empty dictionary

2: for all pairs (xi, yi), the training sample do

3: for all addresses aj in addressing(xi) do

4: if aj 6∈ ∆yi,j then

5: ∆yi,j ← ∆yi,j ∪ {aj}
6: OWNERyi,j,aj ← i . Adding a new dictionary entry

7: else

8: Remove entry OWNERyi,j,aj . Address is not exclusive

9: Let EXCLUSIVE = 0|X| be an array of |X| zeros

10: for all 〈(yi, j, aj) , i〉, entries in OWNER do

11: EXCLUSIVEi ← EXCLUSIVEi + 1

Algorithm 3.1: WiSARD training procedure, modified to track exclusive addresses.

Expression (3.5b) and, consequently, expression (3.4) can be easily calculated

based on array EXCLUSIVE. This leads to a definition of thresholds strongly ori-

ented to avoid mistaken rejections, so that no element of the training sample would

be incorrectly ruled as an outlier if it was ignored during training. Such setting is

useful, but in some situations mistaken rejections may be preferred to wrong associ-

ations of extraneous data to targeted classes: for example, to reject few observations

of a targeted class in order to correctly identify a large amount of outliers is generally

interesting. Thus, for an adjustable rejection criterion, expression (3.6) was used as

an alternative to expression (3.4). Pα denotes the α-th percentile of the considered

values, and α ∈ (0, 100) is a parameter.

aẏ = Pα
x∈Xẏ

matching(x, Xẏ \ {x}) (3.6)

The combination of Algorithm 3.1 and expressions (3.5b) and (3.6) provides

a rejection criterion based on what can be inferred about a class from its own

observations only. This is particularly interesting for situations in which all training

data concerns a single, targeted class, as in various unary classification tasks. Even

in this scenario it is still possible to use α to control rejection tendency.

3.2.2 Optimal Thresholding

The manual thresholding scheme which was just described defines aẏ using no ob-

servation besides those from Xẏ. However, there is no reason to avoid employing

46



observations from X \ Xẏ to establish a rejection criterion if those are available.

Moreover, to use data from other classes looks reasonable considering that such

data is extraneous to class ẏ and should be rejected accordingly. In other words, to

reject observations of the targeted classes which would be otherwise misclassified is

just another perspective of the same original goal.

Ideally, aẏ would be set so that

∀x matching(x, ẏ) > aẏ ⇐⇒ f(x) = ẏ .

Such condition wherein the rejection threshold establishes a perfect dichotomy of the

observations possibly related to class ẏ is generally infeasible: it is quite common to

have some observations truly related to ẏ but with a low matching value, while the

opposite happens for some elements of other classes. Therefore, instead of looking for

such unrealistic threshold, finding the best value for aẏ according to some measure

of classification effectiveness is the alternative to be used. This can be enunciated

similarly to an optimization problem:

maximize
aẏ

α(LABELS, PREDICTIONS)

subject to LABELSi = [f(xi) = ẏ]

PREDICTIONSi = [matching(xi, ẏ) > aẏ]

(3.7)

Expression (3.7) is defined according to the binary classification task of ruling if

observations as xi are related to class ẏ or not. LABELS is an array which represents

the ground truth of such task. PREDICTIONS indicates the labels inferred accord-

ing to matching computation and a given aẏ. Here α represents the aforementioned

measure of classification effectiveness. Previously (FUMERA et al., 2000) only ac-

curacy was considered to guide thresholds adjustment. However, any method to rate

prediction quality can be employed for this: for example, F-measure (GOUTTE e

GAUSSIER, 2005).

The idea here is to obtain a reasonable aẏ by solving expression (3.7) just for

the training sample. That is, each of the mentioned xi is an observation of X which

would be classified with respect to ẏ. Then, the search for the optimal value of aẏ

can be limited to all matching(xi, ẏ) values. Again, Algorithm 3.1 is used for train-

ing in order to avoid performing explicitly the leave-one-out rotation of the data set.

Subsequently, Algorithm 3.2 is carried out to tackle the aforementioned optimiza-

tion problem. At last, the time complexity of training becomes O(|X||Ẏ | δ β): the

number of targeted classes is denoted by |Ẏ |; the loop starting at Line 4 of Algo-

rithm 3.2, which dominates the computation of aẏ, can be performed in O(|X| δ β)

steps.
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1: Let ẏ be the targeted class whose optimal threshold aẏ is to be computed

2: for all xi ∈ X do

3: LABELSi ← [f(xi) = ẏ]

4: for all t : ∃x∈X matching(x, ẏ) = t do

5: for all xi ∈ X do

6: PREDICTIONSi ← [matching(xi, ẏ) > t]

7: SCOREt ← α(LABELS, PREDICTIONS)

8: aẏ ← argmax
t

SCOREt

Algorithm 3.2: Threshold optimization procedure.

As already mentioned, each class-related rejection threshold is defined accord-

ing to the best solution of a binary classification subtask. Such solution may vary

according to which measure α is picked to evaluate classification effectiveness. The

choice of α should consider that, for any of these subtasks, class ‘1’ is the targeted

class, while class ‘0’ just gathers misclassified observations (i.e., f(xi) 6= ẏ): compar-

ing extreme scenarios, it is better to reject no observation, as the original WiSARD

does, than to reject them all, including elements of the targeted classes.

Measures as accuracy are indifferent to distinct roles the classes may have, while

others like F-measure are calculated based on a positive (in other words, targeted)

class. Consequently, measures of the last kind should be preferred for this use.

Still with respect to F-measure, its parameter β can be used to control how prone

to rejection is the system: if precision is prioritized, there is a stronger rejective

tendency; otherwise, if recall is favored, rejections should occur less frequently. The

F1 score (i.e., β = 1), which considers precision and recall equally important, was

the default standard for threshold optimization used in this research.

3.3 Experimental Evaluation

In this section a collection of learning tasks with open-set premises are described,

as well as the results obtained when these were approached with rejection-capable

WiSARD-based systems which follow the ideas just detailed. Alternative approaches

to these tasks, some of which can be found in the literature, are used to provide

baseline results for comparison. Through these experiments it can be noticed how

harmful it is to tackle recognition problems with regular classifiers, ignoring the

existence of extraneous data. Indeed, some data sets used here were, before this

work, only considered for classification. Therefore, the introduction of each data set

is followed by an exposition of its open-set nature.

Aiming to provide a rich description of each task, their openness is indicated
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together with other relevant information. However, instead of its original formula,

expression (2.5), an improved redefinition of this measure, shown in expression (3.8),

was used. Mind that Ce (the number of existing classes), Ct (the number of classes

with observations in the training sample) and Cr (the number of classes which

should be later recognized) have the same meaning in both of them. This revision

of openness assessment was motivated by the following reasons: such new version

assures that openness ∈ [0, 1]; and it is reasonable to relate a greater number of

classes to be recognized to a smaller openness. This second point is consistent with

the fact that targeted classes are expected to be comprehensively detailed in the

training sample, helping to portrait the task domain more precisely than available

data from other classes.

Openness = 1−
√
Cr + Ct

2 Ce
. (3.8)

As in Section 3.1.4, the experiments were developed in Python, and used the

Scikit-learn module (PEDREGOSA et al., 2011) which provides implementations

of popular learning algorithms (SVM, Naive Bayes and Nearest Neighbors) and

performance metrics (Precision, Recall and F1 score). The PI SVM (JAIN et al.,

2014) implementation was kindly provided by its authors. The default parameter

settings were used unless otherwise specified.

3.3.1 Anomaly Detection

The ‘DGA’ data set (MIROWSKI e LECUN, 2012) regards power transformers in

one of two possible states: operating regularly, as desired, or in the imminence of

failure. The challenge here is to rule if a transformer is faulty or normal, according

to the concentration of 7 gases dissolved in its insulation oil. This is a small data

set, composed of 50 ‘normal’ and 117 ‘faulty’ observations. Originally this data set

was used for binary classification. As a reasonable alternative, it was considered

here an anomaly detection task, aiming to identify abnormal data.

Regarding this data set, previously reported results were obtained considering

random train-test data splits. However, it makes sense to consider the existence of a

single normal state, opposed to various abnormal, faulty ones: power transformers

can deviate from their standard functioning in many ways. In practice, it is im-

possible to guarantee that all abnormal conditions are known a priori. An accurate

reproduction of the concrete task related to the DGA data set should feature such

incompleteness of the training sample. Since plain random partitions of the data set

do not ensure such condition, a suitable alternative to those was employed: Algo-

rithm 3.3 describes how train-test splits in the aforementioned mold were generated;

in short, instead of single faulty observations, clusters of them were split into the
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training and test samples.

