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Abstract. Microwave limb sounding in the presence of ice
clouds was studied by detailed simulations, where clouds and
other atmospheric variables varied in three dimensions and
the full polarisation state was considered. Scattering particles
were assumed to be horizontally aligned oblate spheroids
with a size distribution parameterized in terms of tempera-
ture and ice water content. A general finding was that particle
absorption is significant for limb sounding, which is in con-
trast to the down-looking case, where it is usually insignifi-
cant. Another general finding was that single scattering can
be assumed for cloud optical paths below about 0.1, which
is thus an important threshold with respect to the complexity
and accuracy of retrieval algorithms. The representation of
particle sizes during the retrieval is also discussed. Concern-
ing polarisation, specific findings were as follows: Firstly, no
significant degree of circular polarisation was found for the
considered particle type. Secondly, for the±45◦ polarisation
components, differences of up to 4 K in brightness temper-
ature were found, but differences were much smaller when
single scattering conditions applied. Thirdly, the vertically
polarised component has the smallest cloud extinction. An
important goal of the study was to derive recommendations
for future limb sounding instruments, particularly concerning
their polarisation setup. If ice water content is among the re-
trieval targets (and not just trace gas mixing ratios), then the
simulations show that it should be best to observe any of the
±45◦ and circularly polarised components. These pairs of
orthogonal components also make it easier to combine infor-
mation measured from different positions and with different
polarisations.

Correspondence to:P. Eriksson
(patrick.eriksson@chalmers.se)

1 Introduction

The bulk of data provided so far by limb sounding sen-
sors covers the stratosphere and the lower mesosphere, but
recently both scientific objectives and the technical devel-
opment have been moving the emphasis towards the upper
troposphere (UT). The PREMIER mission proposal (ESA,
2008) is a good example for this change in scientific fo-
cus. Any satellite observation into the troposphere must
deal with the impact of clouds, and this aspect is of spe-
cial importance for limb sounding due to the long hori-
zontal path lengths. In this respect, microwave techniques
have an inherent advantage over infrared and optical tech-
niques, because their sensitivity to clouds is significantly
lower (e.g.Ekstr̈om et al., 2008).

In fact, a large fraction of microwave limb sounding data
can be handled as “clear sky”. The size of this fraction de-
pends on the wavelengths used and the local atmospheric
conditions. Nevertheless, cloud effects should be consid-
ered as this decreases the uncertainties of the gas species
retrievals and increases the data yield. The treatment of
clouds in typical microwave limb sounding gas inversion al-
gorithms is highly simplified. They are mostly considered
by a general continuum absorption term. Such a term is
applied in the Odin-SMR (Murtagh et al., 2002) and Aura
MLS (Waters et al., 2006) inversions, as described inUrban
et al.(2005) andLivesey et al.(2006), respectively. The con-
tinuum absorption term is introduced primarily to account
for uncertainties in absorption originating from non-local
transitions and poorly understood physical mechanisms (see
Rosenkranz, 1993). This term would also cover the impact
of clouds if they could be treated as pure absorbers.

A more elaborated treatment of clouds, taking full account
of scattering, is found in the methodology ofRydberg et al.
(2009). Water vapour and cloud ice water content (IWC) are
retrieved in parallel from Odin-SMR data, but only spectra
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from single tangent altitudes are used and there is no obvious
way to extend the approach to invert complete limb sounding
sequences.

The interaction between microwave radiation and clouds
is quite well studied for frequencies below 100 GHz and
ground-based or down-looking observation geometries (a re-
view is given byBattaglia et al., 2006). The situation is quite
different for frequencies above 150 GHz and incidence an-
gles near 90◦, the conditions we study here. The basic jus-
tification of this study is that the development of more ap-
propriate retrieval schemes requires a better understanding
of how clouds affect microwave limb sounding radiances.
The poorer knowledge for limb sounding could earlier be ex-
plained by a lack of relevant tools and input for the required
simulations, but the situation has improved. Rigorous simu-
lations of limb sounding measurements involving cloud scat-
tering can now be performed by the ARTS software (Emde
et al., 2004a; Davis et al., 2005a), and since 2006 the Cloud-
Sat 94 GHz radar (Stephens et al., 2002) provides global in-
formation on cloud structures in a sufficiently detailed man-
ner. ARTS and CloudSat are key components of our study.

For this study, the altitude region of interest is the UT and
the focus is on wavelengths around 1 mm (300 GHz). The
term “mm” is used below in favour of “microwaves” to make
a clear distinction to the range below 100 GHz. The analysis
is made primarily from the perspective of trace gas retrievals.
The primary frequency range for such retrievals inside the
UT is 150 – 700 GHz (as indicated by the mm bands of Aura
MLS). These observations can further provide information
on IWC (Wu et al., 2005; Li et al., 2005; Eriksson et al.,
2010) and this aspect is also considered.

Upper tropospheric clouds consist mainly of ice particles,
and only this type of cloud is considered here. It has been
established that scattering is in general the dominant process
for ice clouds at mm wavelengths (e.g.Evans and Stephens,
1995b; Emde et al., 2004b). The relative importance of ab-
sorption is higher for small particles (Evans and Stephens,
1995a; Wu et al., 2005) and with a cold radiative background
(Eriksson et al., 2008, and Sect.3). These conditions are of
special concern for limb sounding and ice particle absorption
should be more prominent for this measurement technique,
but this issue has not yet been studied in any detail.

Polarisation effects are of special importance for mi-
crowave sensors as these devices are polarisation sensitive.
There are three main options for the response, in fact all cov-
ered by the last three mm limb sounders: Odin-SMR detects
the +45◦ and−45◦ linearly polarised components (Eriksson
et al., 2007), Aura MLS measures the horizontal (H) and ver-
tical (V) linear components (Wu et al., 2006) and SMILES
(Kikuchi et al., 2010) observes the left- and right-hand circu-
lar components (Y. Kasai, personal communication, 2010).

Even spherical particles cause some difference between
the V and H components for mm limb sounding (Teichmann
et al., 2006). Several studies have shown that this differ-
ence increases with the aspect ratio of the particles, on the

condition that a preferred orientation exists. However, these
studies have either been performed for a plane-parallel at-
mosphere (Czekala, 1998; Miao et al., 2003), down-looking
geometry (Davis et al., 2007), for completely homogeneous
(1-D) clouds (Davis et al., 2005b; Eriksson et al., 2007), or
for just a single synthetic cloud (Emde et al., 2004a; Davis
et al., 2005a,b). In addition, there exists no investigation of
the other polarisation components with a limb sounding fo-
cus.

Our approach is to perform detailed three dimensional
radiative transfer simulations, followed by careful analysis.
The objectives of this work are:

1. Study the relative importance of ice particle absorption
for mm limb sounding,

2. Calculate the complete polarisation state for a set of re-
alistic scenarios, and,

3. Analyse the significance of the results for the retrievals.

The article is structures as follows: Sect.2 presents some
theoretical background and introduces tools and datasets
used. Section3 analyses the importance of particle absorp-
tion versus scattering. Section4 presents and discusses the
polarisation state in the simulations. Section5 discusses
cloud retrieval aspects. Finally, Sect.6 contains a summary
and the conclusions.

2 Theory, tools and data

2.1 Radiative transfer

The intensity and polarisation state of radiation are described
by the Stokes vector,I . The radiative transfer equation to be
solved in the case of thermal emission and particle scattering
is

dI (ν,r,n)

ds
= −K(ν,r,n)I (ν,r,n)+a(ν,r,n)B(ν,r) (1)

+
∫

4π
Z(ν,r,n,n′)I (ν,r,n′)dn′,

whereν is the frequency,r is the atmospheric position,n is
the propagation direction,s is the distance alongn, K is the
extinction matrix,a is the absorption vector,B is the Planck
function andZ is the scattering matrix. SeeMishchenko et al.
(2002) for details regarding the assumptions for this equation
and definitions of the involved quantities.Z is frequently de-
noted as the phase matrix, but scattering matrix (e.g.Bohren
and Huffman, 1998) is clearly a more descriptive name.

During the actual calculations the vectorI holds radiance
values. For the presentation, simulated radiances are con-
verted to Planck brightness temperatures following the ex-
pressions inEriksson et al.(2011). The standard nomencla-
ture of denoting the four elements of the Stokes vector as
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I = [I,Q,U,V ]
T is kept (Chandrasekhar, 1950), but they are

here reported as

I = (T v
B +T h

B )/2, (2)

Q = T v
B −T h

B , (3)

U = T +45◦

B −T −45◦

B , (4)

V = T lhc
B −T rhc

B , (5)

whereT v
B is the brightness temperature [K] for the vertically

linearly polarised component, calibrated with respect to the
single polarisation power of blackbody radiation.T h

B , T +45◦

B ,

T −45◦

B , T lhc
B andT rhc

B are defined likewise, but consider the
horizontal linear, +45◦ linear, −45◦ linear, left-hand circu-
lar, and right-hand circular component, respectively. The
elementI could likewise be defined as the average of the
other two pairs of orthogonal components (T +45◦

B / T −45◦

B and
T lhc

B / T rhc
B ).

