
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Faculty Research & Creative
Works Computer Science

01 Jan 2003

Two Distributed Algorithms for E-ticket Validation Protocols for Two Distributed Algorithms for E-ticket Validation Protocols for

Mobile Clients Mobile Clients

H. Mohanty

Sanjay Kumar Madria
Missouri University of Science and Technology, madrias@mst.edu

T. Suman Kumar Reddy

R. K. Ghosh

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_facwork

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
H. Mohanty et al., "Two Distributed Algorithms for E-ticket Validation Protocols for Mobile Clients,"
Proceedings of the IEEE International Conference on E-Commerce, 2003, Institute of Electrical and
Electronics Engineers (IEEE), Jan 2003.
The definitive version is available at https://doi.org/10.1109/COEC.2003.1210253

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been
accepted for inclusion in Computer Science Faculty Research & Creative Works by an authorized administrator of
Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for
redistribution requires the permission of the copyright holder. For more information, please contact
scholarsmine@mst.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229136312?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_facwork?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F215&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F215&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/COEC.2003.1210253
mailto:scholarsmine@mst.edu

Two Distributed Algorithms for E-ticket Validation protocols for Mobile Clients

T. Suman Kumar Reddy
�

sumanreddy t@yahoo.com

Hrushikesha Mohanty
�

hmcs@uohyd.ernet.in

R.K. Ghosh
�

r.ghosh@ieee.org

Sanjay Madria
�

madrias@umr.edu

Abstract

E-Ticket validation problem has relevance in mobile
computing environment because of the multiple submission
of a ticket that is possible due to intermittent disconnec-
tions and mobility of hosts. Here, we propose protocols
that are not only sensitive to disconnection but also to
location. One of the proposed protocol is variant of the
distributed protocol proposed in [7] for internet users.
This shows a distributed protocol for static network can be
restructured for distributed computation in mobile comput-
ing environment. We have also proposed another protocol
that uses hierarchical location database of mobile hosts [9].

Keywords: Mobile Computing Environment, Distributed
Computing Environment, E-Ticket, Validation

1 Introduction

In the age of internet, the traditional ticket based business
can be conducted in cyberspace by using E-Tickets. How-
ever, while using E-Tickets, typical problems like atomicity,
duplication and forgery of E-Tickets are to be considered
seriously. Researchers have proposed system architectures
for internet-based and smart card technology based [10] E-
Ticket management systems. Such a system deals with is-
suance, validation, transfer as well as consumption of E-
Tickets. E-Ticket validation includes issues like duplication
and authenticity of E-Tickets. In cyber environment, un-
trusted users may resort to duplicate tickets and use those at
different service providers. While a system assures services
to genuine E-Ticket holders, it must guard against multiple
uses of E-Tickets.

We are interested in problem due to multiple uses of E-
Tickets which may happen either by untrusted users or due

�
* Department of Computer & Information Sciences, Univer-

sity of Hyderabad.�
Department of Computer Science & Engineering, Indian Insti-

tute of Technology, Kanpur.�
Department of Computer Science, University of Missouri-

Rolla.

to malfunctioning of service providing systems. In later
case, user being unaware of status of its E-Ticket may sub-
mit it again for services. In either case, service providers
are required to accept a ticket at least and at the most for
once. In [7], a two-phase protocol for on-line validation of
E-tickets is proposed. The proposed distributed protocol in
phase-I, validates an E- Ticket if, currently, it is not being
used by any. The conflict occurs when more than one ser-
vice providers simultaneously hold the copies of the same
ticket. In phase-II of the protocol, the conflict is resolved
and one of the service provider accepts the ticket while oth-
ers reject. For example, a user while on move may like
to avail digital services like music or games by submitting
E-Tickets. In this case we also need to have an E-Ticket
validation protocol for mobile users. Mobile computing en-
vironment is a kind of distributed computing environment
with typical problems due to disconnections and lack of
enough computing power. Particularly, communication us-
ing wireless channel is not error free as it is so in fixed net-
work. In a distributed computing environment such a dis-
connection is treated as non-availability of a system. So, a
distributed computation in mobile computing environment
should be structured properly to handle the eventuality due
to disconnections. In a similar attempt, we have restruc-
tured a reported validation protocol [7] making it suitable
for execution in mobile computing environment. The pro-
posed protocol other than ensuring at least, at most proper-
ties also deals with eventual property.The protocol ensures
that inspite of disconnections a mobile user can eventually
make use of its E-Ticket for at least and at most once.

