286 research outputs found

    Activation of multidrug efflux transporter activity at fertilization in sea urchin embryos (Strongylocentrotus purpuratus)

    Get PDF
    AbstractThis study presents functional and molecular evidence for acquisition of multidrug transporter-mediated efflux activity as a consequence of fertilization in the sea urchin. Sea urchin eggs and embryos express low levels of efflux transporter genes with homology to the multidrug resistance associated protein (mrp) and permeability glycoprotein (p-gp) families of ABC transporters. The corresponding efflux activity is low in unfertilized eggs but is dramatically upregulated within 25 min of fertilization; the expression of this activity does not involve de novo gene expression and is insensitive to inhibitors of transcription and translation indicating activation of pre-existing transporter protein. Our study, using specific inhibitors of efflux transporters, indicates that the major activity is from one or more mrp-like transporters. The expression of activity at fertilization requires microfilaments, suggesting that the transporters are in vesicles and moved to the surface after fertilization. Pharmacological inhibition of mrp-mediated efflux activity with MK571 sensitizes embryos to the toxic compound vinblastine, confirming that one role for the efflux transport activity is embryo protection from xenobiotics. In addition, inhibition of mrp activity with MK571 alone retards mitosis indicating that mrp-like activity may also be required for early cell divisions

    Nitromusk and Polycyclic Musk Compounds as Long-Term Inhibitors of Cellular Xenobiotic Defense Systems Mediated by Multidrug Transporters

    Get PDF
    Synthetic musk compounds, widely used as fragrances in consumer products, have been detected in human tissue and, surprisingly, in aquatic organisms such as fish and mollusks. Although their persistence and potential to bioaccumulate are of concern, the toxicity and environmental risks of these chemicals are generally regarded as low. Here, however, we show that nitromusks and polycyclic musks inhibit the activity of multidrug efflux transporters responsible for multixenobiotic resistance (MXR) in gills of the marine mussel Mytilus californianus. The IC(10) (concentration that inhibits 10%) values for the different classes of musks were in the range of 0.09–0.39 ÎŒM, and IC(50) values were 0.74–2.56 ÎŒM. The immediate consequence of inhibition of efflux transporters is that normally excluded xenobiotics will now be able to enter the cell. Remarkably, the inhibitory effects of a brief 2-hr exposure to musks were only partially reversed after a 24- to 48-hr recovery period in clean seawater. This unexpected consequence of synthetic musks—a long-term loss of efflux transport activity—will result in continued accumulation of normally excluded toxicants even after direct exposure to the musk has ended. These findings also point to the need to determine whether other environmental chemicals have similar long-term effects on these transporters. The results are relevant to human health because they raise the possibility that exposure to common xenobiotics and pharmaceuticals could cause similar long-term inhibition of these transporters and lead to increased exposure to normally excluded toxicants

    Quantitative Estimation of P-glycorptein-Mediated Drug Transport by Mechanistically Modeled Intrinsic Clearance

    Get PDF
    P-glycoprotein (P-gp/ABCB1) is an important efflux drug transporter affecting the disposition of 50% of marketed drugs. Cell monolayer permeability assays are the gold standard for assessing P-gp-drug interactions in vitro, but inter-laboratory assay differences produce heterogeneous results. We compared the validity and sensitivity of traditional assay metrics of efflux transport (unidirectional apparent permeability and efflux ratio) with a modeled clearance metric, CLP-gp and hypothesized that CLP-gp would be superior. Cell monolayers heterologously transfected with ABCB1, and 1,25(OH)2D3-modulated ABCB1 in cells served as experimental models. P-gp expression was quantified by western blot and bidirectional [3H]-digoxin transcellular flux was measured. Linear regression analyses were performed for P-gp expression versus each P-gp activity metric. The validity and sensitivity of modeled clearance was comparable to traditional metrics within a cell type, but was superior across different cell types. In conclusion, CLP-gp offers a physiologically-relevant and universally acceptable metric for efflux transport activity

    Right Treatment Wrong Time: Immunotherapy Administration Post-Radiotherapy Decreases Tumor Burden in a Preclinical Model of Brain Metastasis

    Get PDF
    This dissertation (a) provided an in-depth literature review of methods to modulate the blood-brain and blood-tumor barriers to increase drug delivery and efficacy in brain metastases, (b) evaluated the effects of whole-brain radiation therapy on the blood-brain barrier in immunocompetent and immunocompromised mouse models and proposed a mechanism by which the immune response to radiation disrupts the blood-brain barrier, and (c) developed a syngeneic lung cancer brain metastasis model to determine the impact of coordinated immunotherapy administration with radiotherapy. The blood-brain barrier is an impediment to drug delivery to the brain. The inherent leakiness of the blood-tumor barrier does not allow cytotoxic concentrations of drugs to accumulate within the tumor bed. Methods to modulate the barrier are necessary to increase delivery and efficacy of therapeutics. Whole-brain radiation therapy increases blood-brain barrier permeability in a time- and size-dependent manner in immunocompetent, but not immunocompromised mice. Our findings indicate a window of time that may allow greater drug accumulation post-radiotherapy. Combining immunotherapy and radiotherapy has a synergistic effect. Our data demonstrate the impact immune response and treatment sequencing have on brain tumor burden

    Abcb4 acts as multixenobiotic transporter and active barrier against chemical uptake in zebrafish (Danio rerio) embryos

