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Abstract 

P-glycoprotein (P-gp/ABCB1) is an important efflux drug transporter affecting the disposition 

of 50% of marketed drugs. Cell monolayer permeability assays are the gold standard for 

assessing P-gp-drug interactions in vitro, but inter-laboratory assay differences produce 

heterogeneous results. We compared the validity and sensitivity of traditional assay metrics 

of efflux transport (unidirectional apparent permeability and efflux ratio) with a modeled 

clearance metric, CLP-gp and hypothesized that CLP-gp would be superior. Cell monolayers 

heterologously transfected with ABCB1, and 1,25(OH)2D3-modulated ABCB1 in cells served 

as experimental models. P-gp expression was quantified by western blot and bidirectional 

[
3
H]-digoxin transcellular flux was measured. Linear regression analyses were performed for 

P-gp expression versus each P-gp activity metric. The validity and sensitivity of modeled 

clearance was comparable to traditional metrics within a cell type, but was superior across 

different cell types. In conclusion, CLP-gp offers a physiologically-relevant and universally 

acceptable metric for efflux transport activity.  
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Chapter 1  

Introduction 

1.1 Pharmacokinetics 

Pharmaceuticals agents act on various molecular targets throughout the body. A 

particular concentration of unbound drug must be achieved at a given site of action for a 

drug to produce its intended pharmacological effect. However, a much lower level of 

drug will not produce the desired therapeutic effect and a much higher level can be 

associated with toxicity. Therefore, drug concentration present at different sites is a 

critical determinant of the pharmacological efficacy of any drug therapy. 

Pharmacokinetics (PK) is a branch of pharmacology that examines the interplay between 

drug properties and physiological processes in the body to dictate circulating drug levels 

over time. 

1.1.1 Absorption, distribution, metabolism and elimination (ADME) 

The pharmacokinetic processes can be broken down into absorption, distribution, 

metabolism, and elimination (excretion), given the common acronym ADME. Absorption 

refers to the pharmacokinetic processes involved in the movement of administered drugs 

into the systemic circulation and the bioavailability of a drug describes the fraction of an 

administered dose that actually reaches the systemic circulation unchanged. Any drug 

that is not injected directly into the blood stream by intravenous (IV) administration must 

cross at least one cell membrane barrier to enter the circulation. Permeability across any 

cell membrane is a function of the physiochemical properties of both the drug (i.e. 

molecular size, shape, ionization, and lipid solubility) and the membrane (e.g. protein 

channels and drug transporters).  Drug movement may occur via passive diffusion 

through the lipid membrane and/or via carrier-mediated transport. Many primary active 

transporter proteins show unidirectional transport activity and depending on their 

orientation in polarized epithelia, they may either facilitate or oppose absorption from the 

GI tract and other body compartments. Since the vast majority of drugs are administered 

by oral dose (per os), factors affecting GI drug absorption are of particular therapeutic 

concern.  
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During the distribution phase, a drug achieves a certain concentration in the blood 

(CPlasma), which changes over time. Transporters expressed in various tissues of the body 

may play a role in the selective accumulation and distribution of drugs into target tissues. 

The term volume of distribution (Vd) describes overall how well a drug distributes from 

the blood into body tissues.  

Chemical modification, or metabolism, of parent drugs occurs primarily in the liver to 

produce metabolites of increased polarity. Many of the metabolic reactions are mediated 

by a class of heme-containing enzymes found in the hepatocyte endoplasmic reticulum, 

which are known as the cytochrome P450 superfamily of oxygenases (CYP). There are 

57 genes and over 59 pseudogenes in humans, divided among 18 families and 43 

subfamilies by sequence homology (1). The CYP 1 to 3 families are the biggest 

contributors to drug metabolism in humans.  In particular, cytochrome P450 family 3, 

subfamily A, member 4 (CYP3A4) metabolizes as many as 50 percent of drugs on the 

market and is the most clinically relevant of the CYP isoforms (1;2). 

Polar parent drugs and metabolites are eliminated by passive filtration into the urine or by 

carrier-mediated transport into the urine or stool. Plasma clearance (CLplasma) represents 

the irreversible removal of a drug from the plasma, as a volume cleared per unit time, and 

it is the summation of elimination processes in the body.  CLplasma can be determined 

from the area under the plasma concentration curve (AUC) following a single IV dose as 

Dose/AUC. The half-life (t1/2) of a drug – the amount of time it takes for drug 

concentrations in blood to decline by 50 percent – also relates to the plasma clearance 

and volume of distribution by the following relationship: 

t1/2 = 0.693 × 
��

��
         [1.1] 

For multiple dosing, CPlasma oscillates with each dose until an average steady-state plasma 

concentration (Cp
ss

) is reached when the rate of administration is equal to the rate of 

elimination.  

At steady state:  
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�

�
 = CL × Cp

ss
          [1.2] 

where, 

Rate of drug administration = 
�

�
       [1.3] 

Rate of drug elimination = CLplasma × Cp
ss      

[1.4] 

The drug dose (D) and dosing frequency (τ) are selected inversely proportional to the 

CLplasma, such that the CP
ss

 of a drug remains within the therapeutic range. 

1.1.2 Interindividual variation in ADME 

As suggested in Section 1.1.1, drug transporters and drug metabolizing enzymes (DMEs) 

play a critical role in ADME processes. Accordingly population variations in these 

ADME proteins can account for striking differences observed in the way that certain 

individuals or populations handle a particular drug (3; 4). For many drugs, 

pharmacokinetics and thus optimal dosing can vary significantly between patients; the 

standard dosing regimen may fail to reach a therapeutic level in some individuals or may 

exhibit dose-dependent toxicity in others. This is of particular concern for drugs with a 

narrow therapeutic index (the ratio between the therapeutic dose and the toxic dose).  

Both genetic and environmental factors can contribute to the variations in ADME protein 

activity and expression that are responsible for population pharmacokinetic variability. 

Genetic polymorphisms are DNA sequence variants that naturally occur at a given 

genome locus in more than 1% of the population and are not due to recurrent mutations. 

They may be in the form of a single substituted, inserted or deleted nucleotide base (a 

single nucleotide polymorphism or SNP), or a larger segment of DNA that is present in 

irregular frequency (copy number variation or CNV). Polymorphisms appear broadly 

throughout the human genome and many polymorphic sites have been shown to impact 

the expression and/or function of a variety of gene products, including several key drug 

metabolizing enzymes and transporters (4-6).  
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Exposure to xenobiotics can also produce significant interindividual variation in the 

activity and expression of drug metabolizing enzymes and drug transporters. A drug 

interaction is said to have occurred when the presence of foods, dietary supplements, 

other drugs or drug diluents cause variation in drug response. Co-administered 

compounds may bind an enzyme or transporter to cause a concentration-dependent 

decrease in enzyme or transporter activity. They may also inhibit or induce ADME 

protein activity by modulating gene expression via transcriptional mechanisms involving 

nuclear hormone receptors. Those interactions that result specifically from the presence 

of a second drug, termed drug-drug interactions (DDIs), have been a recognized obstacle 

to successful drug therapy since the 1960s (7; 8).    

As a result of the ever-growing list of clinically relevant genetic polymorphisms and 

drug-drug interactions, many drug regulatory agencies, including the FDA, offer 

recommendations for routine assessment and management of polymorphisms and DDIs 

during drug discovery, drug development and clinical drug use. Pharmacogenomic and 

drug-drug interaction studies have become critical in the selection of new chemical 

entities with desirable pharmacokinetics and in elucidating the mechanisms underlying 

observed preclinical and clinical drug levels. It is important to know how extensively 

particular polymorphisms and DDIs alter the expression and or activity of ADME 

proteins and to know how this information translates into the clinical setting.  

1.2 Transporters 

1.2.1 Transporters 

1.2.1.1 Physiological and pharmacological role 

Transporters are transmembrane proteins that are expressed in the various tissues of the 

body to facilitate the movement of important endogenous compounds across the cell 

plasma membrane. Endogenous substrates include inorganic ions, amino acids, sugars 

and nucleotides. However, substrate specificity is not limited to physiological 

compounds. Many transporters, in fact, recognize a variety of structurally diverse 

xenobiotics including environmental compounds, dietary compounds, drugs and drug 

metabolites. Transporters can thus have an important role in pharmacokinetics and 
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therapeutic efficacy and can be a mechanism for interindividual variability, interspecies 

variability and drug-drug interactions. 

1.2.1.2 Structure and function 

Due to their hydrophobic nature, relatively low abundance, and inherently flexible 

structure, molecular identification of transporters was difficult to accomplish until the 

development of modern expression cloning techniques in the early 1990s. Three 

dimensional crystal structures have only been achieved at atomic resolution for a limited 

number of transporters thus far. Nonetheless, drug transporters can be categorized 

molecularly into two major groups: the ATP-binding cassette (ABC) and the solute 

carrier (SLC) superfamilies of transporters. In humans, the ABC superfamily is 

comprised of 7 families with 48 known members (9; 10). These transporters have an 

ATP-binding domain that binds and hydrolyzes ATP to power active transport of 

substrates against a concentration gradient. The most well characterized members of this 

superfamily are the ABCB1 and ABCG2 members known as P-glycoprotein/multidrug 

resistance protein 1 (MDR1) and breast cancer resistance protein (BCRP) respectively. 

The SLC superfamily is comprised of 55 families, with approximately 362 known 

members (11). These transporters do not have an ATP-binding domain, but instead use an 

ion gradient to power active transport of their substrates. Important SLC drug transporters 

are the organic anion-transporting polypeptide 1B1 (OATP1B1), the organic anion-

transporting polypeptide 1B3 (OATP1B3), the organic anion transporter 1 (OAT1) the 

organic anion transporter 3 (OAT3), and the organic cation transporter 2 (OCT2) (12). 

Respectively, these transporters are the SLCO1B1, SLCO1B3, SLC22A6, SLC22A8, and 

SLC22A2 members of the solute-carrier transporter family. 

In addition to molecular categorization, transporters can also be grouped by their 

function. Uptake transporters move substrates from the extra cellular space into the cell 

cytoplasm. This is more common among SLC drug transporters. Conversely, efflux 

transporters extrude substrates into the extracellular environment, which is more common 

among, but not limited to, the ABC drug transporters. Quite often, uptake and efflux 

transporters coordinate activity for the asymmetrical transport of endogenous compounds, 

drugs, or toxins across an epithelial or endothelial barrier of cells (13). This kind of 
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vectorial transport is how polarized cells can facilitate passage of both hydrophilic and 

lipophilic compounds across biological membranes to contribute to drug absorption, 

distribution and elimination, as alluded to in Section 1.1.1. 

Vectorial transport is possible because of overlap in the substrate specificities of different 

uptake and efflux transporters. For example, in a model of the blood to bile hepatic 

secretion of organic anions, Cui et al. showed vectorial transport of sulfobromophthalein 

(BSP) across a membrane of polarized Madin-Darby canine kidney (MDCK) cells that 

were double-transfected with organic anion transporter 1B3 (OATP1B3; SLC member 

SLCO1B3) and multidrug resistance-associated protein 2 (MRP2; ABC member ABCC2) 

(14). The cells demonstrated basolateral OATP1B3 uptake and subsequent apical MRP2 

efflux of BSP. For highly lipophilic compounds with sufficient membrane permeability, 

unidirectional ABC efflux transporters are able to achieve vectorial transport across a 

polarized plasma membrane without coordinated influx by an uptake transporter (15). 

But, coordination of uptake and efflux transporters is necessary for the vectorial transport 

of more hydrophilic compounds. Consequently, a variety of different uptake and efflux 

transporters are expressed on either membrane of the polarized epithelial or endothelial 

cells of several organs. This includes intestinal epithelia, hepatocyte epithelia, kidney 

proximal tubule epithelia, and endothelial cells of the blood-brain barrier. 

1.2.2 P-glycoprotein/MDR1 

The role of transporters in pharmacokinetics is a maturing area of investigation and the 

important pharmacokinetic impacts of many transporters have yet to be fully elucidated. 

P-glycoprotein was among the first transporters to be studied; it is the most well 

characterized transporter to date and it was the first transporter protein recommended for 

regular pharmacokinetic testing by the FDA (16-18). 

1.2.2.1 Discovery and Cloning of P-gp 

In 1960, acquired resistance to actinomycin D was reported in HeLa cell lines (19) and 

then later in Chinese hamster ovary cells (20). These cells were shown to possess 

multidrug resistance and subsequently Dano et al. demonstrated active efflux of 

daunomycin in the cells by a proposed efflux pump (21). Juliano and Ling named the 
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pump permeability-glycoprotein (P-glycoprotein or P-gp), for its ability to alter the 

permeability of mutant cells (22). In the following decade, Riordan and his group were 

the first to clone the gene for P-glycoprotein (23). By 1987, it became apparent that P-gp 

is physiologically expressed in normal human excretory and barrier tissues, such as the 

intestine, liver, kidney and the blood brain barrier (24-34). Ultimately, P-gp was defined 

as a primary efflux pump that uses the energy from ATP hydrolysis to actively extrude its 

substrates from cells (35). The gene for the transporter was originally called multidrug 

resistance gene (MDR1) because of the multidrug resistance phenotype it conferred to 

tumour cells, but has since been classified as ABCB1 (member 1 of the B subfamily in the 

ATP-binding cassette transporter superfamily). In 2009, the P-gp x-ray crystal structure 

was revealed for better characterization of substrate-binding and solute translocation 

mechanism of this key drug transporter (36). Today, P-gp remains the most well studied 

and well characterized drug transporter in humans. 

1.2.2.2 Biochemistry (structure, substrates and function) 

P-gp is a 170 kDA protein composed of 1280 amino acids. Its quaternary protein 

structure is organized as 2 homologous halves, each with an intracellular nucleotide 

binding domain and a bundle of 6 hydrophobic transmembrane α-helices (36-39). N-

glycosylation occurs at the first extracellular loop and the 2 halves are linked by a highly 

charged and phosphorylated region. The linking region contains signature motifs that are 

characteristic of the ABC transporter family. Collectively, the transmembrane segments 

form a central internal cavity where multiple sites are found for substrate and modulator 

binding (36). This binding pocket is substantially larger than most transporters and can 

even accommodate 2 substrates simultaneously (40). Additionally, substrate binding in 

the pocket produces size- and shape-dependent conformational changes of the 

transmembrane segments, alluding to an induced-fit for substrate binding (40). Taken 

together, some of these structural characteristics may explain the incredibly broad 

substrate specificity observed for the P-gp transporter.  

P-gp transports a wide variety of structurally and functionally diverse compounds 

including: opioids, steroids, antibiotics, calcium-channel blockers, chemotherapeutics, 

immunosuppressants, anti-HIV drugs, linear and cyclic peptides, ionophores, bilirubin, 
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and many others (41) (Table 1.1). Many P-gp substrates are nonpolar, weakly 

amphipathic compounds and contain planar aromatic rings and positively charged tertiary 

nitrogens. However, there are no clearly defined recognition elements that are highly 

conserved among all P-gp substrates and modulators. It is worth noting though, that many 

of P-gp’s substrates are also found to be substrates of the CYP3A4 enzyme, suggesting 

MDR1 and CYP3A4 have a synergistic protective role to reduce the intestinal absorption 

of xenobiotics (42-44; 5).  

P-glycoprotein functions as a unidirectional lipid flipase (45). Substrate binding initiates 

ATP-binding, which causes dimerization of the nucleotide binding domains (NBD), 

which results in a large structural change of the transporter protein into its outward facing 

conformation. The substrate is then released into extracellular space as ATP is 

hydrolyzed. Simultaneously, the ATP hydrolysis disrupts the NBD dimerization, hence 

causing P-gp to revert back to its original inward facing conformation (46). In P-gp’s 

active conformation, the internal cavity formed by the transmembrane helices, is oriented 

inward, open to both the cytoplasm and the inner membrane leaflet (47). Substrates in the 

outer membrane leaflet and the extracellular space do not have direct access to the pocket 

(36; 48) and P-gp extrudes its substrates directly from the inner leaflet; this is a common 

feature among transporters with a binding site located in a transmembrane domain of α-

helices. Many P-gp substrates readily partition into the plasma membrane and require 

association with lipids for drug-stimulated ATPase activity (49).  

1.2.2.3 Tissue expression and role in absorption, distribution and elimination 

Cells that express P-gp extrude substrates directly from the membrane, thereby 

preventing substrate drugs and toxins from entering the cell. Immunohistochemical 

analysis has indicated that human P-gp is expressed typically at the apical membrane of 

polarized cells in several tissues with barrier functions (e.g. small intestine, blood-brain 

barrier, blood-testis barrier, blood-ovarian barrier and placenta) or secretory functions 

(e.g. liver, kidney and adrenal gland) (50; 51; 44; 52-54). The greatest MDR1 expression 

is found in the intestinal epithelia; again indicating an important role of P-gp in 

modulating intestinal absorption. Indeed, induction of intestinal P-gp by the antibiotic 

rifampin correlated with a significant decrease in the AUC of orally administered 
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digoxin, a P-gp substrate, in humans (55). Beyond this, P-gp is apically expressed in liver 

and kidney epithelia, and on the blood side of brain capillary endothelial cells. It plays a 

significant role in the biliary and urinary excretion of various drugs and is known to limit 

central nervous system (CNS) penetration, as part of the blood-brain barrier (26; 56).  

Despite the broad activity of P-gp, the Collie dog breed and a substrain of the CF-1 

mouse are viable and fertile even though they are both naturally devoid of any P-gp 

expression (57-59). From this it can be concluded, in dogs and mice at least, that P-gp 

does not carry an essential physiological function. However, no human null allele has 

ever been reported for P-glycoprotein to date. Also of note, collie dogs and CF-1 mice do 

show significantly heightened sensitivity to drug and xenobiotic exposure; this once 

again emphasizing the important protective role of P-gp in the body (58-60).  

1.2.2.4 Gene regulation 

For decades, it has been well appreciated that the body mounts an adaptive response 

when exposed to xenobiotics, which is meant to limit exposure to toxic compounds. 

Indeed, in 1963 Cucinell et al. first reported decreased concentrations of phenytoin and 

coumarin in humans treated with phenobarbital; likely in response to upregulation of drug 

metabolizing enzymes (61-63). This kind of ADME protein regulation occurs via ligand-

activated nuclear receptor signaling. In the case of most nuclear receptors, the receptor 

binds its ligand in the cytoplasm and then translocates to the nucleus, where it forms a 

heterodimer with the 9-cis retinoic acid receptor (RXR). The formed heterodimer 

complex may bind in the regulatory region of a given ADME protein gene, thereby 

affecting the binding and recruitment of co-repressor and co-activator proteins, which 

suppress and stimulate gene transcription respectively (64).  

