236 research outputs found

    Accurate satellite-derived estimates of the tropospheric ozone impact on the global radiation budget

    Get PDF
    Estimates of the radiative forcing due to anthropogenically-produced tropospheric O3 are derived primarily from models. Here, we use tropospheric ozone and cloud data from several instruments in the A-train constellation of satellites as well as information from the GEOS-5 Data Assimilation System to accurately estimate the radiative effect of tropospheric O3 for January and July 2005. Since we cannot distinguish between natural and anthropogenic sources with the satellite data, our derived radiative effect reflects the unadjusted (instantaneous) effect of the total tropospheric O3 rather than the anthropogenic component. We improve upon previous estimates of tropospheric ozone mixing ratios from a residual approach using the NASA Earth Observing System (EOS) Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) by incorporating cloud pressure information from OMI. We focus specifically on the magnitude and spatial structure of the cloud effect on both the short- and long-wave radiative budget. The estimates presented here can be used to evaluate the various aspects of model-generated radiative forcing. For example, our derived cloud impact is to reduce the radiative effect of tropospheric ozone by ~16%. This is centered within the published range of model-produced cloud effect on unadjusted ozone radiative forcing

    On cloud ice induced absorption and polarisation effects in microwave limb sounding

    Get PDF
    Microwave limb sounding in the presence of ice clouds was studied by detailed simulations, where clouds and other atmospheric variables varied in three dimensions and the full polarisation state was considered. Scattering particles were assumed to be horizontally aligned oblate spheroids with a size distribution parameterized in terms of temperature and ice water content. A general finding was that particle absorption is significant for limb sounding, which is in contrast to the down-looking case, where it is usually insignificant. Another general finding was that single scattering can be assumed for cloud optical paths below about 0.1, which is thus an important threshold with respect to the complexity and accuracy of retrieval algorithms. The representation of particle sizes during the retrieval is also discussed. Concerning polarisation, specific findings were as follows: Firstly, no significant degree of circular polarisation was found for the considered particle type. Secondly, for the ±45° polarisation components, differences of up to 4 K in brightness temperature were found, but differences were much smaller when single scattering conditions applied. Thirdly, the vertically polarised component has the smallest cloud extinction. An important goal of the study was to derive recommendations for future limb sounding instruments, particularly concerning their polarisation setup. If ice water content is among the retrieval targets (and not just trace gas mixing ratios), then the simulations show that it should be best to observe any of the ±45° and circularly polarised components. These pairs of orthogonal components also make it easier to combine information measured from different positions and with different polarisations

    Co-located analysis of ice clouds detected from space and their impact on longwave energy transfer

    Get PDF
    A lack of quality data on high clouds has led to inadequate representations within global weather and climate models. Recent advances in spaceborne measurements of the Earth’s atmosphere have provided complementary information on the interior of these clouds. This study demonstrate how an array of space-borne measurements can be used and combined, by close co-located comparisons in space and time, to form a more complete representation of high cloud processes and properties. High clouds are found in the upper atmosphere, where sub-zero temperatures frequently result in the formation of cloud particles that are composed of ice. Weather and climate models characterise the bulk properties of these ice particles to describe the current state of the cloud-sky atmosphere. By directly comparing measurements with simulations undertaken at the same place and time, this study demonstrates how improvements can be made to the representation of cloud properties. The results from this study will assist in the design of future cloud missions to provide a better quality input. These improvements will also help improve weather predictions and lower the uncertainty in cloud feedback response to increasing atmospheric temperature. Most clouds are difficult to monitor by more than one instrument due to continuous changes in: large-scale and sub-cloud scale circulation features, microphysical properties and processes and characteristic chemical signatures. This study undertakes co-located comparisons of high cloud data with a cloud ice dataset reported from the Microwave Limb Sounder (MLS) instrument onboard the Aura satellite that forms part of the A-train constellation. Data from the MLS science team include vertical profiles of temperature, ice water content (IWC) and the mixing ratios of several trace gases. Their vertical resolutions are 3 to 6 km. Initial investigations explore the link between cloud-top properties and the longwave radiation budget, developing methods for estimating cloud top heights using; longwave radiative fluxes, and IWC profiles. Synergistic trios of direct and indirect high cloud measurements were used to validate detections from the MLS by direct comparisons with two different A-train instruments; the NASA Moderate-resolution Imaging Spectroradiometer (MODIS) and the Clouds and the Earth’s Radiant Energy System (CERES) onboard on the Aqua satellite. This finding focuses later studies on two high cloud scene types that are well detected by the MLS; deep convective plumes that form from moist ascent, and their adjacent outflows that emanate outwards several hundred kilometres. The second part of the thesis identifies and characterises two different high cloud scenes in the tropics. Direct observational data is used to refine calculations of the climate sensitivity to upper tropospheric humidity and high cloud in different conditions. The data reveals several discernible features of convective outflows are identified using a large sample of MLS data. The key finding, facilitated by the use of co-location, reveals that deep convective plumes exert a large longwave warming effect on the local climate of 52 ± 28Wm−2, with their adjacent outflows presenting a more modest warming of 33 ± 20Wm−2

    MLS and CALIOP Cloud Ice Measurements in the Upper Troposphere: A Constraint from Microwave on Cloud Microphysics