    Get PDF
    BACKGROUND: In mammals, ABCB1 constitutes a cellular “first line of defense” against a wide array of chemicals and drugs conferring cellular multidrug or multixenobiotic resistance (MDR/MXR). We tested the hypothesis that an ABCB1 ortholog serves as protection for the sensitive developmental processes in zebrafish embryos against adverse compounds dissolved in the water. RESULTS: Indication for ABCB1-type efflux counteracting the accumulation of chemicals in zebrafish embryos comes from experiments with fluorescent and toxic transporter substrates and inhibitors. With inhibitors present, levels of fluorescent dyes in embryo tissue and sensitivity of embryos to toxic substrates were generally elevated. We verified two predicted sequences from zebrafish, previously annotated as abcb1, by cloning; our synteny analyses, however, identified them as abcb4 and abcb5, respectively. The abcb1 gene is absent in the zebrafish genome and we explored whether instead Abcb4 and/or Abcb5 show toxicant defense properties. Quantitative real-time polymerase chain reaction (qPCR) analyses showed the presence of transcripts of both genes throughout the first 48 hours of zebrafish development. Similar to transporter inhibitors, morpholino knock-down of Abcb4 increased accumulation of fluorescent substrates in embryo tissue and sensitivity of embryos toward toxic compounds. In contrast, morpholino knock-down of Abcb5 did not exert this effect. ATPase assays with recombinant protein obtained with the baculovirus expression system confirmed that dye and toxic compounds act as substrates of zebrafish Abcb4 and inhibitors block its function. The compounds tested comprised model substrates of human ABCB1, namely the fluorescent dyes rhodamine B and calcein-am and the toxic compounds vinblastine, vincristine and doxorubicin; cyclosporin A, PSC833, MK571 and verapamil were applied as inhibitors. Additionally, tests were performed with ecotoxicologically relevant compounds: phenanthrene (a polycyclic aromatic hydrocarbon) and galaxolide and tonalide (two polycyclic musks). CONCLUSIONS: We show that zebrafish Abcb4 is a cellular toxicant transporter and provides protection of embryos against toxic chemicals dissolved in the water. Zebrafish Abcb4 thus is functionally similar to mammalian ABCB1, but differs from mammalian ABCB4, which is not involved in cellular resistance to chemicals but specifically transports phospholipids in the liver. Our data have important implications: Abcb4 could affect bioavailability - and thus toxicologic and pharmacologic potency - of chemicals to zebrafish embryos and inhibition of Abcb4 therefore causes chemosensitization, that is, enhanced sensitivity of embryos to toxicants. These aspects should be considered in (eco)toxicologic and pharmacologic chemical screens with the zebrafish embryo, a major vertebrate model

    Mechanisms of resistance to QoI fungicides in phytopathogenic fungi

    Get PDF
    The major threat to crops posed by fungal diseases results in the use by growers of enormous amounts of chemicals. Of these, quinol oxydation inhibitors (QoIs) are probably the most successful class of agricultural fungicides. QoIs inhibit mitochondrial respiration in fungi by binding to the Qo site of the cytochrome bc1 complex, blocking electron transfer and halting ATP synthesis. Unfortunately, the rapid development of resistance to these fungicides and consequent control failure has become increasingly problematic. The main mechanism conferring resistance to QoIs is target site modification, involving mutations in the cytochrome b gene CYTB, such as the substitution of glycine by alanine at position 143 (G143A) that occurs in several phytopathogenic fungi. The impact of other mechanisms, including alternative respiration and efflux transporters, on resistance seems to be limited. Interestingly, in some species QoI resistance is not supported by mutations in CYTB, while in others the structure of the gene is such that it is unlikely to undergo G143A mutations. Better understanding of the biological basis of QoI resistance in a single pathogen species will facilitate the development of resistance diagnostic tools as well as proper anti-resistance strategies aimed at maintaining the high efficacy of these fungicides. [Int Microbiol 2008; 11(1):1-9

    Utilizing in vitro transporter data in IVIVE-PBPK: an overview

    Get PDF
    In vitro-in vivo extrapolation (IVIVE) integrated in physiologically-based pharmacokinetic (PBPK) models have been increasingly used during drug discovery and development processes to predict human pharmacokinetic (PK) parameters. Drug transporters can influence drug pharmacokinetics and are key aspects contributing to the development of a successful drug. This review provides a snapshot of challenges or shortcomings of in vitro and in vivo techniques for understanding the contribution of drug transporters to a drug’s pharmacokinetics. The paper also describes the potential of IVIVE-PBPK models as prospective approaches to predict the role of drug transporters in drug discovery and development

    Cancer-associated mesothelial cells promote ovarian cancer chemoresistance through paracrine osteopontin signaling

    Get PDF
    Ovarian cancer is the leading cause of gynecological malignancy-related deaths, due to its widespread intraperitoneal metastases and acquired chemoresistance. Mesothelial cells are an important cellular component of the ovarian cancer microenvironment that promote metastasis. However, their role in chemoresistance is unclear. Here, we investigated whether cancer-associated mesothelial cells promote ovarian cancer chemoresistance and stemness in vitro and in vivo. We found that osteopontin is a key secreted factor that drives mesothelial-mediated ovarian cancer chemoresistance and stemness. Osteopontin is a secreted glycoprotein that is clinically associated with poor prognosis and chemoresistance in ovarian cancer. Mechanistically, ovarian cancer cells induced osteopontin expression and secretion by mesothelial cells through TGF-ÎČ signaling. Osteopontin facilitated ovarian cancer cell chemoresistance via the activation of the CD44 receptor, PI3K/AKT signaling, and ABC drug efflux transporter activity. Importantly, therapeutic inhibition of osteopontin markedly improved the efficacy of cisplatin in both human and mouse ovarian tumor xenografts. Collectively, our results highlight mesothelial cells as a key driver of ovarian cancer chemoresistance and suggest that therapeutic targeting of osteopontin may be an effective strategy for enhancing platinum sensitivity in ovarian cancer
    • 

    corecore