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ADVANCED TECHNIQUES FOR ANALYZING TIME-FREQUENCY

DYNAMICS OF BOLD ACTIVITY IN SCHIZOPHRENIA

SAMUEL PETER BUCK

ABSTRACT

Magnetic resonance imaging of neuronal activity is one of the most promising tech-

niques in modern psychiatric research. While clear functional links with phenotypic

variables have been established and detailed networks of activity robustly identified,

fMRI scans have not yet yielded the robust biomarkers of psychiatric diseases, such

as schizophrenia, which would allow for their use as a clinical diagnostic tool. One

possible explanation for the lack of such results is that neural activity is highly non-

stationary, whereas most analysis techniques assume that signal properties remain

relatively static over time. Time-frequency analysis is a family of analytic techniques

which do not assume that data is stationary, and thus is well suited to the analysis of

neural time series. Resting state fMRI scans from a publicly available dataset were

decomposed using the Wavelet transform and Hilbert Huang Transform, techniques

from time-frequency analysis. The results of these processes were then used as the ba-

sis for calculating several properties of the fMRI signal within each voxel. The wavelet

transform, a simpler technique, generated measures which showed broad differences

between patients with schizophrenia and healthy controls but failed to reach statis-

tical significance in the vast majority of situations. The Hilbert Huang transform, in

contrast, showed significant increases in certain measures throughout areas associated

with sensory processing, dysfunction in which is a symptom of schizophrenia. These

results support the use of analysis techniques able to capture the nonstationarities in

neural data and encourages the use of such techniques to explore the nature of the

neural differences in psychiatric disorders.
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INTRODUCTION

Schizophrenia represents one of the most promising research targets for modern

neuroscience. The disease is the most prominent member of the class of psychiatric

conditions known as psychotic disorders, which are broadly characterized by deficits

in reality testing – a patient’s ability to identify and interact with the world around

them (Arciniegas, 2015; Kelleher and Cannon, 2016; Parnas et al., 2010). Because

this impact is so dramatic, understanding and treating psychosis has long been a goal

of psychiatric investigations.

In the United States, roughly 100,000 people are diagnosed with a psychotic dis-

order per annum, with a lifetime prevalence rate for schizophrenia for the entire pop-

ulation between 0.4% and 0.7% (Simon et al., 2017; Wu et al., 2005; Saha et al., 2005;

Simeone et al., 2015). Patients consistently report a significantly decreased quality

of life (QOL) compared to healthy controls, a finding which tracks multiple measures

of symptom and functional severity (Dong et al., 2019; Vrbova et al., 2017). Family

members and caregivers also report a significant negative impact to their QOL (Yer-

riah et al., 2021; Hsiao et al., 2020). On a societal level, patients pose an economic

burden: those diagnosed with schizophrenia are less likely to be employed and have

far lower cumulative lifetime earnings than healthy controls (Hakulinen et al., 2019).

Globally, societal cost per patient varies by nationality and social environment, but

is estimated to be many thousands of dollars per year (Jin and Mosweu, 2017).

Psychotic disorders are highly heterogeneous. While psychosis is defined as deficits

in reality testing, the criteria included in the Diagnostic and Statistical Manual of

Mental Disorders (DSM) for schizophrenia specifies five key features, two or more of

which suggest a diagnosis of schizophrenia (American Psychiatric Association, 2013,

pp. 87-99). Delusions (fixed beliefs which do not effectively respond to contradictory

evidence) and hallucinations (perceptual experiences which do not reflect sensory
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stimulus) are often collectively described as positive symptoms (Stepnicki et al., 2018).

Disorganized speech and disorganized or catatonic behavior, which can present as

difficulties in properly forming sentences or engaging in goal-directed activities, are

referred to as disorganized symptoms (Kwapil et al., 2018). The fifth feature, negative

symptoms, presents as a lack of motivation (avolition) or a diminished ability to

experience pleasure (anhedonia).

The significant harms caused by schizophrenia and the distinctiveness of its symp-

toms have made it a promising target of research for over a century (Andreasen and

Carpenter, 1993). Because symptoms impact goal-directed behavior, schizophrenia

is thought to reflect dysfunction surrounding the neurotransmitter dopamine, which

is implicated in reward processing (Arias-Carrión et al., 2010). Dopamine’s role is

further highlighted by the chemical properties of psychopharmacological treatments

for psychosis, which often involve binding affinity for dopaminergic neurons (Boyd

and Mailman, 2012; Savica and Benarroch, 2014; Jauhar et al., 2017). In addition

to dopamine, there is converging evidence of a significant role for the neurotransmit-

ter glutamate, which has been linked to deficits in working memory and to aberrant

connections in the frontoparietal network (Schmidt et al., 2015). On a systems scale,

disrupted interactions between the prefrontal and perceptual cortices prompted Fris-

ton and Frith to describe schizophrenia as a ”disconnection syndrome” (Friston and

Frith, 1995). Under this understanding, different areas of the brain experience ab-

normal levels of functional segregation, failing to interact at contextually appropriate

times, a model which has been bolstered by evidence from modern functional neu-

roimaging (Friston et al., 2016).

In order to investigate models of neural function and dysfunction, psychiatric neu-

roscientists measure a variety of different physiological quantities. Electroencephalog-

raphy (EEG), for example, measures the electrical potential on the surface of the head,
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providing evidence on the time course of neural activity within the brain. The high

temporal resolution of this technique can shed light on the differences between dif-

ferent stages of cognition, and have been used to explore the impact of psychosis on

the stages of reward processing (Novak and Foti, 2015; Clayson et al., 2019). Because

many theories involving psychosis involve predictions about the activity of different

areas of the brain, however, functional magnetic resonance imaging (fMRI) has also

become a state of the art tool for psychosis research (Menon and Crottaz-Herbette,

2005). fMRI, which reflects neuronal metabolism throughout the three dimensional

volume of the brain, can reveal which areas become more active when a person en-

gages certain cognitive processes (Ogawa et al., 1990; Friston et al., 1996). In clinical

research, examining the areas which show different activity in patients and healthy

controls can reveal spatial loci for dysfunctional processes (Gluck et al., 2016).