Conceptually, we study the impact of clouds by calculat-
ing the difference between each cloudy simulation and the
corresponding clear-sky case, where all clouds are ignored.
For the first Stokes componentI , this difference is also what
we are reporting:

1I = I −Ics (6)

For the other three Stokes components, the clear-sky value
is zero, as long as the tangent altitude is above the surface.
We therefore simply report theQ, U , andV values for the
cloudy case.

Finally, note that the scattering of a particle is highly de-
pendent on the ratio between its “characteristic size”,d and
the wavelength,λ, normally reported as the size parameter,
x:

x =
πd

λ
. (7)

That is,x is the ratio between circumference and wavelength
for spherical particles.

2.2 Simulation software

The simulations were performed by ARTS (Atmospheric Ra-
diative Transfer Simulator), a freely available, open source,
software package (Buehler et al., 2005). The second version
of ARTS (Eriksson et al., 2011) includes two modules for
solving Eq. (1). The Monte Carlo (MC) algorithm (Davis
et al., 2005a) is used for this study. ARTS-MC allows sim-
ulation of cloud scattering in a three dimensional (3-D) at-
mosphere with arbitrary geoid and surface shapes, taking
full account of polarisation effects. Gaseous absorption is
calculated internally by ARTS, for efficiency reasons pre-
calculated as a look-up table (Buehler et al., 2011). Particle
optical (single scattering) properties were calculated with the
T-matrix code byMishchenko et al.(2002).

2.3 Atmospheric scenarios

It has been shown in several studies that the assumption
of completely homogeneous cloud layers leads to a mis-
representation of cloud effects in limb observation geome-
try (Emde et al., 2004a; Davis et al., 2005a, 2007; Eriksson
et al., 2007; Adams et al., 2008). We therefore used data on
both horizontal and vertical cloud structure from CloudSat, a
satellite-based cloud radar.

A methodology to make use of radar observations for sim-
ulating cloud effects in passive mm-wave data was developed
by Rydberg et al.(2007), and later extended to 3-D in order
to create a database for Odin-SMR upper tropospheric water
retrievals (Rydberg et al., 2009). This study makes use of the
atmospheric scenarios generated for the Odin-SMR database.
In short, along-track cross-sections of radar back-scattering
from CloudSat are transformed to 3-D fields using the al-
gorithm by Venema et al.(2006). The 3D fields obtained
are converted to fields of number densities using the particle
size distribution (PSD) parametrisation byMcFarquhar and
Heymsfield(1997, below MH97). No retrievals are involved
and the final data are fully consistent with the basic observa-
tions of CloudSat (see further Sect.2.4). The database covers
only tropical conditions (latitudes of±30◦).

Rydberg et al.(2009) have shown that these atmospheric
scenarios result in simulations that reproduce Odin-SMR
observations in detail. This indicates that cloud structures
above 10 km and over horizontal distances below∼40 km
(the footprint size of the satellite data considered) are reason-
ably represented. To what extent the 3-D distribution of tem-
perature and gas species is correctly captured is not known.
Particularly uncertain are the relationships between cloudy
regions and the surrounding air, but in this context these as-
pects are secondary to the representation of clouds.

2.4 Simulation details

This work is part of a design study of the mm-wave limb
sounder instrument for the PREMIER mission, and the
frequency for the simulations was selected accordingly:
347.5 GHz. This is a frequency in-between transitions of CO
and HCN (at 345.8 and 354.5 GHz, respectively), lacking lo-
cal spectral features. The frequency 347.5 GHz corresponds
roughly to the lowest opacity with respect to gaseous absorp-
tion for the instrument and can be treated as a “window fre-
quency”.

The absorption for water, oxygen and nitrogen was taken
from Rosenkranz(1998), Rosenkranz(1993), and Liebe
et al.(1993), respectively. To this the absorption of roughly
70 transitions of other species was added. Figure1 sum-
marises the tropical average clear-sky radiative properties at
347.5 GHz. The opacity at this wavelength of 0.86 mm is
roughly halfway between the one at 230 GHz and the one at
501/645 GHz, the “window” frequencies of Aura MLS and
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Fig. 1. Tropical mean atmospheric temperature as a function of altitude (blue), measured I is a function of

tangent altitude (green), and the scattering source function (S) as a function of altitude (red). The calculation

of S assumes single scattering conditions, Rayleigh conditions and that the zenith angle of n̂ is 90◦ (Eq. 10).

The frequency is 347.5 GHz and the data represent average tropical conditions (FASCODE).
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SMR/SMILES, respectively. The figure also shows the scattering source term, which will be ex-

plained further down in Sec. 3.3.

The surface was assumed to have a spherical shape and to act radiatively as a blackbody. Monochro-

matic pencil beam simulations were performed for tangent altitudes of 4, 12, 14 and 16 km, with165

refraction neglected. The basic properties of results for 14 and 16 km are the same, and only results

for 14 km are shown.

No liquid cloud particles were included, only ice particles. The complete particle size distribution

was represented by ten discrete sizes. In contrast to the original data by Rydberg et al. (2009), which

assumed spherical cloud ice particles, the shape of the particles was assumed to be (solid) oblate170

spheroids, with the larger dimension in the horizontal plane. Two aspect ratios were considered: 1.2

and 2.0. The first value is based on an estimate by Davis et al. (2005b), who used simultaneous V and

H Aura MLS 122 GHz data. The second value is motivated by the fact that cirrus cloud particles are
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bution, but different aspect ratio. Our approach here was that for each of the ten size bins the particle
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the IWC (in gm−3) is the same, independently of aspect ratio. Note that this approach is not main-

taining a constant radar backscatter, and thus the perfect matching with the CloudSat observations180
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Fig. 1. Tropical mean atmospheric temperature as a function of al-
titude (blue), measuredIcs is a function of tangent altitude (green),
and the scattering source function (S) as a function of altitude (red).
The calculation ofS assumes single scattering conditions, Rayleigh
conditions and that the zenith angle ofn is 90◦ (Eq. 10). The fre-
quency is 347.5 GHz and the data represent average tropical condi-
tions (FASCODE).

Odin-SMR/SMILES, respectively. The figure also shows the
scattering source term, which will be explained further down
in Sect.3.3.

The surface was assumed to have a spherical shape and to
act radiatively as a blackbody. Monochromatic pencil beam
simulations were performed for tangent altitudes of 4, 12, 14
and 16 km, with refraction neglected. The basic properties of
results for 14 and 16 km are the same, and only results for
14 km are shown.

No liquid cloud particles were included, only ice particles.
The complete particle size distribution was represented by
ten discrete sizes. In contrast to the original data byRydberg
et al. (2009), which assumed spherical cloud ice particles,
the shape of the particles was assumed to be (solid) oblate
spheroids, with the larger dimension in the horizontal plane.
Two aspect ratios were considered: 1.2 and 2.0. The first
value is based on an estimate byDavis et al.(2005b), who
used simultaneous V and H Aura MLS 122 GHz data. The
second value is motivated by the fact that cirrus cloud parti-
cles are known to occasionally have very high aspect ratios,
with orientation as assumed here (e.g.Okamoto et al., 2010).

Different approaches are possible when preparing particle
populations with the same size distribution, but different as-
pect ratio. Our approach here was that for each of the ten size
bins the particle number density field and the particle volume
are identical for both aspect ratios. As a consequence, the
IWC (in gm−3) is the same, independently of aspect ratio.
Note that this approach is not maintaining a constant radar
backscatter, and thus the perfect matching with the CloudSat

observations (Sect.2.3) is lost. However, in this case it was
judged to be the best alternative for the interpretation of the
results.

Finally, we emphasise that the performed radiative transfer
simulations dealt with the full three dimensional spherical
geometry and considered the full polarisation state.

3 Absorption vs. scattering

The focus in this section is on the first Stokes element (I )
and expressions considering just this element are used. This
is denoted as “scalar radiative transfer”. These simplified
expressions are also better suited for explaining the results.

3.1 Scalar radiative transfer

If polarisation effects can be neglected, the radiative transfer
over a short part of the propagation path, extending between
pointsi andi +1, can be approximated as

I (i +1) = I (i)e−kl
+(1−e−kl)[(1−ω)B +ωS] , (8)

whereI (i) is the intensity (forn) at pointi, l is the distance
along the path betweeni and i + 1, k is the extinction co-
efficient (scalar equivalent toK ), ω is the single scattering
albedo andS is the source function for scattering. The last
two quantities are defined as

ω =
k−a

k
=

s

k
, (9)

S =

∫
4π

p(n,n′)I (n′)dn′, (10)

wherea (scalar equivalent toa) ands are the absorption and
scattering coefficients, respectively, andp is the normalised
scattering function. The normalisation is such that∫

4π

p(n,n′)dn′
= 1. (11)

Except for the normalisation,p is the scalar equivalent toZ.