1: Let KMeans(X,n) = {C1, . . . , Cn} be a partition of X in n clusters

2: function MakeSplitsDGA(data set X, s ∈ {1, . . . , 9})
3: SPLITS = ∅ . SPLITS is a set of train-test splits of X

4: C ← KMeans(Xfaulty, 10)

5: Let SC = {C choose s} be the set of all s-combinations of C

6: for all SCi ∈ SC do

7: Tfaulty ← ∪j SCij . SCi is a set of sets of faulty observations

8: Let Tnormal be a random 80% excerpt of Xnormal

9: T ← Tnormal ∪ Tfaulty
10: SPLITS ← SPLITS ∪ {(T,X \ T )}

11: return SPLITS

Algorithm 3.3: Generator of train-test splits of the DGA data set.

The openness of the sample partitions provided by function MakeSplitsDGA

varies according to its parameter s: if each cluster of faulty observations Ci is

considered a class, a lower s means a smaller number of classes in each training set

T , as well as more classes in its testing counterpart X \ T . To assess the influence

of openness in this task, different values of s were used: 2, 5 and 8. For each of

these three values, MakeSplitsDGA was called 100 times, generating a mass of

partitions of the original data set. Additionally, 5000 splits from random 5-fold

cross validation settings were also used, for the sake of comparison to a closed-set

classification scenario. The reported results regard each train-test split in the 4

groups just described. Table 3.1 summarizes the information about these groups.

Characteristics
Tasks

s = 2 s = 5 s = 8 5-fold CV

# Train-test splits 4500 25200 4500 5000
Targeted classes (Cr) 1 1 1 2

Known classes (Ct) 3 6 9 2
Existing classes (Ce) 11 11 11 2

Openness 57% 44% 33% 0%

Table 3.1: Characteristics of tasks based on the DGA data set.

Two tWiSARD (‘t’ stands for threshold) versions were tested: one using the man-

ual thresholding scheme, with α = 5; and another whose thresholds were optimized

according to α = F1 score; other parameters of both were set as β = δ = γ = 100.

It is also reported the performance of the following alternatives, with respective pa-

rameter setups: a 5 nearest neighbors classifier; a Gaussian Naive Bayes classifier;
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a SVM and a 1-vs-all PI SVM, both with C = γ = 10; a one-class SVM, with

nu = 0.005 and γ = 0.025; a WiSARD, with β = γ = 100 and δ = 10. These

settings were obtained in a best-effort search and provided optimal F1 scores with

respect to ‘abnormal’ class. PI SVM (JAIN et al., 2014) represents the state of art

regarding open set recognition. One-class SVM and tWiSARD with α = 5 were

trained using data from the ‘normal’ class only.

Figure 3.7 illustrates the results of this first experiment. It shows four bar groups,

related to each task based on the DGA data set. From left to right, the tasks are

ordered from the highest to the lowest openness. This way, it is possible to observe

some patterns related to such variation. For example, the overall performance grows

as openness diminishes, what is expected using richer training data. All regular

classifiers (the first four alternatives) obey this trade-off. However, the one-class

SVM, a detection-oriented method, best performed in the highest openness scenario.

The three rejection-based methods stand out among the rest, producing top results

regardless of the openness level.
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Figure 3.7: Results for the tasks based on the DGA data set. Error bars endpoints
are mean ± standard deviation. The reported F1 scores regard the ‘abnormal’ class.

Statistically, both tWiSARD versions excel: according to Wilcoxon signed-rank

tests with a significance level (α) of 0.01, they were superior to any other tested

alternative in all three open-set scenarios. However, in the 5-fold CV setting, SVM,

WiSARD and PI SVM were, by a thin margin, the top performers. Despite this

fact, it would be reasonable to choose any of the two tWiSARD alternatives to be

used for a recognition task based on the DGA data set wherein the openness level

was unknown: on average, they produced the best results of this experiment. At

last, in three of the four tasks tWiSARD with α = F1 score performed as well or

better than tWiSARD with α = 5 for most of the train-test splits.
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3.3.2 Multi-class Recognition

It was just shown how a two-class classification task may be better interpreted as

an open set recognition problem, with a single targeted class. This is also possible

in scenarios with more than two classes, what requires the discrimination between

classes of interest as well as the identification of data extraneous to all of them.

These two goals are conflicting in some way: observations which would be correctly

classified can be mistaken as outliers. Therefore, it is necessary to find an equilibrium

to avoid spoiling good class predictions while still rejecting accurately. An interesting

question in this regard is: can such balance be found using data from the targeted

classes only, without using extraneous data during training? This was analyzed

through the experiment described next.

For such purpose, the ‘UCI-HAR’ data set (ANGUITA et al., 2013) was em-

ployed. It is, quoting its authors, “an Activity Recognition database, built from the

recordings of 30 subjects doing Activities of Daily Living (ADLs) while carrying a

waist-mounted smartphone with embedded inertial sensors”. Each observation is a

collection of 561 statistics of the sensor readings. However, in this work just a sub-

set of 46 attributes was used: those related to the mean of the readings. This data

set is composed of over ten thousand elements, each of them related to one of six

activities (i.e., the classes): ‘Walking’, ‘Upstairs’, ‘Downstairs’, ‘Sitting’, ‘Standing’

and ‘Laying’.

As the DGA data set, the UCI-HAR data set was first used for classification.

This way, each of the six classes was represented in both training and test samples.

However, in practice, activities beside those known a priori can be realized in an

unprecedented way (HU et al., 2013), and they should be recognized as so. In

order to mimic a realistic human activity recognition task, in which not all possible

activities are known and modelled, each of the six classes was omitted at a time from

training: the train-test splits of the data set were defined by a total of 40 5-fold cross-

validation runs; each of the 200 test sets was processed six times, considering the

same respective training sets, except for the class left out. Thus, in each train-test

round, Cr = Ct = 5, Ce = 6 and, consequently, openness ≈ 8.7%.

The same group of methods compared in the anomaly detection experiments is

employed here, except for the one-class SVM, which can not handle multiple classes.

These methods are enumerated next, with respective parameter setups: a 5 nearest

neighbors classifier; a Gaussian Naive Bayes classifier; a WiSARD classifier; two

tWiSARD versions, one with α = 10 and another with α = F2.5 score; a SVM; and

a 1-vs-all PI SVM, with P = 0.4; Both SVM and PI SVM were set with C = 1000.

WiSARD and both tWiSARD were set with β = 50, δ = 200 and γ = 20.

The UCI-HAR data set features some class imbalance: 18.8% of the data is
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related to the most frequent class, while 13.6% belongs to the least frequent one.

Despite this difference, all six classes can be considered equally important in the task

domain. In order to avoid taking this data set condition into account on the evalu-

ation of the provided predictions, the Macro F1 score (SOKOLOVA e LAPALME,

2009) was chosen as performance metric for this task. Such choice is explained by

the fact this metric is insensitive to class imbalance: the assignment of elements to

each class can be seen as a separate binary classification problem, with true and false

positives, as well as negatives; the Macro F1 score is the average of the F1 scores of

these sub-problems.

The results of the experiment with the UCI-HAR data set are portrayed in

Fig. 3.8. Each bar group is associated to one collection of train-test rounds in which

a class was left out of the training sample. On most cases, the rejection-capable

methods had better performances than their regular counterparts: both tWiSARD

versions edged the WiSARD classifier on 5 of the 6 tasks, while the same happened

for PI SVM and the regular SVM on the first 4 tasks. For all cases, except for that

of class ‘Standing’, one the last three alternatives was the best performer. These

can be seen as evidences which support to take specific care of extraneous data in

situations like the one represented by the UCI-HAR data set.
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Figure 3.8: Results for the tasks based on the UCI-HAR data set. Error bars were
omitted because deviations were negligible.

Wilcoxon signed-rank tests with a significance level of 0.01 support that

tWiSARD with α = 10 had the best results overall. This can be partially cred-

ited to its distinct performance when the ‘Laying’ class was considered extraneous.

The explanation for such outcome is the following: when trying to reject elements

of the ‘Laying’ class, which is the most dissimilar of all, each individual rejection

is more likely to be correct; this way, more rejection-prone criteria should perform

better in this case. This is confirmed by Table 3.2: when rejecting the ‘Laying’
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class, tWiSARD with α = 10 was the uncontested best alternative regarding not

only extraneous-data recall, which grows with rejection tendency, but also precision.

This table also shows that on average both tWiSARD versions were superior to PI

SVM rejection-wise.

Omitted Class
Precision Recall

tWiSARD
α = F2.5

tWiSARD
α = 10

PI SVM
tWiSARD
α = F2.5

tWiSARD
α = 10

PI SVM

Walking 0.029 0.185 0.368 0.004 0.111 0.107
Upstairs 0.464 0.459 0.700 0.153 0.479 0.404

Downstairs 0.661 0.518 0.342 0.406 0.672 0.114
Sitting 0.201 0.373 0.388 0.030 0.279 0.125

Standing 0.341 0.288 0.021 0.094 0.173 0.004
Laying 0.464 0.706 0.000 0.062 0.999 0.000

Average 0.360 0.421 0.303 0.125 0.452 0.126

Table 3.2: Rejection performances for tasks based on the UCI-HAR data set.