Studies using fMRI have explored the way task-related activation differs between

patients with schizophrenia and those without any diagnosis. Given the cognitive

symptoms observed in schizophrenia, it is not surprising that many of these findings

involve the prefrontal cortex (PFC), the area of the brain most responsible for higher

cognition (Gluck et al., 2016). Tasks which measure executive function are often found

to preferentially activate the dorsolateral PFC, activations which are impaired in

psychosis patients (Orellana and Slachevsky, 2013). In general, the specific functional

loci which appear to activate differently in schizophrenia are diffuse and inconsistent

in the literature (Gur and Gur, 2010).

Instead of identifying areas which activate more or less strongly in schizophrenia,

more compelling results come from measuring the connections between different brain

areas. Connections between networks are inferred by measuring the signal within a

single voxel over time, and identifying which voxels are behaving similarly (Biswal

et al., 1995; Friston, 2011). By identifying collections of voxels with similar patterns
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of activation, Yeo et al. defined a series of functional networks which have been

thoroughly investigated in subsequent literature (Yeo et al., 2011). The default mode

network (DMN), for example, a network which has been linked to idle-mind activities

during the resting state, is less active in schizophrenia, especially in patients with

certain disorganized symptoms (Gong et al., 2020; Lee et al., 2019b; Zhou et al., 2016).

Similar impairments have been identified in the frontoparietal control network, and

such impairments appear related to the degree of cognitive impairment experienced

by the patient (Baker et al., 2014; Lewandowski et al., 2019). Such results lend further

support to the disconnection hypothesis of schizophrenia (Friston et al., 2016), and

encourages investigation into the mechanisms linking altered network connectivity

and symptoms of psychosis.

Perhaps the most promising potential use of fMRI in schizophrenia is as a po-

tential biomarker for early or complex diagnosis. Patients’ outcomes are significantly

improved if psychosis is identified and treated early, which makes diagnosis of prodro-

mal and high-risk psychosis of critical importance (Correll et al., 2018; Aceituno et al.,

2019). Neurophysiological evidence indicates that individuals with subclinical symp-

toms only rarely go on to develop a disorder, giving such symptoms a low diagnostic

specificity and little predictive value (Addington et al., 2019; van Tricht et al., 2014).

Additionally, the identification of patients in this stage of disease is complicated by

the subjective nature of clinical diagnostic interviews, which can confound diagnosis

in patients with multiple comorbid conditions (Compean and Hamner, 2019; Slotema

et al., 2018). A major goal of research, therefore, is to identify an imaging biomarker

– a feature of an fMRI scan which could reliably identify patients with schizophrenia

separately from healthy controls. Such a biomarker would need to be both sensitive

and specific, but would be able to objectively identify those with the disorder (Tognin

et al., 2020). Developing imaging biomarkers is an active area of work, and a key step
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in leveraging neuroimaging to improve outcomes in psychosis.
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BACKGROUND

Signal Processing and Time-Frequency Analysis

In resting state fMRI analysis, the activation within a voxel over the course of mul-

tiple imaging volumes can be represented by a time series, and can thus be analyzed

using the techniques of digital signal processing. Such techniques are mathematically

defined for any data that can be represented as a time series, that is, a collection

of discrete values associated with given points in time. These series are common

within science and engineering, where they can represent signals as diverse as market

performance and electroencephalography data. When the value of such signals are

represented as functions of time, they are said to be ”time-domain signals” (Alkin,

2014). One of the most important properties of such signals is the measure of the

time between sample points, or its inverse, the number of data points every sec-

ond. These quantities are referred to as the sampling time (Ts) or sampling rate

(Fs) respectively. This definition of time-domain signals allows for the application of

mathematical tools, such as convolution or autocorrelation, to any data that can be

represented as a time series (Nielsen, 2019).

Different ways of organizing information can allow alternative frameworks for anal-

ysis. In physics, for example, while elementary problems use Newtonian mechanics

(which use forces and motion to describe the motion of an object over time), La-

grangian dynamics (which describes dynamical behavior in terms of energy) can lead

to simpler models for understanding the behavior of certain system’s (Greenwood,

1987). Similarly, digital signals are commonly represented, instead of as a time series,

in terms of the frequencies which sum to form them. Any function can be represented

as the sum of an infinite series of sine waves of specific amplitude and frequency. The

list of the amplitudes of these waves are known as the Fourier series. Digital signals,
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that is to say, real data, are discretized, and have Fourier series given instead by the

discrete Fourier transform (DFT) (Alkin, 2014). Rather than representing the data

by a single amplitude at a series of points in time, data in the frequency domain

(Figure 1) is represented by the amplitude and phase of the component sine wave at

a series of discrete frequencies. As an example of a situation where this approach

provides unique information, Figure 2 shows a representation of the contribution of

a 60Hz signal (as if from a power line) on simulated EEG data. In the time domain,

this signal simply seems to add noise and variability to the lower-frequency signals,

but in the frequency domain, it is clearly represented as a peak at 60Hz (Luck, 2014;

Cohen, 2014).

Frequency (ω)

Time (t)

x(t)

F (ω)

Figure 1: Time vs. Frequency Domain Signal Representation

The time-domain signal (red) can be represented by the amplitude of
the sine waves which sum to form it.
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t0

s(t)

5Hz

+

t0

e(t)

60Hz

t0

x(t)

f0

X(f)

5Hz 60Hz

Figure 2: Powerline Contamination in the Frequency Domain

The summation of a 5Hz and 60Hz signal resembles noise in the time
domain, but shows two distinct peaks in the frequency domain.

