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ABSTRACT

Biological systems are comprised of multiple components that typically interact

nonlinearly and produce multiple outputs (time series/signals) with specific frequency

characteristics. Although the exact knowledge of the underlying mechanism remains

unknown, the outputs observed from these systems can provide the dependency

relations through quantitative methods and increase our understanding of the original

systems. The nonlinear relations at specific frequencies require advanced dependency

measures to capture the generalized interactions beyond typical correlation in the time

domain or coherence in the frequency domain. Mutual information from Information

Theory is such a quantity that can measure statistical dependency between random

variables. Herein, we develop a model–free methodology for detection of nonlinear

relations between time series with respect to frequency, that can quantify dependency

under a general probabilistic framework. Classic nonlinear dynamical system and

their coupled forms (Lorenz, bidirectionally coupled Lorenz, and unidirectionally

coupled Macky–Glass systems) are employed to generate artificial data and to test the

proposed methodology. Comparisons between the performances of this measure and

a conventional linear measure are presented from applications to the artificial data.

This set of results indicates that the proposed methodology is better in capturing

the dependency between the variables of the systems. This measure of dependency

is also applied to a real–world electrophysiological dataset for emotion analysis to

iii
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study brain stimuli–response functional connectivity. The results reveal distinct brain

regions and specific frequencies that are involved in emotional processing.
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CHAPTER 1

INTRODUCTION

1.1 General Concepts

A biological system could be a cell (micro–level), a collection of similar types

of cells into an organ, several organs collaborating to accomplish tasks as a functional

system (macro–level), or even a complete organism. Viewing biological phenomena

from a system perspective gives ideas of both the local component functionality and

the overall interaction of different parts within the system. For example, the heart

works as a pump in the cardiovascular system to move blood to the whole body

through arteries, veins, and capillaries. The heart is also connected with the lungs

(part of the respiratory system) to exchange oxygen. Therefore, the concentration of

oxygen in the blood affects the heart′s performance as a negative feedback to keep the

homeostasis. The heart, blood vessels, the lungs, and airway comprise together the

cardiorespiratory system. The cardiovascular system itself has lately been hypothesized

to be associated with the nervous system, and abnormal interactions in this system

can lead to death among patients with nervous system diseases [6]. In the nervous

system, the action potential (an electrochemical impulse) is a micro–level observation

per nerve cell for local information transmission, whose mechanism is well understood.

On the other hand, the nature of task-specific macro–level communication among

1



2

neighboring neurons at a local area or among different brain parts at a larger scale

is not fully known. Brain connectivity is a popular topic lately within brain science

to better understand the functionality of every single component and their possible

collaboration mechanisms on instantaneous performances of multiple tasks.

A major feature of the biological systems is they tend to work in a “repeated”

manner during their normal activity. For example, the heart of a healthy individual

holds a regular depolarization-repolarization behavior as it is collecting and sending

the blood to the whole body. In heart muscle electrical activity recording, this

behavior typically produces nonlinear pulses with a constant duration of time (the

QRS complex). One can imagine that due to external factors, e.g. physical exercise or

aging, the system performance will be sped up or slowed down with a slightly shorter

or longer duration but in a similar QRS pattern to keep the organism adapted into

the new status and maintain the internal overall stability. This series of repeated

actions in time can normally be captured by frequency analysis from biological signal

processing. Unlike the heart that works at the macro level, the nerve cell at the micro

level generates the action potentials to pass information, and this tiny contribution

to the local brain electrical activity at the macro level ends up with rich frequency

content. In this context, the single nerve cells, or even neural masses (collection of

neurons) are sub-systems or components of the system.

Nonlinearity is inherent in a biological system (e.g., QRS complex, action

potential) [7, 8], so component-wise interactions are not always clear. Due to their

“repeated” fashion of operation, it is of interest to know at the macro level how one

component tunes its routine operation to interact with other components and influence
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the overall system performance at a certain frequency. Observable outputs (time

series) from different components of a biological system can be collected and frequency

features can be extracted. To study the connectivity between system components, we

consider a statistical dependency measure, Mutual Information (MI) originally from

Information Theory, which is capable of capturing general associations [9], and extend

this measure with respect to frequency features. We test the methodology using

artificial data and then apply it to a dataset of electrophysiological brain recordings

for the study of emotional processing. This new methodology has the potential to

reveal aspects of connectivity in biological systems that are not measurable by existing

methods.

1.2 Overview

The background to this research is given in Chapter 2. It covers various

types of biological systems and their corresponding outputs (signals), the essential

frequency perspective of these signals, some common statistical dependency measures

in time series analysis, and a general statistical dependency measure –the MI, details

regarding brain emotional processing are given in Section 2.5, and common applications

of dependency measures in biological systems are presented in Section 2.6.

In Chapter 3 we present the developed methodology to capture nonlinear

relation with respect to frequency by MI. We first provide the estimation procedure of

MI along with relevant technical aspects in Sections 3.1 and 3.2. The technique of

extracting frequency characteristics from time series is then detailed in Section 3.3.

Finally, combining all the technical pieces, the model-free method to quantify nonlinear
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interactions between biological time series with respect to frequency is described in

Section 3.4. Models of coupled nonlinear systems, which are used to evaluate the

methodology and a real-world electrophysiological dataset are then discussed in Section

3.5. Results are presented in Chapter 4, and Chapter 5 concludes this work with an

evaluation of the methodology, discussions of the physical meaning of the results from

the physiological dataset, and a description of future work directions.



CHAPTER 2

BACKGROUND

2.1 Signals from Biological Systems

Biological signals are usually recorded through some sensor or device and can

represent diverse aspects of the systems characteristics, ranging from electrical activity,

to chemical concentrations, or any other characteristic that has dynamic properties

(i.e., changes over time). Commonly observed biological signals in research are:

electroencephalogram (EEG), magnetoencephalogram (MEG), and blood–oxygen–level

dependent (BOLD) signals detected by functional magnetic resonance imaging (fMRI)

from the central nervous system; electrocardiogram (ECG), magnetocardiogram (MCG)

and blood pressure from the circulatory system; galvanic skin response (GSR) from

the autonomic nervous system; and potential of hydrogen (pH) from digestive or

urinary systems. Electrograms, including ECG, EEG, electromyogram (EMG), and

electrooculogram (EOG), record the electric potential measured between points in

tissues as a result of electrochemical activity in certain types of excitable cells [2]. MEG

and MCG reflect changes in the magnetic field produced by the electrophysiological

activity. Functional MRI measures the brain blood flow activity. GSR records the

electrodermal activity. Figure 2.1 graphically presents sample locations and the

time profiles of EEG, EOG and EMG signals. Although physiological signals are

5
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inherently different from each other, a nearly universally common characteristic is their

quasi–periodic (oscillatory) structure due to specific frequency components [10, 11].

Figure 2.1: Examples of electrophysiological signals. Electroencephalogram,
electrooculogram and electromyogram samples and their collection locations [1].

Single modality biological signals (i.e., signals recorded through a similar

process, but possibly at different locations) have been employed in research extensively,

e.g., to detect distinct frequency components from the human brain [12, 13], to

help with the diagnosis of Alzheimer’s disease [14, 15, 16], to study epilepsy [17], to

estimate flow velocity and Doppler spectra of arterial disease [18], and to understand

the anesthetic drug effect [19]. Study on multimodal biological signals (i.e., signals

recorded (a) through different methods/devices from the same system, or (b) the same

procedure from anatomically different sub–parts of a system) is not so common, but it

has been used to reveal the communication between the nervous and cardiac systems,

e.g., ECG–fMRI [20], ECG–EEG [6], or the interaction between the circulatory and
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the respiratory systems, e.g., MCG based heart rate variability–MCG based respiration

[21]. When dealing with signals from different modalities, the analysis methods are

limited by the different nature of the signals themselves, and by possible nonlinear

interactions among the sub–systems.

The most interesting and important biological system to study is the human

brain, due to its complexity and the plethora of signals that it produces. The

brain contains approximately 86 billion connected neuronal cells [22]. To execute

different brain functions simultaneously, subsets of neurons work together under

particular/individual tasks [23]. Furthermore, the different subsets may interact with

each other. The normal EEG shows oscillatory activities with amplitudes in the

range of 20–100 µV [24]. Physicians describe the EEG typically with “rhythmic and

transient” characteristics and divide these activities into specific bands by frequency:

δ (0.5–4 Hz), θ (4–8 Hz), α (8–13 Hz), β (13–30 Hz) and γ (30+ Hz).

By clinical convention and for the convenience of communication [25], EEGs

are recorded under standard setups with respect to the sensor electrode locations on

the head surface. One basic setup is the 10–20 system. First, the nasion and the inion

are defined as the distinctly depressed area between the eyes and the lowest point of

the skull from the back of the head. They naturally form a nasion–inion circle along

the skull. Then the 10–20 system leaves the outermost electrode circle 10% of the

total front–back distance from the nasion–inion circle and keeps the distances between

adjacent electrodes 20% of the total front–back distance. According to resources

availability, the conventional 10–20 system’s electrode density can be increased by

reducing the inter–electrode distance. A typical extension is the 10–10 system which
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holds the 10% division for all measurements. More commonly, modified combinatorial

nomenclature satisfies most of the applications by employing selected locations of

interest from the formal frameworks. A standard 10–20 system montage is shown

in Figure 2.2. Letters F, P, T, and O represent frontal, parietal, temporal, and

occipital lobes (the four main sections of the brain), and C refers the central part

of the brain. Odd numbers indicate electrode locations on the left hemisphere, even

numbers indicate right hemisphere. Clinical neurophysiologists have observed that α

waves of moderate amplitude are prominent in both the parietal and occipital cortices

and are representative of relaxed wakefulness. Lower–amplitude β activity is more

observed in the frontal area during intense mental activity. A natural transition from

α brain activity to β activity may be caused by alerting a relaxed subject. Both θ and

δ waves are believed as normal patterns during drowsiness and early stage in sleep,

but they may also show certain brain dysfunction for wakeful situation [24]. Recent

studies reported high–amplitude γ band oscillations during meditation [26, 27, 28].
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Figure 2.2: The standard 10–20 system setup [2]. Panel (a) is from the left view
and panel (b) is from the top view of the head.

Several 10–second duration EEG sample data from selected locations—frontal

lobe (Fp1, Fp2 and F3, F4), central brain region (C3 and C4), occipital lobe (O1 and

O2)—are displayed in Figure 2.3. We can observe contamination of the signal from

eye–movement related activity (eye blink artifacts) in the electrodes on the frontal

lobe (i.e., Fp1, Fp2, F3 and F4) as four major spikes within this 10–second duration.

We also observe the similar pattern highlighted in red boxes between electrodes from

the same hemisphere (i.e., Fp2 and F4). Activity from the central brain locations C3

and C4 are not as similar as the activity from the occipital lobe locations (O1 and

O2). Overall, EEG recordings from nearby electrodes tend to be similar because they

may capture the same brain activity.
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Figure 2.3: 10–second selected electrode EEG sample data. Hemisphere–wise paired
electrodes from frontal lobe (Fp1, Fp2 and F3, F4), central brain region (C3 and C4),
occipital lobe (O1 and O2).