3.3.3 High Openness

The concept of openness was defined to provide a quantitative degree of complexity

of open-set problems, according to the number of classes represented in the training

sample compared to those to be handled during the effective use of the consolidated

knowledge. The DGA and UCI-HAR data sets, originally considered for classifi-

cation, were used to define tasks with openness over 57% and 8.7% respectively.

This last experiment is an interesting benchmark, designed specifically for open set

recognition, with openness over 80%.

The ‘LBP88’ data set∗ is composed by elements from two image sets,

Caltech 256 (GRIFFIN et al., 2007) and ImageNet (DENG et al., 2009). The first

was used to provide train data, while the test sets were composed of positive obser-

vations of the first source and negative ones from the last, a cross-data set design

which requires the proper rejection of observations from classes not targeted, inde-

pendently of its origin. In each of 5 rounds, 88 classes were randomly selected. Each

of these 88 classes was used once as the one to be recognized, being represented in

the training and test samples by 70 and 30 observations, respectively. The remainder

of the training sets were 70 (5× 14) observations of 5 classes randomly chosen from

the 87 negative classes. In turn, the test sets also had 5 observations from each of

the 87 classes not targeted. Adding up, the training and test samples had 140 and

465 observations, respectively. Each observation was described by 59 attributes.

∗http://www.metarecognition.com/openset/ (accessed 2016/03/06), LBP-like Features,
Open Universe of 88 Classes
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The open-set nature of the LBP88 data set is quite similar to that of the DGA

data set: both are used to define tasks in which one class is well-known a priori and

should base the decision criterion, while scarce information from other classes can be

used in order to refine such criterion. From another point of view, their respective

tasks differ with respect to the desired goal and, consequently, the performance eval-

uation: for anomaly detection, implied by the DGA data set, the goal is to identify

elements extraneous to the base class as abundantly and precisely as possible; for

the LBP88 data set, the goal is inversed in a certain way, as the identification of

elements of the base class is desired.

The same methods compared through the tasks defined using the DGA data

set were reused for the LBP88 data set, but with different parameters: a WiSARD

classifier; two tWiSARD varieties, one with α = 50 and another with α = F0.4 score;

a 5 nearest neighbors classifier; a Gaussian Naive Bayes classifier; a SVM, a one-

class SVM and a 1-vs-all PI SVM, all with γ = 35. WiSARD and both tWiSARD

were set with β = 100, δ = 590 and γ = 1000. SVM and its variants were set with

γ = 35. PI SVM was also set with P = 0.5.

Figure 3.9 depict the results for this experiment, described by three different

performance measures: recall, precision and F1 score. These three distinct points of

view help to highlight some interesting details. Regular classifiers (the first four al-

ternatives) exhibit a higher recall but also a lower precision level than the rejection-

capable methods (the last four alternatives), what leads to worse overall results,

represented by the F1 score. Among this last quartet, PI SVM had the poorest

performance: despite achieving a good recall level, the effect of its relatively low pre-

cision on F1 score is noticeable. This can be compared to tWiSARD with α = F0.4,

which had the best recall level inside the group just mentioned, but also top results

regarding precision and F1 score.
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Figure 3.9: Results for the experiment on the LBP88 data set. Error bars endpoints
are mean ± standard deviation.
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Considering Wilcoxon signed-rank tests with a significance level of 0.01 over

the F1 scores obtained by the tested methods, the one-class SVM was the single

top performer. tWiSARD with α = 50 and with α = F0.4 score had the second

and third best results, respectively. However, giving a little priority to recall over

precision, tWiSARD with α = F0.4 score could be considered the best alternative.

Still concerning overall performance, it can be noticed that the two best methods

(one-class SVM and tWiSARD with α = 50) work using data from the targeted class

only. This can be seen as an evidence that available information about extraneous

classes may be misleading and produce negative effects on performance. In other

words, depending on characteristics of the outliers as variety, frequency and others,

it may be wiser, safer, to avoid drawing conclusions based on scarce data about

those.

3.4 Concluding Remarks

Classification will always be one of the most basic, ubiquitous and important ma-

chine learning tasks. However, despite its value, plain and simple classification

should not be used whenever it seems to be possible, just because it is popular,

or familiar: to take into account details which would be ignored in a classification

setting may lead to an improved, more informative problem definition and, conse-

quently, to better results. Open set recognition is a classification-derived task, which

considers the existence of outliers to all classes known a priori, in order to classify

unlabeled data more accurately.

Because of its proximity to classification, some approaches to open set recognition

found in the literature were built on top of regular classifiers. While this is not

wrong, it requires special attention to the differences between these tasks, which

should guide the adaptation of those previously existing methods. tWiSARD was

developed with such requisite in mind, based on the recognition-friendly WiSARD

classification model. Such conception boosts the use of a well-established learning

model in situations wherein it is necessary to define more strictly the boundaries

inside which it is possible to make conscious decisions. In order to enable this, the

provided analysis of WiSARD matching for proximity assessment was indeed useful.

The results of the experiments considered in this research are insightful, high-

lighting some interesting characteristics of the data which did not emerge during the

exclusive use of the classifiers to which the proposed approach was compared. This

way, tWiSARD was not only effective combining classification with precise identi-

fication of extraneous data. It also provided singular points of view of some data

traits, even through the comparison of the performances of its manual-thresholding

and optimal-thresholding versions. All these facts can be regarded as evidences in
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favor of the applicability of the methodology just introduced.
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Chapter 4

WiSARD for Clustering

Data Streams

Clustering is a powerful tool to knowledge discovery. It is also versatile, providing

valuable information for the analysis of a huge diversity of data sets. However, how

data is kept has changed since research on data mining began: the local, static data

sets now share space with data streams, unbounded data collections. Data stream

clustering (GAMA, 2010) can be accomplished incrementally updating the extracted

knowledge as the stream is processed. This incremental learning means not only the

expansion of the information already gathered but also the disposal of outdated

knowledge. In this context, this means to track the surge as well as the vanishing of

clusters, besides changes of characteristics as positioning and shape. Besides those

aspects, it is also important to keep in mind that mining data streams impose stricter

performance constraints compared to those considered while handling regular data

sets.

This text presents henceforth an approach to data stream clustering, based on

WiSARD memory-based artificial neural network (ANN) model (ALEKSANDER

et al., 1984). This model was chosen as the starting point of this research because:

although it was introduced in 1984, recent works in the literature (CARDOSO et al.,

2015, 2016a; GRIECO et al., 2010) provided a novel perspective of its features, which

could favor the accomplishment of the targeted task; compared to other weightless

models, its adaptation to feed from data streams appeared to be less cumbersome,

assuring the proper functioning and original properties of the model while supporting

incremental and decremental learning from temporal data; at last, the relatively low

time complexity of WiSARD, one of its patent characteristics, could help to cope

with high input rates during data stream processing, a common setting in real

applications.

The fundamental idea of this adaptation of WiSARD to data stream clustering

is to use discriminators as micro-cluster representatives. One premise of clustering is
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Observation Class Best Match
Action

Classification Clustering

xa A A, 78% xa ⇒ ∆A xa ⇒ ∆A

xb A B, 34% xb ⇒ ∆A xb ⇒ ∆B

xc B A, 02% xc ⇒ ∆B xc ⇒ ∆new

Table 4.1: An exemplified comparison of WiSARD regular and proposed (i.e., for
classification and clustering, respectively) learning process. The discriminator which
represents class A is denoted by ∆A. For classification, any given observation always
feeds the discriminator representing its true class. For clustering, since the true class
is unknown, the best matching discriminator is chosen, unless its compatibility is
considered too low.

that there is no information about the true classes of input observations. WiSARD

was conceived for classification, with its discriminators being responsible for mod-

elling the classes to be recognized from their respective training examples. In order

to adapt this classifier for clustering, the selection of training examples among un-

labeled ones became part of the learning process. This way, any given discriminator

would be fed with unlabeled data, but not before checking the compatibility between

such data and the pattern represented by the discriminator. Table 4.1 shows how

this modification would affect WiSARD operation in some hypothetical cases.

Using this idea as reference, some parts of Algorithm 2.4 would be translated as

follows: Line 4 is nothing but a search for the best matching discriminator similar

to expression (2.1b); Line 5 is similar to compare a matching rate to a rejection

threshold; Line 6 is a regular absorption of xi by the discriminator representing mcj;

Line 8 results in the addition of a new discriminator to WiSARD, which absorbs xi.