The Fourier transform only changes the form in which a signal’s information is

stored; it cannot generate new information about a signal. All of the information

(the specific values contained in a signal, compared to all the values they could take)

contained in a signal is obtained at the time of recording. The quantity of information

can not increase, despite the transform (Cover and Thomas, 2006). For a time-

domain signal, sampled at fs for N points at a resolution of 1 byte per sample, the

information is represented by N numbers representing the signal value xn. When the

DFT is applied to this signal, it is represented by values of Xn, with n = 0, 1, 2...N ,

with the corresponding frequencies of fn = fs
N−1
N

. As is evident in Figure 3, the

second half of these values carry the same values as the first half, implying that the

frequency-domain representation somehow contains half as much data as the time-
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domain signal. Xn, however, is a complex value, where each data point contains two

bytes of data: a real component and imaginary component. The result is that the

frequency domain representation of a signal contains exactly as many bytes, and thus

information as the time-domain representation, and in fact can be moved back into

the time domain by inverting the transform. The information does not change, only

the way it is represented. This is analogous to translating a sentence between two

different languages. Because the amount of information is conserved, it is possible to

know the value of every time point, or the value of every frequency point, but not

the value of every frequency at every time point. This result is often described as a

time-frequency uncertainty limit not unlike the Heisenberg uncertainty principle in

quantum mechanics (Liu et al., 2018; Shinde and Gadre, 2001).

t0

x(t)

Fs0

X(f)

Fs

2

Figure 3: Fourier Transform (Real Component Only)

The Fourier transform translates data between the time and frequency
domains without loss of information. The frequency domain signal is
mirrored around f=0, and extends repeatedly in both directions.

When applied to neural time series, the Fourier transform can provide insight

into physiological oscillatory patterns. In EEG research, for example, the Fourier

transform is applied to a channel of electrode data representing the electrical potential

at the scalp. Neurons transmit electrical pulses in a periodic way, and the signals

recorded at these electrodes can be thought of as a summation of many different such
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periodic neuronal signals (Nunez and Srinivasan, 2006). The Fourier transform shows

the frequency of the neural sources during different brain states. Relaxed participants,

for example, show increased activity between 8Hz and 12Hz, a phenomenon described

as alpha waves (Liu et al., 2019; Allen et al., 2018). Unfortunately, because the Fourier

transform represents the signals as a function of frequency rather than time, it cannot

show how the strength of these waves varies over the course of an experiment. In

other words, the Fourier transform assumes that a signal is stationary, meaning that

its statistical properties do not vary with time. (Pierce, 1980; Nielsen, 2019).

Nonstationary data can be analyzed using the techniques of time-frequency anal-

ysis, a family of techniques which seeks to explore the way the frequency domain of a

signal changes with time. The simplest method of doing so is by dividing the original

signal and computing the Fourier transform for each of these segments – a process

known as the short time Fourier transform (Figure 4). While this technique does

allow for a crude comparison of the frequency spectrum at different points in time,

the shorter length of the segments reduces the frequency resolution compared to the

original transform. A more advanced form of this analysis, the sliding-window Fourier

transform, can provide an arbitrary level of frequency precision but provides minimal

information about the start and end of a signal (Richardson and Eddy, 2018). Both

of these techniques have been applied to investigate the nonstationarities of neural

time series (Zhou et al., 2019; Fu et al., 2018).
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STFT WT

Figure 4: Short Time Fourier and Wavelet Transform Results

The result of the application of the STFT and WT to the same signal,
generated by the summation of three temporally localized sine waves.
All three of these components are visible in the result, but the trans-
forms represent the information in different ways.

A more elegant technique for time-frequency analysis is a mathematical procedure

called the wavelet transform (WT). In the Fourier transform, a sine wave at a specific

frequency is compared to the time domain signal. Instead of using sine waves, the

WT uses wavelets: oscillatory functions which only have values at certain times times

(Cohen, 2019). A common example is the Morlet wavelet (Figure 5), which is a sine
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wave multiplied by a gaussian to produce a temporally-localized sine wave. This

pattern, called the kernel, is convolved with the time series signal to give a result

which represents the strength of the wavelet’s frequency at every point in time. When

this is done with a collection of wavelets at different frequencies (a wavelet family),

the result is a 2D data structure which represents the power in each frequency at every

time point. Because the 2D data cannot contain more information than the original

signal, there is uncertainty in this result. The nature of this uncertainty is controlled

by the width of the wavelet’s gaussian (the wavelet parameter c): a wider wavelet

will be more precise in identifying power at the specific frequency, but less precise at

localizing that activity in time. This uncertainty will be reflected in the appearance of

”smearing” of a signal over the time and frequency domains (Grossmann and Morlet,

1984; Cohen, 2014).

t0

k(t)

Figure 5: Morelet-style Wavelet Kernel

The kernel convolved against raw data in order to generate the morlet
wavelet transform at the kernel’s center frequency.

Resting State fMRI Analysis

By treating the images acquired during an fMRI scan as a time series, the tech-

niques of signal processing can be used to generate unique insight into underlying

neural funciton. If fMRI sequences are run while a participant is resting, rather than
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when they are engaged in a specific task, the scan is termed a resting state fMRI

(RS-fMRI) scan (Di et al., 2015; Amaro and Barker, 2006; Biswal et al., 1995). This

technique gives researchers insight into the underlying dynamics of baseline neuronal

activation which other designs seek to average out.

One common analysis technique in RS-fMRI is the identification and extraction

of functional brain networks. Functional networks are areas of the brain which ac-

tivate together, and have fMRI time series with strong interrelationships (Friston,

2011). There are a variety of techniques for detecting such covarying voxels. Simpler

methods include bivariate correlation between voxels in different regions of interest,

while more advanced techniques use independent component analysis to minimize the

mutual information between spatially distinct clusters (Biswal et al., 1995; Calhoun

et al., 2009). These clusters have been explored and defined as functional networks

related to different neural systems (Yeo et al., 2011). The default mode network

(DMN), for example, is a collection of cerebral areas which is active during the rest-

ing state, and is specifically tied to idle cognition (Lee et al., 2019a). The DMN is

dysregulated in schizophrenia, showing altered within-network connectivity as well

as differences in its relationship with other functional networks (Hu et al., 2017; Lee

et al., 2019a; Öngür et al., 2010). The connections within these other networks, such

as the frontoparietal control network (FPN) have also been shown to be impaired in

Schizophrenia (Lewandowski et al., 2019).