3.2 Extinction

The extinction has two components, absorption and scatter-
ing out of the line-of-sight. The relative size of the two com-
ponents is normally reported as the single scattering albedo
(Eq. 9). Examples are shown in Fig.2. The single scat-
tering albedo for spherical particles depends on two quan-
tities, the size parameter and the complex refractive index
(n = n′

+ in′′). The real part of the refractive index of ice,n′,
is ≈ 1.8 throughout the microwave region and the imaginary
part, n′′, increases smoothly from 0.001 around 80 GHz to
0.01 around 700 GHz (Warren and Brandt, 2008).

The data in Fig.2 correspond to size parametersx between
0.04 and 3.7, and thus either Rayleigh conditions (x � 1) or
Mie conditions (x ≈ 1) apply. For the Rayleigh regime, the
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Fig. 2. Single scattering albedo (ω) for five different diameters of spherical ice particles.

Fig. 3. Single scattering albedo (ω) for spherical ice particles as function of IWC for 4 different frequencies.

Particle size distribution according to MH97 for 220 K.

scattering cross-sections are proportional to d3/λ and d6/λ4, respectively. These relationships ex-

plain in overall terms why the particle size is the main driver for ω (for the conditions spanned by

the figure). Particles larger than about 250µm have an ω close to 1 throughout the mm range. For

smaller particles, the increase of ω as a function of frequency is smaller than expected from the

Rayleigh expressions, due to the counteracting change in n′′.215

To better consider real conditions, the mix of different particle sizes must be considered, i.e.

the PSD. This has been done in Fig. 3 where the absorption and scattering coefficients have been

summed up following the MH97 PSD (Sec. 2.3) and the bulk ω has been calculated. A more detailed

analysis reveals that, for MH97, the contribution to the absorption term peaks for particles around
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Fig. 2. Single scattering albedo (ω) for five different diameters of
spherical ice particles.

absorption and scattering cross-sections are proportional to
d3/λ andd6/λ4, respectively. These relationships explain in
overall terms why the particle size is the main driver forω

(for the conditions spanned by the figure). Particles larger
than about 250 µm have anω close to 1 throughout the mm
range. For smaller particles, the increase ofω as a function
of frequency is smaller than expected from the Rayleigh ex-
pressions, due to the counteracting change inn′′.

To better consider real conditions, the mix of different
particle sizes must be considered, i.e. the PSD. This has
been done in Fig.3 where the absorption and scattering co-
efficients have been summed up following the MH97 PSD
(Sect.2.3) and the bulkω has been calculated. A more de-
tailed analysis reveals that, for MH97, the contribution to the
absorption term peaks for particles around 50 µm, while scat-
tering peaks in the 150–300 µm size range (Wu et al., 2005;
Eriksson et al., 2008). MH97 achieves a higher IWC primar-
ily by increasing the number of particles larger than about
100 µm. Accordingly,ω is found to monotonically increase
with IWC in Fig. 3.

3.3 Source terms

In principle, there is a single source to the measured ra-
diance, thermal emission originating inside the atmosphere
(cosmic background radiation, solar radiation, and surface
emission give only very small contributions for the frequency
and viewing geometry considered here). However, both with
respect to physical and simulation aspects there is a large dif-
ference if the radiation is emitted directly or is scattered into
the line-of-sight, and it therefore makes sense to also separate
the source into two terms: emission and scattering.

The emission is directly linked to absorption as long as lo-
cal thermodynamic equilibrium (LTE) applies, which is im-

Fig. 2. Single scattering albedo (ω) for five different diameters of spherical ice particles.

Fig. 3. Single scattering albedo (ω) for spherical ice particles as function of IWC for 4 different frequencies.
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Fig. 3. Single scattering albedo (ω) for spherical ice particles as
function of IWC for 4 different frequencies. Particle size distribu-
tion according to MH97 for 220 K.

plied by Eqs. (1) and (8). The emission generated along a
small path segment1l is aB1l.

The scattering into the line-of-sight for the same segment
is sS1l. That is, both the emission and scattering source
terms (aB andsS, respectively) are proportional to the cor-
responding extinction coefficient. (For vector radiative trans-
fer it is, in general, not possible to express the scattering
source term as the product of a scattering coefficient and a
normalised scattering function, as for the scalar case here.)

As its absorption counterpart, the emission source function
depends only on the local conditions. Expressed in bright-
ness temperature, the Planck function isB = T . The scat-
tering source function,S, behaves completely differently, it
depends both on the scattering function (p) and non-local
conditions though the incoming radiation field (Eq.11). Fig-
ure1 exemplifiesS for the case of small particles and weak
scattering.

3.4 Discussion

A straightforward test of the importance of ice particle ab-
sorption is to repeat some simulations with the scattering
quantities set to zero. Results from such a test are shown
in Fig. 4. The simulations were performed with vector radia-
tive transfer, but the results can be understood in the scalar
framework.

Let us first assume that scattering dominates totally, which
is the general assumption that is challenged. In this case,
Eq. (8) can be written as (k = s)

dI

dl
= s(S −I ). (12)

www.atmos-meas-tech.net/4/1305/2011/ Atmos. Meas. Tech., 4, 1305–1318, 2011
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This equation shows that a fixed scattering coefficients gets
its maximum impact when there is a large difference between
I andS. The case ofI � S is for longwave radiation only en-
countered when the observation direction is directly towards
the sun and is not relevant here. The other extreme situation
is I = 0.

Equation12 explains why1I in Fig. 4 for 4 and 14 km
tangent altitude has opposite sign. For 14 km, the clear-skyI

is about 50 K, whileS is in the order of 130 K (Fig.1). Thus,
S > I and scattering increases the measured intensity; the
source term exceeds the extinction. The situation for 4 km
is reversed. The extinction acts here on radiation originat-
ing from the lower troposphere andI > S and the impact of
clouds is to decrease the observed radiance.

This difference between “low” and “high” tangent alti-
tudes is well-known (Emde et al., 2004b; Wu et al., 2005;
Ekstr̈om et al., 2007). This study deals primarily with the
“high” case. The ‘low’ case is basically parallel to the down-
looking geometry considered for dedicated cloud ice sensors
(Evans et al., 2002; Buehler et al., 2007). The transition from
positive to negative change inI due to cloud scattering de-
pends on the position of the particles with respect to the tan-
gent point, but occurs roughly at (the highest) altitude where
the green and red lines in Fig.1 cross.

Let us now consider the reverse case, that absorption dom-
inates and scattering can be neglected. Then:

dI

dl
= a(B −I ). (13)

Equations (12) and (13) follow the same pattern, but the fact
that in generalB > S causes important differences. In the
case of the 4 km tangent altitude,I is just slightly larger than
B; the absorbed part is replaced with emission of more or less
the same power. This explains why1Iabs is close to zero for
the 4 km data in Fig.4.

For 14 km, we have a parallel situation to the purely scat-
tering case. However,B−I is roughly twice as large asS−I

(assuming the conditions of Fig.1) and some absorption ex-
tinction gives a higher dI/dl than scattering of same strength
(a = s). This was pointed out inEriksson et al.(2008), but
not explained in any detail.

Figure4 shows this in practice, where on average1Iabs
is about 25 % of1I although ω > 0.8 for most cases
(Fig. 3). The varying distance to the 1-to-1 line is caused
by multiple-scattering effects, and the fact that some cases
have widespread clouds with low IWC, and then relatively
low ω, while others are more compact with high IWC andω.

If I = S then scattering gives no net effect (dI/dl = 0).
If B > S for the same position there is a net contribution
through the absorption coefficient. Hence, at positions with
these conditions, the ice particles effectively act asω = 0 in-
dependently of the actualω. This small example shows that
the single scattering albedoω only gives partial information
on the relative importance of absorption and scattering for
measurements of atmospheric emission. For “low” tangent

Fig. 4. The ice cloud induced change in intensity when treating the particles as purely absorbing (∆Iabs), as a

function of ∆I for complete simulations. The ∆Iabs case was achieved by setting both the scattering matrix

and the scattering part of the extinction matrix to zero. The vertical lines show the uncertainty of the scattering

calculations (±2σ), originating from the Monte Carlo approach. Two tangent altitudes were considered, 4 (blue)

and 14 (red) km. If scattering would have had a zero contribution, the results would have ended up around the 1

to 1 line (black). The simulations were performed for a frequency of 347.5 GHz and three dimensional tropical

atmospheric data (Sec. 2.3). The particles were assumed to be horizontally aligned oblate spheroids with an

aspect ratio of 2.

situation is I = 0.

Equation 12 explains why ∆I in Fig. 4 for 4 and 14 km tangent altitude has opposite sign. For255

14 km, the clear-sky I is about 50 K, while S is in the order of 130 K (Fig. 1). Thus, S > I and

scattering increases the measured intensity; the source term exceeds the extinction. The situation for

4 km is reversed. The extinction acts here on radiation originating from the lower troposphere and

I >S and the impact of clouds is to decrease the observed radiance.

