91 research outputs found

    Systems engineering approaches to safety in transport systems

    Get PDF
    openDuring driving, driver behavior monitoring may provide useful information to prevent road traffic accidents caused by driver distraction. It has been shown that 90% of road traffic accidents are due to human error and in 75% of these cases human error is the only cause. Car manufacturers have been interested in driver monitoring research for several years, aiming to enhance the general knowledge of driver behavior and to evaluate the functional state as it may drastically influence driving safety by distraction, fatigue, mental workload and attention. Fatigue and sleepiness at the wheel are well known risk factors for traffic accidents. The Human Factor (HF) plays a fundamental role in modern transport systems. Drivers and transport operators control a vehicle towards its destination in according to their own sense, physical condition, experience and ability, and safety strongly relies on the HF which has to take the right decisions. On the other hand, we are experiencing a gradual shift towards increasingly autonomous vehicles where HF still constitutes an important component, but may in fact become the "weakest link of the chain", requiring strong and effective training feedback. The studies that investigate the possibility to use biometrical or biophysical signals as data sources to evaluate the interaction between human brain activity and an electronic machine relate to the Human Machine Interface (HMI) framework. The HMI can acquire human signals to analyse the specific embedded structures and recognize the behavior of the subject during his/her interaction with the machine or with virtual interfaces as PCs or other communication systems. Based on my previous experience related to planning and monitoring of hazardous material transport, this work aims to create control models focused on driver behavior and changes of his/her physiological parameters. Three case studies have been considered using the interaction between an EEG system and external device, such as driving simulators or electronical components. A case study relates to the detection of the driver's behavior during a test driver. Another case study relates to the detection of driver's arm movements according to the data from the EEG during a driver test. The third case is the setting up of a Brain Computer Interface (BCI) model able to detect head movements in human participants by EEG signal and to control an electronic component according to the electrical brain activity due to head turning movements. Some videos showing the experimental results are available at https://www.youtube.com/channel/UCj55jjBwMTptBd2wcQMT2tg.openXXXIV CICLO - INFORMATICA E INGEGNERIA DEI SISTEMI/ COMPUTER SCIENCE AND SYSTEMS ENGINEERING - Ingegneria dei sistemiZero, Enric

    IQ Classification via Brainwave Features: Review on Artificial Intelligence Techniques

    Get PDF
    Intelligence study is one of keystone to distinguish individual differences in cognitive psychology. Conventional psychometric tests are limited in terms of assessment time, and existence of biasness issues. Apart from that, there is still lack in knowledge to classify IQ based on EEG signals and intelligent signal processing (ISP) technique. ISP purpose is to extract as much information as possible from signal and noise data using learning and/or other smart techniques. Therefore, as a first attempt in classifying IQ feature via scientific approach, it is important to identify a relevant technique with prominent paradigm that is suitable for this area of application. Thus, this article reviews several ISP approaches to provide consolidated source of information. This in particular focuses on prominent paradigm that suitable for pattern classification in biomedical area. The review leads to selection of ANN since it has been widely implemented for pattern classification in biomedical engineering