This idea is supported by some interesting facts: a discriminator is natively an

incremental learner; there is no restriction to adding or removing discriminators,

since they exist independently; WiSARD provides a richer feedback than just a

distance to a decision boundary as discriminative classifiers, what enables decisions

beyond class prediction (CARDOSO et al., 2015); data abstraction units of various

approaches to data stream clustering depict data samples based on statistics as

mean and variance (AGGARWAL et al., 2003; BARDDAL et al., 2015b, 2016; CAO

et al., 2006), which can be considered less informative than the arbitrarily-shaped

summary a discriminator can provide (GRIECO et al., 2010).

Despite these appealing premises, in order to provide a complete data stream

clusterer, this work successfully overcame limitations and accomplished challenges

from past works on the same subject (CARDOSO et al., 2011, 2012, 2016b). One of

such accomplishments regards information disposal. Mining data streams requires

control over learning as well as unlearning, ignoring past data according to some
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criteria. WiSARD training mechanism supports knowledge expansion whenever it

is required. However, properly discarding outdated information from its knowledge

base was explored for the first time in this research. Section 4.1 shows how the

targeted online, continuous learning process was realized.

An issue in WiSARD use is the decrease of its discrimination effectiveness when

dealing with unbalanced data collections. This results from how this model works,

looking for matching feature values between observations to be recognized and ex-

amples of the learned patterns. Therefore, a pattern with more examples has a

greater chance to comprise a larger variety of feature values and, consequently, to

be considered a good fit to unlabeled data. Since it would be unrealistic to assume

that clusters always result from a balanced partition of all data, an adaptation in

this sense was necessary. How this was achieved is detailed in Section 4.2.

Section 4.3 provides an overview of the proposed data stream clustering system,

aiming to make clear how its components relate to each other and how informa-

tion is gathered, processed and stored during data stream processing. A conceptual

diagram is used in this regard, portraying the whole solution in a high level of ab-

straction. After all, considering ‘the big picture’ is indispensable to fully understand

how the ideas introduced here work together. An algorithmic description is provided

as well, what makes reimplementing the proposed system and reproducing the ob-

tained results easier. Moreover, it is also explained how offline clustering is realized

based on knowledge continuously managed during stream processing.

An experimental evaluation of the WiSARD-based clusterer comes in Section 4.4.

The results obtained were compared to those of state-of-the-art alternatives, in

order to to establish the practical importance of the contributions of this work. All

considered methods were tested in a variety of settings, so that their performance

could be analyzed when subjected to different learning conditions: batch clustering

of regular data sets, incremental clustering of medium-sized data sets, and online

clustering of large, streaming data sets, the focus of this research. Both synthetic

and real-world data sets were employed, for the analysis of results obtained in a

testbed as well as in naturally occurring conditions.

Section 4.5 brings some final comments on the developed approach to data stream

clustering. Some general guidelines for the applicability of the proposed method are

provided, according to constraints on its operation and characteristics of input data.

The achieved contributions, as well as major differences between ideas presented here

and related ones found in the literature are also indicated.
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4.1 Unlearning and Knowledge Refreshing

The outlook provided so far is very positive with respect to adapting WiSARD to

cluster data streams. However, how Lines 2 and 3 of Algorithm 2.4 were implemented

based on this artificial neural network model remains unclear. These two lines regard

the disposal of outdated information, in two distinct ways: the first is related to

cancelling the influence of observations on aggregated knowledge so to keep it up-

to-date; the second one concerns the proper ending of the life cycle of micro-clusters

when they cease to exist. A description of the approach for each of these follows.

4.1.1 Data Obsolescence

With respect to WiSARD, the influence of an observation on knowledge is materi-

alized by the storage of the addresses obtained from this data point in the nodes

of a discriminator. Therefore, the cancellation of such influence comes down to

deleting these addresses. In the context of mining data streams, these deletions

should happen as past data become obsolete. This can be directly related to the

sliding window aging model, which considers data expirations as pinpoint events

in the stream timeline. This way, it was assumed that any observation contributes

integrally to current knowledge until it expires, when its participation is voided by

the removal of its respective addresses. This opposes gradual obsolescence of the

damping window aging model, which would require the maintenance of addresses

weights, resulting in some additional and undesirable computational workload.

Since the original WiSARD model was not intended to deal with temporal as-

pects, it had to be modified in order to keep additional information regarding data

recency. However, this had to be done without neglecting efficiency, as one of the

most basic requirements to work with data streams. Then, to enable the character-

ization of expired addresses, a time stamp was attached to each entry of the RAM

nodes, indicating the last time it was recorded (by Line 6 of Algorithm 2.4). Alone,

such change does not alter the computational complexity of model functioning: time-

or memory-wise, it represents a cost increase of a constant amount.

Moreover, a process to continuously detect expirations had to be embedded into

WiSARD operation. The most naive strategy for this is to check all entries of every

node of every discriminator. This memory full scan is as expensive as learning from

scratch the entire knowledge base, what is clearly impractical. Such operation is

unnecessarily expensive, above all in the context of streams: as data is organized

sequentially, just a small portion of it becomes obsolete at one time. Thus, it would

be reasonable to consider least recent data as primary candidates for disposal.

Based on such idea, the following policy for time stamps management was de-

fined: a Least Recently Used (LRU) dictionary is used to keep a reference to each
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entry of all RAM nodes; every time an address is recorded, its reference is updated

as the most recently used. An assumed property of an LRU dictionary is that all

its entries are always sorted according to their recency. Therefore, using this struc-

ture makes data processing slightly more expensive, since elements of the dictionary

need to be reordered every time an new observation arrives. On the other hand, it

expressively simplifies the identification and removal of expired addresses: now it is

enough to keep checking and deleting the least recently used entry of the dictionary

(and its respective RAM node entry) until it is a reference to a up-to-date element.

4.1.2 Micro-Clusters Life Cycle

Summing up what was described so far: when designing the addition of a time

dimension to WiSARD, the sliding window aging model showed itself as the best

choice, compared to other alternatives, to support the intended system functionality;

the characterization of outdated information was performed based on time stamps

which indicate the last time each RAM node entry was recorded; references to

these entries were kept sorted in a LRU dictionary, targeting to optimize expired

addresses identification and disposal. Thus, it was shown how outdated information

can be efficiently disposed from all discriminators, so that they serve as up-to-date

representatives of data micro-clusters. This regards Line 2 of Algorithm 2.4 only.

Considering this first part of the problem solved, to characterize useless discrim-

inators (Line 3 of Algorithm 2.4) becomes trivial, based on the following reasoning.

During stream processing, the knowledge a discriminator possess is expanded when

new addresses are added to its RAM nodes, and it is contracted by the removal of

expired addresses. Suppose that some time after creation, a discriminator ∆k be-

comes “empty” (i.e., ∀j,∆k,j = ∅), because all its addresses expired. Consequently,

from then on this discriminator will be unable absorb other observations, since it

can not match any of their addresses (i.e., ∀xi,matching(k,xi) = 0). It can also be

said that the knowledge stored by this discriminator was reduced to nothing. Thus,

it can be discarded as it is no longer useful.

While the emergence of micro-clusters is explicitly considered during stream

processing, prompting the inception of new discriminators, their evolution and dis-

appearance is more transparent. A discriminator is fully active as long as there

are addresses related to it, so that it can be chosen as the best fit for incoming

observations and, consequently, add new elements to its collection. Meanwhile, ad-

dresses which represent outdated information are discarded. When there are no ad-

dresses associated to the discriminator which represents a micro-cluster, it vanished.

Changes in the collection of addresses of a discriminator represent micro-cluster evo-

lution, moving inside the feature space as well as expanding and shrinking. Thus,
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how much of the feature space is covered by a discriminator varies continuously, so

that it becomes more or less able to absorb observations over time.

4.2 Cluster Imbalance and Saturation

After making this WiSARD-derived system capable of dealing with temporal as-

pects, it seemed to be ready to cluster data streams. Unfortunately, this was not

true. Because of the way WiSARD learns, memorizing data portions, it is strongly

susceptible to have its classification effectiveness harmed when dealing with class

imbalance: when at least two of all classes have a significantly different number of

examples in the training sample. Despite the absence of information about classes

for clustering, some sort of imbalance is still possible and harmful: at some point

during stream processing, one discriminator could have a noticeably larger number

of observations associated to itself than others; consequently, from then on such

discriminator would have the highest chance of being considered the best fit for all

incoming observations.

4.2.1 Countering Imbalance with Normalization

A closer inspection at how imbalance affects WiSARD was the first step for the

development of a countermeasure for this problem. Suppose that a discriminator

∆k absorbed a single observation, x. Hence each of its nodes contains just one ad-

dress: ∀j, |∆k,j| = 1. Now suppose that it absorbs another observation x ′ for which

addressing(x) = addressing(x ′). Consequently, although the addresses timestamps

will be updated, the set of addresses kept by each node will remain unaltered. From

this reasoning, it can be noticed that the number of absorptions a discriminator per-

formed is not necessarily related to class imbalance, opposed to what was previously

assumed in the literature (CARDOSO et al., 2012).