An alternative technique for exploring the spatial patterns within an RS-fMRI

dataset explores the way spatially contiguous voxels covary. In Regional Homogene-

ity (ReHo) analysis, the Kendall Coefficient of Concordance (KCC) is calculated

between a voxel and its neighbors (Zang et al., 2004). The resulting image shows

which areas of the brain exhibit greater levels of local synchronization, results which

track physiological and other imaging measures (Yuan et al., 2013). Patients with
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schizophrenia demonstrate altered levels of ReHo in certain functional areas, includ-

ing those involved in sensory processing (Xu et al., 2015). In addition, levels of ReHo

in thalamic areas are correlated with a patient’s symptom burden prior to antipsy-

chotic treatment (Zhao et al., 2019). In some voxels, these changes are related to the

underlying frequency of BOLD fluctuations (Yu et al., 2013).

The transformation of fMRI time series into the frequency domain has also yielded

interesting results. The Amplitude of Low Frequency Fluctuation (ALFF) metric is

defined as the average of the Fourier transform (from 0.01Hz to 0.08Hz) of the BOLD

signal within a voxel (Zang et al., 2007). A related metric, fractional ALFF, di-

vides ALFF by the power in all frequencies, rather than just the lower frequency

bands (Zou et al., 2008). Compared to healthy controls, patients with schizopphre-

nia show large areas of decreased ALFF in the occipital lobe (Hare et al., 2016).

Additionally, patients with hallucinations show increased ALFF in the thalamus and

parahippocampal gyri compared to patients without those symptoms, further demon-

strating the role of sensory dysfunction in the disease (Alonso-Soĺıs et al., 2017). In

a 2020 meta-analysis, Gong et al. demonstrated consistently decreased ALFF in the

postcentral gyri, precuneus, and right occiptal lobe and increased ALFF in areas of

the putamen, frontal and temporal gyri, and anterior cingulate.

Techniques of time-frequency decomposition can be leveraged to perform novel

analyses of fMRI datasets. One such application is to use the Wavelet transform

in order to calculate ALFF, which increases the sensitivity and reproducibility of

voxel-wise results (Luo et al., 2020). So far, wavelet-ALFF has been applied in mild

cognitive impairment, but has not been applied to Schizophrenia (Cui et al., 2021).

Another technique, termed dynamic ALFF (dALFF) applies a low-resolution sliding-

window Fourier transform to the fMRI time series, producing maps of ALFF at mul-

tiple points during an RS-fMRI experiment (Tang et al., 2018). This technique has
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been applied to generalized anxiety disorder, with striatal dALFF correlating with

symptom burden (Cui et al., 2020). dALFF has also been combined with functional

connectivity in Schizophrenia, in a study which demonstrated that the correlated,

dynamic patterns of both ALFF and functional connectivity were modified in the

disorder (Fu et al., 2018). Wavelet analysis has also been used in literature inves-

tigating dynamic functional connectivity, wherein it can generate frequency-specific

profiles of neural connection (Yaesoubi et al., 2017b,a; Chang and Glover, 2010).

The Hilbert-Huang Transform

The intersection of signal processing and RS-fMRI is clearly a developing area of

research. Understanding the natural patterns of activity present in the resting brain

leads to insights regarding cerebral function and organization, can reveal the ways

these dynamics are impacted in disease, and may lead to diagnostic and treatment

biomarkers. The nonstationary time series of a voxel’s BOLD activation is an es-

pecially exciting target for the application of time-frequency decomposition, which

can reveal the dynamic nature of neural behavior. The leading techniques, such as

the wavelet transform, are increasingly being applied, although the WT’s limitations

may hamper the understanding of complex dynamic behavior. One potential time-

frequency decomposition method, the Hilbert-Huang transform, is of special interest.

It minimizes the smearing evident in other techniques by only analyzing specific

empirical components of the underlying data, and so is a potential tool for careful

investigation of time-frequency dynamics.

The first operation of the Hilbert-Huang transform, called Empirical Mode De-

composition (EMD), breaks a time-domain signal into a number of Intrinsic Mode

Functions (IMFs). An IMF is a simple oscillatory function which, like a sine wave,
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is meant to represent the oscillatory components of a signal. Unlike a sine wave,

however, it has a variable frequency, amplitude, and phase, and is defined purely by

the data in the original time series, rather than an analytic function. An IMF must

satisfy two conditions: the difference between the number of extrema and zero cross-

ings must be equal to or less than one, and the two polynomials which connect the

maxima and minima must have a mean value of zero (Huang et al., 1998). In order

to construct an IMF from the original data, these two polynomials are constructed

based on the maxima and minima of the time series, from which the mean of these

polynomials is subtracted. This produces a candidate IMF, which is treated as the

original data in another iteration of the process, a cycle demonstrated in Figure 6.

When the candidate IMF hk meets a stoppage criteria, it is called an IMF of the

original data. If another IMF is to be extracted, the first is subtracted from the data,

and this procedure – called sifting – is run again. Once a certain number of IMFs

have been extracted (or another stopping criteria has been reached), any signal not

captured by the IMFs is included in a residual term and reported, along with the

IMFs, as the output of the process (Song et al., 2014). More mathematical detail

about this process is given in the appendix.
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Figure 6: Emperical Mode Decomposition Sifting Process

The upper (red) and lower (orange) envelopes of the original data (blue)
is averaged to produce the middle envelope (lime). This average is
subtracted from the original data to perform sifting.

The EMD process takes place entirely in the time domain, and thus requires an-

other step to be applicable in time-frequency analysis. This step is performed by

the Hilbert transform, which takes a real signal and interpolates an imaginary com-

ponent to produce a complex-valued signal. From this complex signal, the phase

and frequency information can be calculated. Because no process can generate in-

formation that is not in the original signal, the imaginary component of the signal

contains redundant information, but easily yields the parameters (amplitude, phase,

and frequency) of a sine wave. When these are extracted from the Hilbert transform,

they yield an estimate of the weighted average of oscillatory components of a signal

at a given time. This averaging makes the Hilbert transform, when applied to raw

data, difficult to interpret (Cohen, 2014). When working with neural time series, the
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Hilbert transform is often combined with other ways of decomposing a signal, such as

band-pass filtering (Yuan and Luo, 2012; Wang et al., 2015). By applying the Hilbert

transform to the EMD of the signal, the IMFs are transformed into the frequency

domain, giving the time-frequency characteristics of the empirical components of the

signal. The resulting decomposition does not show the same smearing that is visi-

ble in the wavelet transforms, since it is not attempting to convey any information

outside of the very specific IMFs (Liu et al., 2018).

