14,731 research outputs found
Two Distributed Algorithms for E-ticket Validation Protocols for Mobile Clients
The e-ticket (electronic ticket) validation problem has relevance in mobile computing environment because of the multiple submission of a ticket that is possible due to intermittent disconnections and mobility of hosts. Here, we propose protocols that are not only sensitive to disconnection but also to location. One of the proposed protocols is the variant of the distributed protocol proposed by Pedone (2000) for Internet users. This shows that a distributed protocol for static network can be restructured for distributed computation in a mobile computing environment. We have also proposed another protocol that uses a hierarchical location database of mobile hosts (Pitoura and Samaras, 2001)
Lightweighted and energy-aware MIKEY-Ticket for e-health applications in the context of internet of things
E-health applications have emerged as a promising approach to provide unobtrusive and customizable support to elderly and frail people based on their situation and circumstances. However, due to limited resources available in such systems and data privacy concerns, security issues constitute a major obstacle to their safe deployment. To secure e-health communications, key management protocols play a vital role in the security process. Nevertheless, current e-health systems are unable to run existing standardized key management protocols due to their limited energy power and computational capabilities. In this paper, we introduce two solutions to tailor MIKEY-Ticket protocol to constrained environments. Firstly, we propose a new header compression scheme to reduce the size of MIKEYs header from 12 Bytes to 3 Bytes in the best compression case. Secondly, we present a new exchange mode to reduce the number of exchanged messages from six to four. We have used a formal validation method to evaluate and validate the security properties of our new tailored MIKEY-Ticket protocol. In addition, we have evaluated both communication and computational costs to demonstrate the energy gain. The results show a decrease in MIKEY-Ticket overhead and a considerable energy gain without compromising its security properties
A Practical Set-Membership Proof for Privacy-Preserving NFC Mobile Ticketing
To ensure the privacy of users in transport systems, researchers are working
on new protocols providing the best security guarantees while respecting
functional requirements of transport operators. In this paper, we design a
secure NFC m-ticketing protocol for public transport that preserves users'
anonymity and prevents transport operators from tracing their customers' trips.
To this end, we introduce a new practical set-membership proof that does not
require provers nor verifiers (but in a specific scenario for verifiers) to
perform pairing computations. It is therefore particularly suitable for our
(ticketing) setting where provers hold SIM/UICC cards that do not support such
costly computations. We also propose several optimizations of Boneh-Boyen type
signature schemes, which are of independent interest, increasing their
performance and efficiency during NFC transactions. Our m-ticketing protocol
offers greater flexibility compared to previous solutions as it enables the
post-payment and the off-line validation of m-tickets. By implementing a
prototype using a standard NFC SIM card, we show that it fulfils the stringent
functional requirement imposed by transport operators whilst using strong
security parameters. In particular, a validation can be completed in 184.25 ms
when the mobile is switched on, and in 266.52 ms when the mobile is switched
off or its battery is flat
SECMACE: Scalable and Robust Identity and Credential Management Infrastructure in Vehicular Communication Systems
Several years of academic and industrial research efforts have converged to a
common understanding on fundamental security building blocks for the upcoming
Vehicular Communication (VC) systems. There is a growing consensus towards
deploying a special-purpose identity and credential management infrastructure,
i.e., a Vehicular Public-Key Infrastructure (VPKI), enabling pseudonymous
authentication, with standardization efforts towards that direction. In spite
of the progress made by standardization bodies (IEEE 1609.2 and ETSI) and
harmonization efforts (Car2Car Communication Consortium (C2C-CC)), significant
questions remain unanswered towards deploying a VPKI. Deep understanding of the
VPKI, a central building block of secure and privacy-preserving VC systems, is
still lacking. This paper contributes to the closing of this gap. We present
SECMACE, a VPKI system, which is compatible with the IEEE 1609.2 and ETSI
standards specifications. We provide a detailed description of our
state-of-the-art VPKI that improves upon existing proposals in terms of
security and privacy protection, and efficiency. SECMACE facilitates
multi-domain operations in the VC systems and enhances user privacy, notably
preventing linking pseudonyms based on timing information and offering
increased protection even against honest-but-curious VPKI entities. We propose
multiple policies for the vehicle-VPKI interactions, based on which and two
large-scale mobility trace datasets, we evaluate the full-blown implementation
of SECMACE. With very little attention on the VPKI performance thus far, our
results reveal that modest computing resources can support a large area of
vehicles with very low delays and the most promising policy in terms of privacy
protection can be supported with moderate overhead.Comment: 14 pages, 9 figures, 10 tables, IEEE Transactions on Intelligent
Transportation System
Privacy-Preserving Electronic Ticket Scheme with Attribute-based Credentials
Electronic tickets (e-tickets) are electronic versions of paper tickets,
which enable users to access intended services and improve services'
efficiency. However, privacy may be a concern of e-ticket users. In this paper,
a privacy-preserving electronic ticket scheme with attribute-based credentials
is proposed to protect users' privacy and facilitate ticketing based on a
user's attributes. Our proposed scheme makes the following contributions: (1)
users can buy different tickets from ticket sellers without releasing their
exact attributes; (2) two tickets of the same user cannot be linked; (3) a
ticket cannot be transferred to another user; (4) a ticket cannot be double
spent; (5) the security of the proposed scheme is formally proven and reduced
to well known (q-strong Diffie-Hellman) complexity assumption; (6) the scheme
has been implemented and its performance empirically evaluated. To the best of
our knowledge, our privacy-preserving attribute-based e-ticket scheme is the
first one providing these five features. Application areas of our scheme
include event or transport tickets where users must convince ticket sellers
that their attributes (e.g. age, profession, location) satisfy the ticket price
policies to buy discounted tickets. More generally, our scheme can be used in
any system where access to services is only dependent on a user's attributes
(or entitlements) but not their identities.Comment: 18pages, 6 figures, 2 table
Anonymous Single-Sign-On for n designated services with traceability
Anonymous Single-Sign-On authentication schemes have been proposed to allow
users to access a service protected by a verifier without revealing their
identity which has become more important due to the introduction of strong
privacy regulations. In this paper we describe a new approach whereby anonymous
authentication to different verifiers is achieved via authorisation tags and
pseudonyms. The particular innovation of our scheme is authentication can only
occur between a user and its designated verifier for a service, and the
verification cannot be performed by any other verifier. The benefit of this
authentication approach is that it prevents information leakage of a user's
service access information, even if the verifiers for these services collude
which each other. Our scheme also supports a trusted third party who is
authorised to de-anonymise the user and reveal her whole services access
information if required. Furthermore, our scheme is lightweight because it does
not rely on attribute or policy-based signature schemes to enable access to
multiple services. The scheme's security model is given together with a
security proof, an implementation and a performance evaluation.Comment: 3
- âŠ