This difference between ‘low’ and ‘high’ tangent altitudes is well-known (Emde et al., 2004b;260

Wu et al., 2005; Ekström et al., 2007). This study deals primarily with the ‘high’ case. The ‘low’

case is basically parallel to the down-looking geometry considered for dedicated cloud ice sensors

(Evans et al., 2002; Buehler et al., 2007). The transition from positive to negative change in I due to

cloud scattering depends on the position of the particles with respect to the tangent point, but occurs

roughly at (the highest) altitude where the green and red lines in Fig. 1 cross.265

Let us now consider the reverse case, that absorption dominates and scattering can be neglected.

Then:

dI

dl
= a(B−I). (13)

Equations 12 and 13 follow the same pattern, but the fact that in general B >S causes important

10

Fig. 4. The ice cloud induced change in intensity when treating the
particles as purely absorbing (1Iabs), as a function of1I for com-
plete simulations. The1Iabscase was achieved by setting both the
scattering matrix and the scattering part of the extinction matrix to
zero. The vertical lines show the uncertainty of the scattering cal-
culations (±2σ ), originating from the Monte Carlo approach. Two
tangent altitudes were considered, 4 (blue) and 14 (red) km. If scat-
tering would have had a zero contribution, the results would have
ended up around the 1 to 1 line (black). The simulations were per-
formed for a frequency of 347.5 GHz and three dimensional tropical
atmospheric data (Sect.2.3). The particles were assumed to be hor-
izontally aligned oblate spheroids with an aspect ratio of 2.

altitudes, scattering dominates even for smallω. For “high”
tangent altitudes, on the other hand, emission plays a larger
role than expected, even for largeω.

4 Polarisation

Figures5 and6 show the simulation results used in this sec-
tion. The optical pathsτ I for the figures were calculated
by propagating a unit Stokes vector ([1,0,0,0]

T ) through
the atmosphere considering only extinction, and takingτ I

=

−log(I ). The cloud optical pathsτ I
cloud were obtained by

subtracting theτ I
clear of the corresponding clear-sky calcula-

tions from the total optical pathsτ I .
Figure 5 shows results for 14 km tangent altitude. For

this tangent altitude the cloud induced change in intensity
is strictly positive, in line with the “high” case discussed in
Sect.3.4. We will come back to this figure in later subsec-
tions.

Figure6 shows results for 12 km tangent altitude. For this
tangent altitude the cloud induced change in intensity can be
positive or negative for the same cloud optical pathτ I

cloud.
As a help to understand this spread of1I , the clear-sky op-
tical pathτ I

clear is included in the figure by colour-coding the
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Fig. 5. Simulations of the cloud induced change of the observed Stokes vector for a collection of atmospheric

states, as a function of cloud optical path. The simulations were performed for a frequency of 347.5 GHz and

a tangent altitude of 14 km. The ice particles were modelled as horizontally aligned oblate spheroids with an

aspect ratio of 1.2 (red) or 2.0 (blue). The vertical lines shows the error estimate (±2σ) of the Monte Carlo

radiative transfer method.

Clouds with the same optical path, but showing a high positive ∆I are likely widespread clouds305

with relatively low IWC.

4.1 The scattering matrix

The discussion of polarisation effects needs a basic understanding of the properties of the scattering

matrix (Z). For spherical particles and so called ‘macroscopically isotropic and symmetric media’

they are well-described in textbooks (Mishchenko et al., 2002; Battaglia et al., 2006). The scattering310

matrix for horizontally aligned aspherical particles, as assumed here, is more complex.

Surface effects can be neglected for 347.5 GHz, and the radiation field inside the atmosphere

without scattering is unpolarised ([I,0,0,0]T ). If a single scatterer is placed in the atmosphere, the

12

Fig. 5. Simulations of the cloud induced change of the observed
Stokes vector for a collection of atmospheric states, as a function of
cloud optical path. The simulations were performed for a frequency
of 347.5 GHz and a tangent altitude of 14 km. The ice particles were
modelled as horizontally aligned oblate spheroids with an aspect
ratio of 1.2 (red) or 2.0 (blue). The vertical lines shows the error
estimate (±2σ ) of the Monte Carlo radiative transfer method.

plot symbols. The figure shows that clouds embedded in an
atmosphere with higher gaseous absorption give lower1I ,
which is also consistent with Sect.3.4. Some cases even
show the characteristics of the “low” case with negative1I .

High negative1I and negative1I for low clear-sky op-
tical path τ I

clear are indications of compact clouds, proba-
bly extending downwards and associated with deep convec-
tion. This situation can reduce the scattering source func-
tion to such a degree thatS < I for the 12 km tangent alti-
tude. Clouds with the same optical path, but showing a high
positive1I are likely widespread clouds with relatively low
IWC.

4.1 The scattering matrix

The discussion of polarisation effects needs a basic under-
standing of the properties of the scattering matrix (Z). For
spherical particles and so called “macroscopically isotropic

Fig. 6. Simulations of the cloud induced change of the observed Stokes vector for a collection of atmospheric

states, as a function of cloud optical path. The simulations were performed for a frequency of 347.5 GHz and

a tangent altitude of 12 km. The ice particles were modelled as horizontally aligned oblate spheroids with an

aspect ratio of 1.2. The colours indicate the clear-sky optical path of the atmosphere (errors are of same size as

in Fig. 5).

radiation scattered into the line-of-sight from each incoming direction is

[Z11I,Z21I,Z31I,Z41I]T , (14)315

where I is the incoming intensity and Zij is the element of Z for row i and column j. That is, for

conditions of single scattering, only the first column of Z is of importance. Example values for this

column are shown in Fig. 7.

The figure treats scattering from a zenith angle of 100◦, to the limb-direction (90◦). The absolute

values of the azimuth angles do not matter, and the n̂-direction is arbitrarily set to be at 0◦. The320

exact backward and forward directions are not covered by the figure (they deviate with 10◦ in the

zenith direction), but they are relatively close compared to the width of the ‘scattering lobes’ and

the relative size of Z11 at 0◦ and ±180◦ shows that this particle exhibits somewhat stronger forward
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Fig. 6. Simulations of the cloud induced change of the observed
Stokes vector for a collection of atmospheric states, as a function of
cloud optical path. The simulations were performed for a frequency
of 347.5 GHz and a tangent altitude of 12 km. The ice particles were
modelled as horizontally aligned oblate spheroids with an aspect
ratio of 1.2. The colours indicate the clear-sky optical path of the
atmosphere (errors are of same size as in Fig.5).

and symmetric media” they are well-described in textbooks
(Mishchenko et al., 2002; Battaglia et al., 2006). The scat-
tering matrix for horizontally aligned aspherical particles, as
assumed here, is more complex.

Surface effects can be neglected for 347.5 GHz, and the
radiation field inside the atmosphere without scattering is
unpolarised ([I,0,0,0]

T ). If a single scatterer is placed in
the atmosphere, the radiation scattered into the line-of-sight
from each incoming direction is

[Z11I,Z21I,Z31I,Z41I ]
T , (14)

whereI is the incoming intensity andZij is the element ofZ
for row i and columnj . That is, for conditions of single scat-
tering, only the first column ofZ is of importance. Example
values for this column are shown in Fig.7.

The figure treats scattering from a zenith angle of 100◦, to
the limb-direction (90◦). The absolute values of the azimuth
angles do not matter, and then-direction is arbitrarily set to
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be at 0◦. The exact backward and forward directions are not
covered by the figure (they deviate with 10◦ in the zenith
direction), but they are relatively close compared to the width
of the “scattering lobes” and the relative size ofZ11 at 0◦ and
±180◦ shows that this particle exhibits somewhat stronger
forward than backward scattering. This is expected since the
particle has a size parameter of 0.62, which is near the lower
end of the Mie regime. (Rayleigh scattering would be equally
strong in the forward and backward directions.)

4.2 Q

The magnitude ofQ is strongly influenced by particle shape
and orientation (Czekala, 1998). For a given shape, the value
of Q is the smallest for randomly oriented particles. A com-
parison of Fig. 14 and 15 inEmde et al.(2004a) indicates
that this orientation also has the most complex variation re-
garding the sign ofQ.

For oriented particles, several studies have shown that the
size ofQ depends on the asphericity (e.g.Miao et al., 2003),
and this can also be seen in Fig.5. With orientation, the
signs of1I andQ appear to be highly correlated (see Fig.6,
Fig. 15 of Emde et al.(2004a), and Fig. 2 ofDavis et al.,
2005a). To the degree orientation exists, it is expected that
the longest dimension is found close to the horizontal plane
(e.g.Bréon and Dubrulle, 2004), as also assumed in the set-
up of these simulations. In this case,1I andQ vary in an
anti-correlated manner. For “low” tangent altitudes1I is
negative andQ positive, and the opposite is valid for “high”
altitudes.