2.2 The Frequency Domain

In the time domain, a signal is represented by its values arranged in time order.

One may consider Fourier analysis as a model that approximates a signal from the

time domain by a sum of simpler trigonometric functions (complex exponentials) each
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with a distinct frequency f , amplitude, and phase, constituting the frequency domain

representative of the signal. Figure 2.4 showcases the time–domain representation

and frequency–domain approximation of a continuous signal. Considering the modern

data acquisition, transmission, and storage techniques, continuous signals are always

digitized to equal–spaced discrete type finite–length recordings. This time–ordered

series can be modeled by deterministic formulas as well as considered as time series

that are generated from stochastic processes. Discrete Fourier Transform (DFT) was

developed for discrete time series x(n), n = 1, 2, ..., N to perform Fourier analysis:

F{x(n)} = X(f) =
∑
n

x(n)e−j2πfn. (2.1)

Furthermore, an efficient algorithm for estimation of DTF, the Fast Fourier Transform

(FFT) algorithm, has been implemented in many software toolkits as the default

method and significantly expanded applications of Fourier analyses to multiple

disciplines, e.g., acoustic signal reconstruction and identification, source localization

from radar and ultrasound signals [29], or crack detection for infrastructures from

image signal [30].
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Figure 2.4: Time–domain representation (in red) and frequency–domain approxima-
tion (in blue) of the same signal [3].

Usually, the analysis of “frequency content” refers to the distribution of

attributes derived from the complex domain representation generated by equation

(2.1) over the spectrum (the range of the frequency values). Typical attributes are the

magnitude and the phase, which produce the magnitude and phase spectra, respectively

(equations (2.2) and (2.3)):

XA(f) = |X(f)|, (2.2)

Xφ(f) = arctan
{Im{X(f)}

Re{X(f)}

}
. (2.3)

where Im{·} denotes the imaginary part of a complex value and Re{·} denotes the

real part. Spectral analysis, which focuses on power spectrum (magnitude) estimation,

grew as a branch from modern signal processing. A classic nonparametric method to

estimate the power spectrum (power spectral density) is the periodogram calculated

through DFT in equation (2.4).

PXX(f) = |X(f)|2 (2.4)
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Modifications for accurate estimation of magnitude and phase are addressed in Section

3.3.

Frequency domain analysis has found numerous applications in the study of

biological signals to assist diagnostic procedures, and prediction and intervention

in the cardiovascular, respiratory, and nervous systems [10]. Examples of these

applications include a study of different brain regions under resting state found

correlation relationship of EEG and fMRI signals at the α frequency band [31], various

Fourier analysis methods were applied to examine biological transients phenomena [32],

DFT helped detect high–frequency content in arrhythmia–free intervals from ECG

[33], dynamic spectral representation of electrogastrographic signals has been proved

as a valid method to study gastric myoelectrical activity [34], and spectral analysis

based features have been employed to contribute to the analysis of electromyography

signals [35].

2.3 Statistical Dependency

In the context of probability theory, any random variable X that represents

some measurable quantity is associated with a probability distribution P (probability

mass function for discrete case and probability density function for continuous case

–p(x)). Consider two random variables X and Y , pXY (x, y) is the joint probability

distribution function (the distribution for all possible pairs of x, y), pX(x) and pY (y)

are their marginal probability distribution functions (probability distribution of one

random variable disregarding the values of the other), and pX|Y (x|y) and pY |X(y|x) are

the conditional probability distribution functions (distribution of one of the random
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variables when the other has a fixed value) [36]. If the joint probability is equal to the

product of the marginal probabilities (equation (2.5)), or if the marginal distribution

of one variable is equal to the conditional with respect to the other (equation (2.6))

for all pairs of x and y, the two random variables are independent.

pXY (x, y) = pX(x)pY (y) (2.5)

pX|Y (x|y) = pX(x) (2.6)

In contrast, when these equalities do not hold, X and Y are dependent. Furthermore,

neither of these criteria offer a way to measure the strength of dependency once the

equality fails. In this section, two statistical measures that quantify linear dependency

between two random variables (i.e., X and Y satisfy the relation Y = aX + b, where

a and b are constants) are discussed.

Correlation is a simple statistical measure to capture the linear dependency

or association. British biostatistician Karl Pearson first developed and coined the

Pearson’s correlation coefficient from linear regression in the form of a fraction between

the covariance and the product of standard deviations of X and Y as in equation

(2.7).

ρX,Y =
E[(X − µX)(Y − µY )]√
E(X − µX)2E(Y − µY )2

, (2.7)

where E is the expectation operator (E =
∑
p(x)x or E =

∫
p(x)xdx) and µX , µY are

the expectations of random variable X and Y respectively. From equation (2.7) we

note that correlation is a symmetric quantity with a range of [−1, 1], where values 1

and −1 represent the perfect positive and negative linear correlation (dependency)
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between the two random variables, exact value 0 represents the case of no linear

correlation, and other values indicate the strength of linear dependency. However, one

can not infer the independence of variables directly by observing ρX,Y = 0 because

it only reflects a linear relationship. A typical example is Y = X2, where X was

a probability distribution symmetric about 0. Apparently X and Y are dependent

through the square operator; however, correlation gives the value of exact 0. Four

cases of relations are plotted and evaluated by Pearson’s correlation coefficient in

Figure 2.5. Correlation is good at capturing purely linear dependency (panel (a) and

(b)), or not capturing any relation when the random variables are independent (panel

(c)), but it has the potentials of misinterpretation in cases of more general nonlinear

dependency (panel (d)).
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Figure 2.5: Examples of Pearson’s correlation coefficients evaluating dependency
between X and Y : (a) positive correlation Y = X, (b) negative correlation Y = −X,
(c) independent X and Y , (d) linearly uncorrelated but nonlinear–dependent case
Y = X2.

Correspondingly, for two signals in the time domain x(n) and y(n), the

Magnitude–Squared Coherence (MSC) is a frequency–dependent real function [37]

defined as the cross–spectral density PXY (f) between x(n) and y(n) normalized by the

product of the auto–spectral densities PXX(f) and PY Y (f) that quantifies the linear

dependency of the two signals at frequency f in equation (2.8).

CXY (f) =
|PXY (f)|2

PXX(f)PY Y (f)
(2.8)

The MSC in equation (2.8) could be derived as equation (2.9)

CXY (f) =

∣∣E[X(f)Y ∗(f)]
∣∣2

E
[
|X(f)|2

]
E
[
|Y (f)|2

] (2.9)
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and estimated by splitting the original signals into nd segments and estimating the

average power spectra from these segments (i.e., xi(n), i = 1, 2, ..., nd). With respective

Xi(f) as [38]:

ĈXY (f) =

∣∣∑nd

i=1Xi(f)Y ∗i (f)
∣∣2∑nd

i=1 |Xi(f)|2
∑nd

i=1 |Yi(f)|2
. (2.10)

Due to its simplicity in estimation, MSC is one of the most commonly used measures

of dependency in research fields with oscillatory–rich signals, e.g., meteorology [39, 40],

oceanology [41], and neuroscience [42, 43, 44, 45]. MSC is with a range of [0, 1],

taking value 0 when x(n) and y(n) are uncorrelated at frequency f and 1 when they

hold a perfect linear relation. Similar to correlation, when the relation at a given

frequency is nonlinear, MSC may produce misleading results. An example of MSC

estimated from two periodic discrete signals contaminated with additive noise is shown

in Figure 2.6. Panels (a) and (c) display x(n) = sin(f1n) + sin(f2n) + e1(n) and

y(n) = sin2(f1n) + sin(f2n) + e2(n) in the time domain, where f1 = 2 Hz, f2 = 18

Hz and e(n) is Gaussian white noise. Panels (b) and (d) show their corresponding

power spectra. x(n) and y(n) containing two frequency components respectively,

including a nonlinear (square) operator of f1 and a common frequency component f2.

In panel (e), coherence estimation exhibits single extreme value (equal to 1) around

f2 but gives no clue of the relation at frequency f1. MSC has also been extended to

Partial Coherence to study multivariate time series [46] and combined with vector

autoregressive modeling and developed into Partial Directed Coherence to detect

direct dynamic multivariate process relationships [47, 48].
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Figure 2.6: An example of MSC: (a)–(b) sample series x(n) and its power spectrum,
(c)–(d) sample series y(n) and its power spectrum, (e) MSC estimation between x(n)
and y(n) (see text for details).

2.4 Information Theory

The history of Information Theory stems from an American mathematician,

Claude Shannon [49], while he was working on communication theory and cryptography

during World War II for the U.S. government. As a fundamental work, Shannon

defined two important quantities: information entropy and MI (although without

coining the name). Information entropy H(X) (commonly called Shannon entropy) is

“a measure of information, choice and uncertainty”. In pursuing some ideal properties

described in his original paper (Part I Section 6) [49], information was defined as the

logarithm of the reciprocal of the probability mass function values, and entropy as the
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average of information (equation (2.11)):

H(X) = E
[

log
1

pX(x)

]
=
∑
x

pX(x) log
1

pX(x)
. (2.11)

Shannon entropy has units of bits or nats depending on the base of the logarithm

function (2 or e). Similar to equation (2.11) for single variable, entropy for joint

random variables is joint entropy H(X, Y ) = −E
[

log pXY (x, y)
]
, and entropy for

the case of conditional probability mass functions is conditional entropy H(X|Y ) =

−E
[

log pX|Y (x|y)
]
. Shannon entropy holds some nice properties i.e., non–negativity,

reducing by value when conditioning on another random variable, and reaching its

maximum value for the uniform distribution. Due to the product identity of the

logarithmic function in equation (2.11), entropy of joint random variables can be

derived from a chain rule that connects the marginal entropy H(X) or H(Y ), the

conditional entropy H(X|Y ) or H(Y |X) , and the joint entropy H(X, Y ) in the form

of equation (2.12).

H(X, Y ) = H(X) +H(Y |X) = H(Y ) +H(X|Y ) (2.12)

Shannon entropy is widely employed to assist clustering biological microarray data

[50] and to identify electrophysiological signal patterns [51].

The mathematical formula of MI, I(X;Y ), was initially developed to study the

channel capacity in a communication system, and then for guiding the development of

multiple compression techniques.

I(X;Y ) = E
[

log
pXY (x, y)

pX(x)pY (y)

]
=
∑
x,y

pXY (x, y) log
pXY (x, y)

pX(x)pY (y)
(2.13)
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As explained in the Venn diagram in Figure 2.7, MI represents the shared information

between two random variables X and Y , and can be written as

I(X;Y ) = H(X) +H(Y )−H(X, Y )

I(X;Y ) = H(X)−H(X|Y ).

(2.14)

Figure 2.7: Venn diagram representing the relation between variable X and Y in
terms of entropy H(X), H(Y ), conditional entropy H(X|Y ), H(Y |X), joint entropy
H(X, Y ), and MI I(X;Y ).

MI is closely related to another quantity from statistics, the Kullback–Leibler

(KL) divergence. Concerning statistical discrimination, American mathematician

Kullback and cryptanalyst Leibler proposed KL divergence as a “measure of the

distance or divergence between statistical populations” (probability distributions with

the same support x) and denoted as DKL(P ||Q) [52].