The transcription of many drug metabolizing enzymes has been shown to be modulated 

in response to xenobiotic ligands that bind the nuclear receptors: Pregnane X Receptor 

(PXR) (65-69), Constitutive Androstane Receptor (CAR) (70-73), Vitamin D Receptor 

(VDR) (74; 75), Farnesoid X Receptor (FXR) (76-78) and others.  

It is only in the past 2 decades or so that regulation of drug transporters by the same 

nuclear receptor mechanisms has gained attention as part of a coordinated response to 
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xenobiotic toxic exposure. The P-gp transporter was shown to be regulated by PXR, 

similar to CYP3A4 (43). Both PXR and CAR binding sites are located in an ABCB1 

regulatory region 8 kb upstream of the MDR1 gene transcription start site (80; 81). P-gp 

has also been shown to be regulated by Vitamin D. When testing for substances that can 

induce CYP3A4 expression in Caco-2 cells, Schmiedlin-ren et al. observed an increase in 

P-gp expression after treating cells with 0.05 µM – 1 µM 1,25(OH)2D3, and ≥ 0.5 µM and 

≥ 2.5 µM 25-(OH)-D3 (82). Thummel et al. later demonstrated similar vitamin D 

modulation of P-gp in Caco-2 cells and LS180 human colon carcinoma cells by 50-1000 

nM 1,25(OH)2D3; with a lower limit of induction at 1 nM and an upper limit at 250 nM 

(83). Eventually the vitamin D response elements were identified in the human MDR1 

promoter between -7880 and -7810 bp upstream of the MDR1 gene, where the 

VDR/RXRα heterodimer binds to induce transcription (84). Fan et al. has since 

confirmed that vitamin D and associated analogues induce P-gp mRNA, protein, and 

transport activity in a human colorectal adenocarcinoma (Caco-2) cell monolayers (85). 

1.2.2.5 Relevance of P-gp to clinical pharmacology 

A large number of chemically diverse drugs have been demonstrated to interact with P-gp 

(Tables 1.1 and 1.2) and thus P-gp has the potential to contribute to a great many 

clinically significant drug-drug interactions. For example, in a study of healthy 

volunteers, Schwarz et al. showed respectively a 52% and 26% increase in the AUC and 

peak plasma concentration of a prototypical P-gp substrate, talinolol, in response to 

concomitant administration of the P-gp inhibitor erythromycin (86). This study 

notwithstanding though, much of the evidence for clinical drug interactions mediated by 

P-gp is derived indirectly from in vitro studies or from animal studies; and few clinically 

relevant DDIs have actually been attributed solely to P-gp. One significant reason for this 

is the extensive overlap in substrate selectivity, tissue localization, and gene modulation 

profile that is shared between MDR1 and CYP3A4 (87). It can be difficult to distinguish 

the in vivo contributions of metabolism and transport to DDIs; and metabolism is often 

assumed the major cause of DDI, particularly for substrates with fair or extensive 

metabolism. However, DDIs involving poorly metabolized P-gp substrates and potent 

and selective P-gp modulators have been linked more unambiguously to P-gp (88; 55;  
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Table 0.1. P-glycoprotein subtrates. 

Substrate References 

      Anticancer agents  

Actinomycin D Jette et al., 1995 

Daunorubicin Sharpiro and Ling, 1998 

Docetaxel 

Doxorubicin 

Etoposide 

Imatinib 

Irinotecan 

Mitomycin C 

Mitoxantrone 

Paclitaxel 

Teniposide 

Topotecan 

Vinblastine 

Vincristine 

      Antihypertensive agents 

Celiprolol 

Diltiazem 

Losartan 

Talinolol 

Wils et al., 1994 

Sharpiro and Ling, 1998 

Sharpiro and Ling, 1998 

Widmer et al., 2003 

Arimori et al., 2003 

Relling, 1996 

Relling, 1996 

Sparreboom et al., 1997 

Relling, 1996 

Relling, 1996 

Wils et al., 1994 

Relling, 1996 

 

Karlsson et al., 1993 

Saeki et al., 1993 

Soldner et al., 2000 

Wetterich et al., 1996 

      Antiarrhythmics  

Digoxin de Lannoy and Silverman, 1992 

Quinidine Kim et al., 1999 

Verapamil Kim, 2002 

      Antiplatelet agents 

Clopidogrel 

Ticagrelor 

      Glucocorticoids 

Aldosterone 

Cortisol 

Dexamethasone 

Methylprednisolone 

 

Taubert et al., 2006 

Teng et al., 2010 

 

Ueda et al., 1992 

Ueda et al., 1992 

Ueda et al., 1992 

Saitoh et al., 1998 

      Oral anticoagulants 

Warfarin 

Dabigatran 

Rivaroxaban 

Apixaban 

Edoxaban 

 

Schulman et al., 2010 

Walenga and Adiguzel, 2010 

Gnoth et al., 2011 

Warson et al., 2011 

Mendell et al., 2011 

      Miscellaneous  

Atrovastatin Wu et al., 2000 

Colchicine Kim, 2002 

Fexofenadine 

Ivermectin 

Loperamide 

Cvetkovic et al., 1999 

Didier and Loof, 1995 

Schinkel et al., 1996 

Melfoquine Pham et al., 2000 

Rhodamine 123 Kim, 2002 

Terfenadine 

Vecuronium 

Kim et al., 1999 

Smit et al., 1998 

      Antiviral agents  

Amprenavir Polli et al., 1999 
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Indinavir Kim et al., 1998 

Nelfinavir Kim et al., 1998 

Ritonavir Kim et al., 1998 

Saquinavir Kim et al., 1998 

      Antibiotics  

Erythromycin 

Levofloxacin 

Schuetz et al., 1998 

Ito et al., 1997 

Rifampin 

Sparfloxacin 

Tetracycline 

Schuetz et al., 1996 

Tamai et al., 2000 

Kavallaris et al., 1993 

      Antimycotics  

Intraconazole Miyama et al., 1998 

      Immunosuppressants  

Cyclosporine Schinkel et al., 1996 

Sirolimus Paine et al., 2002 

Tacrolimus Saeki et al., 1993 

Valspodar Tai, 2000 

      Antidepressants  

Amitriptyline Uhr et al., 2000 

      Antiepileptics 

Phenobarbital 

Phenytoin 

      Antiacids 

Cimetidine 

Ranitidine 

 

Potschka et al., 2002 

Schinkel et al., 1996 

 

Collett et al., 1999 

Collett et al., 1999 

      Opioids  

Morphine Callagan and Riordan, 1993 

      Antiemetics 

Domperidon 

Ondansetron 

 

Schinkel et al., 1996 

Schinkel et al., 1996 
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Table 0.2. Drugs shown in clinical and/or in vitro study to affect the pharmacokinetics of 

a P-gp probe substrate by inhibition or induction of P-gp. 

Interacting Drug Inhibitor/Inducer Substrate(s) References 

    Antihypertensive  

    agents 

   

Carvedilol Inhibitor vinblastine, paclitaxel, 

doxorubicin, daunorubicin
 

kakumoto et al., 2003 

Nicardipine Inhibitor daunorubicin, digoxin
 

Katoh et al., 2000 

Reserpine Inhibitor ATP hydrolysis assay
 

Wang et al., 2001 

    Antiarrhythmics    

Amiodarone Inhibitor digoxin
 

Kakumoto et al., 2002 

Porpafenone Inhibitor digoxin
 

Woodland et al., 1997 

Quinidine Inhibitor digoxin
 

Fromm et al., 1999 

Verapamil Inhibitor digoxin
 

Pauli-Magnus et al., 

2000 

    Glucocorticoids    

Dexamethasone Inducer indinavir
 

Lin et al., 1999 

    Miscellaneous    

Atrovastatin Inhibitor digoxin
 

boyd et al., 2000 

Bromocriptine Inhibitor vincristine
 

Orlowski et al., 1998 

Dipyridamole Inhibitor digoxin Verstuyft et al., 2003 

Emetine Inhibitor ATP hydrolysis assay
 

Wang et al., 2001 

Melfoquine Inhibitor vinblastine, fluo-3 acetomethoxy 

ester, rhodamine 123 

Riffkin et al., 1996 

Progesterone Inhibitor vinblastine
 

Bernes et al., 1996 

Retinoic acid Inducer vinblastine, colchicine Elhafny et al., 1997 

Spironolactone Inhibitor digoxin
 

Nakamura et al., 2001 

    Antiviral agents    

Amprenavir Inhibitor   

Indinavir Inhibitor/Inducer   

Nelfinavir Inhibitor/Inducer   

Ritonavir Inhibitor digoxin
 

Reinhard et al., 2004; 

Schmitt et al. 2010 

Saquinavir Inhibitor digoxin
 

Schmitt et al. 2010 

    Antibiotics    

Clarithromycin Inhibitor digoxin
 

Wakasugi et al., 1998 

Erythromycin Inhibitor digoxin
 

Kim et al., 1999 

Rifampin Inducer digoxin
 

Greiner et al., 2002 

    Antimycotics    

Intraconazole Inhibitor vinblastine, daunorubicin, 

dauxorubicin
 

Takara et al., 1999 

Ketoconazole Inhibitor rhodamine 123
 

Takano et al., 1998 

   Immunosuppressants    

Cyclosporine Inhibitor rhodamine 123
 

Yacyshyn et al., 1996 

Sirolimus Inhibitor digoxin
 

Minocha et al., 2012 

Tacrolimus Inhibitor vincristine
 

Kochi et al., 1999 

Valspodar Inhibitor N-methyl-quinidine
 

PSC 833 

    Antidepressants    

Fluoxetine Inhibitor digoxin
 

Parianteet al., 2009 

Paroxetine Inhibitor calcein-AM
 

Weiss et al., 2003 

Sertraline Inhibitor calcein-AM Weiss et al., 2003 
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St John’s wort Inducer digoxin
 

Durr et al., 2000 

    Neuroleptics    

Chloropromazine Inhibitor verapamil
 

Saitoh and Aungst, 1995 

Flupenthixol Inhibitor iodoarylazidoprazosin
 

Maki et al., 2003 

Phenothiazine Inducer vincristine
 

Watanabe et al., 1995 

    Opioids    

Methadone Inhibitor vinblastine
 

Callaghan and Riordan, 

1993 

Morphine Inducer expression
 

Aquilante et al., 2000 

Pentazocine Inhibitor vinblastine Callaghan and Riordan, 

1993 
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Table 0.3. Genetic polymorphisms in MDR1 with clinically observed PK effects. 

SNP Drug Parameter Effect Reference 

C3435T (Exon 26) Digoxin (oral, ss) Drug level Higher for TT Hoffmeyer et al., 

2000 

 Digoxin (oral, sd) AUC Higher for TT Verstuyft et al., 

2003 

 Digoxin (oral, sd) AUC(0-4 h), Cmax No difference Gerloff et al., 2002 

 Digoxin (oral, sd) AUC Lower for TT Sakaeda et al., 

2001 

 Digoxin (oral, sd) AUC, tmax Lower for TT Horinouchi et al., 

2002 

 Fexofenadine AUC No difference Drescher et al., 

2002 

 Fexofenadine AUC Lower for TT Kim et al., 2001 

 Nelfinavir Drug level Lower for TT Fellay et al., 2002 

 Cyclosporine Trough level No difference von Ahsen et al., 

2001 

 Cyclosporine AUC, Cmax, tmax No difference Min and Ellingrod, 

2002 

 Cyclosporine AUC, Cmax Lower for CT/TT Yates et al., 2003 

 Cyclosporine AUC(0-4 h) Higher for TT 

(trend) 

Balram et al., 2003 

 Tacrolimus Drug level Higher for TT Macphee et al., 

2002 

 Tacrolimus Drug level Higher for TT/CT Zheng et al., 2003 

 Tacrolimus Drug level No difference Anglicheau et al., 

2003 

 Tacrolimus Drug level No difference Goto et al., 2002  

 Tacrolimus Tacrolimus induced 

neurotoxicity 

No difference Yamauchi et al., 

2002 

 Nortriptyline Drug level No difference Roberts et al., 

2002 

 Talinolol AUC No difference Siegmund et al., 

2002 

 Loperamide Cmax, AUC, CNS 

effects 

No difference Pauli-Magnus et 

al., 2003 

 Dicloxacillin Drug level No difference Putnam et al., 

2003 

 Docetaxel Clearance No difference Goh et al., 2002 

 Phenytoin Drug level Higher for TT Kerb et al., 2001 

G2677T/A (Exon 

21) 

Digoxin (oral, sd) AUC Higher for TT Verstuyft et al., 

2003 

 Digoxin (oral, sd) AUC(0-4h), Cmax No difference Gerloff et al., 2002 

 Digoxin (oral, sd) AUC, tmax Lower for TT Horinouchi et al., 

2002 

 Digoxin (oral-iv, sd) Bioavailability Higher for TT Kurata et al., 2002 

 Fexofenadine AUC Lower for TT Kim et al., 2001 

 Tacrolimus Drug level Higher for TT/GT Zheng et al., 2003 

 Tacrolimus Drug level Higher for TT Anglicheau et al., 

2003 

 Tacrolimus Drug level, dose 

ratio 

No difference Goto et al., 2002 
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 Tacrolimus Tacrolimus induced 

neurotoxicity 

Higher for TT 

(trend) 

Yamauchi et al., 

2002 

 Talinolol AUC Slightly higher for 

TA/TT 

Siegmund et al. 

2002 

ss, steady state; sd, single dose  
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89). 

In recent decades, DDIs with selective P-gp inhibitors have been exploited to boost the 

efficacy of anticancer drugs. The idea was first introduced in 1981 when Tsuruo et al. 

discovered that verapamil increased the sensitivity of multi-drug resistant leukemia cells 

to chemotherapeutic drugs in vitro (90). As a consequence of this study, additional work 

has been put into designing potent and selective P-gp inhibitors to be used as adjuncts to 

chemotherapy. In one Phase I clinical study, there was an 89% increase in AUC and 46% 

decrease in clearance of etoposide in response to intravenous infusion of the selective P-

gp inhibitor PSC-833 (91). Today, P-gp inhibitors may also be applied to enhancing drug 

penetration through the blood-brain-, blood-cerebrospinal-, and maternal-fetal-barriers as 

well (92-94).   

Beyond DDIs, different polymorphisms of the MDR1 gene exist in the population with 

varied functional consequences (Table 1.3). Kioka et al. were the first to identify MDR1 

polymorphisms in 1989 from in vitro study of cancer cells; since that time over 2 dozen 

MDR1 SNPs have been reported with different frequencies across ethnic populations (95- 

98). A cytosine to thymine SNP at position 3435 in exon 26 (C3435T) was the first 

polymorphism reported to affect P-gp protein expression, although this SNP does not 

alter the encoded amino acid – thus referred to as a synonymous SNP (99). Healthy 

Caucasian subjects with the variant T allele were shown to have a 2-fold reduction in 

duodenal P-gp expression as compared to subjects with the wild type C allele (99). These 

individuals also showed increased plasma concentration of the P-gp probe substrate 

digoxin following its oral administration; this suggesting enhanced oral absorption in 

individuals with diminished duodenal P-gp expression. Several different studies 

confirmed the impact of this polymorphism (100-102). But others have actually reported 

the variant allele (3435T) to yield decreased serum digoxin (103; 104), or to have no 

clinical effect at all (105). As with DDIs, the clinical impact of P-gp polymorphisms can 

be quite ambiguous and complex.  
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1.2.2.6 Relevance to drug development 

Owing to improvements in CYP molecular biology, to readily available in vitro models, 

and to in silico approaches, high-throughput scanning of CYP enzymes has been 

increasingly embraced by industry and regulatory agencies for almost 2 decades (106-

108). As the body of work in the area of drug transporters catches up with DMEs and the 

role of drug transport in clinical PK is further elucidated, pre-clinical assessment of 

transporter interactions has become an area of growing interest in drug discovery and 

development (109-111). An early understanding of P-gp in drug pharmacokinetics 

facilitates the recognition of important clinical DDIs and polymorphisms that may greatly 

impact the disposition, dosing regimens, therapeutic efficacy and safety of a great number 

of drugs and drug candidates (112; 12). Current FDA guidance describes experimental 

systems, experimental designs and decision criteria to assess new chemical entities 

(NCEs) and drug candidates for P-gp interactions (113). Compounds that demonstrate 

significant interaction with P-gp, based on up-to-date in vitro and/or in vivo testing, may 

be required to undergo additional studies to demonstrate safety and optimal use, or may 

even be withdrawn in extreme cases. Study of P-gp is an integral component of pre-

market drug development and regulatory review (12; 114; 115) and P-gp testing is 

typically carried out, like other PK tests, in parallel to pharmacodynamic studies of drug 

response (116). P-gp tests are especially important for drugs that are intended for oral 

administration, or are targeted to the CNS. Furthermore, as part of post market drug 

monitoring, P-gp interaction studies have elucidated the mechanisms of several reported 

drug-drug interactions, population variations, or rare adverse drug events. 

1.2.2.7 Animal models 

Shortly after the physiological expression of P-glycoprotein in human tissues became 

apparent in the late 80s, P-gp was also found to be expressed in the isolated brain 

capillaries of mice, rats, pigs and cows (117-120). Various forms of P-gp have also been 

reported to express in numerous other species of insects, fish, amphibians, reptiles, birds, 

and mammals. Today, closely related homologues of ABCB1 have been cloned and 

sequenced in human, mouse, Chinese hamster, dog and other species including, 

Caenorhabditis elegans and Drosophila melanogaster (121; 122). In higher mammals P-
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gp forms a small gene family, with only one drug transporting isoform expressed in 

humans (MDR1/ABCB1), and two co-operative drug transporter isoforms expressed in 

rodents (mdr1/ABCB1a and mdr3/ABCB1b) (123-125). 

Recent advancements in transgenic animal models and knock out animals allow us to 

study the in vivo role of specific ADME proteins in human PK and drug-drug 

interactions. For instance, single and double P-gp knockout mouse models, lacking 

ABCB1a and ABCB1b, have been bred for in vivo pharmacokinetic studies. While these 

mice do show increased sensitivity to drug and xenobiotic exposure, they are viable and 

fertile for study (126). Moreover, although compensatory upregulation of complimentary 

enzymes or transporters may somewhat disguise the absence of P-gp in the mice (127), P-

gp-deficient animal models provide valuable information about weather a drug is a 

substrate or modulator of MDR1 (128-130). As well, these particular knockout models 

have proven very useful in assessment of the impact of P-gp on the CNS penetration of 

psycho-active drugs. For example, Schinkel et al. compared the disposition of the 

veterinary pesticide ivermectin in knockout mice against wild type mice (57; 131). They 

saw a 100-fold greater brain ivermectin AUC in mdr1a (-/-) mice as compared to wild 

type. The increased brain exposure in the knockout mice resulted in a much greater 

neurotoxicity and mortality in the knockout mice versus the wild type mice that had 

regular expression of blood-brain-barrier P-glycoprotein.  