When the Hilbert transform is applied to the EMD of a signal, the result is

known as the Hilbert-Huang transform (HHT). The time-frequency plot of this result

is shown in Figure 7, and can be further transformed into specific quantities which

can be treated as discrete measurements of a given voxel’s time series. One useful

quantity is the energy of each IMF, which is given by the formula E =
∑T

t=0 h
2(t).

This produces a single imaging volume for each of the n IMFs, with each voxel taking

on the value of the energy of that voxel’s nth IMF. Each IMF can also yield a measure

of average frequency, called the Hilbert weighted frequency (HWF). The HWF is the

average of the frequency at every point in the time series, weighted by the square of

the energy at that point (Xie and Wang, 2006). An alternative formulation of the

HWF weights the frequency instead by the product of the frequency and amplitude

(Oweis and Abdulhay, 2011). The HWFs of each IMF can also be averaged to produce

an average frequency value for the entire voxel. These calculated image volumes of

patients can be compared to those of controls (or correlated with behavioral variables)

in order to investigate the relationship between the IMFs in various brain regions and

phenotypic variables.
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Figure 7: Hilbert-Huang Transform

An example of the Hilbert-Huang transform, applied to a time series of
randomly generated data.

The HHT has only rarely been applied to fMRI data. In healthy subjects, the

HHT has been used as an alternative basis to perform clustering and ReHo analysis.

Using the IMFs instead of raw data, (Wu et al., 2017) performed a k-means cluster-

ing analysis to identify different loci of functional synchronization. IMFs have also

been used as the time-series input to calculate the KCC during a ReHo analysis, a

procedure which revealed drastic differences between ReHo measures in cortical and

subcortical areas, with the former showing more complicated frequency-dependent

behavior (Song et al., 2014). Looking at healthy subjects across the lifespan, Yang
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et al. demonstrated that frequency modulation increased and amplitude modulation

decreased (with modulation defined as the standard deviation of the quantity) as pa-

tients aged (Yang et al., 2018). In translational work, HWFs have been used as the

input to a neural network which discriminated between the stages of mild cognitive

impairment with 88% accuracy (Shi and Liu, 2020). HHT results can also differen-

tiate healthy controls from patients with autism, who had higher HWFs in certain

regions associated with the DMN (Zhang et al., 2021). The HWF measured around

the limbic system was altered in patients with major depressive disorder in com-

parison to healthy controls, demonstrating promise for the technique in psychiatric

disorders (Yu et al., 2018).

This study will apply the HHT to fMRI data in order to see if its unique ability

to characterize nonstationary time series aides in the differentiation between patients

with schizophrenia and healthy control subjects. Some differences in resting state

measures, like ALFF, have already been reported and discussed, but they tend to

present inconsistent results. If these inconsistencies are the result of the nonsta-

tionarities in the data, such analysis should provide results which are better able to

differentiate patients and controls.
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METHODS

fMRI Data Acquisition

Data were obtained from the Neuroimaging Tools & Resources Collaboratory (NI-

TRC), specifically the Centers of Biomedical Research Excellence (COBRE) dataset.

This contains the resting state scans of 72 patients with a DSM-IV diagnosis of

Schizophrenia and 74 healthy controls free of DSM-IV diagnosis. Patients were

scanned on a Siemens Tim Trio MR Scanner, with a field strength of 3T. Each par-

ticipant had structural images (MPRAGE, TR = 2530ms, TE = 1.64, 3.5, 5.36, 7.22,

9.08ms, TI = 900ms, FA = 7◦, Matrix 256x256x176mm, Voxel Size 1x1x1mm) col-

lected for anatomical normalization in addition to a functional scan. The functional

scan, collected during the resting state, was performed with a single-shot echo-planar

imaging (EPI) sequence, with parameters TR = 2s, TE = 29ms, Matrix 64x64x32,

and Voxel Size 3x3x4mm (Calhoun et al., 2012).

Image Preprocessing

Preprocessing of the 4D imaging volumes was performed in SPM12 (https://www.

fil.ion.ucl.ac.uk/spm/) (Friston et al., 1994). The preprocessing pipeline included re-

aligning the images to eliminate motion artifact and slice timing correction, both of

which were conducted using the default parameters of SPM. The functional and struc-

tural images were then coregistered and normalized to 2mm3 voxels in the MNI152

stereotactic space. Finally, voxels were smoothed using an isotropic 8mm gaussian

kernel. This process was repeated for all 146 subjects, and the results saved as nor-

malized 4D imaging volumes.
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Time Series Analysis

Preprocessed fMRI data was loaded into a custom MATLAB (The Mathworks,

Inc., Natick, MA) workflow which incorporated utility functions from RESTplus

v.1.24 (Jia et al., 2019). Voxels within the brain, as defined by a mask normal-

ized to the common MNI152 space, were extracted and the time courses of signal

within each of those voxels separately analyzed for their time-frequency parameters.

First, the wavelet transform was applied to each voxel time series. A family of

Morlet wavelets with parameter c = 2.5 and center frequencies at 0.05Hz, 0.1Hz, and

0.15Hz, was convolved onto the time series, yielding time series representing activity

in bands around those frequencies. Edge effects were eliminated by deleting all data

less than a half-kernel width from the start and end of the series. The power and

variance of the signal was calculated for each of these bands, and the values for these

quantities assembled into an output image. The center frequencies for these wavelets

were chosen in order to best approximate the standard range of frequencies which

contribute to ALFF, with consideration given to avoiding information loss due to the

long kernels required for low-frequency wavelets.

Similarly, Empirical Mode Decomposition was performed, using a sifting stop

criterion of SD = 0.2, to extract a maximum of 5 IMFs from each time series. The

energy of each of these IMFs was calculated according to Ek =
∑T

t=0 hk
2(t), where hk

is the kth IMF. The Hilbert transform was then applied to the IMFs, and the HWF

was calculated as HWF k =
∑m

i=1 ωj(i)aj
2(i)∑m

i=1 aj
2(i)

, where wj is the instantaneous frequency

at every time point in the IMF and aj is the amplitude. With an energy and HWF

value for every voxel, the quantities were combined back into a 3D imaging volume.