DKL(P ||Q) =
∑
x

p(x) log
p(x)

q(x)
(2.15)
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This quantity is also used in information theory and coined as relative entropy. We

note that relative entropy is a non–negative, asymmetric quantity, it is only zero

when the two distributions are exactly the same, i.e., p(x) = q(x). MI can be

interpreted in terms of KL divergence. If we consider to replace p(x) in equation

(2.15) with the joint probability mass function pXY (x, y), and q(x) with the product

of the corresponding marginal probabilities pX(x)pY (y), then MI is acquired. In

consideration of the divergence/similarity perspective from relative entropy applied

to the two distributions pXY (x, y) and pX(x)pY (y), MI could be interpreted as the

similarity between the real joint probability distribution and an “imagined” joint

distribution under the assumption of independence between the random variables X

and Y . High MI values indicate X and Y are more dependent, low MI values imply

they are less dependent, and exact zero means the random variables are independent.

There are multiple estimation methods for MI from sample data. The näıve

solution is to approximate the marginal and joint probability distribution functions

through binning [53], or kernel density estimation [54], and plug the empirical

probability functions into equation (2.13). A resubstitution method was proposed

based on the averaging definition of MI and generalized to the empirical mean across

samples [55]. Sample–spacing estimate and nearest–neighbor distance are also advanced

approaches [55, 56, 57]

MI could also be generalized to multivariate random variables and be derived

from chain rules by expanding the logarithm function [58, 59]. Bioinformaticians found

use of MI in gene expression to detect relationships between two or more variables

[60, 61, 62, 56], and MI variants have been shown to be able to characterize the
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complexity and the information transmission between cortical areas in patients with

Alzheimer’s disease [63] and schizophrenia [64].

Although the initial applications of entropy were mostly within the discrete case,

Shannon also extended the concept of entropy for continuous distributions informally

(differential entropy). Unlike probability mass functions (pmf) in the definition of

Shannon entropy, probability density functions (pdf) are used in differential entropy.

Differential entropy and mutual information for continuous random variables are

discussed in detail in Chapter 3.

2.5 Brain and Emotions

Research on understanding brain and emotion processes was initiated by

physiologists. German anatomist Brodmann first studied animal brains and inferred

distinct anatomical brain regions. Through experiments, Brodmann Areas 39 and 47

in the parietal and frontal cortices were reported to be associated with functionalities

like attention and emotion regulation [24]. From another point of view, psychological

models were proposed from environmental psychology to quantitatively describe and

measure emotions. Among the work in this direction, the most prevalent theory and

the most practical one is Russell’s circumplex model of affective states [4]. Russell

proposed one dimension to represent the level of pleasure or unpleasure of one’s

feeling (valence scale), and a second dimension (arousal scale) that depicts the level

of alertness involved in the emotion process. Most human emotions can be mapped

in this model at distinct locations (see Figure 2.8). Under this construction, serene

and happy are with the same scale of positive valence but with high and low states of
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arousal respectively, so are negative valence related emotions, e.g., upset and sad. A

third dimension (dominance scale) was added into this circumplex model afterward and

formed the Pleasure–Arousal–Dominance (PAD) emotional state model by Mehrabian

[65].

Figure 2.8: Circumplex model of affective states [4]. Emotions are mapped into this
space according to numeric quantification along the valence and arousal dimensions.

Following the psychological emotion model, computational neuroscientists found

their way of making contributions to emotion recognition and understanding of brain

functional connectivity in processing emotions by quantitative analysis of brain data

(EEG, MEG, and fMRI). Some early work on building emotion identification systems

pointed out certain brain locations to work with, e.g., frontal lobe [66]. Regarding

measures for EEG–based emotion recognition, fractal dimensions [67], spectral power,

coherence, and MI estimation based on amplitude modulation envelopes [68] have
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been applied. Asymmetry in hemispheres has been observed [68] and even employed

to develop features to detect valence or arousal states [69]. Among frequency bands,

γ band is paid special attention in processing emotion stimuli [70]. Group neural

firing related to an event (i.e., event–related desynchronization or event–related

synchronization) in the γ band of MEG was reported in a study of the emotion of

fear and then generalized to consciousness [71, 72]. Some interesting findings about

emotion processing and brain functional connectivity include emotional arousal induced

by music by covariance maps of spectral power from EEG revealed a right–frontal

suppression of lower α–band activity during high arousal [73]; emotional arousal

generated higher influence in the right hemisphere than the left hemisphere, while the

occipital cortex is involved more than the occipito–parietal region in processing arousal

[74]; for valence, left frontal cortical activity is higher than the right no matter the

positive or negative strength of valence [75]; negative valence causes more power over

the left temporal region compared to the right, and laterality shift for positive valence

[70]; another work on fMRI claimed that sound–processing and speech–comprehension

network is more involved in high arousal state, whereas circuitries supporting emotional

and self–referential processing are more involved with negative valence [76]. In addition,

statistically separable bodily sensations have been shown to be associated with different

emotions both in different culture populations and in certain age groups [77, 78], and

the emotional significance of visual stimuli can modulate the perceptual encoding in

the visual cortex [79].
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2.6 Dependency in Biological Systems

Statistical dependency measures introduced in Section 2.3 (correlation and

coherence) and 2.4 (MI) have been heavily employed in studies of biological systems

[21, 80].

Correlation has been applied to several problems. For example, a negative

correlated relationship has been shown between parietal and frontal cortices in α band

power [31], and the properties of EEG and heart rate variability strongly correlate

with sleep states [81]. Also, correlation has been widely employed in multivariate EEG

studies to assess seizure dynamics for epilepsy patients [82]. Coherence has been used

to quantify various relations, including the interaction between motor cortex measured

with MEG, and hand muscles measured with EMG, during precision grip tasks [45].

The relationship between brain regional fMRI or EEG time series in studies of brain

functional connectivity networks [83, 42], and the relationship between local field

potentials and simultaneous EEG at thalamocortical θ band in Parkinson’s disease

patients [44] were investigated through coherence. Variants developed from coherence

include imaginary part of coherency [84] and partial directed coherence in testing

directed influences among neural signals and in determining neural structure [47, 48].

These are popular measures in the context of brain interaction research, due to the

insensitivity in capturing false connectivity arising from volume conduction [84] and

the reflection of a frequency–domain representation of causality [47, 48].

MI as a general statistical dependency measure has been applied to the time

domain to study brain dynamics, e.g., EEG patterns in patients with Alzheimer’s dis-

ease [63, 14, 15], in patients with schizophrenia [64], and to support feature extraction
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from heart rate variability in classifying patients after acute myocardial infarction

[21]. It has also been used as an evaluation metric on EEG features post–processing

for estimation of brain affective states [68]. Brain functional connectivity has been

explored by time–frequency based MI from EEG and MEG during motor real and

imaginary tasks [85, 86, 87]. Furthermore, mutual information was used to detect the

association between high γ and θ oscillations in the human neocortex [80].



CHAPTER 3

METHODS

The measure of MI is considered as a reliable metric of the statistical dependency

of two random variables [62, 88, 9]. Our aim is to derive appropriate formulations of MI

between two signals as functions of frequency, using the representation of the signals

in the frequency domain. The core idea of our approach is that the observed time

series values in the time domain are less informative than the spectral characteristics

we observe in the frequency domain (magnitude and phase).

3.1 Mutual Information

In Section 2.4, we discussed Shannon entropy and mutual information for

discrete random variables. Since the spectral characteristics we are working with are

continuous random variables, this section will focus on differential entropy and the

corresponding MI concepts and estimation.

Similar to Shannon entropy for a discrete random variable as in equation (2.11),

differential entropy, h(X), for a continuous random variable X with pdf pX(x) is

defined as the expectation of an analogous “information” quantity:

h(X) = E
[

log
1

pX(x)

]
=

∫
x

pX(x) log
1

pX(x)
dx. (3.1)

27
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The main difference is that instead of the sum in equation (2.11), differential entropy

uses integration since pX(x) is a continuous function. Therefore, the differential

entropy for joint random variables X and Y is

h(X, Y ) = E
[

log
1

pXY (x, y)

]
=

∫
x,y

pXY (x, y) log
1

pXY (x, y)
dxdy, (3.2)

and when X is conditioned on Y the differential entropy of X is

h(X|Y ) = E
[

log
1

pX|Y (x|y)

]
=

∫
x,y

pXY (x, y) log
1

pX|Y (x|y)
dxdy. (3.3)

Differential entropy does not always hold the non–negativity property compared with

Shannon entropy. This is because the pdf for a continuous random variable pX(x) has

a constant area under the curve
∫
x
pX(x)dx = 1, but the function values can exceed 1.

However, differential entropy and Shannon entropy share most of the other properties,

e.g., conditioning reduces its value (h(X) > h(X|Y )) and chain rule relation is valid

(h(X, Y ) = h(X) + h(X|Y )).

The mutual information for continuous random variables X and Y with

marginal pdfs pX(x), pY (y) and joint pdf pXY (x, y) is defined as:

I(X;Y ) = E
[

log
pXY (x, y)

pX(x)pY (y)

]
=

∫
x,y

pXY (x, y) log
pXY (x, y)

pX(x)pY (y)
dxdy. (3.4)

The interpretation is the same as in the case of discrete random variables. Continuous

MI takes high values when X and Y are more dependent, low values when they are

less dependent, and zero when they are independent. Continuous MI is a non–negative

quantity and is a limit case of the discrete MI [59]. Equations (2.14) still hold for
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continuous MI as:

I(X;Y ) = h(X) + h(Y )− h(X, Y ),

I(X;Y ) = h(X)− h(X|Y ).

(3.5)

An estimate of continuous MI from sample data is derived from its “expectation”

definition in equation (3.4) and coined as “resubstitution” method described by

equation (3.6).

I(X;Y ) ≈ 1

n

n∑
i=1

log
pXY (xi, yi)

pX(xi)pY (yi)
, (3.6)

where (xi, yi), i = 1, ..., n denote a sample data set, pX(xi), pY (yi) and pXY (xi, yi) are

the marginal and joint pdf evaluations at (xi, yi), and n is sufficiently large. Equation

(3.6) aims to approximate the expectation operator with the sample average derived

from the observed data.

3.2 Kernel Density Estimation

The goal of density estimation is to take a finite sample of data and to make

inferences about the underlying pdf. A simple solution is the histogram which assigns

data to bins by value and counts the number of samples per bin. The histogram

provides a discretized version of the pdf from data due to the binning procedure (in

essence a pmf), but it requires proper selection of the number or size of bins. In

contrast, kernel density estimate (KDE) is able to provide an estimate of continuous

pdf. In KDE for the 1–dimension case (one random variable X), the contribution

of each data point is smoothed out from a single point to an interval around it.

Aggregating the individual contributions together gives an overall form of the density

function. Also known as empirical probability density function [89], the kernel estimator
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of pX(x) for a sample of M points xi, i = 1, 2, ...M is of the form [90]

p̂X(x) =
1

M

M∑
i=1

KH(x− xi) (3.7)

where KH is itself a probability density, called a kernel function with variance controlled

by a smoothing parameter H called the bandwidth. Usually, a symmetric function

with mean 0 is adopted as KH, and it is generally agreed that the exact shape

(i.e., the function) is less important compared with the smoothing parameter H

[89, 90, 91]. This means different types of kernel functions can produce similar density

function estimates with proper selection of bandwidth. This nonparametric density

estimation approach can be generalized to multivariate probability density estimation

by generalizing equation (3.7) to higher dimensions with multivariate kernel functions

[91].

