110 research outputs found

    A Review Of R Peak Detection Techniques Of Electrocardiogram (ECG)

    Get PDF
    Heart disease is one of the trivial issues regarding health problem over the last few decades in India. Numerous methods have been developed with still-ongoing modifications and ideas to observe and evaluate ECG signals based on each heart beat. Majority of research revolves around arrhythmia classification, heart rate monitoring and blood pressure measurements that require highly accurate assessments of rhythm disorders which can be possible by measuring QRS complex of ECG signal, so accurate QRS detection methods are very important to be utilized. There have been proposed many approaches to find out the R peak detection to analyze the ECG signals in past few years. Most recent and efficient techniques of R peak detection have been reviewed in this paper. Techniques which have been reviewed in this paper are Pan and Tompkins, Wavelet Transform, Empirical Mode Decomposition, Hilbert-Huang Transform, Fuzzy logic systems, Artificial neural networks

    Noise eliminated ensemble empirical mode decomposition scalogram analysis for rotating machinery fault diagnosis

    Get PDF
    Rotating machinery is one type of major industrial component that suffers from various faults and damage due to the constant workload to which it is subjected. Therefore, a fast and reliable fault diagnosis method is essential for machine condition monitoring. Artificial intelligence can be applied in fault feature extraction and classification. It is crucial to use an effective feature extraction method to obtain most of the fault information and a robust classifier to classify those features. In this study, an improved method, noise-eliminated ensemble empirical mode decomposition (NEEEMD), was proposed to reduce the white noise in the intrinsic functions and retain the optimum ensembles. A convolution neural network (CNN) classifier was applied for classification because of its feature-learning ability. A generalised CNN architecture was proposed to reduce the model training time. The classifier input used was 64×64 pixel RGB scalogram samples. However, CNN requires a large amount of training data to achieve high accuracy and robustness. Deep convolution generative adversarial network (DCGAN) was applied for data augmentation during the training phase. To evaluate the effectiveness of the proposed feature extraction method, scalograms from the related feature extraction methods such as ensemble empirical mode decomposition (EEMD), complementary EEMD (CEEMD) and continuous wavelet transform (CWT) were also classified. The effectiveness of the scalograms was also validated by comparing the classifier performance using greyscale samples from the raw vibration signals. The ability of CNN was compared with two traditional machine learning algorithms, k nearest neighbour (kNN) and the support vector machine (SVM), using statistical features from EEMD, CEEMD and NEEEMD. The proposed method was validated using bearing and blade datasets. The results show that the machine learning algorithms achieved comparatively lower accuracy than the proposed CNN model. All the outputs from the bearing and blade fault classifiers demonstrated that the scalogram samples from the proposed NEEEMD method obtained the highest accuracy, sensitivity and robustness using CNN. DCGAN was applied with the proposed NEEEMD scalograms to enhance the CNN classifier’s performance further and identify the optimal amount of training data. After training the classifier using the augmented samples, the results showed that the classifier obtained even higher validation and test accuracy with greater robustness. The test accuracies improved from 98%, 96.31% and 92.25% to 99.6%, 98.29% and 93.59%, respectively, for the different classifier models using NEEEMD. The proposed method can be used as a more generalised and robust method for rotating machinery fault diagnosis