More in detail, horizontally aligned oblate spheroids with
an aspect ratio above one can be thought of having a greater
size parameter in the horizontal direction than vertically (ex-
cept for zenith angles of 0◦ and 180◦ where they are equal).
This means that the extinction cross-section will be greater
for the horizontally polarised radiation component than for
the vertically polarised one. Consequently, for “low” tangent
altitudesQ is expected to be positive, as extinction domi-
nates the cloud induced signal (Sect.3.4). For “high” tangent
altitudes1I and (thus alsoQ) is dominated by the contri-
bution from radiation scattered into the line-of-sight. Since
the particles have a greater horizontal than vertical scattering
cross-section, more horizontal than vertical polarised radia-
tion is scattered into the line-of-sight. Hence, we expectQ

to be negative for ‘high’ tangent altitudes.
However, the correlation between1I and Q decreases

with the strength of the scattering. This is most easily ob-
served in Fig.6, where the cases with highestτ are mainly
found on the negative side for1I while Q is centred around
zero (indicating a correlation close to zero).

4.3 U

As mentioned in the introduction, we have not found any
study onU and V for microwave limb sounding. An ex-

Fig. 7. Scattering matrix elements as a function of incoming azimuth angle, for horizontally aligned oblate

spheroids with an aspect ratio of 2, an equivalent diameter size of 170µm and a frequency of 347.5 GHz. In

the nomenclature of Eq. 1, the zenith and azimuth angles of n̂ are 90◦and 0◦, respectively, and the zenith angle

of n̂′ is 100◦. The Z41 is increased by a factor of 100, to make the angular variation visible.

than backward scattering. This is expected since the particle has a size parameter of 0.62, which is

near the lower end of the Mie regime. (Rayleigh scattering would be equally strong in the forward325

and backward directions.)

4.2 Q

The magnitude of Q is strongly influenced by particle shape and orientation (Czekala, 1998). For

a given shape, the value of Q is the smallest for randomly oriented particles. A comparison of Fig.

14 and 15 in Emde et al. (2004a) indicates that this orientation also has the most complex variation330

regarding the sign of Q.

For oriented particles, several studies have shown that the size of Q depends on the asphericity

(e.g. Miao et al., 2003), and this can also be seen in Fig. 5. With orientation, the signs of ∆I and

Q appear to be highly correlated (see Fig. 6, Fig. 15 of Emde et al. (2004a), and Fig. 2 of Davis

et al. (2005a)). To the degree orientation exists, it is expected that the longest dimension is found335

close to the horizontal plane (e.g. Bréon and Dubrulle, 2004), as also assumed in the set-up of these

simulations. In this case, ∆I and Q vary in an anti-correlated manner. For ‘low’ tangent altitudes

∆I is negative and Q positive, and the opposite is valid for ‘high’ altitudes.

More in detail, horizontally aligned oblate spheroids with an aspect ratio above one can be thought

of having a greater size parameter in the horizontal direction than vertically (except for zenith angles340

of 0
◦

and 180
◦

where they are equal). This means that the extinction cross-section will be greater for

the horizontally polarised radiation component than for the vertically polarised one. Consequently,

14

Fig. 7. Scattering matrix elements as a function of incoming az-
imuth angle, for horizontally aligned oblate spheroids with an as-
pect ratio of 2, an equivalent diameter size of 170 µm and a fre-
quency of 347.5 GHz. In the nomenclature of Eq. (1), the zenith
and azimuth angles ofn are 90◦and 0◦, respectively, and the zenith
angle ofn′ is 100◦. TheZ41 is increased by a factor of 100, to make
the angular variation visible.

ample whereU is investigated for down-looking geometry is
Adams et al.(2008).

In Figs.5 and6, U deviates from zero only marginally for
cloud optical path below 0.1, i.e. weak cloud scattering. For
these cases Eq. (14) gives a good description of the radiation
scattered into the line-of-sight, where the term of concern
here isZ31I . Figure7 shows thatZ31 is an odd function of
incoming azimuth angle. The odd azimuthal symmetry of
Z31 can be understood from basic symmetry arguments and
thus should be generally valid.

The radiation intensity fieldI , on the other hand, is ex-
pected to depend only weakly on azimuth angle. In combi-
nation with the odd symmetry ofZ31 this results in that the
azimuthal integral ofZ31I , for each zenith angle, is close to
zero. Hence, the contributions toU from the ‘left’ and ‘right’
hemispheres for incoming radiation are more or less equally
large, but have different sign, and the end result is close to
zero.

For any given particle size,Z31 depends only weakly on
the incoming zenith angle (not shown). On the other hand,
Z31 varies strongly with particle size, where even the sign
can change (Fig.8). This means that small and large particles
give counteracting contributions toU .

The azimuthal independence ofI is violated if the scat-
tering point is surrounded by (inhomogeneous) clouds. The
contributions from the left and right sides can then deviate
significantly and the observed Stokes vector can have a sig-
nificantU -value. In addition, the incoming radiation has then
also a non-zeroQ, which is converted toU by elements ofZ
not covered by Eq. (14).
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In summary, a non-zeroU is primarily an effect of multi-
ple scattering. This explains whyU has no preferred sign, as
the cloud structures are random with respect to the observa-
tion direction. There is no systematic difference betweenU

for the two aspect ratios in Fig.5. Some caution is needed
when estimating the clear-sky influence onU . The atmo-
spheric scenarios exhibit 3D structures for temperature and
the gas constituents, but it is not clear to what extent hori-
zontal variability is correctly modelled (Sect.2.3).

4.4 V

For these simulation conditionsV does not reach significant
levels. The maximum (absolute) value forV is only 0.035 K,
about three orders of magnitude belowU . The V -element
is a fairly parallel case toU , e.g. Z41 and Z31 show the
same odd symmetry in Fig.7. The main difference is that
Z41� Z31 for most particles. However, this depends on par-
ticle size, as shown in Fig.8. The figure also shows that the
switch from positive to negative values happens at a smaller
size forZ41 compared toZ31 (around 400 and 600 µm, re-
spectively). This should result in a higher cancellation be-
tween contributions from small and large particles forV than
for U .

5 Retrieval aspects

The implications of the results above for retrievals are dis-
cussed here. It is assumed that gaseous constituents are the
main target of the measurements. The data in this section are
reported as brightness temperatures for single polarisations,
to match the response of real receivers, e.g.:

T v
B = I +Q/2, (15)

which follows directly from Eqs. (2) and (3). The difference
to the corresponding clear-sky case is denoted as1Tb.

As noted above, inversions involving clouds are still a
topic of research, and no actual retrievals are discussed here.
Instead, some basic assumptions are made. It is assumed that
clouds can be handled, at least, for single scattering situa-
tions. Figures5 and6 indicate that the break-point between
single and multiple scattering is found near a cloud optical
path of 0.1. This statement is based on the observation that
1I shows low spread andU is practically zero forτ I < 0.1.
It is further assumed that the measurements cannot provide
any constraint for the particle shape.

5.1 Selection of polarisation

One aim of our study was to investigate which polarisation
is theoretically best for the observations. If clouds are ne-
glected in the retrievals, the polarisation should be selected
such that their impact on the spectra is minimised. Consid-
ering the anti-correlation between1I andQ (and thatQ is
larger thanU andV ), it is the vertical polarisation that fulfils

Fig. 8. Normalised scattering matrix elements as a function of particle equivalent diameter for horizontally

aligned oblate spheroids with an aspect ratio of 2, and a frequency of 347.5 GHz. In the nomenclature of Eq. 1,

the zenith and azimuth angles of n̂ are 90◦and 0◦, respectively, and the zenith and azimuth angles of n̂′ are

100◦and 30◦, respectively.

4.4 V

For these simulation conditions V does not reach significant levels. The maximum (absolute) value

for V is only 0.035 K, about three orders of magnitude below U . The V -element is a fairly parallel

case to U , e.g. Z41 and Z31 show the same odd symmetry in Fig. 7. The main difference is that380

Z41 � Z31 for most particles. However, this depends on particle size, as shown in Fig. 8. The

figure also shows that the switch from positive to negative values happens at a smaller size for Z41

compared to Z31 (around 400 and 600µm, respectively). This should result in a higher cancellation

between contributions from small and large particles for V than for U .

5 Retrieval aspects385

The implications of the results above for retrievals are discussed here. It is assumed that gaseous con-

stituents are the main target of the measurements. The data in this section are reported as brightness

temperatures for single polarisations, to match the response of real receivers, e.g.:

T vB = I+Q/2, (15)

which follows directly from Eq. 2 and 3. The difference to the corresponding clear-sky case is390

denoted as ∆Tb.

As noted above, inversions involving clouds are still a topic of research, and no actual retrievals

are discussed here. Instead, some basic assumptions are made. It is assumed that clouds can be
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Fig. 8. Normalised scattering matrix elements as a function of par-
ticle equivalent diameter for horizontally aligned oblate spheroids
with an aspect ratio of 2, and a frequency of 347.5 GHz. In the
nomenclature of Eq.1, the zenith and azimuth angles ofn are
90◦and 0◦, respectively, and the zenith and azimuth angles ofn′

are 100◦and 30◦, respectively.

this criterion. As explained below, selecting lowest1Tb, for
a given cloud scenario, results in that the cloud extinction is
also minimised.