The concept of density estimation is defined for variables with support (range

of values) of the whole real line (x ∈ R), but can be adapted to data of different types.

The natural domain of a 1–dimension density may not be the whole real line but

an interval bounded on one or both sides [91]. However, by construction, the kernel

functions centered on the observations which are very close to the boundary have

leakage to the unsupported region. Bowman and Azzalini suggest two ways to solve

this problem: one is to transform the bound–support variable to a new variable with

unbounded support (e.g., through logarithmic transform), the other is to carefully

modify the kernel functions near the boundaries [90].

A particular type of bounded–support data is circular or directional data.

One may consider circular data as angular measurements that can be mapped on
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the circumference of a unit circle. This type of data has been studied in different

disciplines, e.g., wind direction in environmental sciences [92]. One distinctive feature

of circular data is that the values are restricted in a range (e.g., [0, 2π] its period),

and the end point coincide with the beginning point. In Directional statistics, circular

probability distributions (e.g., von Mises circular distribution, etc. [93]) form a natural

collection of kernel functions when constructing a density estimate for circular data.

Alternatively, a similar result can be achieved by another method called “circular

padding” that wraps the data around the boundaries [91]. In this approach, the

data are replicated over the adjoining ranges to account for the circularity in the

contribution of each observation [90]. Sub–sections 3.2.1–3.2.3 focus on 2–dimension

KDE for different types of support.

3.2.1 Planar Density

Conventional KDE to estimate the joint pdf of X, Y defined on unbounded

support based on a set containing M samples (xi, yi), i = 1, 2, ...,M is given by

equation (3.8)

p̂XY (x, y) =
1

M

M∑
i=1

KH(x− xi, y − yi), (3.8)

where KH(x, y) is the 2–dimension Gaussian kernel function in the form of equation

(3.9) with the bandwidth matrix H in formula (3.10).

KH(x, y) =
1

2π
|H|−

1
2 e−

1
2
[x y]H−1[x y]T (3.9)

H =

H2
xx 0

0 H2
yy

 (3.10)
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Equation (3.8) states for any point denoted by (x, y) on the continuous plane, its pdf

is contributed by the averaged effect from all the available sample data points (xi, yi).

Equations (3.9) and (3.10) together indicate that the kernel functions for each sample

data point are of a constant size, and their shape is defined by the longitude/latitude

bandwidths (Hxx and Hyy) only. The diagonal elements of H can be calculated based

on Silverman’s rule with the median absolute deviation (mad) of the random variable

normalized by the z–score of 50% of the standard normal distribution (approximately

0.6745) as:

Hxx = M− 1
6 σ̂x = M− 1

6
1

0.6745
median

{∣∣xi −median{xi}
∣∣}, (3.11)

and similarly for Hyy.

3.2.2 Toroidal Density

If both X and Y are circular random variables with a periodic support, their

joint distribution is identified as a toroidal distribution [94]. Herein, a modified density

estimation strategy is considered for this case. First, along the meridian and equator

directions, the torus model is unfolded into a rectangular plane and then a circular

padding technique is performed along these two directions to compensate for the effect

of samples close to the boundaries. A conventional planar kernel density estimate is

applied to the padded plane with Silverman′s rule applied to circular dispersions σ̂cx

as [93]:

Hxx = M− 1
6 σ̂cx = M− 1

6

√√√√2
[
1−

∣∣∣ 1

M

M∑
i=1

ejxi
∣∣∣], (3.12)



33

and Hyy similarly. Finally, the density function over only the original range is selected

as the toroidal density function estimate.

3.2.3 Cylindrical Density

For mixed type random variables (i.e., one is non–bounded random variable

and the other has a circular distribution), these two dimensions naturally form a

cylindrical object. Therefore a circular padding is performed along the dimension of

the circular variable only. In this case, the cylinder model is unfolded and turned into

a rectangular plane and the padding procedure forms a head and tail connection of

three identical rectangular planes along the circular variable dimension. Equations

(3.11) and (3.12) are combined and applied to the 2–dimension kernel bandwidth in

this case.

3.3 Estimation of Spectral Characteristics

In power spectrum estimation the accuracy of the power distribution is essential;

however, problems like spectral leakage in the estimation make it difficult. Spectral

leakage describes a phenomenon that the power at an intrinsic frequency (in the

original signal) not only appears at its actual location in the estimated spectrum but

also appears (repeatedly) at other frequencies and influences the global view. There

are two aspects of leakage sources, specifically: one is leakage at nearby frequencies

due to the sharp truncation at the end of the time–domain finite length signal, and

the other is distant frequency leakage stemming from the sampling procedure from

the continuous signal. For the first type, since the periodogram from a truncated time

series of length N could be considered as a same–length rectangular window tapered
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(multiplied) time series undergoing DFT, an alternative window with an arch shape

that gradually suppresses the signal values from the middle to the endpoints is able

to reduce the truncation effect and lead to a more accurate local frequency estimation.

A commonly used window function in analysis of biological signals is the Hamming

window given by:

ωH(n) = 0.54− 0.46 cos
( 2πn

N − 1

)
, n = 1, 2, ..., N. (3.13)

Each value of the original signal x(n) is multiplied by ωH(n) prior to the estimation

of DFT.

For the second type of frequency leakage, the only thing we can do is to

strictly follow the Nyquist theorem, which requires the sampling frequency to be at

least double the highest frequency component of interest. This restriction limits the

frequency activities we can study from available biological recordings.

An example of usage of a Hamming window v.s. no windowing is shown in

Figure 3.1. Panel (a) displays a 4–sec EEG time series in the time domain preprocessed

by a 0.5–45 Hz fifth–order Butterworth bandpass filter. The same signal tapered

by a same duration Hamming window is shown in panel (b). Signal amplitude in

the first and the last second are suppressed and the endpoints of the modified signal

approach zero value. Although both the magnitude estimated through DFT show

a decreasing trend from low frequency to high frequency in panels (c) and (d), the

Hamming window modified signal in panel (d) is with less local fluctuations across

the spectrum. Phase plots from the original time series and from the modified series

are also shown in panels (e) and (f).
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Figure 3.1: Comparison of nonparametric power spectrum estimation methods:
(a) original 4–sec 0.5–45 Hz bandpass filtered EEG time series in the time domain,
(b) the EEG signal tapered by a Hamming window, (c) classic magnitude plot in
logarithmic–scale through DFT, (d) Hamming window modified magnitude plot in
logarithmic–scale, (e) phase plot of the original signal, and (f) phase plot of the
tapered signal.

Furthermore, statisticians, e.g., Bartlett and Welch, came up with the ideas

of splitting–averaging and even overlapping to further reduce the power spectrum

variance [95, 96]. Splitting the time–domain signal into segments reduces the number

of sample points, and this decreases the resolution in the frequency representation.

3.4 Mutual Information in the Frequency Domain

Biological signals can be viewed as nonstationary stochastic time series [97,

98], however a short duration of the biological recordings can be considered as

wide–sense–stationary (WSS) time series. Given two time series x(n) and y(n) with
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spectral characteristics XA(f), Y A(f), Xφ(f) and Y φ(f) (equations (2.2) and (2.3)),

continuous MI in the frequency domain can be defined with respect to these spectral

characteristics. For the case of magnitudes XA(f) and Y A(f), the MI is:

IAAXY (f) = E
[

log
p
(
XA(f), Y A(f)

)
p
(
XA(f)

)
p
(
Y A(f)

)], (3.14)

where p
(
XA(f), Y A(f)

)
, p
(
XA(f)

)
and p

(
Y A(f)

)
are the joint and marginal pdfs of

XA(f) and Y A(f). Similarly, we can define MI between phases

IφφXY (f) = E
[

log
p
(
Xφ(f), Y φ(f)

)
p
(
Xφ(f)

)
p
(
Y φ(f)

)] (3.15)

and between magnitude and phase

IAφXY (f) = E
[

log
p
(
XA(f), Y φ(f)

)
p
(
XA(f)

)
p
(
Y φ(f)

)]. (3.16)

To estimate the pdf, we employ a segmentation and KDE approach. First,

time series x(n) is segmented into M non–overlapping sample series of length N ; next,

the individual mean is subtracted from each of the segments to obtain a zero–mean

sample series xj(n), n = 1, 2, ..., N and j = 1, 2, ...,M that is then multiplied by a

Hamming window. Accordingly, magnitude and phase are estimated from each of the

Hamming window tapered series x′j(n) = xj(n)ωH(n); thus, per pair of time series

x′j(n), y′j(n), we acquire XA
j (f), Xφ

j (f), Y A
j (f), and Y φ

j (f) in the frequency domain.

These spectral characteristics from the sample series are then used in the density

estimation. In the case of magnitude coupling in formula (3.14), a conventional planar

kernel density estimation is implemented using Gaussian kernels with a diagonal

bandwidth matrix to acquire p̂
(
XA(f), Y A(f)

)
from samples XA

j (f) and Y A
j (f).

Because of the non–negativity of the magnitudes, a logarithmic transformation is used
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prior to the kernel density estimation to compensate for the use of the unbounded

Gaussian kernels [90]. We note that the MI values are invariant to strictly monotonic

and differentiable transformation of the random variables (XA(f) and Y A(f)), so this

transformation does not affect the value of IAAXY (f) [58, 56].

The phases Xφ(f) and Y φ(f) are continuous circular variables due to their

periodicity (i.e., the value −π
2

is equivalent to π
2
), and they individually follow circular

pdfs p
(
Xφ(f)

)
and p

(
Y φ(f)

)
, while they jointly follow a toroidal pdf p

(
Xφ(f), Y φ(f)

)
[94]. Circular and toroidal KDE with padding, as detailed in Section 3.2.2, are employed

accordingly. For the joint density of magnitude and phase pXY
(
XA(f), Y φ(f)

)
, a com-

bination of log–transform and circular padding on magnitude and phase respectively

is used as explained in Section 3.2.3.

After obtaining the sample estimates of the pdfs p̂(·), the MI values per

frequency are estimated with the “resubstitution” method in Section 3.1. Therefore,

for the case of magnitudes of x(n) and y(n) corresponding to the same frequency f ,

the dependency can be estimated as:

ÎAAXY (f) =
1

M

M∑
j=1

log
p̂XY

(
XA
j (f), Y A

j (f)
)

p̂X
(
XA
j (f)

)
p̂Y
(
Y A
j (f)

) . (3.17)

Similarly, for phases or combined magnitude and phase, the MIs can be obtained by

ÎφφXY (f) =
1

M

M∑
j=1

log
p̂XY

(
Xφ
j (f), Y φ

j (f)
)

p̂X
(
Xφ
j (f)

)
p̂Y
(
Y φ
j (f)

) (3.18)

ÎAφXY (f) =
1

M

M∑
j=1

log
p̂XY

(
XA
j (f), Y φ

j (f)
)

p̂X
(
XA
j (f)

)
p̂Y
(
Y φ
j (f)

) (3.19)
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3.5 Data and Materials

We employ simulated data to examine the capability of our approach in

capturing general dependency relations between two time series. Thus, the models for

the simulated data are nonlinear and, moreover, the strength of dependency between

the time series is controllable through a coupling parameter. In following these

criteria, three nonlinear chaotic systems are selected for study: the Lorenz system,

a bidirectionally coupled Lorenz system and unidirectionally coupled Mackey–Glass

equations. We additionally employ the developed method on a dataset of EEG

recordings for the study of emotional response with respect to interactions in the

brain.