It is not hard to notice how the size of the knowledge base of a discriminator alters

its chance of absorbing an observation during stream processing. In a hypothetical

situation wherein discriminators have a single node (i.e., δ = 1), a discriminator

whose node contains the largest number of addresses of all is the most likely to be

considered an appropriate match to an incoming observation. The original matching

computation of WiSARD, expression (2.1a), does not take the size of the nodes

into account. This way, using such expression, the clustering system tends to the

undesirable condition wherein there is a single, saturated discriminator covering all

feature space, what was experimentally verified.

Still considering δ = 1, matching(k,x)/|∆k,1| seems to be a reasonable “nor-

malized” matching rate: this value grows with the matching rate, but shrinks as
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∆k,1 gets larger. To generalize this idea, it is proposed here to define the cardi-

nality of a discriminator according to expression (4.1a), and to define a normalized

matching rate according to expression (4.1b). The cardinality of a discriminator

is asymptotically equivalent to the area of the feature space itself encompasses:

|∆k| ∼
∫

matching(k,x) dnx. Moreover, it can be noticed that the denominator

of matching∗(k,x) is the geometric mean of the size of the nodes of ∆k, what is

consistent with the way the sets of addresses are combined for pattern recognition.

|∆k| =

(∏
j

|∆k,j|

)
; (4.1a)

matching∗(k,x) =
matching(k,x)

(|∆k|)1/δ
. (4.1b)

4.2.2 Cardinality Weighting

Expression (4.1b) changes WiSARD functioning so that, for a given observation,

one discriminator can be considered a better fit than another one, although the last

is “closer” to the observation than the first, in the sense of the original matching

computation. This can be seen as some kind of penalty for an all-embracing discrim-

inator, whose represented pattern becomes too vague, impossible to define because

of how varied its data is. In other words, the answer provided by a more precise

discriminator could be preferred, even if it is not the highest rated one.

When considered as a replacement for the original matching rate, its just-

introduced normalized version led to better results in experimental tests. This was

seen as an evidence in favor of using using such additional information, the cardi-

nality of a discriminator, for refining the matching process for the targeted task.

Moreover, there is no additional computational cost as a consequence of modifying

WiSARD in this regard: cardinality can be calculated iteratively, alongside expres-

sion (2.1a); such calculation requires nothing besides the length of the RAM nodes,

what is readily available during system functioning; it is possible to cache a cardinal-

ity calculation, since its value remains unaltered until the respective discriminator

absorbs an observation or discard some of its content.

Despite these arguments supporting the use of normalized matching rate, to

make expression (4.1b) more flexible appeared to be interesting. Such idea resulted

from the following: it was noticed that taking feature space coverage into account

for pattern recognition can be more or less important, depending on data being

processed. After all, WiSARD usefulness is undeniable although cardinality is not

considered at all in the original matching calculation. Besides this, imbalance oc-

currence is not binary, but it can take place at various levels, what was observed in

64



the data streams used for experimental evaluation.

The outcome of this last reflection is expression (4.2), named adjusted matching

rate. Its calculation depends on an additional model parameter µ, the cardinality

weight. Setting µ = 0 reduces adjusted matching rate to default matching calcu-

lation, while setting µ = 1 leads to the normalized matching rate. As µ grows,

the system becomes more prone to choose precise discriminators over generic, all-

encompassing ones, despite proximity to data to be absorbed. The adjusted match-

ing rate showed to be the best choice compared to the other two options, allowing

the system to be configured to distinct conditions imposed by different data streams.

matching∗µ(k,x) =
matching(k,x)

(|∆k|)µ/δ
. (4.2)

4.3 System Overview

The ideas described in the previous sections are answers to the major issues raised

during the development of the intended data stream clusterer. These parts were

presented separately, but they integrate with the WiSARD model and, in the end,

with each other as well. It is interesting to observe how this system processes and

manages information, transforming raw data into high-level knowledge. Figure 4.1

provides such perspective of the whole. It shows how data flows from a source, a

generic data stream generation process, towards a sink, a report about data clusters.

Some remarks regarding this diagram: it depicts the data stream being continuously

generated by some external entity, what contrasts with full prior availability of a

regular data set; such external entity also acts as a global time reference.

System offline module works based on a batch agglomerative clustering algo-

rithm, using a collection of micro-clusters representatives, the discriminators, as

input to define top-level clusters. In order to make such mechanism operative, it

was necessary to define an inter-discriminators similarity measure. Hypothetically,

such measure could be the distance between micro-clusters centers estimated accord-

ing to the knowledge stored in the discriminators. This would be aligned with some

works in the literature, which consider micro-clusters hyperspherical entities (AG-

GARWAL et al., 2003; CAO et al., 2006; KRANEN et al., 2011).

However, discriminators are more flexible, allowing micro-clusters to have ar-

bitrary shapes. Consequently, the distance between estimated centers may not

provide a true notion of proximity. To better represent this, expression (4.3)

was used to evaluate discriminators similarity. It was inspired in the Jaccard In-

dex (LEVANDOWSKY e WINTER, 1971), but contrasts with it since it is strictly

positive: 0 < s(∆a,∆b) ≤ 1. This way, no pair of discriminators is considered com-

pletely dissimilar. However, their similarity diminishes as the amount of content not
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Figure 4.1: A data flow diagram of WiSARD for clustering data streams.

shared between them grows.

s(∆a,∆b) =
1 +

∑
i |∆a,i ∩∆b,i|

1 +
∑

i |∆a,i ∪∆b,i|
. (4.3)

To conclude the description of the proposed WiSARD-based system to cluster

data streams, its online functioning is detailed in Algorithm 4.1, in the same format

of Algorithm 2.4. The least recently used dictionary, denoted by LRU, is indexed by

triples (k, j, aj), whose elements regard a discriminator, a RAM node and a RAM

address, respectively. Each iteration of the algorithm has a complexity of O(δβd):

the loops starting at lines 2 and 11 require O(δβ) steps; lines 6 and the block starting

at line 8 can be realized in O(1) steps; line 7 takes O(δβd), where d is the number

of discriminators which match an observation x in any degree. The expected value

of d varies according to model parameters β and µ.
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1: for all (x, t), the streaming observations do
2: while min LRU ≤ t− ω do
3: k, j, aj = argmin

k,j,aj

LRUk,j,aj

4: ∆k,j ← ∆k,j \ {aj}
5: Delete LRUk,j,aj

6: Delete all ∆k for which |∆k| = 0

7: k ← argmax
k

matching∗µ(k,x)

8: if matching∗µ(k,x) < ε then
9: Let ∆new be a new discriminator

10: Let k be the index of ∆new

11: for all addresses aj in addressing(xi) do
12: ∆k,j ← ∆k,j ∪ {aj}
13: LRUk,j,aj ← t

Algorithm 4.1: WiSARD-based data abstraction procedure.

4.4 Experimental Evaluation

The effectiveness of the developed WiSARD-based clusterer was assessed through a

collection of experiments. Besides clustering performance, these tests also intended

to show how model parameters setup affects its behavior. After all, mining data

streams requires finer tuning and better resource management than the same for

conventional data sets, what can be directly related to taking into account an addi-

tional temporal aspect in order to accomplish automated learning. The experiments

were developed in Python, and used the Scikit-learn module (PEDREGOSA et al.,

2011) which provides implementations of various clustering algorithms and perfor-

mance metrics. Moreover, implementations of popular stream-oriented clustering

algorithms were used as provided by MOA software bundle (BIFET et al., 2010).

Numerous existing approaches to data stream clustering rely on aging models

different of the sliding window model employed in this research. Comparing the

results of these approaches to those obtained by the proposed method would be

questionable in some sense: if two clusterings are produced using different criteria

to decide which are the current observations, they are based on distinct data and,

consequently, can not be rightfully compared; the same goes for results obtained

considering the sliding window model but with different values for window length,

ω.

For a fairer evaluation, conventional methods were used to provide base-

line results: K-means (LLOYD, 1982) and average-linkage agglomerative cluster-
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ing (DAY e EDELSBRUNNER, 1984), two classical clustering algorithms; and HDB-

SCAN (CAMPELLO et al., 2015), a state-of-art batch clusterer. This way, to assess

the quality of a clustering which is provided at a given time instant t, batch algo-

rithms were run to generate using the current observations (i.e., {xt−ω+1, . . . ,xt}) as

input. Moreover, online clustering algorithms, DenStream (CAO et al., 2006) and

Clustream (AGGARWAL et al., 2003), were adjusted targeting to establish simi-

lar criteria to weight stream elements despite the use of different aging models: the

larger the sliding window length was set, the smaller was the decay factor considered

for the damping window model.