This process is illustrated in Figure 8.
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Figure 8: Pipeline Overrview

Illustration of all the transforms applied and measures generated during
the present study. EMD produces several IMFs, from each of which is
calculated energy and and HWF. The WT produces frequency power
in the specified bands, which can yield average frequency power and
variance. Each of these measures for every voxel are then recombined
into a 3D imaging volume.

Group-Level Analysis

Statistical tests were conducted across every voxel of the standardized image space.

For every voxel in the calculated images, an independent sample t-test was performed

between the values of the patients’ images and the values in the images of the control
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participants. These t-maps were smoothed, in SPM, with an 8mm isotropic voxel.

The significance of each value was tested using a cluster correction approach (in order

to correct for multiple comparisons), with α = 0.001 and the minimum cluster size of

200 voxels. This thresholding was performed in REST v.1.8 (Song et al., 2011). This

process was applied to every image generated from the pipeline in Figure 8, and the

results saved as an imaging volume with values of zero for nonsignificant comparisons

and that of the t-statistic for significant voxels. This workflow is illustrated in Figure

9.



25

Figure 9: Statistical Analysis

Overview of process which generates the statistical maps of voxels with
significant between-group differences. Every participant’s value within
the standardized imaging voxel is included in an independent sample
t-test, which is then input to a simple cluster correction algorithm.
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The ages within the schizophrenia group (M = 38.17 , SD = 13.89) and control

group (M = 35.82 , SD = 11.58) were not significantly different (t(144) = -1.11, p

= 0.27). Similarly, the gender distribution between the patients (80.6% male) and

controls (68.9% male) was not significantly different (χ2 (1, N = 146) = 2.61, p =

0.1). Therefore, no additional correction or regression was applied to the data.
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RESULTS

Wavelet Tests

Six statistical tests were conducted corresponding to the power and variance within

each of the three wavelet bands. The brain mask contained 292,019 voxels of 592,895

available in the 79x95x79 volume. Because the variance of each frequency band is a

question being tested, the equal variances of the populations cannot be assumed, and

so Satterthwaite’s approximation is used to determine effective degrees of freedom.

No voxels showed significant differences between patients and controls in band power

within each of the three frequency bands tested (Figure 10).

Figure 10: Power and Variance within Wavelet Bands

t values of comparison between patients and controls in statistical maps
which have not been thresholded.

Similarly, no voxels showed significant differences in the variance within the first

two frequency bands yielded by wavelet composition, although the parametric maps

showed more qualitative variation between the three bands. The third wavelet band,
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with a center frequency of 0.15Hz, did yield significant clusters of differences. These

clusters were broadly centered around the ventricles, where the largest nonsignificant

differences in the other maps are also observed. In all maps, other differences were

largely diffuse throughout the volume. With the exception of differences in high-

frequency variance within ventricles, the signal properties from the wavelet transform

as applied yielded no significant differences between patients and controls.

Figure 11: Cross Section of Voxel t-statistics for WT 3 Variance

Significant differences between patients and controls in the variance of
the third wavelet band, after cluster correction.

IMF-wise Tests

The energy of each IMF was saved as a separate map, resulting in five voxel-

wise t-tests between the participants and controls. Energy in IMFs 5, 4, 3, and 2

were not significantly different between patients and controls throughout the brain

volume. IMF 1, however, showed significant differences between patients and controls

in a variety of cerebral locations, as seen in Figure 12. Such differences were found

primarily at the periphery of the brain, with the largest clusters in the frontal orbital
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cortex, prefrontal gyrus, and supplementary motor cortex.

Figure 12: Cross Section of Voxel t-statistics for IMF 1 Energy

IMF1 had more energy in the schizophrenia group within peripheral
areas, specifically the prefrontal gyrus, frontal orbital cortex, and sup-
plementary motor cortex.

The other IMF-wise test conducted was the HWF of each IMF. IMFs one and two

yielded clusters with significant differences in the HWF between patients and controls

(Figure 13). The HWF of IMF 1 within the bilateral thalamus was significantly

elevated in patients with schizophrenia compared to healthy controls, as was the

HWF within the visual cortex. IMF 2 showed increased HWF for patients in clusters

found in occipital areas. The remaining three IMFs showed no significant differences

which survived cluster correction.
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Figure 13: MIP of Voxel t-statistics for IMF HWFs

The first IMF showed increased HWF in patients within the thalamus
and occipital cortex, while the second IMF showed increased HWF in
patients only in occipital areas.

Voxel-wise Tests

The final test compared the average HWF across all of the IMFs. Patients

with schizophrenia once again showed significantly increased frequencies compared

to healthy controls across multiple areas of the brain (Figure 14). Like the IMF 1

energy map (Figure 12), many of the significant voxels are found around the outer

boundaries of the brain, although considerably more voxels are found in the inner

cerebrum than in the former case. Importantly, clusters can be found in both the

thalamus as well as the postcentral gyrus, in both cases bilaterally.
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Figure 14: Cross Section of Voxel t-statistics for Mean HWF

The mean HWF across all IMFs was increased in patients for voxels
within the thalamus and postcentral gyrus.
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DISCUSSION

Wavelet Maps

Five out of the six measures derived from the wavelet transform failed to show

any significant differences between patients and controls. In the statistical maps of

the t-values, various brain areas showed elevated wavelet power while others showed

decreased wavelet power in patients compared to controls. There were few quali-

tative differences between the spatial distribution of these values between the three

frequency bands. There were more between-band differences in the maps of the vari-

ances of each band, however none of these differences were statistically significant.

These results are broadly in line with the literature, which focuses only on the ampli-

tude of fluctuations between 0.01Hz and 0.08Hz, and even then produces inconsistent

results.

The remaining map, which did show significant differences, was of the variance

of the signal within the third wavelet band, which was constructed with a center

frequency of 0.15Hz. This is a relatively high frequency, and generally contains higher

amounts of activity related to physiological noise (cardiac rhythms or respiration),

rather than neural function (Josephs and Henson, 1999). This is reflected in the

map of the results, which closely follow the anatomical features of the ventricles.