2 System Model

In mobile computing environment [2], mobility of sys-
tems is possible while retaining network connections intact.
A host that can move while retaining its network connec-
tions is called a Mobile Host (MH). A static/fixed host that
co-ordinates activities of MHs is called Mobile Support Sta-
tion (MSS). A cell is a logical or geographical coverage area
under an MSS inhibited by several mobile hosts. All MHs
that have identified themselves with a particular MSS are
considered to be local to that MSS. A MH can directly com-

1

Proceedings of the IEEE International Conference on E-Commerce (CEC’03)
0-7695-1969-5/03 $17.00 © 2003 IEEE

municate with a MSS and vice versa only if the MH is phys-
ically located within the cell serviced by that MSS. At any
given instant of time, a MH may (logically) belong to only
one cell i.e. the cell where the MH is currently located.

Host mobility manifests itself as a migration of a MH
from one cell to another. The mobile host mobility is asyn-
chronous i.e. there is no bound on the time interval between
a MH leaving its current cell and entering a new one. How-
ever a MH that leaves its current cell will eventually enter
some cell in the system. To locate a mobile host in the sys-
tem, we use a hierarchical location database scheme [8][9].

MHs are often disconnected from the rest of the network
[1]. A disconnected MH can neither send nor receive mes-
sages. Disconnection in a mobile computing environment
is distinct from failure: disconnections are elective by na-
ture and so, a mobile host can inform the system of an im-
pending disconnection prior to its occurrence and execute a
disconnection protocol [2].

Our system model thus consists of two distinct sets of en-
tities: a large number of mobile hosts � � = � H � � � 	 �

 � and a
relatively fewer, but more powerful, MSSs � � = � S � � � 	 �

 � .
The model thus consists of a static/fixed network compris-
ing of the MSSs and the communication paths between
them, and a wireless network associated with each MSS for
communicating with the mobile hosts located within its cell.

MSSs trust MHs and would like to validate a service re-
quest issued by a host. In the following sections, we de-
scribe a validation problem for E-Tickets.

3 E-Ticket Problem

E-Ticket – a digital version of a real world ticket is be-
ing used in internet to avail E-Services [5][6]. The use of
E-Tickets can be extended to mobile hosts to enable them
to avail services at their visiting places in exchange of such
tickets. The users can acquire E-Tickets by purchasing them
from any MSS or from another user who previously ac-
quired them. Let I be the ticket issuer, O be the ticket owner,
S be the service promised and V be the validation status.
Then, an E-Ticket is defined as signed � (I,S,O,V), where the
phrase ”signed � ” means the ticket is signed by the issuer’s
digital signature. To use an E-Ticket, it should be send for
validation. E-Ticket validation is intended to prevent dupli-
cation and to ensure authenticity and integrity. Preventing
duplication avoids multiple use of an E-Ticket by the same
or different users. Ensuring authenticity and integrity guar-
antees that E-Tickets are only accepted if they have been
issued by an authorized source, and have not been tampered
with. In this paper, we are interested in the validation of
E-Tickets. In mobile computing environment, MSS vali-
dates the E-Tickets. The validation process, called E-Ticket
validation problem, results in acceptance or rejection of the
E-Tickets. Generally speaking, validation of E-Tickets ad-

dresses two concerns: first, the same E-Ticket should not
be accepted more than once, which can happen for exam-
ple, when users distribute copies of their E-Tickets to other
users. Second, there must be situations where E-Tickets are
accepted at least by one MSS i.e. not all the MSSs reject
the E-Ticket. The E-Ticket problem can be defined in short
by the following two properties:

(P.1) If an MSS accepts an E-Ticket T and does not crash,
then no other MSS accepts T and an MSS does not
accept the same E-Ticket more than once.

(P.2) Let � (T) be the set of MSS that validate the same E-
Ticket T. If not all the MSS in � (T) crash, then there is
at least one MSS in � (T) that accepts T.