A more elaborated approach is to include clouds in the re-
trieval process. The main consideration, with respect to the
accuracy for gas species, is to obtain the best possible esti-
mate of the extinction caused by clouds, in lack of a perfect
knowledge on particle shapes. This translates into a demand
of a compact relationship between cloud extinction and1Tb,
over a range of particle aspect ratios. (Size uncertainties are
treated in Sect.5.2.)

Some care is needed in this analysis. The “intensity” op-
tical path used in Fig.5 and6 (τ I ) should not be used;1Tb

is better compared to the optical path of the clouds for the
polarisation of concern. That is, the extinction of interest
is the one acting on the part of the gas emission having the
measured polarisation. This quantity is here denoted asτZ

and is calculated asτ I , but propagating polarised unit vec-
tors through the atmosphere. For example, for vertical po-
larisation the initial Stokes vector is[1,1,0,0]

T (instead of
[1,0,0,0]

T when calculatingτ I ).
As shown in Fig.9, there is an equally compact relation-

ship to1Tb for all polarisations and aspect ratios, as long as
τZ is below≈ 0.1. Fits to the data in the lower panel of the
figure give basically identical results for all cases. For small
particles this is not a surprising finding. They are interacting
with the radiation through absorption and emission, which
are linked phenomena for LTE conditions.

For larger particles that cause scattering, Eq. (12) shows
that1Tb is also proportional tos (the scattering extinction)
as long as the termS is unchanged with particle shape. This
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Fig. 9. Simulations of cloud induced signal, as function of polarisation specific cloud optical path, τZ . The

lower panel is a magnification of a part of the upper panel. The simulations are performed for a frequency of

347.5 GHz and a tangent altitude of 14 km.

in practice. Another way to express this is that the asymmetry factor (in short, the ratio between430

forward and backward scattering) is of smaller interest for these measurements. But note that this

symmetry applies only to the limb direction.

The compact relationship to ∆Tb is not found for higher cloud τZ , which is a result of multiple

scattering. No systematic pattern between the polarisations can be discerned. The conclusion is that

all polarisations are equally good with respect to gas species retrievals, and that it should be possible435

to maintain an acceptable accuracy up to cloud optical path around 0.1.

However, the possibility of also retrieving cloud properties should not be forgotten. The main aim

for observations of this type is to estimate the IWC, and the desired property for these retrievals is

smallest possible impact of particle shape on the relationship between particle extinction and IWC.

Fig. 10 shows that the vertical and horizontal polarisations lack this feature. This follows from440

the discussion in Sec. 4.2, explaining that the effective cross-section differs between V and H po-
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Fig. 9. Simulations of cloud induced signal, as function of polari-
sation specific cloud optical path,τZ . The lower panel is a magni-
fication of a part of the upper panel. The simulations are performed
for a frequency of 347.5 GHz and a tangent altitude of 14 km.

is the case for Rayleigh sized particles, as the scattering func-
tion of Eq. (11) is not affected by particle shape (nor size) as
long asx � 1. This is not valid for all particles, but, for the
limb direction, deviations from the Rayleigh scattering func-
tion have only a relatively small influence. The reason for
this is that the radiation scattered into the line-of-sight can
be approximated as step function (see Fig. 3 ofEmde et al.,
2004a), the up-welling and down-welling parts are each more
or less constant with zenith angle (but have differentTb). For
limb observations, a change of the scattering function is close
to symmetric around the break-point of the step function, and
the net effect onS becomes small. This is a simplified treat-
ment of the scattering source term, but the results of Fig.9
show that it is valid in practice. Another way to express this
is that the asymmetry factor (in short, the ratio between for-
ward and backward scattering) is of smaller interest for these
measurements. But note that this symmetry applies only to
the limb direction.

The compact relationship to1Tb is not found for higher
cloud τZ, which is a result of multiple scattering. No sys-

Fig. 10. Cloud ice optical paths for a 90◦ zenith angle and horizontally aligned oblate spheroids with an aspect

ratio of 1, 1.2 and 2.0. Calculated with the PSD of MH97 and a temperature of 220 K. The different lines show

the optical path for different aspect ratios and polarisation components (where I represents several components,

as explained in text).

larisation, and this difference increases with the aspect ratio. As an example, if V polarisation is

measured, it is not clear if the blue, red or yellow curve should be used to map cloud extinction to

IWC, assuming that the particle asphericity can not be determined by some other means.

This can also be explained by examining the extinction matrix, which has the structure445

K(θ) =


K11(θ) K12(θ) 0 0

K12(θ) K11(θ) 0 0

0 0 K11(θ) K34(θ)

0 0 −K34(θ) K11(θ)

, (16)

where θ is the zenith angle. Thus, the (scalar) extinction coefficient for the vertical component

([1,1,0,0]T ) is K11 +K12, while for the horizontal one ([1,−1,0,0]T ) it is K11−K12. That is, the

extinction for V and H differs.

Using the same reasoning, Eq. 16 shows also that the extinction coefficient is the same for the450

±45◦ linear and left/right-hand circular components, and it is K11. This is also the extinction coef-

ficient for total intensity, and I is therefore used as the label in Fig. 10 for the common cloud optical

path associated with T+45◦

B , T−45◦

B , T lhcB and T rhcB . But keep in mind that I itself usually can not be

measured directly.

It turns out that theK11-element is only weakly affected by the aspect ratio (maintaining a constant455

volume) for the influential particle sizes, and the curves in Fig. 10 of τ I for different aspect ratios are

close to identical. Hence, the mapping from extinction to IWC for observations of T+45◦

B , T−45◦

B ,

T lhcB and T rhcB has a low sensitivity to uncertainties regarding the particle asphericity, which is an
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Fig. 10. Cloud ice optical paths for a 90◦ zenith angle and horizon-
tally aligned oblate spheroids with an aspect ratio of 1, 1.2 and 2.0.
Calculated with the PSD of MH97 and a temperature of 220 K. The
different lines show the optical path for different aspect ratios and
polarisation components (whereI represents several components,
as explained in text).

tematic pattern between the polarisations can be discerned.
The conclusion is that all polarisations are equally good with
respect to gas species retrievals, and that it should be possible
to maintain an acceptable accuracy up to cloud optical path
around 0.1.

However, the possibility of also retrieving cloud properties
should not be forgotten. The main aim for observations of
this type is to estimate the IWC, and the desired property for
these retrievals is smallest possible impact of particle shape
on the relationship between particle extinction and IWC.

Figure10 shows that the vertical and horizontal polarisa-
tions lack this feature. This follows from the discussion in
Sect.4.2, explaining that the effective cross-section differs
betweenV andH polarisation, and this difference increases
with the aspect ratio. As an example, ifV polarisation is
measured, it is not clear if the blue, red or yellow curve
should be used to map cloud extinction to IWC, assuming
that the particle asphericity can not be determined by some
other means.

This can also be explained by examining the extinction
matrix, which has the structure

K(θ) =


K11(θ) K12(θ) 0 0
K12(θ) K11(θ) 0 0

0 0 K11(θ) K34(θ)

0 0 −K34(θ) K11(θ)

, (16)

whereθ is the zenith angle. Thus, the (scalar) extinction
coefficient for the vertical component ([1,1,0,0]

T ) is K11+

K12, while for the horizontal one ([1,−1,0,0]
T ) it is K11−

K12. That is, the extinction for V and H differs.
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Using the same reasoning, Eq. (16) shows also that the
extinction coefficient is the same for the±45◦ linear and
left/right-hand circular components, and it isK11. This is
also the extinction coefficient for total intensity, andI is
therefore used as the label in Fig.10 for the common cloud
optical path associated withT +45◦

B , T −45◦

B , T lhc
B and T rhc

B .
But keep in mind thatI itself usually can not be measured
directly.

It turns out that theK11-element is only weakly affected by
the aspect ratio (maintaining a constant volume) for the influ-
ential particle sizes, and the curves in Fig.10of τ I for differ-
ent aspect ratios are close to identical. Hence, the mapping
from extinction to IWC for observations ofT +45◦

B , T −45◦

B ,
T lhc

B andT rhc
B has a low sensitivity to uncertainties regarding

the particle asphericity, which is an advantage over the V and
H options.

Spheroidal particles were assumed in this study, and the
situation is more complex for more realistic particle shapes.
However, the discussion above should be relevant as long
as the particles have random azimuthal orientation and no
particular shape symmetry.

5.2 Representation of particle sizes

Conceptually, the simplest option for the retrievals is to as-
sume a PSD parametrisation, exactly as done for the simula-
tions here. A general parametrisation, such as MH97, could
potentially describe average conditions correctly, but the in-
stantaneous local PSD can deviate strongly. That is, a gen-
eral relationship between IWC and extinction does not exist.
Accordingly, IWC is not a suitable variable to represent the
cloud properties and it should instead be better to directly
retrieve the relevant optical properties of the cloud particles.