    Objective Quantification of Daytime Sleepiness

    Get PDF
    BACKGROUND: Sleep problems affect people of all ages, race, gender, and socioeconomic classifications. Undiagnosed sleep disorders significantly and adversely impact a person’s level of academic achievement, job performance, and subsequently, socioeconomic status. Undiagnosed sleep disorders also negatively impact both direct and indirect costs for employers, the national government, and the general public. Sleepiness has significant implications on quality of life by impacting occupational performance, driving ability, cognition, memory, and overall health. The purpose of this study is to describe the prevalence of daytime sleepiness, as well as other quantitative predictors of sleep continuity and quality. METHODS: Population data from the CDC program in fatigue surveillance were used for this secondary analysis seeking to characterize sleep quality and continuity variables. Each participant underwent a standard nocturnal polysomnography and a standard multiple sleep latency test (MSLT) on the subsequent day. Frequency and chi-square tests were used to describe the sample. One-Way Analysis of Variance (ANOVA) was used to compare sleep related variables of groups with sleep latencies of \u3c5 \u3eminutes, 5-10 minutes, and \u3e10 minutes. Bivariate and multivariate logistic regression was used to examine the association of the sleep variables with sleep latency time. RESULTS: The mean (SD) sleep latency of the sample was 8.8 (4.9) minutes. Twenty-four individuals had ≄1 SOREM, and approximately 50% of participants (n = 100) met clinical criteria for a sleep disorder. Individuals with shorter sleep latencies, compared to those with longer latencies reported higher levels of subjective sleepiness, had higher sleep efficiency percentages, and longer sleep times. The Epworth Sleepiness Scale, sleep efficiency percentage, total sleep time, the presence of a sleep disorder, and limb movement index were positively associated with a mean sleep latency of \u3c5 \u3eminutes. CONCLUSIONS: The presence of a significant percentage of sleep disorders within our study sample validate prior suggestions that such disorders remain unrecognized, undiagnosed, and untreated. In addition, our findings confirm questionnaire-based surveys that suggest a significant number of the population is excessively sleepy, or hypersomnolent. Therefore, the high prevalence of sleep disorders and the negative public health effects of daytime sleepiness demand attention. Further studies are now required to better quantify levels daytime sleepiness, within a population based sample, to better understand their impact upon morbidity and mortality. This will not only expand on our current understanding of daytime sleepiness, but it will also raise awareness surrounding its significance and relation to public health

    Mutual Information in the Frequency Domain for Application in Biological Systems

    Get PDF
    Biological systems are comprised of multiple components that typically interact nonlinearly and produce multiple outputs (time series/signals) with specific frequency characteristics. Although the exact knowledge of the underlying mechanism remains unknown, the outputs observed from these systems can provide the dependency relations through quantitative methods and increase our understanding of the original systems. The nonlinear relations at specific frequencies require advanced dependency measures to capture the generalized interactions beyond typical correlation in the time domain or coherence in the frequency domain. Mutual information from Information Theory is such a quantity that can measure statistical dependency between random variables. Herein, we develop a model–free methodology for detection of nonlinear relations between time series with respect to frequency, that can quantify dependency under a general probabilistic framework. Classic nonlinear dynamical system and their coupled forms (Lorenz, bidirectionally coupled Lorenz, and unidirectionally coupled Macky–Glass systems) are employed to generate artificial data and to test the proposed methodology. Comparisons between the performances of this measure and a conventional linear measure are presented from applications to the artificial data. This set of results indicates that the proposed methodology is better in capturing the dependency between the variables of the systems. This measure of dependency is also applied to a real–world electrophysiological dataset for emotion analysis to study brain stimuli–response functional connectivity. The results reveal distinct brain regions and specific frequencies that are involved in emotional processing

    Brain Computer Interfaces and Emotional Involvement: Theory, Research, and Applications

    Get PDF
    This reprint is dedicated to the study of brain activity related to emotional and attentional involvement as measured by Brain–computer interface (BCI) systems designed for different purposes. A BCI system can translate brain signals (e.g., electric or hemodynamic brain activity indicators) into a command to execute an action in the BCI application (e.g., a wheelchair, the cursor on the screen, a spelling device or a game). These tools have the advantage of having real-time access to the ongoing brain activity of the individual, which can provide insight into the user’s emotional and attentional states by training a classification algorithm to recognize mental states. The success of BCI systems in contemporary neuroscientific research relies on the fact that they allow one to “think outside the lab”. The integration of technological solutions, artificial intelligence and cognitive science allowed and will allow researchers to envision more and more applications for the future. The clinical and everyday uses are described with the aim to invite readers to open their minds to imagine potential further developments

    Comparative analysis of TMS-EEG signal using different approaches in healthy subjects