4 E-Ticket Validation Protocols

4.1 A Two-phase E-Ticket Protocol for Internet
Users

A two-phase E-Ticket protocol for distributed computing
environment has appeared in [1]. The protocol is designed
to validate E-Tickets in two phases. The protocol works
efficiently only when E-Tickets are used only once. If the
E-Tickets are used more than once, the validation process
becomes complex and inefficient. The protocol is executed
as follows:

Phase I: Once a server S � receives an E-Ticket T from
an user, it sends T to all the servers in the system to find
out whether T has been already validated by one of them.
When a server S � receives T from S � , if T has been already
received, S � sends a negative acknowledgment to S � ; else
S� sends a positive acknowledgment to S � . After receiving
the replies from more than half of the servers in the sys-
tem, and of the received messages if there are no negative
acknowledgments from any server, S � accepts T in Phase 1;
otherwise, S � enters Phase II.

Phase II: Each server S � that is executing Phase II han-
dles two cases: (1) if all the servers that are engaged in vali-
dating T enters Phase II, then one of them accepts T and (2)
if a server that is engaged in validating T is not in Phase II
(which means it accepted T in Phase I), then all the servers
running Phase II rejects T.

The main drawbacks of this protocol are:

� The protocol does not explain which server will accept
T, if T has been issued to more than one server at the
same time.

� A server S � has to wait until it receives a majority of the
replies and enter Phase II to reject that E-Ticket, even if
some other server S � accepted the ticket T much before
S � starts validating T.

Proceedings of the IEEE International Conference on E-Commerce (CEC’03)
0-7695-1969-5/03 $17.00 © 2003 IEEE

There has been studies to adaptability of existing dis-
tributed algorithms to this new environment [3][4]. In this
spirit we propose to study the suitability of the above dis-
cussed two-phase E-Ticket protocol for mobile computing
environment. We also try to improve upon the previously
proposed algorithm by suggesting remedies to the above
said drawbacks.

4.2 A Two Phase Protocol for Mobile Users

4.2.1 overview of the protocol

Let � � be the set of MSS and � � be the set of mobile hosts
in the environment. A host submits its E-Ticket to its MSS
and on receipt of this message the validation protocol is ini-
tiated at the MSS. Unlike in the previous algorithm [7], in
the proposed algorithm a MSS does not send validation re-
quest to all the other MSSs in the network. Instead, the MSS
sends the requests to the MSSs located at the cells that were
previously visited by the MH. Considering the uses of the
hierarchy scheme [8][9] to maintain location databases of
the mobile hosts, we restrict our MSSs of interest to those
who are located in the subtree rooted at the least common
ancestor of all the places visited by the host. This criteria is
quite rational in case of mobile computing environment as
the host can only use the E-Ticket at any of the MSS it has
visited earlier. The concept of finding the MSS that an MH
visited is implemented in the algorithm by using a function
visited list(mobile host). The method search(H �) is used to
get the MSS, which is currently serving H � and the method
nearest(CurrentMSS, List) returns the MSS in the given list
containing MSSs that is nearest to CurrentMSS.

The Phase I (lines 6-89) of the E-Ticket Validation Pro-
tocol at MSS S � (refer appendix) is initiated by the user
H � by sending a message NEWTKT with E-Ticket T to the
MSS S � .

� To validate a ticket T sent by a mobile user H � , MSS
S � sends a message (REQUEST ACK, T, S � , S �) to all
the MSSs visited by H � i.e. � � � .

� When a MSS S � receives a message (REQUEST ACK,
T, S � , S �), if T is already present in its validated ticket
set then S � sends a reject acknowledgement to S � ;
If S � has already received a message of type (RE-
QUEST ACK, T, S � , S�), S� sends a negative ac-
knowledgement along with S � ’s id to S � , otherwise S �
sends a positive acknowledgement to S � .

� Upon receiving a reply message (ACK, T, S � , S � � , if
the message is a reject acknowledgement, S � rejects
T; otherwise count the replies and waits. Once S � re-
ceives the majority of the replies, and all the messages
received by S � are positively acknowledged, S � accepts

T. If there are negative acknowledgements, S � starts
Phase II of the protocol.

The Phase II (lines 90-113) of the protocol is executed
when more than one MSS tries to validate the same E-Ticket
T i.e. the same ticket is issued by H � from several places. In
this case, the MSS that is nearer to the MSS that is currently
serving H � accepts the ticket T and the others reject it.

At the end of the protocol the MSS S � informs the deci-
sion on the validation of the E-Ticket, T, to the mobile host,
H � , holding T. To send the decision to the mobile host (lines
114-130), S � searches for H � , to find out if it switched the
cell in the mean while, and delivers the message to the MSS
that is currently serving H � . If H � is in disconnected mode,
S � waits for the reconnection of H � and delivers the mes-
sage. Subsequently, we present the algorithm in detail for
reference in the appendix. The Messages transacted in the
algorithm follow the format (Message Type, ticket, sender,
receiver).