All experiments were performed using data for which label information was

available. Such information was not exposed to clustering algorithms during their

functioning, but it was used to evaluate the provided data partitions. This same

experimental setting was used in numerous recent works on data stream cluster-

ing (BARDDAL et al., 2015b, 2016; CARDOSO et al., 2012, 2016b; JIN et al.,

2014; WAN et al., 2009). This shows how data stream clustering validation is gener-

ally performed using external evaluation measures, which are based on ground truth

knowledge regarding data labels. On the other hand, internal evaluation measures,

computed according to clusters shape, topology and other geometric properties, are

used less frequently (HASSANI e SEIDL, 2016).

The following clustering validation indexes were employed: V-measure (ROSEN-

BERG e HIRSCHBERG, 2007), Adjusted Rand Index (ARI) (WAGNER e WAG-

NER, 2007), and Adjusted Mutual Information (AMI) (VINH et al., 2010). Except

ARI, whose lower bound is −1, the values of all these measures range from 0 to

1, with greater values associated to clusterings similar to ground truth labeling.

The use of measures based on combinatorics (ARI) and information theory (the

remainder) aim to present different perspectives of the results. Furthermore, the

data stream clustering tasks were evaluated comparing the ground truth labeling

and clustering of every ω observations.

4.4.1 Batch Clustering of Synthetic Data

The considered methods were compared in three different settings. The first of these

regards synthetic, bidimensional data sets, whose number of observations are in the

range from over three hundreds to just over three thousands. Also in this setting,

data was considered with no time dimension, as in regular, batch clustering. Such

conditions combined with the use of prepared data enable to obtain proper initial

impressions regarding the alternatives examined. At last, the use of low-dimensional

data allow to visualize the resulting partitions in simple scatter plots.

The five data sets used in this first set of experiments come from two publicly

68



available data sets repositories: Jain, a ‘two-moons’-like data set, D31, which fea-

tures 31 circle-shaped clusters and Aggregation, with 7 clusters in varied shapes,

come from a collection found in the Web∗; Complex8 and Complex9, which feature,

respectively, 8 and 9 clusters in varied shapes can also be found in the Internet†.

Such variety of characteristics poses an interesting test of learning adaptability.

The WiSARD for Clustering Data Streams (WCDS) system was tested using the

following parameter setup: δ = 200 and unary enconding with γ = 200; since no

time information was considered, ω =∞ and µ = 0; the β parameter was adjusted

to each data set, and its value is indicated together with the obtained results. The

following alternatives, with respective configurations, were also tested: DenStream,

with a specific setup for each data set, which provided the best results that could

be achieved, while producing the intended number of clusters; Clustream, K-means

and average-linkage agglomerative clustering, targeting the true number of clusters

of each data set; and HDBSCAN, with a minimum cluster size of 10 elements.

The results of this first task are depicted in Fig. 4.2, which presents the average

performance of the tested options in 20 rounds. In each round, order in which the

observations are presented to the streaming algorithms was randomly set. This aims

to verify if WCDS, DenStream and Clustream can still produce reasonable results

when observations, in a relatively small amount, are not favorably sequenced.

For almost all data sets and quality standards, WCDS was the most effective

alternative or exhibits a performance close to the best one, according to Wilcoxon

signed-rank tests with a significance level (α) of 0.05. Relatively, its worst results

regard data set D31, whose circle-shaped clusters were more properly identified by

K-means and agglomerative clustering. DenStream and HDBSCAN, which try to

detect the number of clusters automatically, performed distinctly from each other:

the last was better than the first on most cases, what could be expected when

comparing a batch algorithm with a stream-oriented one. Fortunately, WCDS was

an exception of such rule in this set of experiments.

Targeting a richer analysis, the visualization of the clusters defined for a given

data set could provide an interesting feedback of the algorithms. Figure 4.3 presents

such point of view for data set Complex8, which highlights differences between

the tested approaches: only WCDS and HDBSCAN correctly identified the 5

horizontally-spread clusters, the other three clusters were mistaken in different de-

grees by all methods, with HDBSCAN followed by WCDS being the top performers

in this regard. This is an evidence of how handling non-convex groups can still be

seen as one of the basic and most challenging targets of clustering.

∗http://cs.joensuu.fi/sipu/datasets/ (accessed 2016/10/10)
†http://www2.cs.uh.edu/~ml_kdd/ (accessed 2016/10/10)
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4.4.2 Incremental Clustering of Real Data

In the second and third experiment settings, data sets resulting from measurements

of real experiments are employed. Many works found in the literature evaluate

methods for data stream clustering based on non-stream data, sequenced according

to some criteria, or data streams which are mostly stationary (AGGARWAL et al.,

2003; CAO et al., 2006; CARDOSO et al., 2012, 2016b; KRANEN et al., 2011).

Although results found this way are valid, using true data streams is appealing,

leading to conclusions with a greater chance to be confirmed out of the testbed.

A data collection provided by FONOLLOSA et al. (2015) contains, paraphrasing

its description in a data sets repository‡, acquired time series from 16 chemical

sensors exposed to two gas mixtures (Ethylene and Methane in air, and Ethylene

and CO in air) at varying concentration levels. Thus, each of these two sets of stream

data have 16 input attributes, which should be used to predict the concentration

level of the gases which compose the mixture being considered. Moreover, each data

set has over 4 million observations, and feature more than 70 different concentration

levels. Figures 4.4a and 4.4b illustrate class dynamics for both sets.

Targeting to reproduce the conditions of a real-world application, to optimize

algorithms parameters directly over full data streams was ruled impracticable. In-

stead, these parameters were tuned based on clustering of data stream samples. This

way, this second experiment setting regards clustering sequenced random samples

of the data streams. The parameter setups which provided the best results in this

case were used later to cluster the data streams in all their extent.

As in the first setting, no data ageing was considered (i.e., ω =∞). However,

as samples of 20 thousand observations were used, linear processing of such data

amount is now expected to have a stronger influence on results. Consequently,

the cardinality weight parameter µ was exploited targeting to balance observations

distribution between micro-clusters during input processing. In a best-effort search,

the following parameter settings were defined:

• for WCDS, β = 300, δ = 100, µ = 100, unary encoding with γ = 200;

• for DenStream,

– for Ethylene-CO, ε = .0039 and offline multiplier = 20;

– for Ethylene-Methane, ε = .005 and offline multiplier = 16;

• for Clustream, number of micro-clusters = 500;

• for K-means, k was set equal to the total number of classes of each data set;

‡http://archive.ics.uci.edu/ml/datasets/Gas+sensor+array+under+dynamic+gas+

mixtures (accessed 2016/10/17)
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• for HDBSCAN, minimum cluster size = 10.

Repeating the experimental procedure of the first setting, 20 test rounds were

performed for each data stream. In each of these rounds, a sequenced random

sample of all data was used. Figure 4.5 presents the average performance of the

algorithms being compared. The stream-oriented algorithms, WCDS, DenStream

and Clustream, worked as incremental clusterers, while the others processed all

observations as a single batch. Again, for almost all cases WCDS performed at least

as well as its alternative with the best result, considering Wilcoxon signed-rank tests

with a significance level of 0.05. Moreover, it is interesting to notice that WCDS

top performance is partially due to taking into account how input observations are

ordered: the same results were not observed when the data stream samples were

shuffled before processing, what is acceptable for a stream-oriented algorithm.

4.4.3 Data Streams Clustering

After analyzing WCDS performance when clustering regular data sets, which is

a more familiar and steady condition, its behavior when dealing with temporal

data was examined. Such gradual exploration of system features enables a clearer

understanding of functioning as a whole, highlighting the contribution of each of

its parts. Thus, it was designed first an application of WCDS to find clusters from

relatively small data sets. Then, its cardinality weighting feature was used in order

to process longer data sets linearly. Next, the forgetting mechanism was used to

reach the ultimate goal of clustering data streams.

As previously stated, the same data and algorithms parameters setups were used

in this last test setting. However, the full data streams were considered instead of

a sample of these, what means processing over 4 million observations instead of 20

thousand, a significant increase in input size. Algorithms as K-means, agglomerative

clustering and HDBSCAN are unable to process such amount of data at once. As

an alternative, their results were obtained by dividing the data streams every 20

thousand observations, and processing each of these parts as a batch. On the other

hand, WCDS, DenStream and Clustream processed all data sequentially, handling

data obsolescence directly.

While the true number of clusters was assumed to be known in the first test

setting, to do the same for this last case would be unreasonable: it is impossible

to know at every instant during stream processing the true number of partitions to

be defined from current data. On the other hand, depending on the application or

domain, the total number of labels can be known a priori. This way, the number

of labels was used to define the target number of clusters for K-means, agglomera-

tive clustering and Clustream algorithms. DenStream and HDBSCAN defined the
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number of clusters according the their configuration. WCDS also defined the num-

ber of clusters automatically: its offline operation still came down to performing

agglomerative clustering of its micro-clusters; however, instead of targeting a given

number of clusters, the stopping criterion for this procedure was defined based on

the inconsistency coefficients of the links of its hierarchical clustering tree (ZAHN,

1971).