Of note, caution must be taken when extrapolating the pharmacokinetics in an animal 

model to the human situation. Scaling animal pharmacokinetics solely by weight 

(allometric scaling) is not always effective due to species differences in a variety of 

physiological and biochemical properties, including organ blood perfusion, pH, gastric 

emptying time and various other factors. Moreover, species differences in the expression, 

localization, regulation and substrate specificity of DMEs and drug transporters can yield 

significantly different pharmacokinetics for a drug in humans versus an animal model. 

Early studies looked at the resistance profiles of Chinese hamster ovary cells 

overexpressing human MDR1 and murine mdr1 and mdr3 genes; the resistance conferred 

by MDR1 versus mdr1/3 was significantly different for various MDR drugs, as was the 

effect of different P-gp modulators on vinblastine resistance (132). A variety of 
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subsequent studies further confirmed species differences for several different P-gp 

substrates and modulators (50; 133-135). Although transgenic animal models expressing 

humanized proteins are currently available to improve the accuracy of human 

extrapolation, most are created for human drug metabolizing enzymes.  

1.3 In vitro to in vivo (IVIV) prediction of pharmacokinetics 

1.3.1 General scheme 

Various transporter and DME interactions and DDIs have led to prescribing restrictions, 

market withdrawals, new drug submission rejections and early development terminations, 

for many pharmaceutical agents (136). So, it’s not surprising that regulatory bodies, 

including the FDA and the European Medicines Agency (EMA), as well as academics are 

increasingly concerned about the contributions of key DMEs and transporters to drug 

disposition. In vitro to in vivo extrapolation (IVIVE) allows us to characterize the activity 

of ADME proteins in vitro, so as to clarify and predict their roles in the in vivo kinetics of 

drugs and drug candidates. It helps us to explain and predict the bioavailability, clearance 

and tissue distributions of clinically important drugs. For example, a compound that is 

identified in vitro as a strong P-gp substrate will likely show a high level of P-gp efflux in 

vivo. One in vivo consequence of compounds with efficient efflux by P-gp would be a 

significant decrease in oral absorption of the compound, since P-gp is highly expressed in 

the intestinal lumen where it actively opposes the absorption of substrate compounds. 

Characterizing drug-transporter and drug-enzyme interactions through in vitro studies is 

an essential step in understanding drug PK or in anticipating whether or not a drug is 

likely to exhibit favourable clinical PK. Certainly, important early decisions in drug 

discovery and development (DDD) are based on the interpretation of preclinical in vitro 

studies and their implications to in vivo kinetics (116; 137; 136). 

1.3.2 Quantitative IVIVE 

For quantitative IVIVE, additional information is required about the ADME protein and 

about the in vitro and in vivo systems that are being compared (Figure 1.1).  

The rate of metabolism for a given enzyme-substrate pair in any in vitro or in vivo 

system, is proportional both to the absolute intrinsic activity of that enzyme on its 
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substrate and to the total amount of that enzyme expressed in the given system. Likewise, 

the rate of carrier-mediated transport for a given transporter-substrate pair in a system, is 

proportional to the absolute intrinsic activity and amount of that transporter in the system 

(138). Absolute intrinsic activity describes the characteristic efficiency at which an 

individual enzyme or transporter turns over substrate. It is a system-independent, inherent 

biochemical property of each individual ADME protein and is thus consistent, for a given 

protein, across in vitro and in vivo systems. So, it follows that quantitative in vitro to in 

vivo extrapolation is accomplished by scaling the amount of enzyme and/or transporter 

between systems, with a constant absolute intrinsic activity. Absolute intrinsic activity 

can be determined from the in vitro intrinsic activity in a system of known 

enzyme/transporter amount. In order to quantify transporter/enzyme amount, functional 

units of a system, such as cell number or protein content, are often used as convenient 

surrogates for actual transporter/enzyme content.  

More sophisticated IVIVE models include information about the in vivo relative 

abundances of interacting enzymes and transporters, along with physiological parameters 

that dictate enzyme or transporter access to unbound drug (e.g. tissue perfusion rates, 

solubility etc.). Physiologically-based pharmacokinetic (PBPK) models have been 

developed in the past decades to integrate quantitative description of various 

simultaneous and dynamic physiological and pharmacokinetic processes, arranged within 

a structural framework that represents the anatomical arrangement of the body. These 

models have enjoyed increasing popularity in recent years for their ability to compile and 

contextualize a wealth of available in vitro and in vivo data. PBPK models have proven 

most useful in the prediction of DDIs, population PK and toxin exposure (139-142). 
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Figure 1.1. Simplified general scheme of quantitative IVIVE for hepatically eliminated 

drugs. Models are organized as tissue and extracellular compartments (eg. Liver, hepatic 

sinusoids, hepatic canaliculi) perfused by blood flow (Q). Movement of unbound drug 

into and out of compartments is defined by physiologically relevant, drug-specific 

clearance parameters (CLmetabolism; CLtransport) that relate to ADME protein activities. The 

clearance parameters are estimated from information about ADME protein expression in 

in vivo human tissues; and from information about in vitro ADME protein intrinsic 

clearance, normalized to in vitro protein expression. All clearance and flow parameters 

interplay dynamically with each other and have differing relative contribution to the 

overall PK of a given drug. 
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1.3.2.1 Intrinsic clearance in PK modeling 

Intrinsic clearance (CLint), a term first coined in 1975 by Wilkinson and Shand, describes 

the perfusion-rate-independent clearance of a drug from a system by the cumulative 

intrinsic activities of the contributing drug metabolizing enzymes and/or transporters. It is 

a cardinal PK parameter in quantitative IVIVE and PBPK modeling. Indeed, scaling of 

the intrinsic clearance of in vitro expressed liver enzymes and transporters has shown to 

be a robust method of predicting in vivo hepatic drug clearance (143-147). Intrinsic 

metabolic clearance (CLint or CLint(Metabolism)) was first described, for hepatic enzyme 

kinetics in an isolated hepatocyte in vitro system, as the initial metabolic activity (V0) in 

the hepatocytes proportional to the concentration of free drug (Cu) available to the 

hepatocytes for metabolism, 

CLint = 
��

��
           [1.5] 

Substituting this into the Michaelis-Menten equation for enzyme kinetics (described in 

section 1.3.2.2), 

v = 
�	
���

�	
��
          [1.6] 

gives the following relationship: 

CLint = 
�	
�

�	
��
          [1.7] 

So, at low substrate concentration (Cu << Km), intrinsic clearance is proportional to Vmax, 

inversely proportional to Km and independent of substrate concentration; expressed as, 

 CLint = 
�	
�

�	
          [1.8] 

The situations in equations [1.5-1.8] can all be applied analogously to describe the 

intrinsic transporter-mediated clearance (CLint or CLint(Transport)) of any drug from a given 

compartment. This could be, for instance, applied to describe the in vitro carrier-mediated 

uptake of a drug into cultured cells in suspension, or applied to describe the in vivo 

secretion of a drug from the liver into the bile.  
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Along with CLint(Metabolism) and CLint(Transport), several other physiological parameters (e.g. 

blood flow, tissue perfusion) and drug-specific parameters relating to the free drug 

concentrations (e.g. plasma protein binding, tissue binding), chemical disposition, 

chemical dispersion, and availability for clearance, all factor into determination of the 

true in vivo clearance. The so-called “well-stirred” model description for hepatic 

metabolic clearance (148) provides a simple example:  

CLTotal Liver = 
�����������

��
��������
        [1.9] 

where, QL is the physiological blood flow to the liver, fu is the fraction of drug in the 

blood that is unbound and available for metabolism, and CLint is the overall intrinsic 

metabolic clearance of the liver (scaled up from in vitro isolated hepatocytes). The CLint 

rate in this model may define the intrinsic activity of one enzyme or, depending on the 

drug, it could incorporate the intrinsic activities of a collection of hepatic enzymes that all 

contribute to the elimination of a common substrate drug. Note though, that there is no 

term for intrinsic carrier-mediated clearance in equation [1.9]; this simplified case 

describes a metabolic clearance that is rate-limited by hepatic blood perfusion, in which 

unbound drug in the blood bathing the liver establishes instantaneous equilibrium with 

the hepatocytes by rapid passive diffusion, such that the intrahepatic and extrahepatic 

concentrations of free drug are viewed to be equal. Thus, as unbound drug perfuses the 

liver it is immediately available for metabolism at a rate, CLint, that is intrinsic to the liver 

enzymes and any active transport is assumed to be negligible. In reality, for many drugs 

that display lower passive permeability, carrier-mediated transport into the liver (uptake) 

or into the bile (efflux) may rate-limit in vivo liver clearance (149; 150). Kinetic models 

that fail to account for important active uptake and/or efflux processes can result in an 

under- or over-estimation of system intrinsic clearance parameters (151).  

Successful quantitative IVIVE of drug clearance requires proper integration of the 

multiple dynamic PK processes of different relative importances. A model of the in vivo 

hepatic clearance of enalapril in rats, by Sirianni and Pang (Figure 1.2) (152), 

demonstrates some of the interplay between transport and metabolism:  
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Figure 1.2. Schematic depiction of the physiological model for liver clearance. The liver 

is divided into three compartments: the reservoir (R, or systemic blood compartment), 

liver plasma (PL), and liver tissue (L). Q, C, and V represent flow, concentration, and 

volume, respectively. The transport clearances for drug from hepatic plasma to tissue and 

from tissue to hepatic plasma are characterized by influx (CLinflux) and efflux (CLefflux) 

clearances, respectively. Drug metabolism within the liver tissue is characterized by the 

intrinsic clearance, CLint,met. Biliary excretion of drug is characterized by the intrinsic 

clearance, CLint,sec. Modified from Sirianni and Pang, 1997. 
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CLTotal Liver = 
��������������������,	��
�����,����

�����������
�����,	��
�����,����
����������������,���
�����,	���
  [1.10] 

where, QL is the blood flow to the liver, fu is the fraction of drug in the blood that is 

unbound and available for metabolism, CLint,met is the intrinsic metabolic clearance,   

CLinflux and CLefflux are respectively the intrinsic influx and intrinsic efflux at the 

sinusoidal membrane, and CLint,sec is the secretory intrinsic efflux at the canalicular 

membrane. CLTotal Liver in the rat is solved for by writing mass balance equations for the 

reservoir, liver plasma, liver tissue, and bile compartments. In order to find agreement 

between model simulations and in vivo rat data sets, the in vivo relationships between 

many of the interacting parameters had to be defined. For example, since CLinflux and 

CLint,met simultaneously contribute to the tissue compartment drug level, Liu and Pang 

defined the CLinflux/CLint,met ratio as 6.56, based on the Vmax and Km kinetics observed for 

enalapril uptake and metabolism that were previously observed in homogenous isolated 

rat hepatocyte studies (152-154).  

As a greater amount of kinetic information about transporter and enzyme intrinsic 

clearances, along with other physiological information, becomes available for different 

drugs, the precision of more detailed physiologically-based models can continually 

improve. Indeed, there has been continued development in dynamic models for intestinal 

absorption and BBB permeability in recent years as well (155-158). 

1.3.2.2 Facilitated (Carrier-mediated) transport kinetics 

Carrier-mediated transport of substrate across a membrane is characterized by saturability 

and it can be described analogously with the Michaelis-Menten equation for enzyme 

kinetics,  

v = 
�� !"

#�
"
           [1.6] 

where v is the rate of carrier-mediated transport; Vmax is the maximum rate of carrier-

mediated transport; C is the substrate concentration; and Km, is the Michaelis constant, 

calculated as the substrate concentration at half of Vmax. When C is much smaller than 

Km, the rate of transport, v, shows a linear proportionality with substrate concentration. 

However, as C gets large compared to Km the rate of transport no longer increases in 
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proportion to C, and v plateaus at a constant value (Vmax). At Vmax transport is saturated 

and v is limited by the rate at which transporters turn over substrate and by the density of 

transporters on the plasma membrane. To determine Vmax and Km in vitro, transport is 

measured over a time course and over a range of drug concentrations. The Michaelis 

constant is a substrate-dependent parameter that relates to the affinity of a given 

transporter for a specific substrate. 

The Michealis-Menten equation was originally developed for soluble enzymes, which 

bind their substrates directly from the aqueous phase. Application of this equation to the 

kinetics of transport assumes that the equation parameters correlate reasonably well with 

the association and dissociation elementary rate constants of the substrate, transporter, 

and substrate-transporter complex (159). This is a reasonable approximation for drug 

transporters that bind their substrates directly from the aqueous phase and/or for the 

ATPase activity that occurs in the aqueous phase for ABC transporters (160). Thus, while 

the Michaelis-Menten parameters may not directly describe the discrete physical 

processes of drug transport, they still offer a useful estimate of transporter activity and 

good predictive value. 

1.3.3 In vitro systems for estimating metabolism and transport 

1.3.3.1 Hepatocytes, recombinant cells, and membrane vesicles 

Drug metabolizing enzyme activity is estimated in vitro, often as an in vitro intrinsic 

metabolic clearance using equation [1.7], by incubating a drug substrate in an appropriate 

in vitro system and measuring metabolite formation or substrate disappearance over a 

range of concentrations. Currently, isolated human hepatocytes in suspension are the 

most practical in vitro system for metabolism studies to predict whole organ drug 

clearance (161; 138; 162). Microsomal fractions and recombinant enzyme systems may 

be used for more specific testing of particular enzymes of interest. Routine studies are 

recommended by the FDA to characterize the interactions of compounds with the 

following enzymes: CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and 

CYP3A (113).  
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Freshly isolated cryopreserved hepatocytes can also be used to study hepatic uptake 

transporters in vitro (162; 163). The common approach is to incubate substrate with a 

suspension of hepatocytes and measure drug accumulation in the cell after a period of 

time. Typically accumulation is measured over a range of concentrations to demonstrate 

saturable active transport kinetics. These active transport studies yield Michaelis-Menten 

kinetic parameters for carrier-mediated transport:  

V = (
�$%& � �

�$ 
 �
� ( �Pdiff × C)        [1.11] 

Where V is the rate of carrier-mediated transport, Vmax is the maximum rate of carrier-

mediated uptake, Km is the Michaelis constant, C is the drug concentration, and Pdiff is 

the non-carrier-mediated passive clearance. Addition of the Pdiff × C product to the usual 

Michaelis-Menten equation for active transport is necessary to account for the component 

of in vitro transport rate into the cell that is due to passive, non-carrier-mediated 

transport.  

Application of Michaelis-Menten kinetics to in vitro carrier-mediated transport studies 

often operates under the assumption that only one type of transporter is responsible for 

transport in the system. Significant contribution by other transporters with overlapping 

substrate specificity can obscure the activity of the transporter of interest and interfere 

with the estimation of its kinetics. In the case of fresh hepatocytes, a variety of different 

transporter families are in fact expressed that may contribute to transport of various drug 

substrates. Also, cryopreserved hepatocytes cannot be used to study efflux transporters 

because the process of hepatocyte isolation causes canalicular efflux transporters to be 

internalized (164; 165). As well, none of the in vitro studies done in hepatocytes are 

appropriate for the study of transporters that are not expressed in the liver, including 

organic cation transporter 2 (OCT2) and organic anion transporter 1 and 3 (OAT1and 3) 

proteins, which localize to the kidney. Recombinant cells can be used to better isolate the 

activity of any individual uptake transporter on a drug of interest.  

An important distinction must be made before attempting to apply the models described 

above to the in vitro study of drug efflux transporters. Uptake transporters bind substrate 
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from the extracellular environment, where measurement and manipulation of drug 

concentrations is technically achieved very easily in a suspension or permeable-support 

system. Efflux transporters, on the other hand, extrude substrate from the intracellular 

space, which is largely inaccessible in these experimental systems. As such, more 

sophisticated in vitro strategies must be employed in determining the kinetics of efflux 

transport. 

The ATPase, calcein-AM fluorescence, and rhodamine-123 fluorescence assays all 

circumvent the issue of intracellular inaccessibility by using indirect measures of 

substrate transport. The ATPase assay estimates the activity of ABC efflux transporters, 

by measuring the ATP hydrolysis that is coupled to their transport activity. Calcein-AM 

and rhodamine-123 fluorescence cell assays are designed specifically to evaluate ABCB1 

(P-gp) or ABCC1 (Multidrug resistance-associated protein 1, MRP1) efflux transporter 

activity. Non-flourescent calcein-AM or non-fluorescent rhodamine-123 diffuses into 

cells where it is hydrolyzed by intracellular esterases into a fluorescent compound, which 

accumulates intracellularly. Membrane P-gp and MRP1, however, opposes the inward 

diffusion of these non-fluorescent compounds into the cells. Consequently, drugs that 

interact with P-gp or MRP1 can affect efflux transporter activity, resulting in a 

measureable change in the rate of accumulation of intracellular fluorescent compound. 

(166; 167) Each of these indirect assays offers a high throughput analysis of potential 

substrates that is readily automated. But, the ATPase, calcein-AM fluorescence, and 

rhodamine-123 fluorescence assays are not able to distinguish efflux transporter 

substrates from inhibitors (167-169). 

Alternatively, other strategies allow direct measurement of efflux transporter activity; the 

inverted membrane vesicle assay is one such strategy. Transporter-expressing plasma 

membrane vesicles are inverted, such that the efflux transporters bind and actively pump 

substrate from the external environment into the closed vesicle. This orientation permits 

easy manipulation and measurement of the donor drug concentrations that is seen by the 

efflux transporters. In this orientation transporter kinetics can be evaluated just as they 

would be for an uptake transporter. However, compounds with moderate-to-high passive 

permeability leak back out of the vesicle after being pumped in and thus may be falsely 
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labeled as non-substrates by the inverted membrane vesicle assay. Moreover, the relative 

orientation of efflux transporters, they being inside-out or outside-in facing, will impact 

the effectiveness and interpretation of transport kinetics.  

1.3.3.2 The cell monolayer permeability assay for efflux transport 

The cell monolayer permeability assay is also designed to measure efflux transport 

activity in a direct fashion and it is the gold standard used in industry (Figure 1.4). The 

assay estimates efflux transporter activity by assessing permeability – comprised of both 

passive diffusion and active transport – across a monolayer composed of an immortalized 

cell line. The monolayer cells either have innate polarized efflux transporter expression, 

or are transfected to stably or transiently express polarized recombinant efflux 

transporter. A “transwell” set up is employed, where the monolayer is grown on a 

semipermeable insert, which is set into a well. This set up creates one accessible 

compartment on each side of the cell monolayer; commonly, as determined by cell 

polarization in culture, the top compartment is apical and the bottom is basolateral. Then, 

in order to estimate apical efflux transporter activity, which pumps drug away from the 

basolateral compartment and towards the apical compartment, drug is added to either side 

of the monolayer (the donor compartment) and its appearance on the opposing side (the 

receiver compartment) is measured. Efflux transporter activity is reflected in the degree 

of drug movement from donor to receiver compartments.   

