164 research outputs found

    Robust adaptive controller for wheel mobile robot with disturbances and wheel slips

    Get PDF
    In this paper an observer based adaptive control algorithm is built for wheel mobile robot (WMR) with considering the system uncertainties, input disturbances, and wheel slips. Firstly, the model of the kinematic and dynamic loops is shown with presence of the disturbances and system uncertainties. Next, the adaptive controller for nonlinear mismatched disturbance systems based on the disturbances observer is presented in detail. The controller includes two parts, the first one is for the stability purpose and the later is for the disturbances compensation. After that this control scheme is applied for both two loops of the system. In this paper, the stability of the closed system which consists of two control loops and the convergence of the observers is mathematically analysed based on the Lyapunov theory. Moreover, the proposed model does not require the complex calculation so it is easy for the implementation. Finally, the simulation model is built for presented method and the existed one to verify the correctness and the effectiveness of the proposed scheme. The simulation results show that the introduced controller gives the good performances even that the desired trajectory is complicated and the working condition is hard

    Design and implementation of membrane controllers for trajectory tracking of nonholonomic wheeled mobile robots

    Get PDF
    YesThis paper proposes a novel trajectory tracking control approach for nonholonomic wheeled mobile robots. In this approach, the integration of feed-forward and feedback controls is presented to design the kinematic controller of wheeled mobile robots, where the control law is constructed on the basis of Lyapunov stability theory, for generating the precisely desired velocity as the input of the dynamic model of wheeled mobile robots; a proportional-integral-derivative based membrane controller is introduced to design the dynamic controller of wheeled mobile robots to make the actual velocity follow the desired velocity command. The proposed approach is defined by using an enzymatic numerical membrane system to integrate two proportional-integral-derivative controllers, where neural networks and experts’ knowledge are applied to tune parameters. Extensive experiments conducted on the simulated wheeled mobile robots show the effectiveness of this approach.The work of XW and GZ is supported by the National Natural Science Foundation of China (61170016, 61373047). The work of MG, FI and RL was supported by a grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI (project number: PN-II-ID-PCE-2011-3-0688)

    Distributed Sliding-Mode Formation Controller Design for Multirobot Dynamic Systems

    Get PDF
    This paper presents a distributed formation control for multirobot dynamic systems with external disturbances and system uncertainties. First from the Lagrangian analysis, the dynamic model of a wheeled mobile robot can be derived. Then, the robust distributed formation controller is proposed based on sliding-mode control, consensus algorithm, and graph theory. In this study, the robust stability of the closed-loop system is guaranteed by the Lyapunov stability theorem. From the simulation results, the proposed approach provides better formation responses compared to consensus algorithm

    Disturbances Elimination with Fuzzy Sliding Mode Control for Mobile Robot Trajectory Tracking

    Get PDF
    The disturbances are the significant issue for the trajectory tracking of mobile robots. Therefore, an adequate control law is presented in this paper and this one is based on Global Terminal Sliding Mode (GTSM) with fuzzy control. This control law aims to guarantee the avoidance of the kinematic disturbances which are injected in the angular and linear velocities, respectively. Moreover, the dynamic model based on exponential reaching law is presented to avoid the uncertainties. The control law provides the asymptotic stability by taking into account the fuzzy rules and Lyapunov theory. Thus, the chattering phenomenon should be avoided. The simulation works prove the robustness of the proposed control law by considering the disturbances function and the robot can follow the desired trajectories

    Development of robust control scheme for wheeled mobile robot in restricted environment

    Get PDF
    This research is aimed to develop a wheeled mobile robot (WMR) that is able to track reliably and robustly a certain trajectory in a constrained environments. The control of MWR in the restricted areas during path execution still a complicated problem in robot researches, since it needs to maintain the tracking errors at the zero level and the wheel mobile robot must follow robustly the pre-defined path using a suitable control system; otherwise it can cause to crash robot with other objects. A novel algorithm so called laser simulator logic (LSL) has been develo ped to estimate the inertia moment when the environment is noisy and cannot use fuzzy logic algorithm. This algorithm gives the possibility to calculate the membership function with highly overlapped linguistic variables and thus remove the noise. The proposed LSL is then integrated with existing Active Force Control (AFC) and PD to ensure good closed loop performance and reject the noise and disturbances. A simulation study of WMR control in pre-planned paths in two environments namely, zigzag and highly curved terrains, has been conducted to verify the proposed algorithm and compare it with other existed algorithms. Thus, a new WMR prototype with four wheels, two differential and two castor wheels has been designed, fabricated and inspected in the laboratory. The WMR is equipped with two sensors, encoders and current sensor, and direct current (DC) motor to perform the required path in the constrained environments. An embedded controller has been used to integrate the platform components such electronics co mponents, mechanical components and computer programs with appropriate interfacing structure. PD-AFC controller system employing the use of three feedback control loops, namely, internal, external and quick compensation loops, have been used to compensate the disturbance in constrained environments. The external loop is used to control the kinematics parameters of the control system via PD controller, However, the internal loop is used to control the dynamic of robot and disturbance rejection via AFC controller. On the other hand, a quick compensation loop has been introduced to compensate the difference between the reference and actual acceleration via PD controller. The results of simulation show that the proposed algorithm has the best performance among a ll controllers either in zigzag or circular environments, especially when the disturbances are applied. To confirm the results of simulation for the proposed algorithm, a real-time experiments in circular path has been conducted to show that the proposed controller scheme is robust enough in the real -time control and able to track the robot effectively on its reference path. The experimental results work show the capability of the proposed algorithms and the new controller to robustly move the WMR in the constrained environments, thereby it verifys the simulation counterpart

    Embedded system for motion control of an omnidirectional mobile robot

    Get PDF
    In this paper, an embedded system for motion control of omnidirectional mobile robots is presented. An omnidirectional mobile robot is a type of holonomic robots. It can move simultaneously and independently in translation and rotation. The RoboCup small-size league, a robotic soccer competition, is chosen as the research platform in this paper. The first part of this research is to design and implement an embedded system that can communicate with a remote server using a wireless link, and execute received commands. Second, a fuzzy-Tuned proportional-integral (PI) path planner and a related low-level controller are proposed to attain optimal input for driving a linear discrete dynamic model of the omnidirectional mobile robot. To fit the planning requirements and avoid slippage, velocity, and acceleration filters are also employed. In particular, low-level optimal controllers, such as a linear quadratic regulator (LQR) for multiple-input-multiple-output acceleration and deceleration of velocity are investigated, where an LQR controller is running on the robot with feedback from motor encoders or sensors. Simultaneously, a fuzzy adaptive PI is used as a high-level controller for position monitoring, where an appropriate vision system is used as a source of position feedback. A key contribution presented in this research is an improvement in the combined fuzzy-PI LQR controller over a traditional PI controller. Moreover, the efficiency of the proposed approach and PI controller are also discussed. Simulation and experimental evaluations are conducted with and without external disturbance. An optimal result to decrease the variances between the target trajectory and the actual output is delivered by the onboard regulator controller in this paper. The modeling and experimental results confirm the claim that utilizing the new approach in trajectory-planning controllers results in more precise motion of four-wheeled omnidirectional mobile robots. 2018 IEEE.Scopu

    MULTI-ROBOT FORMATION WITH THE CLUSTER SPACE REPRESENTATION

    Get PDF
    • …
    corecore