    時間周波数領域でのてんかん脳波識別に関する研究 ‐平均二乗根に基づく特徴抽出に着目して‐

    Get PDF
    Epilepsy affects over 50 million people on an average yearly world wide. Epileptic Seizure is a generalised term which has broad classification depending on the reasons behind its occurrence. Parvez et al. when applied feature instantaneous bandwidth B2AM and time averaged bandwidth B2FM for classification of interictal and ictal on Freiburg data base, the result dipped low to 77.90% for frontal lobe whereas it was 80.20% for temporal lobe compare to the 98.50% of classification accuracy achieved on Bonn dataset with same feature for classification of ictal against interictal. We found reasons behind such low results are, first Parvez et al. has used first IMF of EMD for feature computation which mostly noised induce. Secondly, they used same kernel parameters of SVM as Bajaj et al. which they must have optimised with different dataset. But the most important reason we found is that two signals s1 and s2 can have same instantaneous bandwidth. Therefore, the motivation of the dissertation is to address the drawback of feature instantaneous bandwidth by new feature with objective of achieving comparable classification accuracy. In this work, we have classified ictal from healthy nonseizure interictal successfully first by using RMS frequency and another feature from Hilbert marginal spectrum then with its parameters ratio. RMS frequency is the square root of sum of square bandwidth and square of center frequency. Its contributing parameters ratio is ratio of center frequency square to square bandwidth. We have also used dominant frequency and its parameters ratio for the same purpose. Dominant frequency have same physical relevance as RMS frequency but different by definition, i.e. square root of sum of square of instantaneous band- width and square of instantaneous frequency. Third feature that we have used is by exploiting the equivalence of RMS frequency and dominant frequency (DF) to define root mean instantaneous frequency square (RMIFS) as square root of sum of time averaged bandwidth square and center frequency square. These features are average measures which shows good discrimination power in classifying ictal from interictal using SVM. These features, fr and fd also have an advantage of overcoming the draw back of square bandwidth and instantaneous bandwidth. RMS frequency that we have used in this work is different from generic root mean square analysis. We have used an adaptive thresholding algorithm to address the issue of false positive. It was able to increase the specificity by average of 5.9% on average consequently increasing the accuracy. Then we have applied morphological component analysis (MCA) with the fractional contribution of dominant frequency and other rest of the features like band- width parameter’s contribution and RMIFS frequency and its parameters and their ratio. With the results from proposed features, we validated our claim to overcome the drawback of instantaneous bandwidth and square bandwidth.九州工業大学博士学位論文 学位記番号:生工博甲第323号 学位授与年月日:平成30年6月28日1 Introduction|2 Empirical Mode Decomposition|3 Root Mean Square Frequency|4 Root Mean Instantaneous Frequency Square|5 Morphological Component Analysis|6 Conclusion九州工業大学平成30年

    Advanced techniques for analyzing time-frequency dynamics of BOLD activity in schizophrenia

    Get PDF
    Magnetic resonance imaging of neuronal activity is one of the most promising techniques in modern psychiatric research. While clear functional links with phenotypic variables have been established and detailed networks of activity robustly identified, fMRI scans have not yet yielded the robust biomarkers of psychiatric diseases, such as schizophrenia, which would allow for their use as a clinical diagnostic tool. One possible explanation for the lack of such results is that neural activity is highly non- stationary, whereas most analysis techniques assume that signal properties remain relatively static over time. Time-frequency analysis is a family of analytic techniques which do not assume that data is stationary, and thus is well suited to the analysis of neural time series. Resting state fMRI scans from a publicly available dataset were decomposed using the Wavelet transform and Hilbert Huang Transform, techniques from time-frequency analysis. The results of these processes were then used as the basis for calculating several properties of the fMRI signal within each voxel. The wavelet transform, a simpler technique, generated measures which showed broad differences between patients with schizophrenia and healthy controls but failed to reach statistical significance in the vast majority of situations. The Hilbert Huang transform, in contrast, showed significant increases in certain measures throughout areas associated with sensory processing, dysfunction in which is a symptom of schizophrenia. These results support the use of analysis techniques able to capture the nonstationarities in neural data and encourages the use of such techniques to explore the nature of the neural differences in psychiatric disorders

    Damage localization based on symbolic time series analysis

    Full text link
    Copyright © 2014 John Wiley & Sons, Ltd. The objective of this paper is to localize damage in a single or multiple state at early stages of development on the basis of the principles of symbolic dynamics. Symbolic time series analysis (STSA) of noise-contaminated responses is used for feature extraction to detect and localize a gradually evolving deterioration in the structure according to the changes in the statistical behaviour of symbol sequences. Basically, in STSA, statistical features of the symbol sequence can be used to describe the dynamic status of the system. Symbolic dynamics has some useful characteristics making it highly demanded for implementation in real-time observation application such as SHM. First, it significantly reduces the dimension of information and provides information-rich representation of the underlying data. Second, symbolic dynamics and the set of statistical measures built upon it represent a solid framework to address the main challenges of the analysis of nonstationary time data. Finally, STSA often allows capturing the main features of the underlying system whilst alleviating the effects of harmful noise. The method presented in this paper consists of four primary steps: (i) acquisition of the time series data; (ii) creating the symbol space to produce symbol sequences on the basis of the wavelet transformed version of time series data; (iii) developing the symbol probability vectors to achieve anomaly measures; and (iv) localizing damage on the basis of any sudden variation in anomaly measure of different locations. The method was applied on a flexural beam and a 2-D planar truss bridge subjected to varying Gaussian excitation in presence of 2% white noise to examine the efficiency and limitations of the method. Simulation results under various damage conditions confi rmed the efficiency of the proposed approach for localization of gradually evolving deterioration in the structure; however, for the future work, the method needs to be verified by experimental data