Like the inverted membrane vesicle assay, monolayer permeability assays may also fail 

to identify the efflux transport of some highly permeable drugs, but carrier-mediated 

efflux is unlikely to pose a significant barrier to the in vivo absorption of highly 

permeable drugs. Another limitation of this model is its inability to directly measure 

intracellular drug concentrations, which is the level that actually drives the rate of apical 

efflux transporters. For convenience, the intracellular concentration is often assumed to 

be in rapid equilibrium with the drug concentration measured in the basolateral 

compartment, which can be easily manipulated. In this way the system can be viewed as 

a single apical efflux barrier between two testable compartments: the 

basolateral/intracellular compartment and the apical compartment. In reality however, the 

intracellular concentration can vary significantly from the basolateral compartment    
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Figure 1.3. The cell monolayer permeability assay. A polarized monolayer of cells with 

apical P-gp expression. Papp is calculated in both directions from drug flux into the 

receiver compartment following apical or basolateral administration. 
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depending on the presence of unaccounted for basolateral uptake processes, which may 

differ between the monolayer cell lines used and/or between laboratory culture conditions 

(170-174). As previously mentioned, the presence of unaccounted for transporters can 

obscure accurate determination of the activity and kinetics of a transporter of interest. 

1.3.4 In vitro estimation of drug efflux activity in the monolayer permeability 

assay 

Various calculations have been proposed to estimate efflux transporter activity from a 

cell monolayer permeability assay. 

1.3.4.1 Directional apparent permeability 

Since the presence of P-gp or other unidirectional apical efflux transporters can both 

enhance basolateral to apical flux and attenuate apical to basolateral flux of a substrate 

drug, efflux transporter activity can be assessed from the permeability in either direction. 

Both increased basolateral to apical apparent permeability (Papp(B-A)) and decreased apical 

to basolateral apparent permeability (Papp(A-B)) are used to identify a compound as a 

substrate for efflux transport. 

The apparent permeability (Papp) of a compound in one direction across the monolayer is 

estimated from the rate of appearance of drug in the receiver compartment measured 

during an incubation time. It is given by the following equation, 

Papp = (dAR/dt)/(S×CD,0)        [1.12] 

Where Papp is the apparent permeability in distance per unit time, dAR/dt is the cumulative 

amount of compound appearing in the receiver compartment with respect to incubation 

time, S is the surface area across which transport occurs, and CD,0 is the initial 

concentration administered to the donor compartment. For Papp(B-A), dAR/dt specifies the 

rate at which drug appears in the apical compartment and CD,0 is the initial concentration 

added in the basolateral compartment. Oppositely, for Papp(A-B), dAR/dt specifies the rate 

at which drug appears in the basolateral compartment and CD,0 is the donor concentration 

added in the apical compartment. 
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1.3.4.2 Efflux ratio 

Efflux ratio (EfR), the ratio of Papp(B-A) to Papp(A-B), is also used to evaluate efflux 

transporter activity. It relates the relative permeabilities in both directions across the 

monolayer, demonstrated by the relationship in Equation 1.13, 

EfR = Papp(B-A)/Papp(A-B)         [1.13] 

Where EfR is the efflux ratio, Papp(B-A) is the basolateral to apical permeability of the drug 

across the cell monolayer and Papp(A-B) is the apical to basolateral permeability. A drug 

that does not experience any active efflux would have an EfR equal to 1. Conversely, a 

substrate for apical efflux transport would show increased EfR (value > 1), demonstrating 

asymmetric basolateral to apical permeability. 

1.3.4.3 Modeled intrinsic transport clearance 

Efflux transporter activity can also be estimated from a cell monolayer permeability assay 

as a modeled intrinsic transporter clearance (CLint(Transport)). Cellular kinetic models of 

varying complexity have been designed to describe drug movement between 

compartments of a transwell system, with respect to time (171; 172; 176-178). The drug 

concentrations, which are experimentally measured from the donor and receiver 

compartments throughout the drug incubation period, can be used as inputs for 

mathematical models to derive parameter values for the dynamic kinetic processes of the 

transwell. The intrinsic efflux clearance (CLint(Efflux) or CLint), as it is defined in any given 

model, provides a direct quantitative estimate of the activity of efflux transporters on an 

in vitro test drug. This is different than Papp and EfR, which only qualitatively estimate 

efflux transporter kinetics. Also unlike Papp and EfR, this modeled approach isolates and 

quantifies the activity of the efflux transporter of interest. Take for example, the 

compartmental model applied by Tam et al. (Figure 1.4); this model was able to examine 

specifically the effect of P-gp efflux transport on drug metabolism in cytochrome P450 

expressing Caco-2 cell intestinal models (173). 

Since the modeled clearance approach isolates the activity of a given transporter, it 

should also be more easily relatable across the various cell lines that are commonly used  
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Figure 1.4. Compartment model for drug transport in a Transwell experimental system. 

Permeation of drug (D) from the apical compartment into the cell compartment, whether 

mediated by uptake transporters or passive diffusion, is associated with the absorption 

rate constant, ka; secretion (efflux) from the cell back into the apical compartment occurs 

with the intrinsic clearance, CLint,sec. Drug partitioning between the cell and the 

basolateral compartment is mediated by influx and efflux clearances, CLd1 and CLd2, 

respectively, as shown. Drug binding to proteins present in the apical compartment due to 

sloughed off mucosal cells (unbound fraction fap), within the cell (unbound fraction fcell), 

and in the basolateral compartment (unbound fraction fbaso) affects the transfer and 

metabolic rates based on unbound drug concentrations. The rate of total metabolite 

formed, under first-order conditions, is given by fcellDcellCLint,met/Vcell, where Dcell is the 

amount of drug within the cellular compartment of volume, Vcell. Modified from Tam et 

al., 2003.  
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for monolayer permeability assays. Modeled clearance can account for uptake transport 

parameters as well as other passive and active transport processes that may be specific to 

different cell lines or culture conditions. In this way, modeled CLint should be 

transfereable between systems, whereas Papp and EfR values derived from different 

systems may not relate well. CLint is thus likely more useful for extrapolating the efflux 

transport activity of a particular transporter in question. 

1.3.5 Current recommendations for in vitro assessment of efflux transporter 

activity 

Some of the most important considerations for constructing a successful in vitro study 

with good in vivo predictive value are: the selected test system, analysis of experimental 

data, and the chosen test drug. 

Of the available in vitro techniques, monolayer permeability assays are recommended for 

in vitro assessment of efflux transporter activity (17; 179-183). More specifically, 

colorectal adenocarcinoma (Caco-2) cells have been commonly used in industry and 

academia for study of P-gp efflux transporter interaction and used as a general in vitro 

model of intestinal absorption (184-187). Caco-2 cells are a continuous cell of 

heterogeneous human epithelial colorectal adenocarcinoma cells, which shows high level 

of endogenous P-gp expression on the apical membrane. In culture they take on 

morphological and biochemical characteristics very similar to those of the human 

intestinal epithelium, forming a confluent monolayer with tight junctions and a brush 

border membrane. Data from Caco-2 cell assays has been shown to correlate well with 

the in vivo absorption of orally administered drugs in man (188).  

Notably, Caco-2 cells also show polarized expression of a variety of uptake and efflux 

transporters. Many of these transporters share overlapping substrate specificities with P-

gp and have the potential to contribute to the transport kinetics of P-gp subtrates. In 

addition to P-glycoprotein, Caco-2 cells express significant levels of breast cancer 

resistance protein (BCRP) and multidrug resistance-associated protein 2 (MRP2) efflux 

transporters (189; 190) and fair levels of other transporters as well (Figure 1.5) (191-

195).  
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Figure 1.5. Some of the putative transporter proteins expressed in cultured Caco-2 cells, 

including: apical BCRP, MRP2, MDR1, HPT1 (human peptide transporter 1), PepT1 

(peptide transporter 1), and OATP2B1 (organic anion-transporting polypeptide 2B1), and 

basolateral MRP3, MRP1, and OST-α/β (organic solute transporter-α/β). 
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Madin-Darby canine kidney (MDCK) cells and porcine kidney (LLCPK) cells can be 

transfected with MDR1 and so are often used to form a polarized confluent monolayer in 

vitro as an alternative to Caco-2 cells. The MDCK-MDR1 (MDCK cells stably 

transfected with MDR1) and LMDR1 (LLCPK cells stably transfected with MDR1) cells 

boast a shorter culture period and greater inter-passage homogeneity (182; 98). Also, 

when transfected with MDR1 these cell lines typically overexpress P-gp at levels greater 

than endogenous Caco-2 cell expression. Nonetheless, LLCPK and MDCK cells have 

also been reported to show some native expression of other transporters and enzymes, 

including fairly prominent canine P-gp expression in MDCK cells (196). 

In terms of data analysis, some monolayer permeability studies report using 

unidirectional apparent permeability for the evaluation of efflux transporter activity and 

classification of P-gp substrates and modulators (197). However, efflux ratio is 

commonly used in many other studies (179). Digoxin is also viewed as the ideal substrate 

for the investigation of P-gp DDIs (113), and it will be discussed in detail in Section 1.4. 

1.4 Digoxin 

1.4.1 Historical perspectives 

The cardiac glycosides are a group of chemically similar compounds that are often 

referred to as digitalis or digitalis glycosides because most are derived from the digitalis 

(foxglove) plant. The plant is native to western and south-western Europe, north-western 

Africa, western and central Asia and Australasia. In 1785 physician William Withering 

provided the first English language report of the use of cardiac glycoside-containing 

digitalis extract in the treatment of heart conditions. Cardiac glycosides are now known to 

inhibit the NA
+
/K

+
-ATPase pump in myocardial and smooth muscle cells. This creates an 

increased intracellular sodium concentration, which induces elevated intracellular 

calcium by means of the Na
+
/Ca

2+
 exchanger. The end result is increased contractility of 

the heart through a positive inotropic effect. Typical cardiac glycosides function by the 

same mechanism of action, but vary in their potency and pharmacokinetics.  

The first digoxin product was brought to the American market in 1934 by Wellcome 

Chemical Works (now GlaxoSmithKline) at a time when the FDA had limited power to 
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regulate pharmaceuticals. As federal legislation evolved the FDA was empowered to 

impose more stringent safety and efficacy tests on all pharmaceuticals, including those 

already on the market. This resulted in several recalls of digoxin and eventually it’s 

resubmission as a new drug. The secondary glycoside digoxin (Lanoxin) was ultimately 

approved by the FDA in 1998 for heart failure, on the basis of the Digitalis Investigators 

Group (DIG), Randomized Assessment of Digoxin on Inhibitors of the Angiotensin 

Converting Enzyme (RADIANCE), and Prospective Randomized Study of Ventricular 

Function and Efficacy of Digoxin (PROVED) clinical trials (198; 199; 200). Today 

digoxin is the cardiac glycoside most commonly used in North America. 

1.4.2 Indications and use in Canada 

Current Heart Failure Society of America (AHA)/American College of Cardiology 

(ACC) joint guidelines and Heart Failure Society of America (HSFA) guidelines 

recommend digoxin use for the treatment of symptomatic chronic heart failure with 

reduced or preserved systolic function and for ventricular rate control in atrial fibrillation 

(201; 202). At present, digoxin is the only effective oral inotropic agent available for 

treatment of chronic severe left systolic dysfunction (198; 203). Judicious use may also 

be warranted in cases of renal hypokalemia, renal impairment, hypomagnesemia, and 

hypothyroidism. When necessary, digoxin may also be carefully used in patients who 

suffer acute myocardial infarction with ongoing ischemia or electrical cardioversion.  

The therapeutic concentration of digoxin for most heart failure patients is between 0.5 

and 1.0 ng/mL from a daily dose of 0.125 to 0.25 mg/day. Close drug monitoring is 

especially imperative for digoxin because it has a very narrow therapeutic window, which 

means that the concentration at which toxic effects appear (≥ 2 ng/mL) is not 

substantially greater than therapeutic concentration. Early signs of digoxin toxicity are 

central nervous systems effects including dizziness, visual disturbance and nausea. Major 

digoxin toxicity is in large part a consequence of intracellular potassium depletion.  

Digoxin is an affordable drug that, if properly monitored, can be used safely and 

effectively in conjunction with other heart failure drugs. Importantly though, co-

administration of digoxin with intravenous calcium can precipitate potentially fatal 
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arrhythmias. Digoxin should also be avoided in patients with sinus node disease, second- 

or third-degree atrioventricular block, accessory atrioventricular pathways, hypertrophic 

cardiomyopathy, and cardiac amyloidosis. As well, physicians must be aware of the 

potential for drug-drug interactions, particularly those mediated by P-glycoprotein. 

1.4.3 Clinical pharmacology 

Drug-drug interactions are a real concern because of their potential to push serum digoxin 

concentrations outside of the narrow therapeutic window. Several clinically significant 

DDIs involving digoxin have been previously reported (181). One of the most studied is 

between digoxin and quinidine; first reported in 1968. Several prospective studies 

independently confirmed the interaction, reporting 2- to 3-fold increase in digoxin 

concentrations following concomitant quinidine administration (204; 205). This was 

demonstrated to be a result of increased oral bioavailability by quinidine inhibition of 

intestinal P-gp (206) and reduced renal clearance by inhibition of renal P-gp (207). 

Likewise, concomitant administrations of cyclosporine, quinidine, amiodarone, 

dronedarone, and valspodar with digoxin have all been reported to increase digoxin 

plasma concentrations by competing for P-gp transport or protein binding (208-212). 

Foods and other natural products have been shown to significantly affect digoxin 

pharmacokinetics as well.  For instance, several studies with St John’s Wort have 

demonstrated decreased digoxin AUC resulting from induction of P-gp activity (213-

216). 

1.4.4 Discovery as a P-gp substrate 

Evidently, many digoxin DDIs are mediated by P-glycoprotein. The first in vitro 

evidence for digoxin as a P-gp substrate came in 1992 from a study by de Lannoy and 

Silverman in Canada and from a study in the same year by Tanigawara et al. in Japan. 

Tanigawara’s group showed greater basolateral to apical transport of digoxin across an 

epithelial monolayer of polarized LMDR1 cells. The directionality was diminished 

significantly by the addition of the P-gp inhibitors vinblastine, quinidine, or verapamil. 

Tanigawara’s group further demonstrated that while digoxin transport directionality is 

reduced by cyclosporin inhibition of P-gp, digoxin did not reduce cyclosporin transport. 
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In other words, digoxin is a substrate of P-gp, but not a modulator (218). Similar studies 

conducted in different P-gp-expressing cells, including Caco-2 cells, and MDCK-MDR1 

cells also identified digoxin as a P-gp substrate (219; 220; 98). 

Additional in vivo work was done in knockout animal models. For example, Schinkel et 

al. assessed digoxin disposition in mdr1a (-/-) mice (131). Following intravenous 

injection they saw 35-fold greater digoxin accumulation in the brain of knockout mice 

compared to wild type, demonstrating the efflux activity of blood-brain-barrier P-gp in 

wild type mice. They also found that mdr1a (-/-) mice had 2-fold greater digoxin 

exposure in the plasma and tissues overall, reflecting slower digoxin elimination in the 

absence of active excretion by renal P-gp. In vitro work by Tsuruoka et al. further 

supported the activity of mouse renal P-gp on digoxin (221). Finally, a study in IV-dosed 

mdr1a (-/-) mice by Kawahara et al. also reported significant increase in digoxin AUC 

and mean residence time, as well as reduced renal and biliary clearance in P-gp-knockout 

mice (222). 

At the turn of the century, human studies were underway to establish digoxin as a clinical 

P-gp substrate. In 8 healthy volunteers, co-administration of rifampin significantly 

reduced the AUC of orally dosed digoxin and, to a lesser extent, IV dosed digoxin (55). 

This was attributed to rifampin induction of P-gp, which was directly measured from 

duodenal biopsies. Decisive, in depth mechanistic clinical studies performed using 

segmental intestinal perfusions demonstrated definitively that digoxin is indeed secreted 

by the P-gp transporter (223; 224). A variety of similar studies with P-gp induction and 

inhibition all confirmed convincingly that digoxin is a substrate of the human P-gp 

transporter and that P-gp has a significant impact on digoxin disposition (225-229).  

1.4.5 Digoxin pharmacokinetics 

Digoxin is commonly administered as a commercially available tablet (Lanoxin), which 

is taken orally. Peak serum concentrations (Cmax) are rapidly achieved 1 to 3 hours 

following oral administration (230). The Cmax is somewhat delayed when taken with 

food, but the total amount absorbed is generally unchanged, except in the case of a high 

fiber meal. By the Biopharmaceutics Classification System (BCS), digoxin is a class II 
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compound, with high permeability and low aqueous solubility (231). The bioavailability 

of the oral dose is between 60 percent and 80 percent (232). However, patients with 

malabsorption syndromes or with certain populations of colonic bacteria may see a 

reduced digoxin oral bioavailability. Importantly, digoxin is also a substrate of the P-gp 

efflux transporter, which can limit oral absorption at the apical membrane of enterocytes 

(233).   

The distribution phase of digoxin is between 6 and 8 hours, with a distribution half-life of 

0.35 hours (234). The steady-state serum concentrations achieved after distribution are in 

equilibrium with the digoxin concentrations in the tissues and thus these are the most 

relevant serum concentrations for evaluating therapeutic and toxic effects. Digoxin has a 

large Vd, showing substantial distribution into tissues (233). Very little digoxin moves 

into adipose tissue however, and thus dosing should be based on lean body mass rather 

than total body mass. Not surprisingly then, loss of muscle mass in elderly patients results 

in a diminished Vd. Renal disease and hypothyroidism can also contribute to Vd 

reduction. Digoxin has been shown to cross both the blood-brain-barrier and the blood-

placenta-barrier and is 25% serum protein bound (233).  

Digoxin shows very little metabolism, only 13 percent. The primary metabolites are 

dihydrodigoxin, digoxigenin and bisdigitoxoside and they are produced by non-CYP 

enzymes. Renal excretion is the major route of digoxin elimination and between 50 and 

70 percent of the parent compound is excreted unchanged in the urine (235). Given the 

importance of the kidney in the elimination of digoxin, its half-life is prolonged in 

patients suffering from renal failure.  The typical half-life in patients with healthy renal 

function though, is between 1.5 and 2 days (233). 