Figure 1. E-Ticket accepted in Phase I

Figures 1 and 2 depict the executions of the protocol.
In figure 1, the mobile host H � submits a ticket T to the
MSS S � . H � visited S � and S � after acquiring the ticket
T and before submitting the ticket T to S � . So, S � sends
a REQUESTACK message to S � and S � . S � receives an
ACK message with positive acknowledgement from S � and
S � . Therefore, S � accepts T. Before receiving an acceptance
message from S � , H � moves from its current cell to the cell
served by S � and submits the same ticket T again. S � now
sends the REQUESTACK to S � , S � and S � . S � receives a
REJECT acknowledge from S � , thus S � rejects T.

In figure 2, H � submits the ticket to S � , switches the cell
immediately and submits the same ticket to S � . In this case
a shown in the figure neither of the servers get the majority.
so, both of them enter the phase II. Since, H � is currently
closer to S � , S � accepts the ticket and S � rejects the same.

4.2.2 Analysis of the Protocol

In this section, we present intuition behind the correctness
of the protocol and the improved performance. E-Tickets
can be accepted in Phase I or Phase II of the protocol. The

Proceedings of the IEEE International Conference on E-Commerce (CEC’03)
0-7695-1969-5/03 $17.00 © 2003 IEEE

Figure 2. E-Ticket accepted in Phase II

algorithm guarantees that no two MSS will accept the same
E-Ticket and an MSS does not accept the same E-Ticket
more than once.

� Say a set of MSSs have been presented with ticket T by
the MH H � . S � can accept the ticket only if it was not
accepted before and S � got the majority of the ACK
messages with a positive ackstatus (lines 60-74), and
so, S � cannot get the majority of positive acknowledg-
ments (lines 34-39) or it may even get a ACK message
with a reject ackstatus(lines 27-31). So, S � cannot ac-
cept T. So, the protocol guarantees that the E-Ticket
validation and the validator is unique.

� Suppose MSSs S � , S� have not accepted T before and
because of asynchrony in message passing and major-
ity protocol in (line 66) both may intend to accept T.
This contention is resolved at (lines 92-108) by select-
ing the MSS located nearer to H � .

Furthermore, when a server S � validates an E-Ticket T, it
includes T in its vTkts, so that this T is not accepted again.

This protocol minimizes communication complexity us-
ing the mobile hosts’ travel account. In Two-Phase E-Ticket
validation protocol for distributed computing environment
[7], the messages are sent to all the servers in the environ-
ment for acknowledgment of the ticket. In this protocol, the
requests are sent only to the MSS that the MH previously
visited after getting the E-Ticket T. There are three types of
messages exchanged in the Phase I of the protocol.
REQUEST ACK: Sent by the validating MSS to all the
MSSs visited by the MH after acquiring the E-Ticket.
ACK: Replies sent by the MSSs to the MSS that sent the
REQUEST ACK.
ACCEPT: Intimation sent by the validating MSS to all the
MSS about its acceptance of the Ticket.

During the Phase-I of the protocol if the ticket T is ac-
cepted then the following cases may arise. The message
complexity entirely depends on these cases.

case 1 Mobile Host is residing in only one cell. In this case
the number of messages exchanged will be zero.

case 2 Mobile Host is highly mobile and covered the en-
tire network. In this case the number of messages ex-
changed will be � � � � �
 where � is the number of
MSS in the environment.

case 3 This is an average case where the mobile host is lim-
ited to a few cells. The number of messages exchanged
will be � � � � � � �
 where � � � � � is the number of
cells that MH visited.

If the ticket is accepted in the Phase II of the 2PE protocol
for distributed computed environment [7] , which suggests
that more than one server is associated in validating ticket
T. Let � � be the number servers that are engaged. Now,
in addition to the messages that are exchanged in Phase I,
some messages will be exchanged among those � � MSSs.
The number of these messages will be � � � � �

� . But in
our protocol, no such messages are involved in Phase II.
This reduces the number of messages exchanged by a large
number.

If the ticket is rejected at any part of our algorithm, the
number of messages exchanged will be reduced. The rejec-
tion of tickets take place at lines 11, 55, 105 and 110. If re-
jection takes place at line 11, then the messages exchanged
will be zero. In the other cases the ACCEPT message will
be ignored.