This result therefore may represent physiological differences between patients and

controls, but do not provide great insight into the neuronal dynamics underlying

schizophrenia.

Hilbert-Huang Transform Results

The map of t-values comparing the energy of the first IMF (Figure 12) contains

many significant clusters of voxels. These voxels are predominantly located on the
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periphery of the brain, in areas close to the surface of the head. This is concerning

because motion artifacts can be present at the periphery of the brain, exactly where

these results are concentrated (Maknojia et al., 2019). Additionally, patients with

schizophrenia are known to have differences in motor behavior, though the influence

of this onto motion within fMRI scans has been disputed (Yoo et al., 2005). With

that caution in mind, it is notable that large clusters of significant voxels are found

in the prefrontal gyrus and motor cortex. Some of these clusters extend posteriorly

into the rest of the parietal lobe, which is involved in sensory integration, a locus of

disruption in schizophrenia.

The HWF of the first two IMFs showed significant differences between patients and

controls. While similar concerns are warranted for these results as for the energy of

the first IMF, there are significant differences in deeper brain structures. The cluster

in the thalamus specifically is in alignment with results which show increased ALFF in

thalamic areas (Alonso-Soĺıs et al., 2017). Because the thalamus plays a critical role in

the transmission and organization of sensory information, differences in its activation

may reflect a neural basis for sensory abnormalities within schizophrenia. The HWF

measure provides far more information about the properties of thalamic activation

than ALFF, and a further exploration of the differences in thalamic HWFs may

yield more precise understanding of the way function is disturbed in schizophrenia.

The HWFs of IMF1 and IMF2 also show significant increases in the occipital lobe,

specifically within areas associated with visual processing. These results are aligned

with the findings of increased HWF in the thalamus, and frequency differences within

sensory processing more broadly.

Similarly, the map of the average HWF across all IMFs show differences in areas

associated with sensory processing. The thalamus, again, showed significant contrast

between patients and controls. The same sensory and motor areas which were high-
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lighted in the contrast of the first IMF’s energy also showed large differences in the

mean HWF image; these differences were not present in the contrasts of the individual

IMF HWFs. A parsimonious explanation for this difference may be that individual

HWFs are only slightly elevated in patients over controls, and the difference is only

significant when all five elevated HWFs are considered together. The relationships

between the mean HWF and IMF-wise HWF measures may contain diagnostic infor-

mation, and are a target for further work.

Broadly, these results demonstrate the validity of applying the HHT to voxel time

series in order to explore the pathophysiological differences observed in schizophre-

nia. Compared to measures produced from the WT, which displayed broad patterns

but failed to reach significance, HHT-based measures showed significant differences

in various areas. This analysis was exploratory and was designed to show the utility

of these techniques, rather than to investigate the underlying dynamics of the fre-

quency components extracted. Nevertheless, the increased HWFs and energies of the

IMFs extracted from patients were concentrated in areas relating to sensory process-

ing and motor behavior. Because sensory processing and motor activity is related to

many symptoms of schizophrenia, more specific differences in these extracted compo-

nents may yield a greater understanding of the underlying neuronal dynamics of the

disorder.

Limitations and Expansion

This analysis has numerous limitations. To start, the COBRE dataset was col-

lected more than ten years prior to this writing. With only 150 images per subject

at a sampling rate of 0.5Hz, the lowest frequency which can be captured by wavelet

convolution, while avoiding edge effects, is higher than the lower bands normally in-
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cluded in ALFF. On the other end, such a sampling rate has a Nyquist frequency of

0.25Hz, and has difficulty detecting dynamics with more rapid oscillations. The ad-

vent of parallel multi-band imaging has improved the speed and quality of MRI scans

in the time since these the COBRE images were collected, and so this analysis lacked

modern imaging quality improvements (Blaimer et al., 2013). In addition, the nosol-

ogy of and diagnostic techniques for psychosis have also advanced, most significantly

with the arrival of the DSM-5 (and related SCID-5).

In response to these limitations, there are several possible directions in which to

extend this work. In response to the relatively low quality of the data, a similar

analysis could be applied to a more recent, optimized imaging sequence. The wavelet

analysis, especially, was hampered by the limited number of resting state images in

the time series. By acquiring more images with a higher sampling rate (such as

the human connectome project’s 1200 images with TR = 0.72s protocol), the time-

varying dynamics of a wider variety of frequencies can be captured. Additionally, a

more optimized scan protocol would contain sequences to map distortions in the ~B0

field so as to improve the spatial accuracy of the parametric maps, a goal which would

also be aided by increasing the spatial resolution of the imaging matrix. The high

likelihood of differences in patient motion between patients and controls also suggests

that future work could leverage either improved head restraints or more advanced

techniques for motion correction in order to minimize the confounding impact of

motion.

The statistical techniques applied during this analysis were exploratory, and were

designed to highlight areas which may contain differences in activation, rather than to

test the contribution of specific volumes to these differences. With the identification

of the thalamus and sensory areas as sites of differences in IMF behavior, future

work could focus on testing predictions about the properties within specific regions
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of interest (ROIs). By focusing on specific ROIs, such work could investigate more

involved properties of the IMF signals. For example, there are multiple strategies

for weighting the HWF which may take into account different features of the signal.

These alternative weightings can include, for example, the product of frequency and

amplitude, which would give more weight to higher frequencies (Oweis and Abdulhay,

2011). Modulation of the IMFs is an additional quantity which could be tested, as the

disconnection hypothesis of schizophrenia would suggest differences in the variation

in the activity of underlying neural sources. The phasic structure of each of the IMFs

could also be a target of investigation. The phase locking value of two time series

measures the similarity of the instantaneous phase of the signals. This calculation has

been applied to different IMFs, and the interactions between the phases of different

components may show significant differences (Zhang et al., 2014).