1.4.6 Digoxin as a model P-gp substrate 

Digoxin’s pharmacokinetics makes it an ideal in vitro probe substrate for the P-gp drug 

transporter.  According to the FDA 2006 draft guidance for drug interaction studies,  an 

in vitro P-gp probe substrate should be: selective to the P-gp transporter, have low 

passive membrane permeability, show minimal metabolism, be commercially available, 

and be safe for in vivo studies (17). Additional requirements applicable to human studies 
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should include a drug that is: safe and well tolerated by healthy subjects, approved for 

human administration, rapidly absorbed with a short half-life to avoid long clinical 

studies, minimally plasma protein bound, and quantifiable from plasma and/or urine 

and/or fecal samples using validated analytical methods (236). Digoxin is a P-gp 

substrate drug that is commercially available, both as cold- and radiolabelled- drug and it 

adequately fulfills the aforementioned probe substrate criteria. It remains the 

recommended probe drug for P-gp interaction studies according to the FDA and is 

viewed as the gold standard for industry testing (17; 181; 183; 237; 238). 

Though used less frequently than digoxin, fexofenadine – a histamine H1-receptor 

antagonist used for the treatment of seasonal allergic rhinitis – is also an effective P-gp 

probe drug. It is a demonstrated P-gp substrate: showing directional transport in Caco-2 

cells that is suppressed by P-gp inhibitors, as well as significantly increased plasma and 

tissue levels in MDR1 knockout mice (239-241). It shows minimal metabolism, with 95% 

of a dose excreted unchanged in the urine and feces (242). Moreover, the 60 mg single 

oral dose that is commonly used for in vivo studies is safe and tolerable and results in 

accurate and detectable plasma concentrations (243; 244). Notably though, while 

fexofenadine is commercially available, it is not available as an intravenous formulation. 

As a result, fexofenadine has limited in vivo usefulness in distinguishing the activity of 

intestinal versus renal P-gp. As well, commercially available fexofenadine is a racemic 

mixture, which may introduce chiral-associated differences in the drug’s 

pharmacokinetics that are independent of P-gp (245). Moreover, fexofenadine is reported 

to be a substrate for several other transporters, many of which are expressed in cells 

commonly used for permeability assay, including organic anion-transporting polypeptide 

2B1 (OATP2B1) and multidrug resistance-associated protein 2 and 3 (MRP2 and MRP3). 

These competing transporters can complicate interpretation of P-gp transport kinetics 

(246).  

1.5 Rationale 

It is well appreciated that the activity of membrane transporter proteins plays an 

important role in drug disposition, a critical determinant of the pharmacological and 

toxicological profile of all drugs (247; 12). Like drug metabolizing enzymes, drug 
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transporters are known to mediate significant drug-drug interactions as well as contribute 

to population variation in pharmacokinetics. P-glycoprotein (P-gp) is a key clinically 

important and well-characterized efflux transporter, which affects drug absorption, 

distribution and elimination (112; 12; 114; 115). A great number of clinically relevant, 

pharmacologically and structurally unrelated drugs are substrates for P-gp. Consequently, 

the efflux transport activity of P-gp on various drugs and drug candidates is routinely 

tested using the gold standard in vitro permeability assay across a monolayer of 

polarized, P-gp expressing Caco-2, LMDR1, or MDCK-MDR1 cells. Different metrics – 

namely apparent permeability Papp and efflux ratio EfR – are employed to evaluate P-gp 

transporter activity in this assay, in order to identify P-gp substrates or modulators and to 

extrapolate to in vivo and clinical pharmacokinetics. However, comparative assessment of 

how well these metrics can specifically characterize the efflux transport activity of P-gp 

is limited in the literature. In one study investigating the sources of inter-lab variability in 

Caco-2 cell intestinal model predictions, Hayeshi et al. reported on the correlation 

between varied P-gp mRNA expression levels in Caco-2 monolayers and the 

corresponding P-gp activity estimates calculated by Papp and by EfR (248). Taipalensuu et 

al. also reported on the correlation between efflux ratio and P-gp protein expression in 

Caco-2 monolayers (249). But, there are no studies that evaluate the efficacy of Papp or 

EfR to estimate P-gp activity across the various commonly used monolayer cell types. 

Our study compares traditional metrics of P-gp activity in Caco-2, LLCPK and LMDR1 

monolayer permeability assays, against a mechanistically-based compartmental modeling 

approach, which generates a clearance CLP-gp to quantitatively describe the intrinsic 

efflux activity of the P-gp transporter. We believe that a modeled clearance approach is a 

superior metric for the permeability assay because it does not rely on the potentially 

erroneous assumption that intracellular concentration is equal to basolateral 

concentration. Rather, the modeled approach specifically and quantitatively estimates P-

gp activity from a fitted intracellular concentration. At the same time, it accounts for 

uptake transport parameters as well as other passive and active transport processes that 

may be specific to the different cell lines that are used for monolayer permeability assays. 

In this way, modeled CLP-gp should be transferable between different monolayer cell 

types (e.g. Caco-2, LLCPK, and LMDR1) and in vivo, whereas Papp and EfR values 
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derived from different systems may not interrelate well. Compared to the qualitative P-gp 

transporter activity assessments offered by Papp and EfR, modeled CLP-gp is likely more 

useful for the precise quantitative evaluation of the activity of the P-gp transporter in cell 

monolayer permeability assays and ultimately more useful for quantitative in vitro to in 

vivo extrapolation. To compare the merit of our model against the standard metrics, we 

conducted monolayer permeability assays across Caco-2, LLCPK, and LMDR1 cell 

monolayers that had a range of P-gp expression level and we employed unidirectional 

permeability, efflux ratio, and modeled clearance metrics to estimate P-gp activity in each 

assay. We then performed a statistical analysis to compare all metrics for overall validity 

and sensitivity across cell systems.  

1.6 Objectives 

1. To establish multiple cell monolayer permeability in vitro systems with 

different levels of P-gp expression/activity.  

2. To evaluate P-gp efflux activity in the different cell systems using the 

traditional metrics and a modeled intrinsic P-gp clearance.  

3. To compare the validity and sensitivity of the different metrics of efflux 

transporter activity across cell systems. 

1.7 Hypothesis 

We hypothesize that modeled clearance (CLint(Transport)) is a more valid and sensitive 

measure of P-gp activity in the in vitro cell monolayer permeability assay than Papp and 

EfR.  
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Chapter 2  

QUANTITATIVE ESTIMATION OF P-GLYCOPROTEIN-
MEDIATED DRUG TRANSPORT IN THE MONOLAYER 

PERMEABILITY ASSAY BY MECHANISTICALLY 
MODELED INTRINSIC CLEARANCE 

2.1 Introduction 

Interindividual differences in drug response and toxicity continue to be a challenge to 

optimal drug therapy (1). It is well appreciated that differences in drug action among 

patients relate to variability in the levels of drug in the blood. Cell membrane-bound 

transporter proteins play an important role in drug absorption, distribution, and excretion 

pharmacokinetic processes, which are critical determinants of drug levels and hence the 

pharmacological and/or toxicological profile of all drugs and xenobiotics (2; 3). Many 

common polymorphisms in drug transporters have been linked to altered drug 

pharmacokinetics and transporters are also the basis of many clinically relevant drug-

drug interactions (DDIs) (3). Whole cell and expression system in vitro assays of drug 

metabolizing enzyme activities yield kinetic information that is essential for in vitro to in 

vivo extrapolation (IVIVE) of drug levels and for mechanistic understanding and 

prediction of DDIs and pharmacokinetics in the clinical setting (4; 5). Interestingly 

though, such biochemical characterization of drug transporter activity today remains 

inadequate, despite the important role of transporters in drug pharmacokinetics (5).  

P-glycoprotein (P-gp), encoded by the Multidrug Resistance 1 (MDR1, ABCB1) gene, is 

the most clinically important and well-characterized efflux transporter, responsible for 

pumping drugs from inside cells to the outside milieu. P-gp is widely expressed on the 

apical membrane in tissues such as liver, kidney, intestines, and at the blood-brain-

barrier, indicating its important role in drug disposition. A large number of 

pharmacologically and structurally unrelated drugs are substrates for P-gp, including: 

anti-cancer agents, steroid hormones, antimicrobial agents, opioids, immunosuppressants, 

antiarrhythmics, antihistamines, cholesterol-lowering statins, and HIV protease 

inhibitors, to name a few (6).  
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Given the clinical relevance of P-gp, an initial in vitro assay of P-gp transporter activity is 

typically performed for a drug in order to predict P-gp-drug interaction and guide further 

in vivo studies. Convention has been to measure drug flux across a tight monolayer of 

apical-basolateral polarized cells that have apical P-gp expression (7; 8). The apparent 

permeability (Papp) of a drug across the monolayer is estimated from the appearance of 

drug in the receiver compartment over time [Equation 1.12]. Due to polarized expression 

of P-gp efflux transporter on the apical membrane, a P-gp substrate drug would be 

expected to show increased Papp in the basolateral-apical direction (Papp(B-A)) and 

decreased Papp in the apical-basolateral direction (Papp(A-B)). The ratio of Papp(B-A)/Papp(A-B), 

known as the efflux ratio (EfR) [Equation 1.13], is then said to estimate P-gp transport 

activity on a substrate drug; the assumption being that EfR and Papp(B-A) are proportional 

to P-gp activity and Papp(A-B) is inversely proportional to P-gp activity (8). 

Papp = (dAR/dt)/(S×CD,0)        [1.12]  

EfR = Papp(B-A) /Papp(A-B)        [1.13] 

While EfR, Papp(B-A), and Papp(A-B) can effectively identify most P-gp substrates, specific 

estimation of P-gp activity may be limited. Apparent permeabilities and efflux ratios, 

which are measured directly from flux across the monolayer, view the system as a single 

barrier with drug actively transported directly from the donor compartment to the receiver 

compartment. In reality it is the intracellular drug concentration, not the donor 

compartment concentration that interacts with P-gp on the apical membrane. Therefore, 

EfR, Papp(B-A), and Papp(A-B) do not account for the potentially rate limiting active uptake 

processes on the basolateral or apical membranes that move drug from the donor 

compartment into the intracellular compartment, where drug-P-gp interaction occurs. 

Consequently, EfR, Papp(B-A), and Papp(A-B) metrics fail to specifically characterize P-gp 

transport and thus may not show direct proportionality with P-gp transporter activity and 

expression (9; 10). 

We propose utilizing a mathematical model that incorporates all potentially rate limiting 

active and passive transport processes occurring at both the apical and basolateral 

membranes (Figure 2.1). By fitting flux data to this model, we can estimate the kinetics 
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of P-gp transport from the intracellular space. The output parameter from this exercise 

CLP-gp, P-gp intrinsic clearance, is then a mechanistically-based quantitative estimate of 

P-gp transporter activity. In order to compare this modeled approach for P-gp activity 

estimation with the typical metrics, we conducted several monolayer permeability assays 

with a range of P-gp expression and appraised the correlation of Papp, EfR, and CLP-gp 

with P-gp expression in each assay. In theory, the level of P-gp expression on the apical 

membrane of polarized cells should be directly proportional to measured P-gp transport 

activity when the transporter is not saturated. We hypothesize that the modeled clearance 

(CLP-gp) is a superior metric of P-gp activity compared to Papp or EfR. 
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Figure 2.1. Schematic presentation of the compartmental model, with apical (A), 

basolateral (B), and cell (C) compartments represented. CL parameters define the transit 

efficiencies between compartments of volume V and drug concentration C. 
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2.2 Materials and Methods 

2.2.1 Materials 

Human colorectal adenocarcinoma [Caco-2] and porcine kidney epithelial [LLCPK] cells 

were obtained from American Type Culture Collection ATCC (Manassas, VA). LLCPK 

cells overexpressing MDR1 [LMDR1] were a generous gift from Dr. A.H. Schinkel (The 

Netherlands Cancer Institute, Amsterdam, Holland) and Dr. E. Schuetz (St. Jude 

Children’s Research Hospital, Memphis, TN). Dulbecco’s modified Eagle’s medium 

(DMEM), fetal bovine serum (FBS), penicillin-streptomycin, nonessential amino acids 

(NEAA) and 0.05% trypsin-EDTA were all purchased from Life Technologies (Grand 

Island, NY). Vincristine sulfate with a purity exceeding 97.5 [HPLC], 1α,25-

dihydroxyvitamin D3 with purity exceeding 99% [HPLC], thiazolyl blue tetrazolium 

bromide (MTT) with purity exceeding 98% [HPLC], digoxin with purity exceeding 

96.4% [HPLC], and protease inhibitor were all sourced from Sigma-Aldrich (St. Louis, 

MO). Transwell cell culture inserts (12-well, 0.4 um) were purchased from VWR-

International (Mississauga, ON). [
3
H]-Digoxin (specific activity, 21.8 Ci/mmol), was 

obtained from PerkinElmer Life & Analytical Sciences (Boston, MA). [
14

C]-Inulin 

(specific activity, 8.5mCi/mmol), with purity exceeding 95% [HPLC] was from Moravek 

Biochemicals (Brea, CA). Ultima Gold scinitillation cocktail was purchased from 

PerkinElmer (Waltham, MA). Thermo Scientific Pierce IP lysis buffer and Thermo 

Scientific Restore Western Blot Stripping Buffer were obtained from Fischer Scientific 

(Ottawa, ON). Western Blocking Reagent was purchased from Roche (Indianapolis, IN). 

C219 monoclonal p-glycoprotein antibody was purchased from Covance (Dedham, MA). 

Polyclonal goat anti-actin antibody (C-11) was obtained from Santa Cruz Biotechnology, 

Inc. (Santa Cruz, CA). Goat anti-mouse IgG (H + L)-HRP conjugate was purchased from 

BioRad Canada (Mississauga, ON). Amersham ECL select western blotting detection 

reagent was purchased from GE Healthcare UK (Little Chalfont, Buckinghamshire). 

2.2.2 Cell Culture 

Caco-2 (passage no. 20-35), LLCPK (passage no. 5-15), and LMDR1 (passage no. 5-15) 

cells were cultured in DMEM supplemented with 50 ug/ml streptomycin, 50 U/mL 

penicillin and 10% fetal bovine serum. LMDR1 culture media was also supplemented 
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with 10% NEAA and 640 nM vincristine to maintain P-glycoprotein expression. Cells 

were incubated at 37°C in 5% CO2 in a humidified environment. 

2.2.3 MTT Assay 

MTT assay was performed on Caco-2 cells in 96-well plates with approximately 1.2×10
4
 

cells per well. Cells were treated in triplicate with 0 nM to 1500 nM 1α,25(OH)2D3 every 

other day for 14 days. On day 15 cells were washed with phosphate-buffered saline 

(PBS) and 25 µL of 5 mg/mL MTT in PBS was added to each well. The plates were 

incubated for 4 h at 37 °C and the formazan formed was dissolved in 50 µL of dimethyl 

sulfoxide (DMSO). The background absorbance at 670 nm was subtracted from the 

absorbance at 569 nm to obtain the raw absorbance data (Thermo Multiskan 

spectrophotometer). 

2.2.4 Digoxin Flux Studies 

Cells were seeded in 12-well plates at a density of 90,000 cells per 0.4-µm cell culture 

insert and grown for 14 days with media changes every 2 days. Each time the media was 

changed, Caco-2 cells were treated with 0 nM (Caco-2 (0nM)), 10 nM (Caco-2 (10 nM)), 

or 100 nM (Caco-2 (100 nM)) of the P-gp inducer 1α,25(OH)2D3 dissolved in DMSO. 

Approximately 1 h before the start of a transport experiment, the media was removed 

from each compartment (apical and basal) and washed and replaced with pH 7.4 Krebs-

Henseleit Bicarbonate Buffer (KHB). Transport was initiated by removing the KHB and 

replacing it with 700 µl of KHB with or without 5 uM digoxin (3.5 µmol of digoxin) + 

5.7 nM [
3
H]-digoxin to the appropriate compartment in triplicate. [

14
C]-Inulin was 

included in each plate in triplicate as a marker of paracellular flux. The cells were 

incubated at 37°C with 5% CO2 in a humidified environment, and 25-µl aliquots were 

removed hourly from each compartment over 4 h. Each aliquot was mixed with 5 mL of 

Ultima Gold scintillation cocktail and counted using a PerkinElmer TriCarb2900 TR 

liquid scintillation counter. 
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2.2.5 Estimation of P-gp Activity 

2.2.5.1 Conventional Estimates: Papp(A-B), Papp(B-A), and EfR 

Apparent permeability (Papp) in both directions was determined as follows:  

Papp = (dAR/dt)/(S×CD,0) [cm/s]        [1.12]  

where dAR/dt is the rate of drug ([
3
H]-digoxin or [

14
C]-inulin) appearance in the receiver 

compartment, S is the surface area of the cell culture insert , and CD,0 is the initial 

concentration added to the donor compartment. This model is derived from Fick’s first 

law of diffusion, assuming a constant linear concentration gradient across a single barrier 

and a sink condition. Efflux ratio (EfR) was determined as follows:  

EfR = Papp(B-A)/Papp(A-B)         [1.13]  

where Papp(B-A) is the apparent permeability in the basolateral to apical direction and 

Papp(A-B) is the apparent permeability in the apical to basolateral direction. 

2.2.5.2 Mathematical Modeling of Transport Intrinsic clearance: CLP-gp 

The three-compartment kinetic model (Figure 2.1) uses a set of mass balance differential 

equations [Equations 2.1-2.3] to describe digoxin flux in a transwell as a one-dimensional 

process between an apical, a cellular, and a basolateral kinetic compartment. The 

volumes used for the apical, cell, and basolateral compartments were fixed at 700 µL, 

2.76 µL and 700 µL respectively, and drug dispersion within the compartments was 

viewed as rapid and even.The cell volume was estimated using a previously reported 

geometric approach of multiplying cell heights by the surface area of cell culture inserts 

(9). CLP-gp describes the efflux clearance at the apical membrane that is mediated by P-

gp. CLA-C and CLC-B describe the net clearance due to all other transcellular transport 

processes (excluding P-gplycoprotein-mediated clearance) across the apical membrane 

and the basolateral membrane respectively; we assumed symmetrical transcellular 

clearance at both membranes. Rate equations describing the model (Figure 2.1) were 

solved numerically using the Episode (Adams) integrator (Scientist, Micromath, Salt 

Lake City, Utah). The P-gp clearance parameter (CLP-gp ) and both net basolateral and 

apical clearance parameters (CLA-C and CLC-B ) were estimated by simultaneous least 
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squares fitting of [
3
H]-digoxin flux data for drug administration in both directions to the 

model. Fitting of the paracellular clearance parameter (CLA-B) was done separately using 

simultaneous fitting of bidirectional [
14

C]-inulin flux data, with all other clearance 

parameters set to zero. All fitted parameters were constrained to be positive numbers. The 

differential equations that describe the model are as follows: 

In the apical compartment 

VAdCA/dt = -CACLA-C + CCCLA-C – CACLA-B + CBCLA-B + CCCLP-gp  [2.1] 

In the cellular compartment 

VCdCC/dt = -CCCLA-C + CACLA-C – CCCLC-B + CBCLC-B – CCCLP-gp  [2.2] 

In the basolateral compartment  

VBdCB/dt = -CBCLC-B + CCCLC-B – CBCLA-B + CACLA-B   [2.3] 

Where dCA/dt, dCC/dt and dCB/dt is the rate of change of drug concentration in the apical, 

cell and basolateral compartments respectively; VA, VC and VB are the volumes in each 

compartment; and CA, CC and CB are the drug concentrations. Where CLA-B represents 

the paracellular clearance; CLA-C and CLC-B represent the non-P-gp transcellular 

clearance across the apical and basolateral membranes respectively; and CLP-gp represents 

the P-glycoprotein-mediated apical efflux clearance. 