Each particle type that is introduced into the representa-
tion of the optical properties causes an additional calculation
cost. Furthermore, the observations provide even in the best
case just coarse information on the PSD. Thus, the number
of variables to describe the particles should be kept as low
as possible. But what is the minimum number of variables
required to represent the particle properties?

In Sect.3 it was shown that particle absorption can not
be neglected, and that the source functions associated with
emission and scattering differ. Hence, at least two variables
are needed to give the retrieval a possibility of fitting effects
originating from both absorption and scattering. These ef-
fects can in rough terms be assigned to ‘small’ and ‘large’
particles, respectively.

Absorption effects are fully described by the absorption
coefficient (a), and a single size is sufficient to represent the
impact of the small particles. If this absorption coefficient
can be determined, it can be translated to an IWC with high
accuracy, as absorption in the Rayleigh domain is propor-
tional to the particle volume (Sect.3.2).

The results in Sect.5.1 indicate that an exact representa-
tion of the scattering function is not needed, since the rela-

tionship between cloud scattering extinction and1Tb is only
weakly affected by the particle size. Consequently, the ef-
fects of scattering can also fairly well be represented by a
single particle size. A particle size that gives a single scat-
tering albedo close to 1 should be selected if it is important
to maintain a clear distinction to the absorption of the small
mode. However, it should be more important to maintain a
high similarity between the scattering functions of the parti-
cle type applied and the true particle ensemble. This points
towards using a particle size around 200 µm, as the product
of scattering cross-section and the PSD (assuming MH97)
peaks in the range 150–300 µm (Wu et al., 2005; Eriksson
et al., 2008).

A representation in terms of different particle sizes is as-
sumed above. The task of the retrieval is then to determine
the number density of each particle size. A similar option
is to instead operate directly with the optical properties. In
terms of Eq. (8), the two retrieval quantities are then the ab-
sorption (a) and scattering coefficients (s). The normalised
scattering function (p) can either be fixed or given a pre-
defined relation tos.

The discussion above assumes that the retrieval can esti-
mate absorption and scattering, at least partly, as indepen-
dent effects, but to what extent this is possible in practical
retrievals is not investigated here. However, the possibility
of separating the two effects increases if data from two or
more wavelength bands can be combined. For single band
retrievals, a high variation of the gaseous absorption over the
band should be required. If the effects can not be separated,
the clouds have to be covered by a single retrieval variable,
with a pre-defined relationship between absorption and scat-
tering, most likely following a PSD parametrisation.

6 Conclusions

We performed detailed simulations of microwave limb
sounding at 347.5 GHz involving ice cloud scattering. The
input to the simulations was generated with care, including
three dimensional cloud scenarios, to achieve as realistic sim-
ulations as possible. The primary aim of the simulations was
to improve the general understanding of absorption and po-
larisation effects caused by ice clouds. Hence, the purpose
was not to provide exact statistics of cloud induced radiance
changes. This is anyhow not possible as some input vari-
ables have large uncertainties, where particle shape and sizes
are the most prominent examples.

A main conclusion is that the impact of particle absorp-
tion is of much higher concern for limb sounding than for
down-looking measurements. This difference results from
a combination of two factors. Firstly, limb sounding gives
emphasis to higher altitudes where the ice particles tend to
have smaller sizes. This gives a higher relative importance
of absorption for the particle extinction. Secondly, there is a
higher contrast between the “radiative background” and the

www.atmos-meas-tech.net/4/1305/2011/ Atmos. Meas. Tech., 4, 1305–1318, 2011



1316 P. Eriksson et al.: Mm-wave limb sounding, cloud ice absorption and polarisation

emission source term for limb sounding. For down-looking
data this contrast is close to zero, any particle absorption is
replaced by particle emission of almost the same magnitude
and the net effect is small. These aspects are not covered
by the single scattering albedo, the standard measure on the
ratio between scattering and total extinction.

This conclusion has several practical consequences. A first
consideration is the generation of the atmospheric scenar-
ios. The magnitude of scattering at 347.5 GHz is constrained
fairly well by the CloudSat data from 94 GHz. Rayleigh con-
ditions in general apply for both frequencies and the strength
of scattering can be scaled asλ4

1/λ
4
2. On the other hand,

CloudSat gives no information on particle absorption and the
magnitude of absorption thus becomes a consequence of the
assumed particle size distribution (PSD). However, PSD pa-
rameterisations must be judged as uncertain and the applica-
tion of a single PSD for all cloud types is a strong simpli-
fication. This generates a substantial uncertainty for some
of the results, such as the exact values for1I and relative
importance of absorption.

Furthermore, no general relationship between cloud ex-
tinction and1Tb can be established, it depends on the ra-
tio between particle absorption and scattering. This forces
the retrieval to handle the cloud optical properties with at
least two variables, and, if the measurements provide the nec-
essary information, retrieve these variables as independent
quantities. This in order to both avoid systematic errors for
the gas constituents and to achieve a correct mapping of the
cloud extinction to ice water content.

These simulations confirm earlier results regarding theQ

element of the Stokes vector. The difference between the
brightness temperature of the vertical (T v

B ) and horizontal
(T h

B ) linear components increases with the aspect ratio of the
particles, assuming that they have a tendency for orientation
alignment. An azimuthal orientation of the particles would
give an impact of particle shape also on the higher Stokes
elements,U andV , but this effect has not been studied due
to the lack of useful input for the simulations. For oblate
spheroids, or particles with random azimuthal orientation,U

andV are instead controlled by azimuthal inhomogeneities
in the radiation field. These simulations generate radiances
that are more or less constant with the azimuthal angle in
the absence of clouds, and such inhomogeneities are mainly
associated with cloud effects already in the radiation to be
scattered into the line-of-sight, i.e. multiple scattering. The
value ofU can be significant, while the maximum value of
V obtained here is below 0.035 K. This is due to the lower
values of the relevant scattering matrix element forV , and
also a higher cancellation of contributions from particles of
different size.

The results indicate that single scattering can be assumed
for cloud optical paths (τ ) below about 0.1. For example,
nonzero values forU andV are only found above that level.
In addition, it is shown that for these conditions of thinner

clouds there is a compact relationship betweenτ and1Tb,
independent of particle shape and observed polarisation com-
ponent measured. This in its turn signifies that it should be
possible to perform gas species retrievals with high accuracy
for τ < 0.1.

With respect to the retrieval of gas constituents, there is
thus only a small difference between the polarisation op-
tions. Measuring the vertical component has a slight advan-
tage since it minimises the cloud extinction. On the other
hand, we showed that observingT v

B or T h
B leads to a depen-

dence on the particle aspect ratio for the conversion from
cloud extinction to ice water content (IWC). AsU and V

have small values (at least for lowτ ), using any of the±45◦

or circular components is basically identical to measuring the
total intensity. The intensity equals the average of theT v

B and
T h

B components, and the brightness temperature of this aver-
age is much less affected by the particle shape thanT v

B and
T h

B separately. Hence, for retrievals of IWC, it is preferable
to select a polarisation component associated withU or V .

A related aspect is to make use of measurements of the
same air volume from two orthogonal polarisations. If both
measurements are from an identical position, no additional
information is obtained by observing the±45◦ or circular
components, while the combination of theT v

B andT h
B com-

ponents gives a means for a simple detection of cloud influ-
ences and possibly also an estimation of the particle aspect
ratio. However, if the two measurements come from two dif-
ferent positions, it is hard to disentangle to what extent dif-
ferences in1Tb are generated by particle shape effects and
changed propagation path through the cloud. In the later
case, it should be better to avoid the influence of particle
shape by using either the±45◦ or circular components, and
focus on using the two measurements to improve the spa-
tial resolution of the retrieval. This discussion is directly ap-
plicable to the PREMIER mm limb sounder, and this study
confirms the initial decision to use±45◦ polarisation for the
overlapping beams of this instrument.

Despite the fact that the simulations can be considered
as quite detailed, they have several limitations that must be
noted. Complete radiative transfer was only performed for a
single frequency. For example, if a higher frequency would
have been selected, a smaller relative importance of absorp-
tion would have been found. The main microphysical vari-
able governing the degree of polarisation should be the (bulk)
aspect ratio, and here two different values were used. How-
ever, it should be kept in mind that a single particle size distri-
bution was applied and no other particle shape than spheroids
was considered. As long as the particles can be assumed to
have no preferred azimuthal orientation, this simplification
should be acceptable, but highly deviating results could be
obtained by assuming oriented particles of special shapes,
especially for Stokes elementsU andV .
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Buehler, S. A., Jiḿenez, C., Evans, K. F., Eriksson, P., Rydberg,
B., Heymsfield, A. J., Stubenrauch, C., Lohmann, U., Emde, C.,
John, V. O., Sreerekha, T. R., and Davis, C. P.: A concept for a
satellite mission to measure cloud ice water path and ice particle
size, Q. J. R. Meteorol. Soc., 133, 109–128, 2007.