3.5.1 Simulated Time Series

In this sub–section, we provide the equations for the nonlinear chaotic systems

and sample time series in the time domain. We also provide the power spectral

densities for the time series that we use to test our methodology. Chaotic systems

often have broadband power spectra with superimposed peaks [99]. For the systems

under consideration, we investigate how the major frequency components change with

respect to increased coupling strength. Information derived from this investigation is

employed to assist the interpretation of the dependency measures results in Section

4.1.
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Data from Lorenz System

The Lorenz system in equation (3.20) is a deterministic chaotic system that

models the forced dissipative hydrodynamic flow [100].

ẋ = 10(y − x)

ẏ = x(28− z)− y (3.20)

ż = xy − 8

3
z.

Sun et al. [101] reported a “primary frequency” only observable in the z variable

of the system at 1.3 Hz. Although the dynamic system involves all three variables

simultaneously, the magnitude spectrum of x or y does not show this frequency

explicitly. In addition, a secondary frequency is also observed through the power

spectrum of the z variable around 1.5 Hz that holds a lower peak [102]. For this

frequency, the x variable shows a notch behavior (see Figure 3.2).

Figure 3.2: (a) 2, 000–length realization of x and z variables from the Lorenz system
(equation (3.20)) plotted in the time domain and (b) their log–magnitude spectra
through Welch’s method.
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Data from Bidirectionally Coupled Lorenz System

A bidirectionally coupled Lorenz system (equations (3.21)) was derived from

originally coupled Lorenz systems to study measures of synchronization in coupled

model systems [103]:

ẋ1 = 10(y1 − x1)

ẏ1 = x1(28− z1)− y1

ż1 = x1y1 −
8

3
z1 + c(z2 − z1)

ẋ2 = 10(y2 − x2) (3.21)

ẏ2 = x2(48− z2)− y2

ż2 = x2y2 −
8

3
z2 + c(z1 − z2),

where the coupling strength c is varied from 0 to 2 in steps of 0.1 corresponding to the

system transitioning from the non–coupled state to a generalized synchronization state.

Spectrum plots of z1 and z2 for the non–coupled (c = 0) and coupled cases (c = 0.3,

1.0 and 2.0) are shown in Figure 3.3. The magnitude spectrum of the uncoupled

system (in panel (a)) provides the primary components of the two sub–systems ((1)

and (2)) at 1.3 and 1.8 Hz respectively. Panels (b)–(d) show that as the coupling

strength increases, for sub–system 1 the 1.3 Hz component is shortened, while the 1.8

Hz peak gradually increases and aligns with the same peak of sub–system 2, eventually

both sub–systems form a bump at 1.8 Hz.
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Figure 3.3: Log–magnitude spectra plots of the z1 and z2 variables from
bidirectionally coupled Lorenz systems (equations (3.21)) with (a) c = 0, (b) c = 0.3
(c) c = 1.0 and (d) c = 2.0 through Welch’s method.

Data from Unidirectionally Coupled Macky–Glass Equations

The unidirectionally coupled Mackey–Glass system (equations (3.22)) [104, 105]

is based on a first–order nonlinear differential–delay equation describing physiological

control systems for “normal and pathological function” [106].

ẋ(t) = 0.2
x(t− τ1)

1 + x(t− τ1)10
− 0.1x(t)

ẏ(t) = 0.205
y(t− τ2)

1 + y(t− τ2)10
− 0.1y(t) + c

x(t− τ1)
1 + x(t− τ1)10

(3.22)

where parameters τ1 and τ2 are 17 or 100, and the coupling strength c varies from 0

to 0.5 with step size 0.05.

When τ1 = τ2 = 17, uncoupled sample time series and magnitude spectra of x

and y for c = 0, c = 0.2 and c = 0.4 are shown in Figure 3.4. Although x and y are
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nearly identical in equations (3.22) when there is no coupling, their time domain plots

seem in similar patterns (panel (a)), but the magnitude spectra in panel (b) do not

superimpose each other. We can clearly observe peaks at 0.02 Hz and its harmonics

appearing in both signals, and as the coupling strength increases the height of the

peaks increases in panels (c) and (d).

Figure 3.4: (a) Sample series plot of x and y from the uncoupled Mackey–Glass
equations (3.22) (c = 0) τ1 = τ2 = 17, (b) their log–magnitude spectra plots, (c)
log–magnitude spectra with coupling strength c = 0.2 and (d) with coupling strength
c = 0.4.

For τ1 = 17 and τ2 = 100, uncoupled sample time series and magnitude spectra

of x and y for c = 0, c = 0.2 and c = 0.4 are shown in Figure 3.5. Although both

the x and y series fluctuate rapidly in the time domain (panel (a)), the spectrum of

x contains a major component at 0.02 Hz and its harmonic frequencies while the y
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variable exhibits cyclical “bumps” under a gradually dropping trend (panel (b)). As

the coupling strength increases (panels (c) and (d)), the cyclical aspect in y is blurred

and transformed to align with the x variable’s profile.

Figure 3.5: (a) Sample series plot of x and y from the uncoupled Mackey–Glass
equations (3.22) (c = 0) τ1 = 17 and τ2 = 100, (b) their log–magnitude spectra
plots, (c) log–magnitude spectra with coupling strength c = 0.2 and (d) with coupling
strength c = 0.4.

The reverse direction coupling case (τ1 = 100, τ2 = 17) is shown in Figure 3.6.

Panels (a) and (b) display the uncoupled signals in time and magnitude domain, so

these two subplots are in the same pattern but in reverse color representation with

Figure 3.5 panels (a) and (b). However, the passive subsystem contains the 0.02

Hz component with the new configuration, so the spectrum of y contains a major

component at 0.02 Hz and its harmonics, while the x variable exhibits a cyclical
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pattern (panel (b)). As the coupling strength increases, the profile of the passive

subsystem is reshaped and aligned with the x variable’s profile (panels (c) and (d)).

Figure 3.6: (a) Sample series plot of x and y from the uncoupled Mackey–Glass
equations (3.22) (c = 0) τ1 = 100 and τ2 = 17, (b) their log–magnitude spectra
plots, (c) log–magnitude spectra with coupling strength c = 0.2 and (d) with coupling
strength c = 0.4.

The last system is when τ1 = τ2 = 100. Uncoupled sample time series and

magnitude spectra of x and y for c = 0, c = 0.2 and c = 0.4 are shown in Figure 3.7.

Although the time domain sample series are different between x and y in panel (a),

their magnitude spectra are almost identical holding a series of gradual decreasing

bumps (panel (b)). Per this uni–directionally coupled system, as the coupling strength

grows in this system, the driving signal remains the same, while y from the passive

system changes in shape and slowly boosts as higher arches per bump cycle (panels

(c) and (d)).
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Figure 3.7: (a) Sample series plot of x and y from the uncoupled Mackey–Glass
equations (3.22) (c = 0) τ1 = 100 and τ2 = 100, (b) their log–magnitude spectra
plots, (c) log–magnitude spectra with coupling strength c = 0.2 and (d) with coupling
strength c = 0.4.

In the simulations, time series of length 400, 000 for the first two systems

(Lorenz) were generated with an integration step of 0.02. The 400, 000 observations

were further segmented into M = 200 sample series containing N = 2, 000 observations

in each segment for the estimation of MIs. Time series from Mackey–Glass system

were generated with an integration step of 1 and segmented into M = 200 sample

series with N = 1, 000 observations each. For all three coupled nonlinear system

simulations, 100 replicates of time series were generated with random initial conditions

and the average MIs are presented.
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3.5.2 Emotional Behavior Electrophysiological Data

The DEAP database is a publicly available dataset for the study of human

affective states [5] under Russell’s emotional state model [4]. This response to emotional

stimuli experiment was designed to provide 32 participants with the same 40 trials

of one–minute–long music video clips, to record their instantaneous physiological

signals (EEG and peripheral nervous system signals) as well as frontal face video,

and to collect their self–assessment rating scores per trial. Among the 40 channels of

physiological signals, 32 channels are EEG recordings and they were collected under a

modified 10—10 montage shown in Figure 3.8. Per this EEG montage arrangement,

the nine electrodes covering the frontal lobe from front to central part are Fp1, Fp2,

AF3, AF4, F3, F4, F7, F8 and Fz; the three electrodes covering the central part of

brain are C3, C4, and Cz, and the neighbor electrodes to the frontal are FC1, FC2,

FC5, and FC6, and to the parietal lobe are CP1, CP2, CP5, and CP6. The left and

right temporal lobes are represented by T7 and T8, respectively. The parietal lobe is

covered mainly by five electrodes: P3, P4, P7, P9 and Pz, while the occipital lobe has

O1, O2 and Oz; however, these two lobes share two electrodes, PO3 and PO4, along

their boundary. The music video clips were selected to evenly represent low/high

values in the valence–arousal space [5] and with the “maximum emotional content” [5].

The partial dataset employed for our analysis includes EEG recordings for the last 30

seconds of each trial and subjective ratings on the two model dimensions (i.e., valence

and arousal). The 32–channel EEG recordings underwent integrated preprocessing,

including EOG artifacts removal, common reference averaging, 4–45Hz band–pass

filtering, and down–sampling to 128Hz.
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Figure 3.8: Top view of the modified 10–10 montage that DEAP dataset applied [5].



CHAPTER 4

RESULTS

The methodology described in Chapter 3 is tested on simulated data and

real–world biological signals using in–house built algorithms with Python programming

language (Python 2.7.12 ) and its scientific computing modules (i.e., Numpy 0.13.0

and Scipy 0.19.0 ), as well as Matlab vR2017a with academic license.

4.1 Results on Artificial Data

4.1.1 Lorenz

The MI in the frequency domain measures (equations (3.17)–(3.19)) along

with the conventional measure of MSC from equation (2.10) for x and z variables of

the Lorenz system equations (3.20) were estimated. For the estimation of coherence,

Welch’s method was used with a Hamming window of length N = 2, 000 and without

overlapping, for consistency with the MI estimation procedures. The results are shown

in Figures 4.1 and 4.2. CXZ and IAAXZ (Figure 4.1, panels (a) and (b) respectively),

except for the close to 0 Hz frequency component, both show a lower peak at 1.3 Hz and

relatively higher second peak at 1.5 Hz. However, CXZ values exhibit high variability

at other frequencies while IAAXZ values remain consistently smaller for frequencies

different from 0 Hz, the primary frequency at 1.3 Hz and the secondary frequency

at 1.5 Hz of the system. Additionally, the overall range of CXZ values is close to 0

48
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indicating that coherence cannot adequately capture the nonlinear interaction between

the two variables.

Figure 4.1: (a) MSC plot and (b) MI of magnitudes plot for x and z variables.