2.2.6 Immunoblotting and P-gp Quantitation 

At the end of each transport experiment, the cells were collected from cell culture insert 

membranes, washed with ice cold PBS and then lysed in lysis buffer containing protease 

inhibitor by the Thermo Scientific IP lysis buffer protocol. The whole-cell lysates were 

then stored at -80 °C for future analysis by western blot. Control Caco-2 cells were 

grown in a 10 cm plate, lysed with the Thermo Scientific IP lysis buffer protocol and the 

whole cell lysate was loaded on every western blot. Protein concentrations of all lysates 

were determined by Pierce BCA protein assay (Fisher Scientific, Whitby, ON). Forty µg 

of control Caco-2, 20 µg of LLCPK, Caco-2 (0 nM), Caco-2 (10 nM), and Caco-2 (100 
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nM) and 5 µg of LMDR1 whole cell lysate protein was separated on a NuPAGE 4-12% 

Bis-Tris gel (Invitrogen, Carlsbad, CA). Detection of P-glycoprotein expression was 

performed by overnight incubation with anti-P-glycoprotein antibody (C219), diluted 

1:500 in PBS with 0.1% Tween 20 and 10% western blocking reagent. To confirm equal 

loading of lysates, the blot was stripped and incubated with a polyclonal goat anti-actin 

antibody, at a dilution of 1:20,000 (C-11; Santa Cruz Biotechnology, Inc., Santa Cruz, 

CA). Actin expression could not be assumed to be constant between LLCPK and Caco-2 

cell types, thus normalizing to actin was not performed. Horseradish peroxidase-linked 

anti-mouse or anti-goat antibodies (Biorad) were used as the secondary antibodies.  Blots 

were visualized using Amersham ECL Western blotting system (GE) and a Kodak 

ImageStation 4000 MM (Eastman Kodak Company, Rochester, New York).  Protein 

expression was quantified by densitometry with ImageJ. All samples were quantified 

relative to the control Caco-2 whole cell lysate loaded on each blot. All quantified 

densitometry values were multiplied by a loading correction factor, to account for the 

different amounts of protein loaded between cell types. 

2.2.7 Comparison of P-gp Transport Activity Metrics 

For each transwell experiment, the derived CLP-gp value was plot against the measured P-

gp expression. CLP-gp values vs. protein expression data set generated from the 5 different 

transwell experiment types (Caco-2 (0 nM), Caco-2 (10 nM), Caco-2 (100 nM), LLCPK, 

and LMDR1) was then fit by linear regression using Prism 5.0 (GraphPad Software Inc, 

San Diego, CA). The same process was repeated for Papp(A-B), Papp(B-A) and EfR estimates 

of P-gp activity respectively. The lines of best fit were then compared for goodness of fit 

(r
2
) and slope. 

2.2.8 Statistical Analysis 

Statistical differences between group parameters were determined by 1-way ANOVA or 

2-way ANOVA, using Boneferroni’s multiple comparison test as appropriate (GraphPad 

Software Inc, San Diego, CA). A P value of <0.05 was considered statistically 

significant. 
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2.3 Results 

2.3.1 Cell Monolayer Viability 

The [
14

C]-inulin permeability values for the cell monolayers used in the transport 

experiments are displayed in Table 2.1. Evidently, Vitamin D treatment (10 nM or 100 

nM) did not significantly alter [
14

C]-inulin permeability across Caco-2 cell monolayers. 

All Caco-2 cell conditions showed significantly higher [
14

C]-inulin permeability than 

LLCPK and LMDR1 monolayers. But, all five monolayer conditions demonstrated 

acceptable membrane integrity, with inulin permeabilities ≤ 5×10
-6

 cm/s. 

Viability of Caco-2 cells treated with various concentrations of 1,25(OH)2D3 for 14 days 

was assessed by MTT assay (Figure 2.2). Concentrations as high as 500 nM 1,25(OH)2D3 

were tolerable by Caco-2 cells, with only a 15% rate of cytotoxicity. This concentration 

was fivefold higher than the concentration used in our high vitamin D treatment 

condition. 

2.3.2 Transport Experiments 

[
3
H]-Digoxin transport across the LLCPK and LMDR1 cell monolayers is shown in 

Figure 2.3. For [
3
H]-digoxin movement out of the donor compartment (Figure 2.3A) 

there was a trend towards greater flux in the basolateral to apical (B-A) direction in the 

LMDR1 cells as compared to LLCPK. As well, flux in the apical to basolateral (A-B) 

direction was significantly smaller in the LMDR1 cells. In the receiver compartment 

(Figure 2.3B) flux in both directions was significantly different between the two cell 

types. The LMDR1 cells had comparatively greater B-A flux and less A-B flux than the 

LLCPK cells. Overall, the disparity in B-A versus A-B flux was significantly greater in 

the LMDR1 cells.  

[
3
H]-Digoxin transport across Caco-2 cells treated with 0 nM, 10 nM and 100 nM 

1,25(OH)2D3 is shown in Figure 2.4. From the donor compartment (Figure 2.4A) A-B 

flux in the Caco-2 cells treated with 100 nM 1,25(OH)2D3 was significantly decreased 

compared to the Caco-2 cells not treated with 1,25(OH)2D3. Basolateral to apical flux 

however, did not significantly differ between the treatment groups. In the receiver  
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Table 0.1. Apparent permeability coefficients and net efflux ratio of bidirectional [
14

C]-

inulin transport over a 4 hour time course, across the various cell monolayers. 

Monolayer Cell 

Type 

 Papp(A-B) (×10
-6

 cm/s) Papp(B-A) (×10
-6

 cm/s) EfR 

LLCPK 3.122 ± 0.134 2.989 ± 0.153
a 

0.948 ± 0.014 

LMDR1 3.886 ± 0.585 2.481 ± 0.175
a 

0.867 ± 0.079 

Caco-2 (0 nM) 4.557 ± 0.277 4.430 ± 0.359
b 

0.953 ± 0.034 

Caco-2 (10 nM) 4.142 ± 0.291 4.067 ± 0.285
b 

0.982 ± 0.002 

Caco-2 (100 nM) 4.056 ± 0.299 4.121 ± 0.275
b 

1.026 ± 0.024 

a,b
 p < 0.05 compared between monolayer cell types 

Caco-2 cells were treated every other day with culture media only (Caco-2 (0 nM)), or 

with culture media + 10 nM (Caco-2 (10 nM)) or + 100 nM (Caco-2 (100 nM)) 

1,23(OH)2D3 for 2 weeks. Data are presented as mean ± S.E. (n=6).  
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Figure 2.2. The cytotoxic effect of vitamin D (1,25(OH)2D3) on cultured Caco-2 cells. 

Caco-2 cells (passage 15-35) were treated with various concentrations of vitamin D every 

other day for 14 days and cell survival was assessed by MTT assay. Data are expressed as 

the percentage of viability compared to control non-treated cells performed in the same 

experiment. Data are presented as mean ± S.D. (n = 1 experiment, 3 technical replicates). 
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Figure 2.3. Cumulative amounts of [
3
H]-digoxin transported from the donor 

compartment (A) and into the receiver compartment (B) of the LLCPK and LMDR1 cell 

monolayer, for the A-B and B-A direction, over a 4 hour time course. The transport study 

was performed on day 15. Data are presented as mean ± S.E. (n=4-6). 

 *, p < 0.05 between A-B - LLCPK and A-B - LMDR1; †, p < 0.001 between B-A - 

LLCPK and B-A - LMDR1. 
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Figure 2.4. Cumulative amounts of [
3
H]-digoxin transported from the donor 

compartment (A) and into the receiver compartment (B) of the Caco-2 cell monolayer, 

for the A-B and B-A direction, over a 4 hour time course. Prior to transport, Caco-2 cells 

were treated every other day with culture media only (●/▼), or with culture media + 10 

nM (■/♦) or + 100 nM (▲/○) 1,25(OH)2D3 for 2 weeks. The transport study was 

performed on day 15. Data are presented as mean ± S.E. (n≥4). 

 *, p <0.05 between A-B - Caco-2 (0 nM) and A-B - Caco-2 (100 nM); †, p < 0.05 B-A - 

Caco-2 (10 nM) and B-A - Caco-2 (100 nM). 
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compartment (Figure 2.4B) A-B flux was significantly lower and B-A flux was 

significantly higher in the Caco-2 (100 nM) cells as compared to the Caco-2 (0 nM) cells. 

B-A flux was also significantly smaller in the Caco-2 (10 nM) cells as compared to the 

Caco-2 (100 nM) cells. Evidently, the disparity in B-A versus A-B flux was significantly 

larger in Caco-2 cells treated with 100 nM 1,25(OH)2D3 versus Caco-2 cells treated 0 nM 

or 10 nM 1,25(OH)2D3.   

2.3.3 P-gp Protein Expression 

Figure 2.5 shows C219 antibody western blots of the whole cell lysates collected from 

the various transwell cell monolayers after each transport experiment; the 170 kDa P-gp 

protein was expressed in all cell types in a range increasing from LLCPK < Caco-2 (0 

nM) < Caco-2 (10 nM) < Caco-2 (100 nM) < LMDR1. Table 2.2 shows the densitometry 

quantification of the P-gp western blots, corrected for the different sample amounts 

loaded. P-gp expression was generally consistent across experiment days; the standard 

deviation for P-gp expression within a cell type was between 5 and 10 percent. On 

average LLCPK cells showed 25 fold less P-gp expression than the LMDR1 cells stably 

transfected with the MDR1 gene. Caco-2 cells showed about two fold more expression 

than LLCPK cells, but treatment with 10 nM and 100 nM 1,25(OH)2D3 induced 

approximately a 2-fold and 3-fold increase in Caco-2 cell P-gp expression, respectively. 

2.3.4 Permeability and Efflux Ratios 

We generated the apparent permeability values of digoxin across the different 

monolayers from flux data (Figure 2.6). Comparing bidirectional permeability between 

the LLCPK and the LMDR1 cell monolayers (Figure 2.6A), B-A permeability was 

significantly higher than A-B permeability in both cell types, but A-B permeability was 

significantly depressed, by 12 fold, in the LMDR1 cells versus the LLCPK cells. P-gp 

expression in the LMDR1 cells did not produce a significant increase in the B-A 

permeability of digoxin above that seen in the LLCPK cells. In examination of 

bidirectional permeability in the Caco-2 cells that were treated with various 

concentrations of 1,25(OH)2D3 (Figure 2.6B), B-A permeability was again significantly 

higher than A-B permeability in all cell monolayers. Caco-2 cells treated with 10 nM and  
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Figure 2.5. Western blots, using a mouse monoclonal anti-P-gp antibody (C219) (I) and 

a polyclonal goat anti-actin antibody (C-11) (II), of transwell monolayer cell lysates from 

experiment Day 1 (A), Day 2 and 3 (B), Day 4 (C), Day 5 (D), and Day 6 (E). , The 
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monolayer lysates in (A), (C), (D), and (E) were loaded as LLCPK [Lane 1], LMDR1 

[Lane 2], Caco-2 (0 nM) [Lane 3], Caco-2 (10 nM) [Lane 4] and Caco-2 (100 nM) [Lane 

5]; in (B) they were loaded as LLCPK (Day 2) [Lane 1], LMDR1 (Day 2) [Lane 2], 

Caco-2 (0 nM) (Day 2) [Lane 3], and LLCPK (Day 3) [Lane 4]. The same control Caco-2 

cell lysate was loaded for densitometry comparison on every blot [Lane 0]. 40 µg of 

protein was loaded for all Caco-2 control lysates; 5 µg of protein was loaded for all 

LMDR1 monolayer lysates; 20 µg was loaded for all other monolayer lysates.  



85 

 

Table 0.2. Relative P-gp and Actin protein expression in transwell monolayer cells 

collected from each experiment day, as compared to the control Caco-2 cell lysate. 

*Cells from transwell experiments with leaky monolayers ([14C]-inulin permeability > 5 × 10-6 cm/s)  were excluded from 

the study   
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100 nM 1,25(OH)2D3 showed respectively 2 fold and 2.7 fold less A-B permeability than 

untreated Caco-2 cells, but did not show significantly different A-B permeability 

compared to each other. Conversely, in the B-A direction Caco-2 cells treated with 10 

nM 1,25(OH)2D3 did show significantly less permeability than 100 nM treated cells, by 

1.3 fold, but 10 nM treated cells did not show significantly different B-A permeability 

compared to untreated Caco-2 cells. Comparing all cell monolayers in the A-B direction 

(Figure 2.6C), digoxin permeability was significantly higher in LLCPK cells than all 

other cell conditions. A-B permeability was significantly diminished by 2.8 fold in 

LMDR1 cells compared to untreated Caco-2 cells, but not significantly so when 

compared to Caco-2 cells treated with 1,25(OH)2D3. For all monolayers in the B-A 

direction (Figure 2.6D), 100 nM 1,25(OH)2D3 treated Caco-2 cells showed significantly 

higher B-A permeability, but a significant difference was not seen between the B-A 

permeabilities of any of the other conditions. There was a slight trend though towards 

decreased B-A permeability in the LLCPK cells. 

Efflux ratios generated from the flux data are presented in Figure 2.7. LLCPK monolayer 

showed an EfR close to 1, which was significantly smaller than the LMDR1 monolayer 

by 5.4 fold and smaller than the three Caco-2 monolayer conditions by 2 fold, 3.7 fold, 

and 6.9 fold respectively. There was a significant trend towards increasing EfR values in 

response to increasing 1,25(OH)2D3 concentration. Untreated Caco-2 cells had the lowest 

EfR, Caco-2 cells treated with 10 nM 1,25(OH)2D3 were 1.7 fold higher than untreated. 

The EfR of Caco-2 (100 nM) cells was 2.6 fold higher than untreated Caco-2 cells and 

was not significantly different from the LMDR1 cell monolayer EfR.  

2.3.5 Modeled Clearance 

Generation of the CLP-gp values required fitting of the transport data to our kinetic 

compartmental model [Equations 2.1-2.3], which encompasses parameters for 

paracellular clearance between an apical and basolateral compartment, as well as 

parameters for clearance at separate apical and basolateral barriers. An average digoxin  
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Figure 2.6. Apparent permeability coefficients for the transport of [
3
H]-digoxin, over a 4 

hour time course, in the A-B and B-A direction across LLCPK and LMDR1 cell 

monolayers (A), in the A-B and B-A direction across Caco-2 (0 nM), Caco-2 (10 nM) 

and Caco-2 (100 nM) cell monolayers (B), in the A-B direction across LLCPK, LMDR1, 

Caco-2 (0 nM), Caco-2 (10 nM) and Caco-2 (100 nM) cell monolayers (C), and in the B-

A direction across LLCPK, LMDR1, Caco-2 (0 nM), Caco-2 (10 nM) and Caco-2 (100 

nM) cell monolayers (D). Caco-2 cells were treated every other day with culture media 

only [Caco-2 (0 nM)], or with culture media + 10 nM [Caco-2 (10 nM)] or + 100 nM 

[Caco-2 (100 nM)] 1,25(OH)2D3 for 2 weeks. Data are presented as mean ± S.E. (n=4-6). 

Permeabilities with a different superscript letter (a, b, c, or d) are significantly different; 

p<0.05.  
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Figure 2.7. Efflux ratio of bidirectional [
3
H]-digoxin transport for 4 hours across the 

different cell monolayers. Data are presented as mean ± S.E. (n ≥ 4). EfRs with a 

different superscript (a, b, c, or d) are significantly different; p<0.05. 
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paracellular clearance parameter, CLA-B, was estimated for each transwell cell type from 

fit of average [
14

C]-inulin transwell flux data to the same compartmental model. Using 

these fitted CLA-B values, the model was able to simulate the average [
14

C]-inulin 

transport data very well for all cell types (Figure 2.8). Fixing these CLA-B values as the 

paracellular clearance parameters in our digoxin compartmental model, we then fit the 

models to the average digoxin transport data for each cell type in order to generate 

average transcellular clearance parameters CLA-C, CLC-B, and CLP-gp. Model simulation 

using these fitted CLA-C, CLC-B, and CLP-gp parameter values also matched the average 

digoxin transport data quite well for all cell types (Figures 2.9 and 2.10). 

As was seen with EfR, modeled P-gp clearance (CLP-gp) values increased from LLCPK < 

Caco-2 (0 nM) < Caco-2 (10 nM) < Caco-2 (100 nM) < LMDR1 (Figure 2.11A). CLP-gp 

in LMDR1 cells was 14.3 fold greater than in LLCPK cells, but we only see a small non-

significant 1.5 fold difference between modeled CLP-gp for LLCPK and Caco-2 (0 nM) 

cells. Similar values of CLP-gp are seen between Caco-2 (0 nM) and Caco-2 (10 nM). 

Treatment with 100 nM of vitamin D yielded a significantly greater CLP-gp, 3.0 fold 

higher than untreated Caco-2 cells.  

In agreement with the [
14

C]-inulin permeability data (Table 2.1), the modeled values for 

paracellular clearance, CLA-B, were fairly consistent across all cell types, but higher in the 

3 different Caco-2 cell groups (Figure 2.11D). In contrast, the modeled non-P-gp 

transcellular clearance was not uniform across cell types; CLA-C and CLC-B parameters 

were very similar between LLCPK and LMDR1 cells, but in Caco-2 (0 nM) cells CLA-C 

and CLC-B was around 4 fold and 2 fold greater respectively (Figure 2.11B and C). 

Evidently, treatment with vitamin D in the Caco-2 (10 nM) and Caco-2 (100 nM) groups 

reduced the CLA-C and CLC-B down to levels similar to that seen in LLCPK and LMDR1 

cells. 