The stream-oriented algorithms still required the proper configuration of their

data obsolescence mechanisms. In this sense, despite implementing different ageing

models, both Clustream and WCDS need the definition of a single parameter, the

window length, ω, known as horizon in the context of Clustream. In turn, Den-

Stream depends on the definition of its decay factor, λ, whose interpretation is quite

distinct from that of the window length. Despite this, to relate these parameters

reasonably was still intended. Then, based on experimental tests, the following set-

ting was defined: λ = 100ω−1. Moreover, it was used ω = 20000, what defines an

enough challenging amount of current data to be considered.

Figure 4.6 depicts the average performance of WCDS and its alternatives while

clustering data streams. This task can be seen as more difficult than the previous

ones considering the poorer overall performance of the clusterers in this setting.

Another interesting fact is the low variance of the results: they are practically

negligible; this could be related to the absence of factors as input shuffling and

random sampling, featured in the first and second experiment settings, respectively;

such stability of WCDS despite the random initialization of its addressing is welcome.

As in the previous cases, WCDS was the top performer from a statistical point of

view, according to Wilcoxon signed-rank tests with α = 0.05.

4.5 Concluding Remarks

Clustering data streams is a challenge of major relevance actually, as it combines

one of the most basic and important knowledge discovery tools with an ubiquitous

data organization scheme. Although there is a rich variety of works on this theme,

there is still room for improvements. An achievement of this research was the defini-

tion of the concept of cardinality of a discriminator, as well as its usage to establish

WiSARD matching functions which counter data imbalance. Without such modifi-

cation, the base learning model was prone to saturation, an ill condition in which its

discriminative power is severely compromised. Despite being a well-known problem

in WiSARD use, effective strategies against it still need to be developed. The ideas

presented here are intended to be a valuable contribution in this regard.

This research also led to the definition of a continuous learning system, capable

of incrementally storing and discarding streaming information. As far as observed,
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the existing alternatives to the problem in question discard expired data on an

estimate basis. In order to overcome this condition, it was necessary to redefine

of one of the most basic building blocks of this area: the micro-cluster. Using

WiSARD discriminators to represent micro-clusters supported the development of

an alternative mechanism for the disposal of outdated knowledge. That enabled

WCDS to provide results comparable to those of a state-of-art batch algorithm

while maintaining the processing granularity of a stream-oriented algorithm.

Practical use of WCDS is supported by its top performance while working un-

der distinct conditions, as shown in the performed experiments. Such conditions

represent common, real-life application scenarios of cluster analysis. Moreover, us-

ing non-synthetic data in this regard is specially interesting, reassuring the claimed

model usefulness out of its testbed. At last, to judge the found clusterings according

to a variety of intrinsically different quality standards contributes to a fair compar-

ison of all alternatives. Fortunately, WCDS excelled among all its competitors.
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Figure 4.2: Results for the task of batch clustering of synthetic data: bar graphs
regarding Jain, D31, Aggregation, Complex8 and Complex9 data sets, respectively.
Likewise, for each of these WCDS β was 50, 120, 55, 70 and 80. Error bars endpoints
are mean ± standard deviation.
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(a) WCDS (b) K-means (c) Agglomerative

(d) HDBSCAN (e) DenStream (f) Clustream

Figure 4.3: Clusters for data set Complex8.

(a) Ethylene-CO data stream

(b) Ethylene-Methane data stream

Figure 4.4: Classes (mixture concentration) variation during stream length.
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Figure 4.5: Results for the task of incremental clustering of data stream samples.
Error bars endpoints are mean ± standard deviation.
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Figure 4.6: Results for the task of clustering data streams. Error bars endpoints are
mean ± standard deviation.
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Chapter 5

Conclusion

This chapter completes this research report, pointing the major steps of this work

as well as the lessons learned during its accomplishment. After considering the

detailed description of these parts provided in the previous chapters, looking at

the ‘big picture’ built from them shall now lead to a different perspective of the

whole. This way, no novelty regarding open set recognition, data stream clustering,

WiSARD, or any other subject previously addressed in this text, is presented next.

Despite such fact, this chapter still provides some fresh information, which could be

specially useful to establish links between this and other works. In this regard, some

ideas for future works which could be directly related to this one are also given.

This last chapter is organized as follows: Section 5.1 provides an overview of

this work, describing its development as well as the reasoning which oriented it;

Section 5.2 presents in a succinct fashion the major accomplishments of this work;

finally, in Section 5.3 some suggestions for follow-ups of this research are indicated.

5.1 Research Summary

As presented in this text, the research concerned three parts. The first of these could

be described as a broad literature review. Initially, such review targeted the identi-

fication of the most important concepts and techniques in the field of data stream

clustering. However, this also highlighted some common characteristics between

such task and open set recognition. To the best of our knowledge, such relation

was never considered before, which motivated to expand the original research scope.

WiSARD usefulness for data stream clustering was previously considered in the lit-

erature, but just superficially (CARDOSO et al., 2011, 2012). This inspired the idea

of exploring WiSARD characteristics in both contexts of open set recognition and

data stream clustering, targeting to use the know-how obtained in one of them in

the other.
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Subsequently, a WiSARD-derived approach for open set recognition was devel-

oped. Before such feat, it was first analyzed the rejection capability of the base

model. Then, the computation of rejection thresholds was not only embedded into

model training procedure but also optimized, minimizing the influence of such mod-

ification on WiSARD patent speed. The effectiveness and usability of the developed

methodology was confirmed by its top performance in various experiments, in which

state-of-the-art methods also participated.

The final step of this journey regarded the adaptation of WiSARD to unsu-

pervised online learning, in the sense of clustering data streams. The same core

idea of rejection of extraneous data was used. However, additional points had to

be addressed: the establishment of a bond between the rejection criteria and clus-

ters evolution; also the disposal of outdated knowledge as more recent observations

become available. Solutions to both questions were provided, which enabled to ac-

complish the development of the intended system. Its experimental comparison to

state-of-the-art methods with similar purpose assured its practical value.

5.2 Key Points

This is an overview of the most interesting discoveries of this work:

1. WiSARD matching computation work as a precise, detail-rich, observation-

to-sample proximity meter, whose characteristics (e.g., variability, granularity,

smoothness) depend on how model parameters are set;

2. exploring the fact that WiSARD functioning does not directly depends on

probabilistic principles as the Law of Total Probability and the Bayes’ Theorem

was crucial for its application in the context of open set recognition, and

perhaps could be used for other purposes in the future;

3. compared to regular classification, open set recognition requires additional

flexibility because of the openness factor, and the proposed tWiSARD system

successfully handled such extra component;

4. open set recognition is related to data stream clustering as some form of rejec-

tion is indispensable for both, although only the last requires online learning,

up to the level of dealing with the emergence and vanishing of data clusters;

5. to attach to each RAM location a time stamp, instead of a boolean value

or a counter as previously done, and to compute the cardinality of each dis-

criminator, what could be done without increasing the computational cost of

WiSARD functioning, proved to be enough to power the WCDS system to

cluster data streams, despite the apparent simplicity of these ideas.
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5.3 Possible Continuations

There are at least two ideas which are directly related to this work and whose

development could provide valuable scientific contributions. One of them is a deeper

analysis of WiSARD matching as a proximity measure. So far, such perspective was

just superficially explored: its utility was experimentally verified, focusing on its

application. From a more theoretical point of view, which mathematical properties

of such measure can be properly characterized? Moreover, is it possible to formally

describe the conditions in which WiSARD matching is equivalent to alternatives like

the Mahalanobis distance, Nearest Neighbors, or others?