The measures generated from the HHT decomposition of the data could also be

used as the basis for further explorations of functional connectivity states. Time-

frequency decomposition has been used to identify different activation states of the

brain’s functional networks, but such analyses are generally restricted to either the

short time Fourier or Wavelet transforms (Yaesoubi et al., 2015, 2017b; Fu et al.,

2018). Using the instantaneous properties (phase, energy, frequency) of IMFs as a

basis for identifying and categorizing different states of dynamic connectivity would

be a natural extension of this work, as the IMFs may provide a more accurate repre-

sentation of underlying activity. Another natural application of the HHT would be to

decompose the time series of separate functional networks as extracted by ICA. By

doing so, it may be possible to observe distinct nonstationary frequency components

within these networks.

Broadly, the present study shows that the Hilbert-Huang transform has promise

in the investigation of psychiatric imaging time-series. Images generated from mea-
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sures based on the HHT showed clear statistical differences between patients with

schizophrenia and healthy controls, and did so in patterns reflective of the symptoms

of the disease. Further application of HHT-derived measures may yield yet more in-

formation, and may ultimately improve the understanding of and treatments available

for psychotic disorders.
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APPENDIX

This appendix contains a more rigorous, mathematical discussion of the Hilbert-

Huang transform. It is being applied to a time series x which contains N time points,

notated xn, n ∈ 1, 2, 3...N . Because the time indexes will be important, the time at

which each point is sampled is notated tn

Empirical Mode Decomposition

The goal of empirical mode decomposition (EMD) is to extract the intrinsic mode

functions (IMFs) from the underlying data. An IMF is a function which represents

the non-stationary oscillatory modes imbedded in a time series. Mathematically,

such functions must meet two criteria, for which additional notation must first be

established.

For the time series x, the data points which correspond to local maxima are given

by aj, j ∈ 1, 2, 3...Na, where Na is the total number of maxima in x. The values

of the maxima in x are therefore given by xaj . Similarly, the minima are given by

bk, k ∈ 1, 2, 3...Nb, and the values of those minima are xbk . The corresponding vectors

for each of these elements are thus defined:

A = [a1, a2, a3, ...aNa ]

XA = [xa1 , xa2 , xa3 , ...xaNa
]

B = [b1, b2, b3, ...bNb
]

XB = [xb1 , xb2 , xb3 , ...xbNb
]

These vectors of maxima and minima can be used to define polynomials, designed

the upper and lower envelope of x. For every time point within x (n ∈ 1, 2, 3...N),

the result of the cubic spline interpolation function is equivalent to this polynomial.

While the precise formula for spline interpolation is outside the scope of this appendix,
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the spline interpolation, and thus the upper envelope, of the series is given by san =

spline(A,XA, n). The lower envelope is likewise sbn = spline(N,XB, n). This is

written similarly to the MATLAB code which implements the spline function.

In practice, the spline function is combined with a padding function to ensure

that there are sufficient data points to properly compute the spline at all points.

This padding function adds a small number (e.g. 3) of data points to the beginning

and ending of the vectors, with the position and values of those padding points given

by sinusoidal extrapolation of the original function.

The first criteria in order for x to be considered an IMF is that the number of

extrema and zero crossings must differ by no more than one. This is written as

Na +Nb −Nz ≤ 1

where Nz is the number of zero crossings. The second criterion is that the mean

of the upper and lower envelopes must be zero at evert point, and can be written

sbn = −san

for all n ∈ 1, 2, 3...N . With an IMF defined, the question then becomes how to

determine the IMFs which comprise the signal x.

This is done through an iterative process called sifting, during which the mean of

the envelopes is subtracted from the data (Figure 15).

c1n = xn −
1

2
(san + sbn) , n ∈ 1, 2, 3...N
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Figure 15: Sifting Process

The upper (red) and lower (orange) envelopes of the original data (blue)
is averaged to produce the middle envelope (lime). This average is
subtracted from the original data to perform sifting.

This subtraction produces the first candidate IMF, denoted c1. c1, however, still

does not meet both criterion required of an IMF. In order to continue, the envelopes

for c1 are calculated (sc1
a
n and sc1

b
n), and the mean of these envelopes is subtracted

from c1 to yield a second candidate IMF, c2.

c2n = c1n −
1

2
(sc1

a
n + sc1

b
n) , n ∈ 1, 2, 3...N

Ideally, this proceeds until the resulting candidate IMF, ck, satisfies both criteria

for being an IMF. For computational efficency, however, sifting proceeds until an

alternative criteria is met. This criteria represents the relative tolerance between

successive iterations of the sifting process, and is given in Equation 1

SDk =
T∑
t=0

|hk−1(t)− hk(t)|2

hk−1
2(t)

(1)
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Na +Nb ≤MaxExtrema (2)

10log10(
x

h
) ≤MaxEnergyRatio (3)

When this quantity is below a certain value, typically set at 0.2, the candidate

IMF cn is said to be an IMF. The procedure is then restarted to find additional

IMFs, using xn − ckn as the initial data. This proceeds until a set number of IMFs

are extracted from the signal, or until the stop criteria in equation 2 and equation 3)

are met. The collection of extracted IMFs, along with the remaining initial data (the

residual) are reported as the results of EMD.

Hilbert Transform

After the IMFs have been extracted through EMD, the second step of the Hilbert-

Huang transform is to calculate the instantaneous frequency, energy, and phase of each

IMF. This is done through manipulation of the result of the Hilbert transform (Eq.

4), which extends a real-valued signal into the complex domain.

H{xn} =
1

π

 ∞
−∞

x(τ)

t− τ
dτ (4)

For a discrete signal, the discrete Hilbert transform is calculated by manipulation

of the Fourier transform of that signal. The Fourier coefficients are rotated such that

they correspond to the amplitudes of sin functions, rather than cosines: that is, they

are phase shifted by 90◦. The sum of the original coefficients and these rotated ones

are converted back into the time domain, producing a complex-valued time domain

signal from which signal parameters can be calculated.
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Because the signal is now complex, it can be transformed from cartesian into

polar coordinates, yielding, instead of a real and imaginary component, a phase and

magnitude component for each point. These are the signals instantaneous magnitude

and instantaneous phase. From these parameters, the instantaneous frequency – that

is, the frequency of the signal at every point – is simply the derivative of the phase

angle, scaled by the sampling frequency to produce a result in Hertz (Eq. 5).

f(t) = ω(t) · fs
2π

=
dθ

dt
· fs

2π
(5)
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