The other three MI measures are shown in Figure 4.2. Panel 4.2 (a) presents the

dependency between phases of the x and z variables (IφφXZ) and it shows a clear peak

at 1.3 Hz, which is the primary frequency of the system, along with a secondary peak

at 1.5 Hz. This is the opposite of what was observed for the MI between magnitudes

(Figure 4.1 (b)). Panels 4.2 (b) and (c) show the magnitude–phase interactions: IAφXZ

exhibits no clear peak at the primary or secondary frequencies (or any other frequency),

while IφAXZ has a single dominant peak at 1.3 Hz. This implies that the phase of the x

variable of the Lorenz system interacts with z in a modulatory fashion to produce the

1.3 Hz activity, while the 1.5 Hz activity involves x and z without a similar feature.

We note that all four MI measures capture and showcase different and distinct aspects

of the interactions in the system.
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Figure 4.2: MI of (a) phases, (b) magnitude–phase and (c) phase–magnitude plots
for x and z variables.

4.1.2 Bidirectionally coupled Lorenz

The z1 and z2 variables from the bidirectionally coupled Lorenz systems for

a range of values of the coupling parameter were examined by means of MSC and

the four MI measures and plotted in Figure 4.3. Panels (a)–(d) present pseudocolor

intensity plots of the MI measure for the different spectral characteristics under the

same scale, while panel (e) presents the MSC measure. For all plots the x–axis is the

frequency, the y–axis is the coupling strength and the colors represent the value of the

measure (warm colors corresponding to high values and cold colors to low values). We

observe that IAAZ1Z2
and IφφZ1Z2

both exhibit high values starting from c = 0.3 at 1.8 Hz

(the primary frequency of the second sub–system), with IAAZ1Z2
taking slightly higher

values than IφφZ1Z2
. Two clusters of relatively high values (approximately half of the
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maximum values) are seen in the frequency ranges 0.7 to 1.5 (a range that includes

the primary frequency of the first sub–system), and 2.0 to 2.3 Hz starting at c = 0.3

and fading away after c = 1.2 and c = 0.6 respectively. The two magnitude–phase

measures (IAφZ1Z2
and IφAZ1Z2

) exhibit extremely low values for all coupling parameters

and all frequencies. Compared with IAAZ1Z2
and IφφZ1Z2

, CZ1Z2 exhibits its maximum

values along the 1.8 Hz frequency region, and the two clusters are slightly shifted to

higher coupling strengths with high values (close to the maximum of 1). Overall, IAAZ1Z2

and IφφZ1Z2
clearly detect the interaction between the two systems in the Z dimension

and the frequency of this interaction occurs at 1.8 Hz, while MSC provides high values

for a large range of frequencies, indicative of its inability to accurately identify the

interactions as the nonlinear coupling strength increases.
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Figure 4.3: Comparison of measures from z1 and z2 of the bidirectionally coupled
Lorenz system: (a) MI of magnitudes, (b) of phases, (c) of magnitude–phase, (d) of
phase–magnitude and (e) MSC.
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Figure 4.4 presents selected cases of CZ1Z2 , I
AA
Z1Z2

and IφφZ1Z2
for specific coupling

strengths (c = 0.3, c = 1.0 and c = 2.0). For the case of small coupling strength

(panels (a)–(c)) CZ1Z2 only captures the interaction at 1.5 and 1.8 Hz taking values

close to the maximum, while IAAZ1Z2
and IφφZ1Z2

also capture the interaction below 1.5

Hz and above 2.0 Hz. As the coupling strength increases to c = 1.0 (panels (d)–(f))

and c = 2.0 (panels (g)–(i)), CZ1Z2 takes high values for most of the frequencies, while

IAAZ1Z2
and IφφZ1Z2

give prominence to the 1.8 Hz frequency components, and the 0.7 to

1.5 Hz “bump” gradually vanishes.

Figure 4.4: MSC (left column), MI of magnitudes (middle column) and MI of phases
(right column) plots for z1 and z2 variables from the bidirectionally coupled Lorenz
system with coupling strength c = 0.3 in (a)–(c), c = 1.0 in (d)–(f) and c = 2.0 in
(g)–(i).
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4.1.3 Unidirectionally coupled Mackey–Glass

Figures 4.5, 4.7 and 4.9, and 4.11 present the results of the analysis of the four

cases of the coupled Mackey–Glass equations. Measures IAφXY and IφAXY show extremely

low values for all coupling parameters and all frequencies, similarly to the case of the

bidirectional coupled Lorenz systems, so we omit presentation of results from them.

In the first case of x driving y with both sub–systems having the same parameter

(τ1 = τ2 = 17) in Figure 4.5, IAAXY in panel (a) captures the coupling beyond c = 0.05

for most of the frequency components, and as the coupling increases most of the

frequencies exhibit gradual increases in value as well. IAAXY around 0.067 Hz is slightly

more dominant across all frequencies. However, the frequency band 0.05 Hz to 0.06 Hz

has a major drop between coupling strength c = 0.25 and 0.45. IφφXY in panel (b) gives

values lower than IAAXY for the same frequencies. Additionally, it also shows coupling

at 0.01 Hz and 0.02 Hz when c = 0.05 (the smallest coupling strength). CXY in panel

(c) exhibits its maximum value of 1 for almost all frequencies.
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Figure 4.5: Comparison of measures from x and y of the unidirectionally coupled
Mackey–Glass equations (x with τ1 = 17 drives y with τ2 = 17): (a) MI of magnitudes,
(b) MI of phases, and (c) MSC.

Figure 4.6 compares the three measures as functions of the coupling strength

c ∈ [0, 0.5] at 0.051 Hz and 0.067 Hz. Panels (a)–(c) showcase the CXY , IAAXY and IφφXY

at 0.051 Hz: we observe CXY quickly jumps to the maximum value after coupling

is introduced (c = 0.1); while IAAXY and IφφXY both exhibit local peaks at c = 0.1 and

c = 0.2, then monotonically increase until the maximum value of coupling strength
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(c = 0.5). In the case of f = 0.067 Hz, all three measures behave similarly, with a

major increase at c = 0.1 and remaining high afterward.

Figure 4.6: Comparison of MSC (left column), MI of magnitudes (middle column)
and MI of phases (right column) between the unidirectionally coupled Mackey–Glass
equations (x and y both with τ1 = τ2 = 17) as a function of coupling strength, for
frequency f = 0.051 Hz in (a)–(c) and f = 0.067 Hz in (d)–(f).

In the case of x with τ1 = 17 driving y with τ2 = 100 in Figure 4.7, IAAXY in panel

(a) exhibits a gradual increase at multiple frequencies with no discernible pattern as

the coupling strength increases. The MI values spread over the whole frequency range

as coupling increases. The main observation is the MI around 0.067 Hz that is slightly

more dominant. IφφXY in panel (b) behaves similarly but lacks the 0.067 Hz dominant

values and takes high values at 0.02 Hz even for the smallest coupling value (c = 0.05).

CXY in panel (c) takes its maximum value for almost all frequencies after coupling

c = 0.3 with no specific frequency exhibiting something of interest.



57

Figure 4.7: Comparison of measures from x and y of the unidirectionally coupled
Mackey–Glass equations (x with τ1 = 17 drives y with τ2 = 100): (a) MI of magnitudes,
(b) MI of phases, and (c) MSC.

Figure 4.8 shows the three measures for two selected frequencies, f1 = 0.02 Hz

and f2 = 0.067 Hz. In the first case (top row), CXY quickly jumps to its maximum

value when c = 0.05 and retains the same value for increasing coupling strengths

in panel (a), IAAXY shows a gradual rise as coupling strength increases in panel (b)

and IφφXY also exhibits a plateau–like shape after c = 0.1 in panel (c). In the second
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case (bottom row), IAAXY and IφφXY correctly identify the gradually increasing coupling

between the x and y variables in panels (e) and (f).

Figure 4.8: Comparison of MSC (left column), MI of magnitudes (middle column)
and MI of phases (right column) between the unidirectionally coupled Mackey–Glass
equations (x with τ1 = 17 drives y with τ2 = 100) as a function of coupling strength,
for frequency f = 0.02 Hz in (a)–(c) and f = 0.067 Hz in (d)–(f).

The case of the passive subsystem specified by τ2 = 17 and the driving

subsystem being with τ2 = 100, MI and coherence measures are displayed in Figure

4.9. IAAXY in panel (a) exhibits the same gradual increase at multiple frequencies as the

coupling strength increases. The affected frequency components hold almost equal

distances between them, and the lowest coupling parameters that causes measure

increase at these frequencies show a linear increasing trend. The highest IAAXY appears

around 0.006 Hz. Meanwhile, IφφXY in panel (b) behaves similarly but all values are

lower than the corresponding IAAXY values in panel (a). CXY in panel (c) takes its
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maximum value for quite a few frequencies after coupling c = 0.3 with no specific

frequency exhibiting something of interest.

Figure 4.9: Comparison of measures from x and y of the unidirectionally coupled
Mackey–Glass equations (x with τ1 = 100 drives y with τ2 = 17): (a) MI of magnitudes,
(b) MI of phases, and (c) MSC.

For selected frequencies of 0.006 Hz and 0.052 Hz, the three measures are

shown in Figure 4.10. Panels (a)–(c) show individual local peaks at c = 0.1, but CXY

has this peak value close to its maximum and remains high for the ensuing coupling
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parameters, while IAAXY and IφφXY display this peak with value no more than half of

their maximum values at c = 0.5. The second case in panels (d)–(f) also shows the

difference between MSC and MI measures, CXY exhibits a concave shape while MI

measures show a sigmoid shape (convex first and then concave).

Figure 4.10: Comparison of MSC (left column), MI of magnitudes (middle column)
and MI of phases (right column) between the unidirectionally coupled Mackey–Glass
equations (x with τ1 = 100 drives y with τ2 = 17) as a function of coupling strength,
for frequency f = 0.006 Hz in (a)–(c) and f = 0.052 Hz in (d)–(f).

When the passive subsystem and the driving subsystem are both specified with

τ = 100, the comparison of IAAXY , IφφXY and CXY are displayed in Figure 4.11. IAAXY in

panel (a) exhibits the same gradual increase at multiple frequencies as the coupling

strength increases. The affected frequency components hold almost equal distances

between them, and the coupling across these frequencies seems to appear for the same

coupling parameter c = 0.2. Regarding the intensity of IAAXY , high intensity tends
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to appear in the lower frequencies (below 0.06 Hz). IφφXY in panel (b) again exhibits

similar behavior but measure values are lower than the corresponding IAAXY values in

panel (a). CXY in panel (c) takes its maximum value for the majority of the same

frequencies as the MI measures after coupling c = 0.2, however the initiating coupling

strength reduces to c = 0.05.

Figure 4.11: Comparison of measures from x and y of the unidirectionally coupled
Mackey–Glass equations (x with τ1 = 100 drives y with τ2 = 100): (a) MI of
magnitudes, (b) MI of phases, and (c) MSC.
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Measure values for frequencies 0.006 Hz and 0.035 Hz are compared in Figure

4.12. In panel (a), CXY exhibits monotonic increasing trend with plateau beyond

c = 0.3. For the same data, IAAXY in panel (b) and IφφXY in panel (c) increase almost

linearly as coupling strength grows. In the second case (f = 0.035 Hz), IAAXY and IφφXY

in panels (e) and (f) again show individual peaks at c = 0.15, and after c = 0.3 linear

increase, while the local peak for CXY appears at c = 0.3, taking a value close to the

maximum, and remaining relatively constant for the rest of the coupling strengths.