    Get PDF
    openThe integration of transcranial magnetic stimulation with electroencephalography (TMS-EEG) represents a useful non-invasive approach to assess cortical excitability, plasticity and intra-cortical connectivity in humans in physiological and pathological conditions. However, biological and environmental noise sources can contaminate the TMS-evoked potentials (TEPs). Therefore, signal preprocessing represents a fundamental step in the analysis of these potentials and is critical to remove artefactual components while preserving the physiological brain activity. The objective of the present study is to evaluate the effects of different signal processing pipelines, (namely Leodori et al., Rogasch et al., Mutanen et al.) applied on TEPs recorded in five healthy volunteers after TMS stimulation of the primary motor cortex (M1) of the dominant hemisphere. These pipelines were used and compared to remove artifacts and improve the quality of the recorded signals, laying the foundation for subsequent analyses. Various algorithms, such as Independent Component Analysis (ICA), SOUND, and SSP-SIR, were used in each pipeline. Furthermore, after signal preprocessing, current localization was performed to map the TMS-induced neural activation in the cortex. This methodology provided valuable information on the spatial distribution of activity and further validated the effectiveness of the signal cleaning pipelines. Comparing the effects of the different pipelines on the same dataset, we observed considerable variability in how the pipelines affect various signal characteristics. We observed significant differences in the effects on signal amplitude and in the identification and characterisation of peaks of interest, i.e., P30, N45, P60, N100, P180. The identification and characteristics of these peaks showed variability, especially with regard to the early peaks, which reflect the cortical excitability of the stimulated area and are the more affected by biological and stimulation-related artifacts. Despite these differences, the topographies and source localisation, which are the most informative and useful in reconstructing signal dynamics, were consistent and reliable between the different pipelines considered. The results suggest that the existing methodologies for analysing TEPs produce different effects on the data, but are all capable of reproducing the dynamics of the signal and its components. Future studies evaluating different signal preprocessing methods in larger populations are needed to determine an appropriate workflow that can be shared through the scientific community, in order to make the results obtained in different centres comparable

    A Comparison of Movement-Related Cortical Potentials and Their Application in Brain-Computer Interfaces for Autism Spectrum Disorder

    Get PDF
    Brain-computer interfaces have the potential to improve the lives of many populations who benefit from neurofeedback. Autism Spectrum Disorder is a condition experienced by many and its deficits are potentially improved for some using brain-computer interface technology. Various techniques have already been used to illustrate improvements in ASD across different brain signals and interactive interfaces. In particular, movement-related cortical potentials are related to executive functioning of movement and have been shown to be successful in other systems. This thesis investigates the effect of Autism Spectrum Disorder in adults on how movement-related cortical potentials are elicited in the brain compared to neurotypical populations to determine whether the motor systems that elicit such signals are abnormally functioning, and as a result whether they may be improved with neurofeedback. In addition to understanding the EEG response for people with ASD to brain-computer interfaces, it is important to gain insights into their perception of such technologies. This thesis also examines how people with ASD perceive different potential brain-computer interfaces. Quantitative and qualitative data was collected and analysed across three different interfaces (auditory, visual, and haptic) and two different tasks (real movement and imagined movement execution). The EEG results show statistically significant differences in the elicitation of movement-related cortical potentials (MRCPs) between the autistic and neurotypical group, thus indicating possible underlying abnormalities in the motor systems being activated. The features of MRCP were much smaller in amplitude in the ASD group, suggesting that fewer neurons are being recruited for movement-based actions. Since other studies have demonstrated success when improving MRCPs in populations suffering from Parkinson’s and stroke, it is thus inferred that such neurofeedback may also benefit those with Autism Spectrum Disorder. While there were no statistical differences regarding EEG-related performance for different modalities, qualitative results suggest common themes regarding people with ASD’s subjective perceptions, including the need for feedback on performance and strong preferences for different types of modalities. These results emphasize the importance of considering both quantitative and qualitative data when designing brain-computer interfaces for these populations. This research demonstrates an opportunity to use MRCP-based neurofeedback to help populations with ASD, as well as emphasizes the importance and insights of capturing qualitative data in the process