    Epileptic Seizure Detection Based on EEG Signals and CNN

    Get PDF
    Epilepsy is a neurological disorder that affects approximately fifty million people according to the World Health Organization. While electroencephalography (EEG) plays important roles in monitoring the brain activity of patients with epilepsy and diagnosing epilepsy, an expert is needed to analyze all EEG recordings to detect epileptic activity. This method is obviously time-consuming and tedious, and a timely and accurate diagnosis of epilepsy is essential to initiate antiepileptic drug therapy and subsequently reduce the risk of future seizures and seizure-related complications. In this study, a convolutional neural network (CNN) based on raw EEG signals instead of manual feature extraction was used to distinguish ictal, preictal, and interictal segments for epileptic seizure detection. We compared the performances of time and frequency domain signals in the detection of epileptic signals based on the intracranial Freiburg and scalp CHB-MIT databases to explore the potential of these parameters. Three types of experiments involving two binary classification problems (interictal vs. preictal and interictal vs. ictal) and one three-class problem (interictal vs. preictal vs. ictal) were conducted to explore the feasibility of this method. Using frequency domain signals in the Freiburg database, average accuracies of 96.7, 95.4, and 92.3% were obtained for the three experiments, while the average accuracies for detection in the CHB-MIT database were 95.6, 97.5, and 93% in the three experiments. Using time domain signals in the Freiburg database, the average accuracies were 91.1, 83.8, and 85.1% in the three experiments, while the signal detection accuracies in the CHB-MIT database were only 59.5, 62.3, and 47.9% in the three experiments. Based on these results, the three cases are effectively detected using frequency domain signals. However, the effective identification of the three cases using time domain signals as input samples is achieved for only some patients. Overall, the classification accuracies of frequency domain signals are significantly increased compared to time domain signals. In addition, frequency domain signals have greater potential than time domain signals for CNN applications

    Signal Processing Using Non-invasive Physiological Sensors

    Get PDF
    Non-invasive biomedical sensors for monitoring physiological parameters from the human body for potential future therapies and healthcare solutions. Today, a critical factor in providing a cost-effective healthcare system is improving patients' quality of life and mobility, which can be achieved by developing non-invasive sensor systems, which can then be deployed in point of care, used at home or integrated into wearable devices for long-term data collection. Another factor that plays an integral part in a cost-effective healthcare system is the signal processing of the data recorded with non-invasive biomedical sensors. In this book, we aimed to attract researchers who are interested in the application of signal processing methods to different biomedical signals, such as an electroencephalogram (EEG), electromyogram (EMG), functional near-infrared spectroscopy (fNIRS), electrocardiogram (ECG), galvanic skin response, pulse oximetry, photoplethysmogram (PPG), etc. We encouraged new signal processing methods or the use of existing signal processing methods for its novel application in physiological signals to help healthcare providers make better decisions

    Sleep Stage Classification: A Deep Learning Approach

    Get PDF
    Sleep occupies significant part of human life. The diagnoses of sleep related disorders are of great importance. To record specific physical and electrical activities of the brain and body, a multi-parameter test, called polysomnography (PSG), is normally used. The visual process of sleep stage classification is time consuming, subjective and costly. To improve the accuracy and efficiency of the sleep stage classification, automatic classification algorithms were developed. In this research work, we focused on pre-processing (filtering boundaries and de-noising algorithms) and classification steps of automatic sleep stage classification. The main motivation for this work was to develop a pre-processing and classification framework to clean the input EEG signal without manipulating the original data thus enhancing the learning stage of deep learning classifiers. For pre-processing EEG signals, a lossless adaptive artefact removal method was proposed. Rather than other works that used artificial noise, we used real EEG data contaminated with EOG and EMG for evaluating the proposed method. The proposed adaptive algorithm led to a significant enhancement in the overall classification accuracy. In the classification area, we evaluated the performance of the most common sleep stage classifiers using a comprehensive set of features extracted from PSG signals. Considering the challenges and limitations of conventional methods, we proposed two deep learning-based methods for classification of sleep stages based on Stacked Sparse AutoEncoder (SSAE) and Convolutional Neural Network (CNN). The proposed methods performed more efficiently by eliminating the need for conventional feature selection and feature extraction steps respectively. Moreover, although our systems were trained with lower number of samples compared to the similar studies, they were able to achieve state of art accuracy and higher overall sensitivity
    corecore