Estimates of P-gp activity made by compartmental modelling as well as the estimates 

made by traditional permeability and efflux ratio methods for all transport experiments 

are summarized in Tables 2.3 and 2.4. 
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Figure 2.8. Model fits of inulin transport across LLCPK (A), LMDR1 (B), Caco-2 (0 

nM) (C), Caco-2 (10 nM) (D), and Caco-2 (100 nM) (E) monolayers, using Equations 

2.1-2.3, with a CLA-B parameter value fit from average [
14

C]-inulin transport data. Solid 

lines and broken lines represent simulations of the apical dosed and basolateral dosed 

inulin transport respectively. ■ and▲ represent apical and basolateral dosed inulin data 
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points respectively. Data points presented are the average of 6 transport experiments ± 

SE. 
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Figure 2.9. Model fits of digoxin transwell transport across LLCPK (A) and LMDR1 

(B) cell monolayers out of the donor compartment (I) and into the receiver compartment 

(II), using Equations 2.1-2.3, with CLP-gp, CLA-C, and CLC-B parameter values fit from 

average [
3
H]-digoxin transport data. The solid line and the broken line represent model 

fits of the apical dosed and basolateral dosed digoxin transport respectively. ■ and▲ 

represent apical and basolateral dosed digoxin data points respectively. Data points 

presented are the average of 6 transport experiment days ± SE. 
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Figure 2.10. Model fits of digoxin transwell transport across Caco-2 (0 nM) (A), Caco-2 

(10 nM) (B), and Caco-2 (100 nM) (C) cell monolayers out of the donor compartment 

(I) and into the receiver compartment (II), using Equations 2.1-2.3, with CLP-gp, CLA-C, 

and CLC-B parameter values fit from average [
3
H]-digoxin transport data. The solid line 
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and the broken line represent model fits of the apical dosed and basolateral dosed digoxin 

transport respectively. ■ and▲ represent apical and basolateral dosed digoxin data points 

respectively. Data points presented are the average of 6 transport experiment days ± SE. 
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Figure 2.11. Modeled  CLP-gp (A), CLA-C (B), CLC-B (C), and CLA-B (D) of bidirectional 

[
3
H]-digoxin transport for 4 hours across the different cell monolayers. Data are 

presented as mean ± S.E. (n ≥ 4). CL values with a different superscript (a, b, or c) are 

significantly different; p<0.05. 
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Table 0.3. Estimates of P-gp activity in LLCPK and LMDR1 cell monolayers for each 

experiment day, evaluated by traditional apparent permeability (Papp(A-B), Papp(B-A)) and 

efflux ratio (EfR) approaches, as well as by P-gp intrinsic clearance (CLP-gp) fit from our 

3-compartment model. Modeled clearance values for non-P-gp transcellular flux (CLA-C, 

CLC-B) and paracellular flux (CLA-B) are also included for each experiment. 

Day 

 Traditional Estimates Modeled Clearance 

 Papp(A-B) Papp(B-A) EfR  CLP-gp CLA-C CLC-B CLA-B 

  ×10
-6

 cm/s ×10
-6

 cm/s   ×10
-6

 L/hr ×10
-6

 L/hr ×10
-6

 L/hr ×10
-5

 L/hr 

LLCPK    

1 1.807 2.742 1.518 27.124 5.317 8.309 11.439 

2 3.045 4.587 1.506 32.592 6.010 10.739 15.821 

3 1.147 2.052 1.789 19.318 6.262 6.294 12.486 

4 1.470 2.776 1.889 24.339 4.974 3.840 15.431 

5 1.442 2.650 1.838 41.390 1.900
 

13.825 17.663 

6  1.910 3.015 1.578 9.447 8.446 5.888 10.019 

Avg  1.804 2.970 1.686 25.704 5.485 8.149 13.810 

SD  0.272 0.349 0.070 4.482 0.715 1.484 1.201 

LMDR1         

1 0.316 2.952 9.351 244.017 1.045 10.262 7.151 

2 0.448 3.340 7.458 279.562 1.342 5.256 10.527 

3 0.352 3.418 9.710 400.468 6.369 12.949 13.466 

4 0.341 3.087 9.053 493.313 8.835 13.320 18.203 

5  0.333 3.226 9.683 420.310 3.945 8.666 28.913 

Avg  0.358 3.2046 9.051 367.473 4.307 10.091 15.652 

SD  0.023 0.084 0.416 46.182 1.489 1.484 3.779 
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Table 0.4. Estimates of P-gp activity in Caco-2 (0 nM), Caco-2 (10 nM), and Caco-2 

(100 nM) cell monolayers for each experiment day, evaluated by traditional apparent 

permeability (Papp(A-B), Papp(B-A)) and efflux ratio (EfR) approaches, as well as by P-gp 

intrinsic clearance (CLP-gp) fit from our 3-compartment model. Modeled clearance values 

for non-P-gp transcellular flux (CLA-C, CLC-B) and paracellular flux (CLA-B) are also 

included for each experiment. 

Day 

 Traditional Estimates Modeled Clearance 

 Papp(A-B) Papp(B-A) EfR  CLP-gp CLA-C CLC-B CLA-B 

  ×10
-6

 cm/s ×10
-6

 cm/s   ×10
-6

 L/hr ×10
-6

 L/hr ×10
-6

 L/hr ×10
-6

 L/hr 

Caco-2 (0 nM) 

1 1.234 2.939 2.383 38.64 1.055 40.80 19.16 

2 0.806 3.353 4.158 29.70 3.918 20.16 10.83 

3 1.485 3.304 2.224 36.71 5.861 9.76 43.52 

4 0.626 3.148 5.031 31.95 9.045 23.89 28.35 

5 0.799 3.110 3.891 38.98 1.324 14.64 10.83 

Avg 0.990 3.171 3.537 35.20 4.240 21.85 22.54 

SD 0.159 0.074 0.538 1.86 1.491 5.31 6.16 

Caco-2 (10 nM) 

1 0.275 1.662 6.039 50.23 1.485 2.39 9.84 

2 0.905 4.113 4.547 57.98 2.451 18.74 17.44 

3 0.379 2.997 7.839 47.66 1.069 13.62 26.29 

4 0.46 3.038 6.599 55.60 1.074 18.86 29.53 

Avg 0.505 2.953 6.256 52.87 1.520 13.40 20.78 

SD 0.139 0.502 0.683 2.37 0.325 3.87 4.45 

Caco-2 (100 nM) 

1 0.182 3.442 18.912 95.63 1.068 22.67 8.40 

2 0.539 4.247 7.877 94.53 1.011 6.51 15.22 

3 0.36 3.761 10.46 83.22 0.951 24.01 28.09 

4 0.385 3.661 9.517 148.59 1.945 12.66 28.81 

Avg 0.367 3.778 11.692 105.49 1.244 11.36 20.14 

SD 0.073 0.170 2.465 29.27 0.210 4.22 4.48 
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2.3.6 Predictive performance and sensitivity of P-gp activity metrics 

Figures 2.12-2.15 show a linear regression of normalized P-gp activity versus normalized 

P-gp expression for each metric; Table 2.5 summarizes the outcomes of linear regression 

analyses. The r
2
 value for the linear regression of CLP-gp activity estimates was over three 

fold greater and the slope was over six fold greater than the Papp(A-B) and EfR activity 

estimates. Papp(A-B) and EfR estimates of P-gp activity did both fit a linear regression with 

P-gp expression, with p-values < 0.05. The difference between modeled clearance and the 

traditional P-gp activity metrics was far less striking when we focused our analysis on 

only the subset of data within one cell type (Table 2.5(A) and (B)). Indeed, when we 

isolated Caco-2 cell expression and flux data for analysis, the r
2
 values for the linear 

regressions of EfR and Papp(A-B) activity estimates was less than 2 fold smaller than CLP-gp 

and the slope was actually greater for the EfR linear regression compared to CLP-gp. 

When we excluded the Caco-2 cell data the r
2
 value for the EfR linear regression was 

greater than CLP-gp and Papp(A-B) was only slightly smaller than CLP-gp. The slope (m) of 

the CLP-gp regression was however, substantially larger than EfR and Papp(A-B) by 4.7 fold 

and 6.8 fold respectively. CLP-gp and EfR linear regressions consistently showed greater r
2
 

and slope compared to Papp(A-B). Papp(B-A) estimates of P-gp activity did not fit a linear 

regression with P-gp expression in any analysis; the p-value was well above 0.05 for all 

subsets of data analyzed (Table 2.5). 

  



99 

 

 



100 

 

Figure 2.12. Normalized P-gp protein expression in various transwell monolayer cell 

types versus the corresponding normalized P-gp transport activity estimates obtained by 

Papp(A-B) calculation method. P-gp expression was quantified by western blot 

densitometry relative to a control Caco-2 cell lysate that was loaded on each blot. Protein 

expression and activity estimates were normalized respectively to the averaged 

expression and the averaged estimated activity of the Caco-2 (0 nM) transwell monolayer 

cells. Slope (m) and goodness of fit (r
2
) are presented for the linear regression of all data 

sets combined (A), only LLCPK and LMDR1 data sets combined (B), and only Caco-2 

(0 nM), Caco-2 (10 nM), and Caco-2 (100 nM) data sets combined (C). The p-value of 

the F-test for a non-zero slope is also presented for each linear regression. 
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Figure 2.13. Normalized P-gp protein expression in various transwell monolayer cell 

types versus the corresponding normalized P-gp transport activity estimates obtained by 

Papp(B-A) calculation method. P-gp expression was quantified by western blot 

densitometry relative to a control Caco-2 cell lysate that was loaded on each blot. Protein 

expression and activity estimates were normalized respectively to the averaged 

expression and the averaged estimated activity of the Caco-2 (0 nM) transwell monolayer 

cells. Slope (m) and goodness of fit (r
2
) are presented for the linear regression of all data 

sets combined (A), only LLCPK and LMDR1 data sets combined (B), and only Caco-2 

(0 nM), Caco-2 (10 nM), and Caco-2 (100 nM) data sets combined (C). The p-value of 

the F-test for a non-zero slope is also presented for each linear regression. 

  



103 

 

 



104 

 

Figure 2.14. Normalized P-gp protein expression in various transwell monolayer cell 

types versus the corresponding normalized P-gp transport activity estimates obtained by 

EfR calculation method. P-gp expression was quantified by western blot densitometry 

relative to a control Caco-2 cell lysate that was loaded on each blot. Protein expression 

and activity estimates were normalized respectively to the averaged expression and the 

averaged estimated activity of the Caco-2 (0 nM) transwell monolayer cells. Slope (m) 

and goodness of fit (r
2
) are presented for the linear regression of all data sets combined 

(A), only LLCPK and LMDR1 data sets combined (B), and only Caco-2 (0 nM), Caco-

2 (10 nM), and Caco-2 (100 nM) data sets combined (C). The p-value of the F-test for a 

non-zero slope is also presented for each linear regression. 
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Figure 2.15. Normalized P-gp protein expression in various transwell monolayer cell 

types versus the corresponding normalized P-gp transport activity estimates obtained by 

CLP-gp calculation method. P-gp expression was quantified by western blot densitometry 

relative to a control Caco-2 cell lysate that was loaded on each blot. Protein expression 

and activity estimates were normalized respectively to the averaged expression and the 

averaged estimated activity of the Caco-2 (0 nM) transwell monolayer cells. Slope (m) 

and goodness of fit (r
2
) are presented for the linear regression of all data sets combined 

(A), only LLCPK and LMDR1 data sets combined (B), and only Caco-2 (0 nM), Caco-

2 (10 nM), and Caco-2 (100 nM) data sets combined (C). The p-value of the F-test for a 

non-zero slope is also presented for each linear regression. 
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Table 0.5. Summary of goodness of fit (r
2
) and regression slopes (m) for regression 

analyses of different normalized estimates of P-gp activity with P-gp expression for 

LLCPK and LMDR1 data sets only (A), Caco-2 (0 nM), (10 nM), and (100 nM) data 

sets only (B), and all data sets combined (C). 

  Papp(A-B) Papp(B-A) EfR ClP-gp 

(A) LLCPK and LMDR1 data sets only 

r
2  

0.7022 0.03421 0.9784 0.9102 

slope -0.1091 ± 0.0237 0.0053 ± 0.0094 0.1576 ± 0.0078 0.7465 ± 0.0782 
 

(B) Caco-2: 0 nM, 10 nM, and 100 nM data sets only 

r
2  

0.4512 0.1434 0.6131 0.7930 

slope -0.2689 ± 0.0894 0.0789 ± 0.0581 1.005 ± 0.2407 0.8942 ± 0.1377 

(C) All data sets 

r
2  

0.2576 0.005123 0.2730 0.9222 

slope -0.0749 ± 0.0271 0.0030 ± 0.0089 0.1300 ± 0.0452 0.8086 ± 0.0501 
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2.4 Discussion 

The objective of this study was to compare the validity and sensitivity of a modeled 

intrinsic clearance against unidirectional apparent permeability and efflux ratio as metrics 

of P-gp activity across monolayer permeability assay systems. We hypothesized that 

since modeled clearance measures P-gp activity more directly and specifically, it is 

superior to apparent permeability and efflux ratio for evaluating P-gp activity in any 

monolayer permeability assay. 

We found that the validity and sensitivity of modeled clearance as a P-gp activity metric 

is generally on par with efflux ratio and superior to unidirectional apparent permeability 

for assays conducted in monolayers of a common cell type. But, when making P-gp 

activity estimates across different cell types, modeled clearance is far superior to the 

traditional metrics. Indeed, when we separated assays by cell type (Caco-2 (0 nM)/Caco-

2 (10 nM)/Caco-2 (100 nM) or LLCPK/LMDR1), the correlation of CLP-gp-estimated 

monolayer P-gp activity vs. measured monolayer P-gp expression had similar or greater 

slope (sensitivity) and r
2
 value as compared to the correlations of Papp-estimated P-gp 

activity vs. P-gp expression and EfR-estimated P-gp activity vs. P-gp expression; but the 

r
2
 and slope were respectively 3.4-fold and 6.2-fold greater for CLP-gp when we evaluated 

the combined data from both cell types together.  

Caco-2, LMDR1, and MDCK-MDR1 cells are all commonly used for cell monolayer 

permeability assays (11-14). Some level of polarized apical P-gp expression has been 

demonstrated in each of these cell types, such that they can all be used to demonstrate 

substrates or modulators of P-gp activity in vitro. Previous reports though, found that 

relative P-gp expression differs between Caco-2, MDCK-MDR1 (not included in our 

study), LLCPK, and LMDR1 cell types (15; 16), which agreed with the western blot 

findings in our study. Our blots also agreed with previous studies that have reported a 

concentration-dependent increase in P-gp expression in Caco-2 cells treated with vitamin 

D (17; 18).  Some models of intestinal absorption and metabolism rely on vitamin D 

treatment to induce CYP3A4 activity in Caco-2 monolayers. So, LLCPK, LMDR1 and 

Caco-2 cells and Caco-2 cells treated with vitamin D are all commonly utilized in cell-

based models and assays of permeability; and because of their inherent differences in P-
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gp expression, our study had a suitable range of cell monolayer P-gp expression across 

which to examine the validity and sensitivity of P-gp activity metrics.  

The level of P-gp expression in a given monolayer cell system dictates the level of P-gp 

efflux activity. Accordingly, from cursory assessment of our transport data there is 

evidence of increaing efflux transport – marked by increasing basolateral to apical 

disparity in bidirectional flux – in the rank orders LLCPK<LMDR1 and Caco-2 (0 nM) < 

Caco-2 (10 nM) < Caco-2 (100 nM), which paralleled the rank orders of cell monolayer 

P-gp expression. In our study though, the basolateral to apical apparent permeability did 

not demonstrate this relationship with cell monolayer P-gp expression. We found no 

correlation between Papp(B-A) and P-gp expression in Caco-2 cells, in LLCPK/LMDR1 

cells, or in Caco-2 and LLCPK/LMDR1 cells. This result conflicted with previous studies 

by Taipalensuu et al. and Hayeshi et al., who reported correlation between Caco-2 cell P-

gp expression and both basolateral to apical apparent permeability and efflux ratio (14; 

19). Possible explanation for our conflicting results could relate to plastic adsorption in 

the basolateral compartment or cellular retention of drug passing through the cell from 

the basolateral compartment into the apical compartment. Youdim et al., suggests that 

traditional permeability equations fail to account for cellular retention (20). The loss of 

drug to cellular retention and plastic adsorption during transport experiments could 

certainly lead to false measurements of a drug’s permeability value (20-22). Our model 

exercise does suggest though that lack of correlation between Papp(B-A) with P-gp 

expression is most likely due to the fact that digoxin permeability at the basolateral 

membrane is significantly lower than efflux activity at the apical membrane. This 

indicates that overall basolateral to apical digoxin transcellular flux is rate-limited by 

basolateral membrane permeation rather than P-gp activity. However, the Papp(A-B) and 

EfR values calculated in our experiments did show a correlation with P-gp expression in 

Caco-2 cells, which agreed with previous studies (14; 19). Similarly in LLCPK/LMDR1 

cells we also saw correlation between Papp(A-B) and P-gp expression and between EfR and 

LLCPK/LMDR1 cells. 

In explaining why CLP-gp reflects P-gp activity more predictably and sensitively when 

comparing between cell types, we believe this relates not to difference in P-gp expression 
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between cell types, but to differences in non-P-gp transporters and cell morphology that 

also contribute to drug transit. Aside from P-gp, Caco-2 cells, LMDR1 cells, and MDCK-

MDR1 cells have all been reported to show different relative expression levels of several 

transporters, including but not limited to:, MRP2, and BCRP apical efflux transporters, 

peptide transporter 1 (PepT1) apical uptake transporter, multidrug resistance-associated 

protein 3 (MRP3), MRP1, and organic solute transporter-α and -β (OST-α and -β) 

basolateral efflux transporters and OATP-A (SLC21A3), OATP-C (SLC21A6), and 

OATP-B (SLC21A9) basolateral uptake transporters (23-30; 19). Many of these 

transporters have overlapping substrate specificities with P-gp and thus multiple 

transporters may contribute, to varying degrees in different monolayers, to the flux of any 

given drug that is being tested for specific interaction with P-gp. As Sun and Pang 

demonstrated in a theoretical study, the presence of other active transport has the 

potential to overcome the effect of P-gp apical efflux activity, which could result in the 

over- or under-estimation of traditional monolayer permeability metrics of P-gp activity 

(9). This may even apply to the prototypical P-gp probe substrate, digoxin. Some non-P-

gp transporters have been previously implicated in digoxin transcellular flux across assay 

monolayers. Sun and Pang’s theoretical study predicted the kinetic presence of a 

basolateral digoxin uptake transporter in Caco-2 cells and there has been evidence in 

MDCK cells of active basolateral uptake of digoxin that is inhibited by GF120918 (9; 

31). There have also been reports that digoxin is transported by OST-α and -β (32), which 

is expressed in Caco-2 cells. There is a clear potential for other transporters to obscure 

the monolayer permeability that Papp and EfR attribute solely to P-gp activity. Yet, though 

many transporters may contribute to flux across Caco-2, LLCPK or MDCK monolayers, 

we are not aware of any comprehensive studies in the literature that directly compare 

transporter expression patterns between these cells. Difficulty assessing differences in 

transporter expression among these cells lines will be compounded by species-related 

differences in transporter activity towards specific substrates. Consequently, it is difficult 

even to anticipate the relative impact of different transporters on monolayer transit 

between cell lines; so, it is hard to know how much Papp or EfR measured in a given cell 

type may be over- or under-estimating P-gp activity. 
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While the non-P-gp transporter differences are overlooked in the calculation of EfR and 

Papp as estimates of P-gp activity, in our modeled clearance the general effects of non-P-

gp transporter difference are imbedded within the fitted CLA-C and CLC-B parameters. The 

difference that we observed between the CLA-C and CLC-B parameters fitted from Caco-2 

data versus LLCPK/LMDR1 data seem to reflect the reported difference in non-P-gp 

transport activity between Caco-2 and LLCPK/LMDR1 cells. 