Buehler, S. A., Eriksson, P., and Lemke, O.: Absorp-
tion lookup tables in the radiative transfer model ARTS,
J. Quant. Spectrosc. Radiat. Transfer, 112, 1559–1567,
doi:10.1016/j.jqsrt.2011.03.008, 2011.

Chandrasekhar, S.: Radiative transfer, Dover, New York, 1950.
Czekala, H.: Effects of particle shape and orientation on polarized

microwave radiation for off-nadir problems, Geophys. Res. Lett.,
25, 1669–1672, 1998.

Davis, C., Emde, C., and Harwood, R.: A 3D polarized reversed
Monte Carlo radiative transfer model for mm and sub-mm pas-
sive remote sensing in cloudy atmospheres, IEEE Trans. Geosci.
Remote Sensing, 43, 1096–1101, 2005a.

Davis, C. P., Wu, D. L., Emde, C., Jiang, J. H., Cofield, R. E., and
Harwood, R. S.: Cirrus induced polarization in 122 GHz Aura
Microwave Limb Sounder radiances, Geophys. Res. Lett., 32,
L14806,doi:10.1029/2005GL022681, 2005b.

Davis, C. P., Evans, K. F., Buehler, S. A., Wu, D. L., and Pumphrey,
H. C.: 3-D polarised simulations of space-borne passive mm/sub-
mm midlatitude cirrus observations: a case study, Atmos. Chem.
Phys., 7, 4149–4158,doi:10.5194/acp-7-4149-2007, 2007.

Ekstr̈om, M., Eriksson, P., Rydberg, B., and Murtagh, D. P.: First
Odin sub-mm retrievals in the tropical upper troposphere: hu-
midity and cloud ice signals, Atmos. Chem. Phys., 7, 459–469,
doi:10.5194/acp-7-459-2007, 2007.

Ekstr̈om, M., Eriksson, P., Read, W. G., Milz, M., and Murtagh, D.
P.: Comparison of satellite limb-sounding humidity climatolo-
gies of the uppermost tropical troposphere, Atmos. Chem. Phys.,
8, 309–320,doi:10.5194/acp-8-309-2008, 2008.

Emde, C., Buehler, S. A., Davis, C., Eriksson, P., Sreerekha, T. R.,
and Teichmann, C.: A polarized discrete ordinate scattering
model for simulations of limb and nadir longwave measurements
in 1D/3D spherical atmospheres, J. Geophys. Res., 109(D24),
D24207,doi:10.1029/2004JD005140, 2004a.

Emde, C., Buehler, S. A., Eriksson, P., and Sreerekha, T. R.: The ef-
fect of cirrus clouds on limb radiances, J. Atmos. Res., 72, 383–
401, 2004b.

Eriksson, P., Ekstr̈om, M., Rydberg, B., and Murtagh, D. P.:
First Odin sub-mm retrievals in the tropical upper tropo-
sphere: ice cloud properties, Atmos. Chem. Phys., 7, 471–483,
doi:10.5194/acp-7-471-2007, 2007.

Eriksson, P., Ekstr̈om, M., Rydberg, B., Wu, D. L., Austin, R.
T., and Murtagh, D. P.: Comparison between early Odin-SMR,
Aura MLS and CloudSat retrievals of cloud ice mass in the up-
per tropical troposphere, Atmos. Chem. Phys., 8, 1937–1948,
doi:10.5194/acp-8-1937-2008, 2008.

Eriksson, P., Rydberg, B., Johnston, M., Murtagh, D. P., Struthers,
H., Ferrachat, S., and Lohmann, U.: Diurnal variations of hu-
midity and ice water content in the tropical upper troposphere,
Atmos. Chem. Phys., 10, 11519–11533,doi:10.5194/acp-10-
11519-2010, 2010.

Eriksson, P., Buehler, S. A., Davis, C. P., Emde, C., and Lemke,
O.: ARTS, the atmospheric radiative transfer simulator, Ver-
sion 2, J. Quant. Spectrosc. Radiat. Transfer, 112, 1551–1558,
doi:10.1016/j.jqsrt.2011.03.001, 2011.

ESA: PREMIER, report for assessment, Tech. rep., Eu-
ropean Space Agency, http://esamultimedia.esa.int/docs/
SP1313-5PREMIER.pdf, accessed: 1 March 2011, 2008.

Evans, K. F. and Stephens, G. L.: Microwave radiative transfer
through clouds composed of realistically shaped ice crystals. Part
I. Single scattering properties, J. Atmos. Sci., 52, 2041–2057,
1995a.

Evans, K. F. and Stephens, G. L.: Microwave radiative transfer
through clouds composed of realistically shaped ice crystals. Part
II. Remote sensing of ice clouds, J. Atmos. Sci., 52, 2058–2072,
1995b.

Evans, K. F., Walter, S. J., Heymsfield, A. J., and McFarquhar,
G. M.: Submillimeter-wave cloud ice radiometer: Simulations
of retrieval algorithm performance, J. Geophys. Res., 107, 2.1–
2.21, 2002.

Kikuchi, K., Nishibori, T., Ochiai, S., Ozeki, H., Irimajiri, Y.,
Kasai, Y., Koike, M., Manabe, T., Mizukoshi, K., Murayama,
Y., Nagahama, T., Sano, T., Sato, R., Seta, M., Takahashi, C.,
Takayanagi, M., Masuko, H., Inatani, J., Suzuki, M., and Sh-
iotani, M.: Overview and early results of the Superconduct-
ing Submillimeter-Wave Limb-Emission Sounder (SMILES), J.
Geophys. Res., 115, D23306,doi:10.1029/2010JD014379, 2010.

Li, J.-L., Waliser, D. E., Jiang, J., Wu, D. L., Read, W., Wa-
ters, J. W., Tompkins, A. M., Donner, L. J., Chern, J.-D.,
Tao, W.-K., Atlas, R., Gu, Y., Liou, K. N., Genio, A. D.,
Khairoutdinov, M., and Gettelman, A.: Comparisons of EOS
MLS cloud ice measurements with ECMWF analyses and GCM
simulations: Initial results, Geophys. Res. Lett., 32, L18710,
doi:10.1029/2005GL023788, 2005.

www.atmos-meas-tech.net/4/1305/2011/ Atmos. Meas. Tech., 4, 1305–1318, 2011

http://dx.doi.org/10.1029/2007RS003744
http://dx.doi.org/10.1016/j.jqsrt.2011.03.008
http://dx.doi.org/10.1029/2005GL022681
http://dx.doi.org/10.5194/acp-7-4149-2007
http://dx.doi.org/10.5194/acp-7-459-2007
http://dx.doi.org/10.5194/acp-8-309-2008
http://dx.doi.org/10.1029/2004JD005140
http://dx.doi.org/10.5194/acp-7-471-2007
http://dx.doi.org/10.5194/acp-8-1937-2008
http://dx.doi.org/10.5194/acp-10-11519-2010
http://dx.doi.org/10.5194/acp-10-11519-2010
http://dx.doi.org/10.1016/j.jqsrt.2011.03.001
http://esamultimedia.esa.int/docs/SP1313-5_PREMIER.pdf
http://esamultimedia.esa.int/docs/SP1313-5_PREMIER.pdf
http://dx.doi.org/10.1029/2010JD014379
http://dx.doi.org/10.1029/2005GL023788


1318 P. Eriksson et al.: Mm-wave limb sounding, cloud ice absorption and polarisation

Liebe, H. J., Hufford, G. A., and Cotton, M. G.: Propagation mod-
eling of moist air and suspended water/ice particles at frequen-
cies below 1000 GHz, in: AGARD conference proceedings 542:
Atmospheric propagation effects through natural and man-made
obscurants for visible to mm-wave radiation, 3.1–3.10, Palma de
Mallorca, Spain, 17–20 May 1993, 1993.

Livesey, N. J., Snyder, W. V., Read, W. G., and Wagner, P. A.: Re-
trieval algorithms for the EOS Microwave Limb Sounder (MLS),
IEEE Trans. Geosci. Remote Sensing, 44, 1144–1155, 2006.

McFarquhar, G. M. and Heymsfield, A. J.: Parameterization of trop-
ical cirrus ice crystal size distribution and implications for radia-
tive transfer: Results from CEPEX, J. Atmos. Sci., 54, 2187–
2200, 1997.

Miao, J., Johnsen, K.-P., Buehler, S., and Kokhanovsky, A.: The po-
tential of polarization measurements from space at mm and sub-
mm wavelengths for determining cirrus cloud parameters, At-
mos. Chem. Phys., 3, 39–48,doi:10.5194/acp-3-39-2003, 2003.

Mishchenko, M. I., Travis, L., and Lacis, A.: Scattering, absorption,
and emission of light by small particles, Cambridge University
Press, Cambridge, UK, 2002.

Murtagh, D., Frisk, U., Merino, F., Ridal, M., Jonsson, A., Stegman,
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