    Applications of EMG in Clinical and Sports Medicine

    Get PDF
    This second of two volumes on EMG (Electromyography) covers a wide range of clinical applications, as a complement to the methods discussed in volume 1. Topics range from gait and vibration analysis, through posture and falls prevention, to biofeedback in the treatment of neurologic swallowing impairment. The volume includes sections on back care, sports and performance medicine, gynecology/urology and orofacial function. Authors describe the procedures for their experimental studies with detailed and clear illustrations and references to the literature. The limitations of SEMG measures and methods for careful analysis are discussed. This broad compilation of articles discussing the use of EMG in both clinical and research applications demonstrates the utility of the method as a tool in a wide variety of disciplines and clinical fields

    Investigation and Modelling of Fetal Sheep Maturation

    Get PDF
    In this thesis, I study the maturational changes of the fetal sheep ECoG (electrocorticogram) in its third-trimester of gestation (95-140 days of gestation), investigate three continuum models for electrical behaviour of the cortex, and tune the parameters in one of these models to generate the discontinuous EEG waves in the immature cortex. Visual inspection of the ECoG time-series shows that the third-trimester of fetal sheep is comprised of two stages: early third-trimester characterised by bursting activity separated by silent intervals, and late third-trimester with well-defined SWS (slow wave sleep) and REM (rapid eye movement) sleep states. For the late third-trimester, the results of power, correlation time, and SVD (singular value decomposition) entropy analysis demonstrate that the sleep state change is a cortical phase transition—with SWS-to-REM transition being a first-order transition, and REM-to-SWS second-order. Further analyses by correlation time, SVD entropy, and spectral edge frequency display that the differentiation of the two distinct SWS and REM sleep states occurs at about 125 dGA (day gestational age). Spectral analysis divides the third-trimester into four stages in terms of the frequency and amplitude variations of the major resonances. Spindle-like resonances only occur in the first stage. A power surge is observed immediately prior to the emergence of the two sleep states. Most significant changes of the spectrum occur during the fourth stage for both SWS (in amplitude) and REM (in frequency) sleep states. For the modelling of the immature cortex, different theoretical descriptions of cortical behaviour are investigated, including the ccf (cortical column field) model of J. J. Wright, and the Waikato cortical model. For the ccf model at centimetric scale, the time-series, fluctuation power, power law relation, gamma oscillation, phase relation between excitatory and inhibitory elements, power spectral density, and spatial Fourier spectrum are quantified from numerical simulations. From these simulations, I determined that the physiologically sophisticated ccf model is too large and unwieldy for easy tuning to match the electrical response of the immature cortex. The Waikato near-far fast-soma model is constructed by incorporating the back-propagation effect of the action potential into the Waikato fast-soma model, state equations are listed and stability prediction are performed by varying the gap junction diffusion strength, subcortical drive, and the rate constants of the near- and far-dendritic tree. In the end, I selected the classic and simpler Waikato slow-soma mean-field model to use for my immature cortex simulations. Model parameters are customised based on the physiology of the immature cortex, including GABA (an inhibitory neurotransmitter in adult) excitatory effect, number of synaptic connections, and rate constants of the IPSPs (inhibitory postsynaptic potential). After hyperpolarising the neuron resting voltage sufficiently to cause the immature inhibitory neuron to act as an excitatory agent, I alter the rate constant of the IPSP, and study the stability of the immature cortex. The bursting activity and quiet states of the discontinuous EEG are simulated and the gap junction diffusion effect in the immature cortex is also examined. For a rate constant of 18.6 s-1, slow oscillations in the quiet states are generated, and for rate constant of 25 s-1, a possible cortical network oscillation emerges. As far as I know, this is the first time that the GABA excitatory effect has been integrated into a mean-field cortical model and the discontinuous EEG wave successfully simulated in a qualitative way
    • 

    corecore