Figure 4.12: Comparison of MSC (left column), MI of magnitudes (middle column)
and MI of phases (right column) between the unidirectionally coupled Mackey–Glass
equations (x and y both with τ1 = τ2 = 100) as a function of coupling strength, for
frequency f = 0.006 Hz in (a)–(c) and f = 0.035 Hz in (d)–(f).

4.2 Results on Real EEG Data

The EEG data from experimental trials of the DEAP database were divided

into two groups per affective dimension (i.e., positive or negative valence, and high
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and low arousal) by the median rating score per subject. This division resulted in

M = 633/629 in number segments for valence and M = 625/625 for arousal. The

EEG data from the second half duration of each trial (30 seconds) for all subjects

and trials were used, in accordance to Koelstra et al. [5]. The frequency domain MI

measures were estimated separately for positive/negative or high/low affective states

and for every pair of channels (496 pairs in total).

For each 30 seconds segment and each EEG channel, a Hamming window was

applied to the data and DFT was performed. Then the magnitude and phase per

frequency were extracted. Finally, the MI measures in the frequency domain were

estimated from the M in number segments that correspondent to each state. Figure

4.13 presents IAAXY (f) and IφφXY (f) between two selected EEG channel pairs, Oz–FC6

and P3–F8, for positive and negative states of valence. In panel (a), we observe a

notable difference between the state of positive valence (blue line) and that of negative

(orange line) for the EEG channel pair Oz–FC6. This difference appears at higher

frequencies and it is more prominent for IAAXY (f) than IφφXY (f). For the second EEG

channel pair, P3–F8, shown in panel (c) and (d), no such difference is observed.
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Figure 4.13: Negative/positive valence state plots of (a) IAAXY (f) and (b) IφφXY (f) for
EEG channel pair Oz–FC6, (c) IAAXY (f) and (d) IφφXY (f) for EEG channel pair (P3–F8).

On the other hand, for the case of arousal, IAAXY (f) and IφφXY (f) from the same

channel pairs are shown in Figure 4.14. IAAXY (f) in panels (a) and (c) separates high

arousal from low arousal more clearly than IφφXY (f) in panels (b) and (d) for both

pairs. Channel wise, low/high arousal are more separable in P3–F8 pair (panels (c)

and (d)) than in Oz–FC6 (panels (a) and (b)).
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Figure 4.14: Low/high arousal state plots of (a) IAAXY (f) and (b) IφφXY (f) for EEG
channel pair Oz–FC6, (c) IAAXY (f) and (d) IφφXY (f) for EEG channel pair (P3–F8).

The entire measure plots for IAAXY (f), the case of valence on all (496) channel

pairs are provided in Appendix A.

To summarize the information provided by the 496 MI measures estimated

from the 32 channels, we sum the measure values that are associated with the same

channel i to obtain an aggregate measure of its overall dependency to the others

and we define the cumulative MI in terms of magnitudes with respect to channel

i as SIAAi (f) =
∑

j I
AA
ij (f). To investigate the quantitative difference between the
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positive/high and the negative/low states with respect to both brain regions and

frequencies, we further subtract the SIi of negative/low state from the positive/high

state and we denote it as DSIi. Figures 4.15–4.18 present this quantity, specifically

DSIAAi (f) and DSIφφi (f), across channels (vertical axis) and frequencies (horizontal

axis) for the cases of valence and arousal. We note that due to the pre–processing

of the data, only the frequencies ranging from 4 to 44 Hz are used. In Figure 4.15,

the DSIAAi (f) for positive/negative valence vary between −0.504 and 0.878, with the

most significant differences appearing in Oz and Pz (occipital and parietal lobes) at

frequencies above 30 Hz, as well as a smaller difference in Fp1 (left frontal lobe), again

at high frequencies.



67

Figure 4.15: DSIAAi (f) for different channels (vertical axis) and frequencies
(horizontal axis) for the case of valence. For visualization purposes, a moving average
filter of length 30 is applied on the horizontal axis.

DSIφφi (f) measure for valence is shown in Figure 4.16. The highest (difference)

values between positive/negative states repeatedly appear in channels Oz and Pz

beyond 24 Hz, and channel T8 stands out with a comparable range but negative values

at the same frequencies. This means while the overall Iφφ(f) for channels Oz and Pz

are higher in positive valence compared with negative valence, the overall Iφφ(f) for

channel T8 holds the opposite patterns in difference between positive and negative

states of valence.
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Figure 4.16: DSIφφi (f) for different channels (vertical axis) and frequencies
(horizontal axis) for the case of valence. For visualization purposes, a moving average
filter of length 30 is applied on the horizontal axis.

In Figure 4.17, the difference between high/low arousal per channel (DSIAAi (f))

is presented across all frequencies. Among them, channels P3 and F8 both show

relatively high values beyond 30 Hz. However, channel T7 holds negative high values

(in deep blue color) at very low frequencies (slightly above 4 Hz). Similarly with the

interpretation to channel T8 in Figure 4.16, channel T7 exhibits overall higher values

(IAA(f)) for low arousal state than the high arousal state.
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Figure 4.17: DSIAAi (f) for different channels (vertical axis) and frequencies
(horizontal axis) for the case of arousal. For visualization purposes, a moving average
filter of length 30 is applied on the horizontal axis.

The measure DSIφφi (f) for the dimension of arousal is presented in Figure 4.18.

Additional channels i.e., F3, F4, and CP2 above 30 Hz, behave similarly with P3 and

F8 in representing the positive difference from high arousal state to low arousal state.

Channel AF4 at around 6 Hz is similar to T7 at a lower frequency in showing the

negative difference from high arousal state to low arousal state.
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Figure 4.18: DSIφφi (f) for different channels (vertical axis) and frequencies
(horizontal axis) for the case of arousal. For visualization purposes, a moving average
filter of length 30 is applied on the horizontal axis.

Plots with respect to DSIAφi (f) and DSIφAi (f) are listed in Appendix B

due to the much smaller ranges for the corresponding measure values compared

with DSIAAi (f) and DSIφφi (f), and the fact that they do not provide any useful

information.

The estimates of DSIAAi (f) and DSIφφi (f) are averaged across the traditional

brain frequency bands, i.e., θ, α, β and low γ (limited by data as 30–45 Hz), and

presented through brain topographic plots in Figure 4.19. The measures DSIAφi (f)

and DSIφAi (f) do not showcase anything interesting (as in the cases of the artificial
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data from coupled systems), so we omit their presentation. Panel (a) shows the

results for the valence dimension. DSIAAi shows that channels Pz and Oz in the low γ

band exhibit the highest difference between positive and negative valence with values

0.5183 and 0.510 respectively, followed by channels F8, FC6, Fp1, and AF4. DSIφφi (f)

exhibits similar behavior at the low γ band, but with MI values being in general much

smaller than those of DSIAAi . For the case of high vs. low arousal (panel (b)) DSIAAi

shows the major differences in the low γ band at Fp1, F8, and P3 with values 0.563,

0.547 and 0.504, followed by FC1, F3, and FC5. DSIφφi again exhibits much smaller

values, with similar patterns as DSIAAi at the low γ band.
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Figure 4.19: Topographic maps of DSIAAi (f) and DSIφφi (f), averaged for each
frequency band, as indicated on the top of the figure for (a) valence and (b) arousal.

In summary, the difference between positive and negative valence and high

and low arousal are mostly observed with respect to magnitude MIs in the midline

occipital and parietal lobes, and bilaterally in the frontal lobe, at high frequencies

and are distinct between the two emotional dimensions. Physiological aspects of these

observations are further discussed in the next section.



CHAPTER 5

DISCUSSION AND CONCLUSIONS

5.1 Evaluation of the Developed Methodology

Our results from the simulated data showed that frequency–based MI performs

better than the linear and traditionally used measure of Coherence. For the Lorenz

system, two out of four measures (IφφXY (f) and IφAXY (f)) emphasized the nonlinear

dependency between x and z at the primary frequency component, while the linear

measure (CXY (f)) failed. In the bidirectionally coupled Lorenz systems case, both

IAAXY (f) and IφφXY (f) showed an increasing dependency relation at 1.8 Hz (the primary

frequency of the second subsystem) as the coupling parameter increased. CXY (f)

was much less specific in capturing these phenomena, taking high values for much

wider frequency regions around the primary frequency and over the whole frequency

range. In the last model (coupled Mackey–Glass equations) with 4 sets of parameters,

the developed measures were able to track the increase of dependency at certain

frequencies as the coupling parameter increased, while coherence again performed

poorly, rising rapidly and remaining on a plateau, ultimately failing to accurately

capture the underlying changes in the system.

Overall, the developed measures were able to correctly identify the interactions

in the systems and localize them in the frequency domain. A limitation of our

73
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methodology is the data volume requirement. This type of nonparametric analysis

needs enough data to accurately obtain the spectral characteristics and provide a good

estimate of their density functions. This means that the individual segments of the

time series should be sufficiently long, and that the number of segments should be

sufficiently large. Although the kernel density estimates we employed are considered

efficient for Gaussian data, in practice and due to non–Gaussianity of the spectral

characteristics, alternative methods (e.g., nearest neighbor density estimates) may

allow for smaller number of segments, thus decreasing the data requirements.

Apart from the first test–case of simulated data (single Lorenz system), the

combined magnitude–phase MI measure (IAφXY (f) and IφAXY (f)) did not show anything

interesting or promising. Most probably this is due to lack of any such interactions in

the coupled systems that were tested. The way the coupling is introduced in these

systems is a simple additive term, which we expect to have a higher impact in the

magnitude of the time series but not necessarily on the phases. More complicated

coupling schemes can induce magnitude–phase interactions that would be able to be

captured by these measures. Another possible explanation is the magnitude–phase

interactions are cross–frequency in nature. This explanation is further corroborated

by the current trend in neurosience of cross–frequency phase–magnitude coupling in

the brain [107, 80, 108], and the fact that nonlinear interactions have the potential to

create new frequencies [109, 110].
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5.2 Affective States Analysis

In affective state research, brain regions from the frontal lobes [111], parietal

lobes [68], and from the temporal lobes [112] have been previously reported to be

related to emotional response. Application of the developed methodology on the

emotional behavior EEG dataset revealed that positive valance and high arousal is

associated with increased connectivity in specific regions of the frontal, occipital and

parietal lobes. The involvement of the frontal lobe is in accordance to the known

relation of this brain region to emotional processing [66]. Valance was associated with

the right frontocentral and left prefrontal regions (electrodes F8 and Fp1 respectively),

while for arousal involvement of these two regions was observed, as well as left

frontocentral (electrode F3). The occipital lobe corresponds to the visual cortex,

and it has been reported that emotional processing begins with vision [74], and that

perceptual encoding in the visual cortex is modulated by the emotional significance of

visual stimuli [79]. Given the setup of the experiment (visual stimuli in the form of

videos), we believe that the involvement of the visual cortex reflects these underlying

neuronal processes. Finally, the increased connectivity in the parietal cortex can be

attributed again to the processing of visual stimuli, or to somatosensation, which is

also believed to be related to emotional responses [76]. With respect to EEG frequency

bands, the observed results were mostly confined to the γ band, which is associated

with higher brain functions, and has been reported to be related to emotional responses

[72, 71, 70]. In alignment with this, Jatupaiboon et al. also suggested that higher

frequency bands (β and γ) provide higher accuracy in happiness detection tasks [112].
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5.3 Conclusion

We developed a general method to measure dependencies between time series

with respect to frequency, based on their spectral characteristics. The methodology

is intuitively appropriate for time series generated from biological systems, whose

outputs typically containing distinct frequency components.