Although transporter differences between cell lines may not have been compared in great 

detail, certain morphological differences between Caco-2, LLCPK, and MDCK cells 

have been documented. Caco-2 cells, for example, are well known to form in vitro 

monolayers with greater integrity and lower transepithelial electrical resistance (TEER) 

than MDCK cells (33). In their theoretical study, Sun and Pang demonstrated the 

potential for paracellular flux to obscure apical efflux (9). Since paracellular transit 

differs between cell types, as was also demonstrated in our study by measurement of the 

paracellular marker [
14

C]-inulin, the degree to which paracellular flux obscures the Papp 

and EfR estimations of P-gp also differs between cell types. For our model CLP-gp 

however, the difference between Caco-2 and LLCPK/LMDR1 paracellular [
3
H]-digoxin 

transit is imbedded in the CLA-B parameter. Therefore, the CLP-gp estimate of P-gp 

activity derived from any monolayer assay is, theoretically, independent of the integrity 

characteristics of a particular monolayer.  

Transporter and morphological differences between cell types, or even within a cell type, 

can be further complicated by differences in laboratory practice. Owing to the intrinsic 

heterogeneity of the parental Caco-2, LLCPK and MDCK cell lines, culture-related 

conditions have been shown to influence the morphological and functional characteristics 

of in vitro monolayers, by selecting for sub populations of cells in culture (34). 

Variability has been previously reported in Caco-2 cell paracellular permeability and 

transporter expression (35; 36) and has been ascribed to difference in culture conditions, 

passage number and cell source (37-39; 19). This results in significant variability in the 

estimates of P-gp activity calculated by Papp or EfR, even in the same in vitro system and 

cell type (40). In effect, the value of the monolayer permeability assay for assessing P-gp 

activity and IVIVE becomes limited when we use Papp or EfR for any moderate substrate 
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of P-gp that has broad transporter specificity or high passive permeability. By specifically 

isolating the activity of P-gp transporter from the other active and passive transport 

processes in a monolayer permeability assay, CLP-gp is able to effectively extract more 

widely useable data for any laboratory working with their preferred assay conditions.  
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Chapter 3  

General Discussion 

3.1 Study Objective 

The objective of this study was to compare the validity and sensitivity of unidirectional 

apparent permeability and efflux ratio against modeled intrinsic clearance, as metrics of 

P-gp activity in the monolayer permeability assay. Our rationale was that Papp and EfR 

only provide a qualitative estimate of P-gp activity from general drug flux across an assay 

monolayer, whereas CLP-gp quantitatively estimates specific P-gp-mediated efflux from 

the cell compartment at the apical membrane. Therefore, the mechanistically based 

estimate would be expected to be more sensitive and valid across cell systems and 

variable laboratory assay conditions.  Moreover, CLP-gp provides quantitative values that 

can be directly applied for IVIVE, unlike Papp and EfR. No prior studies have compared 

these P-gp activity metrics across different commonly used assay cell systems. Here, our 

main objective was to obtain experimental data to prove that modeled clearance estimates 

P-gp activity better than Papp and EfR across monolayer permeability assay cell types.  

3.2 Monolayer permeability assay metrics of P-gp activity  

We compared the P-gp activity metrics across various cell types because, although Caco-

2, LLCPK and MDCK cells can all form an in vitro monolayer with polarized P-gp 

expression, in vitro monolayers composed of these cell types differ in ways that 

fundamentally affect the transit of test drugs. Our experiment cells differed in P-gp 

expression in the rank order LLCPK < Caco-2 (0 nM) < Caco-2 (10 nM) < Caco-2 (100 

nM) < LMDR1, and since, in theory, P-gp transport activity is directly proportional to P-

gp expression, valid and useful transport activity metrics could be evaluated using data 

from all experimental groups. It would appear that Papp(A-B), EfR and CLP-gp are all valid 

metrics of P-gp activity when estimates are made within a common cell type (eg. in 

Caco-2 (0 nM)/Caco-2 (10 nM)/Caco-2 (100 nM) or LLCPK/LMDR1); we found good 

correlation between monolayer P-gp expression and respectively Papp(A-B), EfR, and CLP-

gp estimates of monolayer P-gp activity. However, unidirectional apparent permeability 

and efflux ratio are not good metrics when estimating monolayer P-gp activity across 
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different cell types; poor correlation was shown between monolayer P-gp expression and 

respective Papp and EfR estimates of P-gp activity.  Unidirectional apparent permeability 

and efflux ratio simplify transit across the monolayer as movement across a single barrier 

driven only by P-gp transport (1-4). Our investigation suggests that this approximation 

was adequate when estimating different P-gp activities within one cell type because the 

action of the P-gp transporter alone was responsible for much of the difference seen in 

[
3
H]-digoxin bidirectional flux between Caco-2 (0 nM), Caco-2 (10 nM), and Caco-2 

(100 nM) cell monolayers and between LLCPK and LMDR1 monolayers. But, difference 

in isolated P-gp transport activity across a single barrier was not sufficient on its own to 

account for the difference seen in [
3
H]-digoxin flux between LLCPK, Caco-2 (0 nM), 

Caco-2 (10 nM), Caco-2 (100 nM), and LMDR1 monolayers. We conclude neither Papp 

nor EfR are valid metrics of P-gp activity when comparing across cell types.   

Conversely, we found our modeled CLP-gp is well suited to estimate P-gp activity within 

and across cell types; with good correlation for all linear regression analyses. Our 

compartmental model includes CLC-B and CLA-C to account for both passive and active 

transport processes occurring in both directions across the basolateral and apical 

membranes respectively. Thus, these parameters are able to account for non-P-gp 

transporters on either membrane, which may contribute significantly to differences in 

monolayer transit observed between monolayer cell types because Caco-2, LLCPK and 

MDCK cells all show different transporter expression in vitro (1; 5-12). The model fitted 

CLC-B and CLA-C parameters reflected the difference in non-P-gp transporter expression 

between LLCPK/LMDR1 and Caco-2 cell types. Our model also includes CLA-B to 

account for variable paracellular transit, which results from differences in monolayer 

integrity that have been well documented between monolayer cell types (13; 14). By 

accounting for all of these confounding processes, CLP-gp is able to tease out the specific 

contribution of P-gp-mediated transport across all assays. In our investigation, modeled 

clearance has proven to be a valid metric of P-gp activity between monolayer 

permeability assay cell types.   

Another ideal property of a quantitative metric for P-gp activity is sensitivity to varying 

levels of P-gp expression and function. The relative sensitivity of metrics can be 
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evaluated by comparing the slopes (m) of the relationships between normalized P-gp 

activity and P-gp expression either within a cell type or with combined cell types. When 

considering results from combined Caco-2 and LLCPK cells, the rank order of slope 

values are Papp(B-A) < Papp(A-B) < EfR < CLP-gp. This indicates that across cell systems, CLP-

gp is the most sensitive P-gp activity metric. However, within the LLCPK/LMDR1 

system, slope values suggest that EfR is the most sensitive P-gp activity metric. CLP-gp 

was the most sensitive measure of P-gp activity when evaluating data within the Caco-2 

system.     

3.3 Standardizing monolayer permeability assays  

Given the importance of P-gp in the absorption, distribution, and excretion of drugs, it is 

essential to have in vitro assays that are capable of assessing potential P-gp interactions. 

A variety of biological systems are available to assess the potential for these interactions, 

including ATPase assays, fluorescent assays, and membrane vesicles. But, monolayer 

permeability assays are recommended as the most direct measure of P-gp activity (15-

20). For this reason, academic, industry, and regulatory laboratories regularly conduct 

monolayer permeability assays on drugs to test for P-gp interaction using the standard 

transwell set-up. But, there is great potential for individual laboratories to introduce 

variability into this assay, which can make it challenging to draw congruent 

pharmacokinetic conclusions from the same assay conducted in different laboratories.  

First, as previously mentioned there is not one standard cell type used to compose the 

monolayer; Caco-2, LLCPK, or MDCK are all commonly interchanged. Although each 

of these cell types will spontaneously differentiate in vitro to form a monolayer with 

polarized apical P-gp expression (21-24), we have clearly demonstrated in our study the 

inherent challenge of trying to draw compatible conclusions about P-gp activity from 

multiple monolayer cell types.  

Moreover, owing to the inherent heterogeneity of the parent Caco-2, LLCPK, and MDCK 

cell lines, lack of standardization in laboratory practice can amplify variability in the 

permeability assay systems applied by different groups, regardless of chosen cell type. 

There is significant inter-lab variability in culture conditions, transwell equipment, cell 
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sources, cell passage number, seeding density, and bioanalytical techniques (25-28; 12). 

Many labs gauge monolayer integrity by measuring TEER, while others use mannitol, 

inulin, or Lucifer yellow flux. Furthermore, the monolayer integrity acceptance criteria 

vary substantially even for labs using the same measure. Some laboratories conduct 

transport experiments on a shaker, while others do not. The components of the culture 

media and assay buffers may vary between labs as well. Many labs also have their own 

protocol for seeding density and culture time of monolayer cells. Even plate and well 

insert sources vary, as well as insert pore size. A comparative study looking at inter-lab 

variability across 23 research laboratories and academic institutions found that 80% of 

variability in P-gp IC50 estimates was due to the use of different laboratory practices 

(28). 

Consistency in the conclusions drawn about P-gp activity from monolayer permeability 

assays, performed under such diverse conditions, necessitates either strict standardization 

of assay protocols or a method of interpreting assay data that accounts for as much of the 

assay variability as possible. Sambuy et al. performed an interlaboratory study of 

mannitol permeability and TEER in Caco-2 cells with the goal of establishing a 

standardized protocol that would allow meaningful comparison of results obtained in 

different laboratories (29). We are not aware of any similar initiatives and none that 

address variability in non-P-gp transporter expression, which contributes to substrate 

transcellular flux variation. In this study though, we have explicitly demonstrated the 

capability of modeled clearance to yield a standard P-gp activity output, at very least, for 

the monolayer permeability assay variability that results from using different cell types. 

In principle, this model should extend to standardize P-gp activity estimation for a variety 

of different sources of assay variability.  

3.4 Applying monolayer permeability assay data to drug discovery and 

development 

The output of monolayer permeability assays are meant to provide information about 

whether a drug is a substrate of P-gp or the potential for P-gp mediated DDIs. Particularly 

in the DDD process, monolayer permeability assays provide important preclinical 

information in the early stages of drug candidate investigation that decides subsequent in 
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vivo and clinical testing (15; 30-38). At these early stages though, the major role of 

monolayer permeability assay is just to provide a qualitative yes or no assessment of 

whether or not a drug is a substrate or inhibitor of P-gp. If yes, then more in-depth study 

is conducted on the PK effects and potential DDIs. For this qualitative assessment, 

standardization of assay cell types or conditions may not be crucial. Papp or EfR results 

may show some variation between labs, but in practice, a compound with a measured EfR 

of 10 in one lab that has a measured EfR of 12 in another lab will be assessed as a P-gp 

substrate in either case. An issue arises however, for drugs that show only moderate 

interaction with P-gp. For these drugs, close consensus would be required between Papp or 

EfR estimates of P-gp activity made in different labs in order for the drug-P-gp 

interaction to be harmoniously defined across laboratories. There have been reports of 

drugs that appear as P-gp substrate in a Caco-2 assay, but not in a MDCK-MDR1 assay 

(39). The consequence of a false negative or a false positive can be respectively, a failure 

to conduct appropriate follow-up tests to collect critical PK information, or performing 

needless subsequent studies that do not yield significant in vivo or clinical relevance. 

CLP-gp is very important for its ability to bring consensus to the interpretation of P-gp 

interactions made using monolayer permeability assays in different laboratories.  

3.5 Applying monolayer permeability assay data to IVIVE 

Although the use of monolayer permeability assays recommended by regulatory agencies 

in the early stages of DDD focuses more on simple identification of P-gp substrates and 

inhibitors, there is substantial interest in industry and academia in more detailed 

characterization of P-gp interactions because of its important role in absorption, 

distribution and excretion pharmacokinetics (30; 40; 41). Therefore, monolayer 

permeability assays are also used as an important tool in in vitro to in vivo extrapolation 

(IVIVE).  

A drug that is identified as a substantial P-gp substrate by Papp or EfR, with an EfR of 20 

for example, will then qualitatively be expected to show reduced clinical oral absorption 

because of broad P-gp expression in the intestines. In order to make any quantitative 

prediction from the monolayer permeability assay though, data must be properly 

interpreted to characterize the P-gp activity in a physiologically relevant way.  
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CLP-gp not only serves as a consensus metric of P-gp activity in monolayer permeability 

assays, but it provides a quantitative and physiologically relevant assessment of P-gp 

activity that can be applied directly to quantitative IVIVE. It is particularly useful for 

quantitative IVIVE because it specifically characterizes P-gp transport activity from the 

intracellular space, where P-gp accesses substrate. Characterizing P-gp transporter 

kinetics directly from flux data would be simplifying the system as a single barrier with 

only P-gp activity, which would only yield apparent kinetics for P-gp. In reality there are 

several other kinetic processes contributing to flux across the monolayer, the most 

important of which are described in our 3 compartmental model (42-47).  

The physiological relevance of CLP-gp makes it appropriate for application in 

physiologically-based pharmacokinetic (PBPK) models. These models, as we have 

described, incorporate chemical information about compounds and physiological and in 

vitro kinetic information into anatomically arranged compartments. Intrinsic clearance, 

defined as the perfusion-rate-independent clearance of a drug from a system by the 

cumulative intrinsic activities of the contributing drug metabolizing enzymes and/or 

transporters, is an essential component of these models. For drug metabolizing enzymes, 

intrinsic clearance can be characterized from the metabolism kinetics in isolated 

hepatocyte, microsomal fractions, or recombinant enzyme systems (15; 48-50). For 

uptake transporters, it can be described from uptake kinetics in isolated hepatocytes or 

recombinant cell lines (51; 50). With the modeled clearance we describe here in our 

study, we can produce the intrinsic clearance input for PBPK model efflux transporters 

from the conventional monolayer permeability assay. In the context of a PBPK, which 

incorporates all of the dynamically acting ADME proteins and physiological processes, 

we can understand drugs that appear to interact with P-gp in the monolayer permeability 

assay but do not necessarily demonstrate clinical P-gp interaction because of the 

overlapping in vivo activity of other ADME enzymes (52).  

3.6 Limitations of the experimental approach to estimate CLP-gp (model 

assumptions) 

1. All transwell transport experiments were assumed to operate exclusively under 

linear conditions in our model. 
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2. We assumed there were no spatial variations in pH or concentration intracellularly 

3. Our steady state model of transport assumes mass balance of drug in the system, 

when in fact drug is removed during multiple sampling 

4. We assumed that digoxin is not subject to any significant metabolism  

5. We assumed that neither digoxin, nor inulin were subject to any significant 

protein or plastic binding in the transwells 

6. We simplified the complexity of the model in order to successfully fit the data, by 

assuming that digoxin clearance was equal in both directions across the apical 

membrane and equal in both directions across the basolateral membrane. 

3.7 Recommendations/future studies 

1. In our studies, we investigated P-gp efflux with 2 commonly used monolayer cell 

types (Caco-2 and LLCPK). In a future study, it would be interesting to include P-

gp activity estimates made in MDCK/MDCK-MDR1 monolayers to the linear 

regression analysis, to confirm that the validity and sensitivity of CLP-gp as a P-gp 

metric extends to this third commonly used monolayer cell type.      

2. Similarly, it would be interesting to include monolayer assays conducted with 

varied protocols to the linear regression analysis, to see how well our model 

isolates P-gp activity and accounts for monolayer difference produced by variable 

laboratory practices.  

3. We used the gold standard P-gp probe drug, digoxin, for our study, but future 

studies may investigate Papp, EfR and CLP-gp monolayer permeability assay 

metrics for other P-gp substrates that may show different permeability or may be 

less specific to the P-gp transporter. 

4. It would be interesting as well to consider effects of P-gp inhibition by drugs and 

effects on P-gp activity metrics.  For example, examining which activity metric is 
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most sensitive in estimating the inhibitory constant (Ki) for P-gp for a given test 

drug whose co-administration affects the flux of digoxin in a transwell system. 

5. Finally, estimation of absolute P-gp intrinsic activity of P-gp with digoxin using 

absolute quantification of P-gp by LC-MS/MS would provide critical information 

for IVIVE. 

3.8 Overall conclusion 

In conclusion, our findings support our hypothesis that CLP-gp offers a more valid and 

sensitive estimate of P-gp activity in the monolayer permeability assay, particularly for 

comparison across different monolayer cell types. The traditional metrics, Papp and EfR 

do not relate well across the many variations of monolayer permeability assay that exist 

and thus the conclusions drawn by these metrics have limited global value. Conversely, 

we found that modeled clearance, CLP-gp, seems to account for non-P-gp transcellular and 

paracellular processes that contribute to monolayer transit, thus providing a more 

physiologically relevant characterization of P-gp transporter activity. Many efflux 

transporters, particularly P-glycoprotein, play an important role in drug pharmacokinetics 

and disposition and in vitro characterization of P-gp activity is very important to 

understanding drug PK and DDIs (30; 40; 41). Modeled clearance provides more 

physiologically relevant information that can be used for understanding and predicting 

clinical pharmacokinetics for more successful drug therapy.    
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