Another idea is to substitute WCDS fixed-size sliding window aging model by

an auto-adjustable one, whose size could vary according to how stable current data

is, considering its streaming nature. The LRU dictionary of RAM nodes entries

and the cardinality of the discriminators could possibly be used to estimate data

stability or the best window length. This way, the disposal of outdated knowledge

would become smarter, more dynamic and more flexible, although system structure

would remain mostly unaltered. In this case, there is no significant increase of the

computational cost while system autonomy is improved, boosting the capability of

copping with transient characteristics of the data stream.
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introduction to Weightless Neural Systems”. In: ESANN 2009, 17th Eu-

ropean Symposium on Artificial Neural Networks, Bruges, Belgium, April

22-24, 2009, Proceedings. 2.1.3

ANGUITA, D., GHIO, A., ONETO, L., et al., 2013, “A Public Domain Dataset

for Human Activity Recognition using Smartphones”. In: 21st European

Symposium on Artificial Neural Networks, ESANN 2013, Bruges, Bel-

gium, April 24-26, 2013. 2.3.1, 3.3.2

BARDDAL, J. P., GOMES, H. M., ENEMBRECK, F., 2015a, “SNCStream: a

social network-based data stream clustering algorithm”. In: Wainwright,

R. L., Corchado, J. M., Bechini, A., et al. (Eds.), Proceedings of the 30th

Annual ACM Symposium on Applied Computing, Salamanca, Spain, April

13-17, 2015, pp. 935–940. ACM, a. 2.4.2

BARDDAL, J. P., GOMES, H. M., ENEMBRECK, F., 2015b, “A Complex

Network-Based Anytime Data Stream Clustering Algorithm”. In: Arik,

S., Huang, T., Lai, W. K., et al. (Eds.), Neural Information Processing -

22nd International Conference, ICONIP 2015, Istanbul, Turkey, Novem-

ber 9-12, 2015, Proceedings, Part I, v. 9489, Lecture Notes in Computer

Science, pp. 615–622. Springer, b. 4, 4.4

BARDDAL, J. P., GOMES, H. M., ENEMBRECK, F., et al., 2016, “SNCStream+:

Extending a high quality true anytime data stream clustering algorithm”,

Inf. Syst., v. 62, pp. 60–73. 4, 4.4

81



BENDALE, A., BOULT, T., 2015, “Towards Open World Recognition”. In: The

IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

June. 2.4.3

BHATNAGAR, V., KAUR, S., CHAKRAVARTHY, S., 2014, “Clustering data

streams using grid-based synopsis”, Knowl. Inf. Syst., v. 41, n. 1, pp. 127–

152. 2.4.2
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“B-bleaching: Agile Overtraining Avoidance in the WiSARD Weightless

Neural Classifier”. In: 21st European Symposium on Artificial Neural Net-

works, ESANN 2013, Bruges, Belgium, April 24-26, 2013. 2.2.3

CHAKI, N., SHAIKH, S. H., SAEED, K., 2014, Exploring Image Binarization

Techniques, v. 560, Studies in Computational Intelligence. Springer. 2.2.2

CHEN, C., ZHAN, Y., WEN, C., 2009, “Hierarchical Face Recognition Based on

SVDD and SVM”. In: 2009 International Conference on Environmental

Science and Information Application Technology, ESIAT 2009, Wuhan,

China, 4-5 July 2009, 3 Volumes, pp. 692–695. 2.3.3

CHOW, C. K., 1970, “On optimum recognition error and reject tradeoff”, IEEE

Trans. Information Theory, v. 16, n. 1, pp. 41–46. 3.2

83



COUTINHO, P., CARNEIRO, H. C. C., CARVALHO, D. S., et al., 2014, “Extract-

ing rules from DRASiW’s ”mental images””. In: 22th European Sympo-

sium on Artificial Neural Networks, ESANN 2014, Bruges, Belgium, April

23-25, 2014. 1

DATAR, M., MOTWANI, R., 2016, “The Sliding-Window Computation Model

and Results”. In: Garofalakis, M. N., Gehrke, J., Rastogi, R. (Eds.), Data

Stream Management - Processing High-Speed Data Streams, Data-Centric

Systems and Applications, Springer, pp. 149–165. 2.4.2

DAWID, A. P., 1984, “Statistical theory: the prequential approach (with discus-

sion)”, J. R. Statist. Soc. A, v. 147, pp. 278–292. 2.4.3

DAY, W. H., EDELSBRUNNER, H., 1984, “Efficient algorithms for agglomerative

hierarchical clustering methods”, Journal of classification, v. 1, n. 1,

pp. 7–24. 4.4
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WICKERT, I., FRANÇA, F. M. G., 2001, “AUTOWISARD: Unsupervised Modes

for the WISARD”. In: Mira, J., Prieto, A. (Eds.), Connectionist Mod-

els of Neurons, Learning Processes and Artificial Intelligence, 6th In-

ternational Work-Conference on Artificial and Natural Neural Networks,

IWANN 2001 Granada, Spain, June 13-15, 2001, Proceedings, Part I, v.

2084, Lecture Notes in Computer Science, pp. 435–441. Springer. 1

XIANG, S., NIE, F., ZHANG, C., 2008, “Learning a Mahalanobis distance metric

for data clustering and classification”, Pattern Recognition, v. 41, n. 12,

pp. 3600 – 3612. 3.1.3

ZAHN, C. T., 1971, “Graph-Theoretical Methods for Detecting and Describing

Gestalt Clusters”, IEEE Trans. Computers, v. 20, n. 1, pp. 68–86. 4.4.3

ZHANG, R., METAXAS, D. N., 2006, “RO-SVM: Support Vector Machine with

Reject Option for Image Categorization”. In: Proceedings of the British

Machine Vision Conference 2006, Edinburgh, UK, September 4-7, 2006,

pp. 1209–1218. 2.3.3

ZHU, Y., SHASHA, D. E., 2002, “StatStream: Statistical Monitoring of Thousands

of Data Streams in Real Time”. In: VLDB 2002, Proceedings of 28th

International Conference on Very Large Data Bases, August 20-23, 2002,

Hong Kong, China, pp. 358–369. Morgan Kaufmann. 2.4.2

ZLIOBAITE, I., BIFET, A., PFAHRINGER, B., et al., 2014, “Active Learning

With Drifting Streaming Data”, Neural Networks and Learning Systems,

IEEE Transactions on, v. 25, n. 1 (Jan), pp. 27–39. ISSN: 2162-237X.

2.4.1

90



List of Own Publications
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CARDOSO, D. O., FRANÇA, F. M. G., GAMA, J. “A bounded neural
network for open set recognition”. In: 2015 International Joint Conference
on Neural Networks, IJCNN 2015, Killarney, Ireland, July 12-17, 2015,
pp. 1–7. IEEE, 2015.

CARDOSO, D. O., CARVALHO, D. S., ALVES, D. S. F., et al. “Credit
analysis with a clustering RAM-based neural classifier”. In: 22th European

91



Symposium on Artificial Neural Networks, ESANN 2014, Bruges, Belgium,
April 23-25, 2014, 2014.

CARDOSO, D. O., GAMA, J., GREGORIO, M. D., et al. “WIPS: the
WiSARD Indoor Positioning System”. In: 21st European Symposium on
Artificial Neural Networks, ESANN 2013, Bruges, Belgium, April 24-26,
2013, 2013.

ALVES, D., CARDOSO, D., CARNEIRO, H., et al. “An Empirical Study
of the Influence of Data Structures on the Performance of VG-RAM Clas-
sifiers”. In: Computational Intelligence and 11th Brazilian Congress on
Computational Intelligence (BRICS-CCI CBIC), 2013 BRICS Congress
on, pp. 388–393, Sept 2013.

CARDOSO, D. O., GREGORIO, M. D., LIMA, P. M. V., et al. “A Weight-
less Neural Network-Based Approach for Stream Data Clustering”. In: In-
telligent Data Engineering and Automated Learning - IDEAL 2012 - 13th
International Conference, Natal, Brazil, August 29-31, 2012. Proceedings,
pp. 328–335, 2012.

CARDOSO, D. O., LIMA, P. M. V., GREGORIO, M. D., et al. “Clustering
data streams with weightless neural networks”. In: ESANN 2011, 19th Eu-
ropean Symposium on Artificial Neural Networks, Bruges, Belgium, April
27-29, 2011, Proceedings, 2011.

92


	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Research Aims and Objectives
	Thesis Outline

	Research Background 
	Artificial Neural Networks 
	Biological Analogy
	Practical Use
	Weightless Modeling 

	WiSARD 
	Addressing 
	Binarization 
	Saturation 

	Open Set Recognition 
	Closed Set Assumption
	Openness
	From Classification to Open Set Recognition 

	Data Stream Clustering 
	Learning from Data Streams
	Modeling Options
	Relation with Open Set Recognition


	WiSARD for Open Set Recognition
	Proximity Measurement 
	Featured Aspects
	WiSARD Matching as Proximity Measure
	Comparison to Alternatives in Literature
	Graphical Analysis 

	Computation of Rejection Thresholds 
	Manual Thresholding 
	Optimal Thresholding 

	Experimental Evaluation 
	Anomaly Detection
	Multi-class Recognition
	High Openness

	Concluding Remarks 

	WiSARD for Clustering Data Streams
	Unlearning and Knowledge Refreshing 
	Data Obsolescence
	Micro-Clusters Life Cycle

	Cluster Imbalance and Saturation 
	Countering Imbalance with Normalization
	Cardinality Weighting

	System Overview 
	Experimental Evaluation 
	Batch Clustering of Synthetic Data
	Incremental Clustering of Real Data
	Data Streams Clustering

	Concluding Remarks 

	Conclusion 
	Research Summary 
	Key Points 
	Possible Continuations 

	Bibliography