The identification of dependency relations in a system can be used to detect

the functional structures and interactions, and direct system–level simulations and

modeling. The developed methodology expands on ideas of nonlinear dependency and

interactions and provides a new way to quantify relations with respect to frequency,

thus making it highly suitable for studying many and diverse systems in biomedical

sciences.

5.4 Future Work

Our measures of Mutual Information in the frequency domain is currently

focusing on two distinct components (two variables X and Y ) of a biological system.

To expand the study of the interaction to more components from the system at once,

a similar methodology employing the multivariate version of mutual information

(i.e., I(X;Y ;Z)) can be developed with respect to frequency features. Additionally,

conditional MI (I(X;Y |Z)) measures the association between X and Y when given

the information of Z. This quantity once estimated can also reveal the relation among

the multi–variables X, Y , and Z. Finally, these scalar variables can be replaced by a

collection of variables (i.e., X = (X1, X2, ..., Xn)) in order to investigate the interaction

among clusters of system components.
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Also, extension of the developed methodology to a cross–frequency imple-

mentation would be straightforward, with simple modification in the definition of

the measures. Of course, this extension would be computationally expensive and

complicated with respect to the analysis of the results, since the cross–frequency setup

increases dimensionality. Nonetheless, such an extension of the current algorithm

will complement the results reported herein and help further explain the underlying

mechanisms for the cases we examine.

Finally, an interesting application of our methodology would be in the case of

multimodal signals, i.e., signals that are obtained from different recording methods;

they are very different in nature and/or represent different aspect of the activity of the

system components (e.g., ECG–EEG or ECG–fMRI). Since our measures do not make

any assumptions about the data and the relations between the systems’ components

but use the probability densities to quantify the interaction, we consider them highly

suitable for the study of multimodal signals.



APPENDIX A

FIGURE SET 1

Supplement figures for IAAXY (f) for valence dimension.
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APPENDIX B

FIGURE SET 2

DSIi(f) for combined spectral characteristics per channel and frequency in two

cases of valence and arousal are shown in Figure B.1. We notice that the corresponding

color bars are with much smaller ranges compared with DSIAAi (f) or DSIφφi (f) in all

cases, and that all four panels do not show interesting patterns in terms of channels

(brain regions).

Figure B.1: (a) DSIAφi (f) and (b) DSIφAi (f) for different channels (vertical axis)
and frequencies (horizontal axis) in valence, (c) DSIAφi (f) and (d) DSIφAi (f) for
different channels and frequencies in arousal. For visualization purposes a moving
average filter of length 30 is applied on the horizontal axis.
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R. Hari, and M. Sams. Emotional speech synchronizes brains across listeners and



100

engages large-scale dynamic brain networks. NeuroImage, 102:498–509, 2014.
[77] L. Nummenmaa, E. Glerean, R. Hari, and J. Hietanen. Bodily maps of emotions.

Proceedings of the National Academy of Sciences, 111(2):646–651, 2014.
[78] J. Hietanen, E. Glerean, R. Hari, and L. Nummenmaa. Bodily maps of emotions

across child development. Developmental Science, 19(6):1111–1118, 2016.
[79] H. Schupp, J. Markus, A. Weike, and A. Hamm. Emotional facilitation of

sensory processing in the visual cortex. Psychological Science, 14(1):7–13, 2003.
[80] R. Canolty, E. Edwards, S. Dalal, M. Soltani, S. Nagarajan, H. Kirsch, M. Berger,

N. Barbaro, and R. Knight. High gamma power is phase-locked to theta
oscillations in human neocortex. Science, 313(5793):1626–1628, 2006.

[81] J. Yeh, C. Peng, M. Lo, C. Yeh, S. Chen, C. Wang, P. Lee, and J. Kang.
Investigating the interaction between heart rate variability and sleep EEG using
nonlinear algorithms. Journal of Neuroscience Methods, 219(2):233–239, 2013.

[82] K. Schindler, H. Leung, C.E. Elger, and K. Lehnertz. Assessing seizure dynamics
by analyzing the correlation structure of multichannel intracranial EEG. Brain,
130(1):65–77, 2007.

[83] R. Salvador, J. Suckling, C. Schwarzbauer, and E. Bullmore. Undirected
graphs of frequency-dependent functional connectivity in whole brain networks.
Philosophical Transactions of the Royal Society of London B: Biological Sciences,
360(1457):937–946, 2005.

[84] G. Nolte, O. Bai, L. Wheaton, Z. Mari, S. Vorbach, and M. Hallett. Identifying
true brain interaction from EEG data using the imaginary part of coherency.
Clinical Neurophysiology, 115(10):2292 – 2307, 2004.

[85] C. Chen, J. Hsieh, Y. Wu, P. Lee, S. Chen, D. Niddam, T. Yeh, and Y. Wu.
Mutual-information-based approach for neural connectivity during self-paced
finger lifting task. Human Brain Mapping, 29(3):265–280, 2008.

[86] C. Lu, S. Teng, C. Hung, P. Tseng, L. Lin, P. Lee, and Y. Wu. Reorganization
of functional connectivity during the motor task using EEG timefrequency cross
mutual information analysis. Clinical Neurophysiology, 122(8):1569 – 1579, 2011.

[87] A. Gong, J. Liu, S. Chen, and Y. Fu. Time–frequency cross mutual information
analysis of the brain functional networks underlying multiclass motor imagery.
Journal of Motor Behavior, 0(0):1–14, 2017.

[88] D. Brillinger and A. Guha. Mutual information in the frequency domain. Journal
of Statistical Planning and Inference, 137(3):1076 – 1084, 2007. Special Issue on
Nonparametric Statistics and Related Topics: In honor of M.L. Puri.

[89] D. Scott. Multivariate density estimation: theory, practice, and visualization.
John Wiley & Sons, 2015.

[90] A.W. Bowman and A. Azzalini. Applied Smoothing Techniques for Data Analysis:
The Kernel Approach with S-Plus Illustrations. Oxford Statistical Science Series.
OUP Oxford, 1997.

[91] B. W. Silverman. Density Estimation for Statistics and Data Analysis. Chapman
& Hall, 1986.

[92] S.R. Jammalamadaka and U.J. Lund. The effect of wind direction on ozone
levels: a case study. Environmental and Ecological Statistics, 13(3):287–298,
2006.



101

[93] S.R. Jammalamadaka, A. Sengupta, and A. Sengupta. Topics in Circular
Statistics. Series on multivariate analysis. World Scientific, 2001.

[94] M. Marzio, A. Panzera, and C.C. Taylor. Kernel density estimation on the torus.
Journal of Statistical Planning and Inference, 141(6):2156 – 2173, 2011.

[95] M. Babtlett. Smoothing periodograms from time-series with continuous spectra.
Nature, 161(4096):686, 1948.

[96] P. Welch. The use of fast fourier transform for the estimation of power spectra:
A method based on time averaging over short, modified periodograms. IEEE
Transactions on Audio and Electroacoustics, 15(2):70–73, June 1967.

[97] J. Muthuswamy. Biomedical signal analysis. In M. Kutz, editor, Standard
Handbook of Biomedical Engineering and Design, chapter 21. McGraw-Hill, 2
edition, 2009.

[98] W. Klonowski. Everything you wanted to ask about EEG but were afraid to get
the right answer. Nonlinear Biomedical Physics, 3:2, 02 2009.

[99] L. Glass and M.C. Mackey. From Clocks to Chaos: The Rhythms of Life.
Princeton paperbacks. Princeton University Press, 1988.

[100] E. Lorenz. Deterministic nonperiodic flow. Journal of the Atmospheric Sciences,
20(2):130–141, 1963.

[101] J. Sun, Y. Zhao, T.i Nakamura, and M. Small. From phase space to frequency
domain: A time-frequency analysis for chaotic time series. Physical Review E,
76(1):016220, 2007.

[102] D. Farmer, J. Crutchfield, H. Froehling, N. Packard, and R. Shaw. Power spectra
and mixing properties of strange attractors. Annals of the New York Academy
of Sciences, 357(1):453–471, 1980.

[103] T. Kreuz, F. Mormann, R. Andrzejak, A. Kraskov, K. Lehnertz, and
P. Grassberger. Measuring synchronization in coupled model systems: A
comparison of different approaches. Physica D: Nonlinear Phenomena, 225
(1):29 – 42, 2007.

[104] D. V. Senthilkumar, M. Lakshmanan, and J. Kurths. Transition from phase to
generalized synchronization in time-delay systems. Chaos: An Interdisciplinary
Journal of Nonlinear Science, 18(2):023118, 2008.

[105] I. Vlachos and D. Kugiumtzis. Nonuniform state-space reconstruction and
coupling detection. Physical Review E, 82(1):016207, 2010.

[106] M. Mackey, L. Glass, et al. Oscillation and chaos in physiological control systems.
Science, 197(4300):287–289, 1977.

[107] T. Demiralp, Z. Bayraktaroglu, D. Lenz, S. Junge, N. Busch, B. Maess, M. Ergen,
and C. Herrmann. Gamma amplitudes are coupled to theta phase in human
EEG during visual perception. International Journal of Psychophysiology, 64
(1):24 – 30, 2007.

[108] M. Cohen, C. Elger, and J. Fell. Oscillatory activity and phase–amplitude
coupling in the human medial frontal cortex during decision making. Journal of
Cognitive Neuroscience, 21(2):390–402, 2008.

[109] M.P. Regan and D. Regan. A frequency domain technique for characterizing
nonlinearities in biological systems. Journal of Theoretical Biology, 133(3):293 –
317, 1988.



102

[110] V. Zemon and F. Ratliff. Intermodulation components of the visual evoked
potential: responses to lateral and superimposed stimuli. Biological Cybernetics,
50(6):401–408, 1984.

[111] Z. Mohammadi, J. Frounchi, and M. Amiri. Wavelet-based emotion recognition
system using EEG signal. Neural Computing and Applications, 28(8):1985–1990,
2017.

[112] N. Jatupaiboon, S. Pan-ngum, and P. Israsena. Real-time EEG-based happiness
detection system. The Scientific World Journal, 2013.


	Mutual Information in the Frequency Domain for Application in Biological Systems
	Recommended Citation

	Louisiana Tech University
	Louisiana Tech Digital Commons
	Spring 5-19-2018

	Mutual Information in the Frequency Domain for Application in Biological Systems
	Rui Liu

	tmp.1554493212.pdf.m1YW9