    Get PDF
    This study examines the consistency and microphysics assumptions among satellite ice water content (IWC) retrievals in the upper troposphere with collocated A-Train radiances from Microwave Limb Sounder (MLS) and lidar backscatters from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). For the cases in which IWC values are small (less than 10mg m(exp-23)), the cloud ice retrievals are constrained by both MLS 240- and 640- GHz radiances and CALIOP 532-nm backscatter beta(532). From the observed relationships between MLS cloud-induced radiance T(sub cir) and the CALIOP backscatter integrated gamma532 along the MLS line of sight, an empirical linear relation between cloud ice and the lidar backscatter is found: IWC/beta532=0.58+/-0.11. This lidar cloud ice relation is required to satisfy the cloud ice emission signals simultaneously observed at microwave frequencies, in which ice permittivity is relatively well known. This empirical relationship also produces IWC values that agree well with the CALIOP, version 3.0, retrieval at values, less than 10mg m(exp-3). Because the microphysics assumption is critical in satellite cloud ice retrievals, the agreement found in the IWC-beta532 relationships increase fidelity of the assumptions used by the lidar and microwave techniques for upper-tropospheric clouds

    MLS and CALIOP Cloud Ice Measurements in the Upper Troposphere: A Constraint from Microwave on Cloud Microphysics

    Get PDF
    This study examines the consistency and microphysics assumptions among satellite ice water content (IWC) retrievals in the upper troposphere with collocated A-Train radiances from Microwave Limb Sounder (MLS) and lidar backscatters from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). For the cases in which IWC values are small (<10 mg m(-3)), the cloud ice retrievals are constrained by both MLS 240- and 640-GHz radiances and CALIOP 532-nm backscatter (532). From the observed relationships between MLS cloud-induced radiance T-cir and the CALIOP backscatter integrated (532) along the MLS line of sight, an empirical linear relation between cloud ice and the lidar backscatter is found: IWC/(532) = 0.58 +/- 0.11. This lidar cloud ice relation is required to satisfy the cloud ice emission signals simultaneously observed at microwave frequencies, in which ice permittivity is relatively well known. This empirical relationship also produces IWC values that agree well with the CALIOP, version 3.0, retrieval at values <10 mg m(-3). Because the microphysics assumption is critical in satellite cloud ice retrievals, the agreement found in the IWC-(532) relationships increase fidelity of the assumptions used by the lidar and microwave techniques for upper-tropospheric clouds

    Observing CMB polarisation through ice

    Get PDF
    Ice crystal clouds in the upper troposphere can generate polarisation signals at the uK level. This signal can seriously affect very sensitive ground based searches for E- and B-mode of Cosmic Microwave Background polarisation. In this paper we estimate this effect within the ClOVER experiment observing bands (97, 150 and 220 GHz) for the selected observing site (Llano de Chajnantor, Atacama desert, Chile). The results show that the polarisation signal from the clouds can be of the order of or even bigger than the CMB expected polarisation. Climatological data suggest that this signal is fairly constant over the whole year in Antarctica. On the other hand the stronger seasonal variability in Atacama allows for a 50% of clean observations during the dry season.Comment: 7 Pages, 4 figure

    Differential absorption radar techniques: surface pressure

    Get PDF

    A polarized discrete ordinate scattering model for radiative transfer simulations in spherical atmospheres with thermal source

    Get PDF
    The development of the new discrete ordinate scattering algorithm, which is a part of the Atmospheric Radiative Transfer Simulator (ARTS), is described. Furthermore, applications of the algorithm, which was implemented to study for example the influence of cirrus clouds on microwave limb sounding, are presented.The model development requires as a theoretical basis the electromagnetic scattering theory. The basic quantities are defined and different methods to compute single scattering properties of small particles are discussed. In order to represent clouds as scattering media in radiative transfer models, information about their micro-physical state is required as an input for calculating the scattering properties.The micro-physical state of a cloud is defined by the phase of the cloud particles, the particle size and shape distributions, the particle orientation, the ice mass or the liquid water content, and the temperature. The model uses the Discrete OrdinateITerative (DOIT) method to solve the vector radiative transfer equation.The implementation of a discrete ordinate method is challenging due to the spherical geometry of the model atmosphere, which is required for the simulation of limb radiances. The involved numerical issues, grid optimization and interpolation methods, are discussed.The new scattering algorithm was compared to three other models, which were developed during the same time period as the DOIT algorithm. Overall, the agreement between the models was very good, giving confidence in new models. Scattering simulations are presented for limb- and down-looking geometries, for one-dimensional and three-dimensional spherical atmospheres. They were performed for the frequency bands of the Millimeter Wave Acquisitions for Stratosphere/Troposphere Exchange Research (MASTER) instrument, and for selected frequencies of the Earth Observing System Microwave Limb Sounder (EOS MLS)

    Variations of tropical upper tropospheric clouds with sea surface temperature and implications for radiative effects

    Get PDF
    The variations of tropical upper tropospheric (UT) clouds with sea surface temperature (SST) are analyzed using effective cloud fraction from the Atmospheric Infrared Sounder (AIRS) on Aqua and ice water content (IWC) from the Microwave Limb Sounder (MLS) on Aura. The analyses are limited to UT clouds above 300 hPa. Our analyses do not suggest a negative correlation of tropical-mean UT cloud fraction with the cloud-weighted SST (CWT). Instead, both tropical-mean UT cloud fraction and IWC are found to increase with CWT, although their correlations with CWT are rather weak. The rate of increase of UT cloud fraction with CWT is comparable to that of precipitation, while the UT IWC and ice water path (IWP) increase more strongly with CWT. The radiative effect of UT clouds is investigated, and they are shown to provide a net warming at the top of the atmosphere. An increase of IWP with SST yields an increase of net warming that corresponds to a positive feedback, until the UT IWP exceeds a value about 50% greater than presently observed by MLS. Further increases of the UT IWP would favor the shortwave cooling effect, causing a negative feedback. Sensitivities of UT cloud forcing to the uncertainties in UT CFR and IWC measurements are discussed
    • …
    corecore