Protocol ensures services for an E-Ticket holder from the
nearest locality i.e. even if a MH issues an E-Ticket and
switches cell, the service is provided to the MH at a place
where it is currently located. The protocol also handles the
prolonged disconnections by sending the validation to the
MH at the place of reconnection.

If an MH issues an duplicate of an E-Ticket that has been
validated previously, the protocol ensures that the algorithm
is not executed completely but the ticket is rejected at the
beginning of the phase I. This is achieved by storing the
E-Tickets in the vTkts at each server. To optimize the size
of the vTkts each E-Ticket may be given a timestamp after
which the ticket automatically gets invalidated and its entry
can be removed from vTkts.

4.3 Tree Based Protocol

Essentially, a validation protocol explores the possibil-
ity of multiple uses of a E-ticket by enquiring the service
providers (MSSs) in the network. In the previous algorithm
a network wide search has been reduced by restricting to
servers at locations earlier visited by a mobile user. How-
ever, the difficulty in this strategy is due to the increasing
length of the message carrying list of the locations visited
by a mobile user. In order to overcome this problem we pro-
pose a scheme that uses a hierarchical distributed databases
containing status of E-tickets. In order to validate a E-ticket
queries are to be put to tree nodes only. It is not required

Proceedings of the IEEE International Conference on E-Commerce (CEC’03)
0-7695-1969-5/03 $17.00 © 2003 IEEE

to a communicate length messages with the list of locations
visited by a mobile use.

4.3.1 Overview of the Protocol

In cellular environment maintenance of locations of mobile
users is an important issue as it has practical significance
to locate and to forward messages to mobile users. Among
the reported strategies [9] hierarchical region maintaining
algorithm is of our interest. In this scheme, a geographical
region is grouped into several sub-regions of different sizes
and arranged in hierarchical fashion by designating a region
of a given size to a particular level of a regional hierarchy.

A concept of hierarchy on a geographical region is de-
fined in the following way. A mobile computing is a collec-
tion of cells and each such cell represents a leaf node (level
0) of a tree. In the next level (level 1) of hierarchy some re-
gions are conceptualized where each region is a collection
of some cells and is represented by a tree node of level 1.
So, at i �

�
level a region is a collection of some trees of level

(i-1). So, the root node represents the total area spanning
over the environment. From this abstraction, we understand
that a node in a tree represents certain area of the environ-
ment. At each node there is a server containing the identities
of mobile users and E-tickets submitted by these users.

A mobile user residing in a cell S � (in fig. 3) when uses
its E-ticket the server at the cell stores the information and
the same is transmitted upward to ancestors upto root node.
If the same user on changing its cell to S � produces the same
E-ticket to the server at S � then the server can enquire status
of this ticket to least common ancestor (LCA) of S � and S � .
In the worst case (e.g. when the mobile user switches from
S � to S �) status of a e-ticket will be certainly available at the
root vertex. A formal presentation of the algorithm is given
in Appendix B. An informal discussion of the proposed E-
ticket protocol using hierarchical database is as follows.

� The algorithm is initiated with a NEWTKT message
from the client to a server S � (line 5). If S � received
the ticket before or has been validated before, S � re-
jects the ticket (lines 8-12). Otherwise, it sends a RE-
QUEST ACK message to its immediate ancestor. And
initializes a stack for storing the server addresses to
trace the route of the ticket (lines 13-20).

� Once a server S � receives a REQUEST ACK message
from S � , S � checks for the ticket in its vTkts. If T is in
vTkts of S � , it sends a negative acknowledgment with
a ACK message along the route (lines 24-29). Other-
wise, the request is passed on to its parent (lines 37-
41). In the mean while, if the request reaches the root
and root does not have T in its vTkts, then a positive
acknowledgment is send through a ACK message. The
vTkts of the root is updated with T (lines 30-36).

� If a node S � receives a ACK message and if it is not
the requestor, it updates its vTkts with T and passes
on the message to its child that is in the route to the
actual requestor (lines 60-64). If S � is the actual re-
quest holder, based on the ACK message’s ackStatus it
accepts or rejects the tickets (lines 47-58).

� At the end of the protocol S � , that accepted or rejected
the ticket, informs the decision on the validation of the
E-ticket, T, to the host, H � , holding T. To send the de-
cision to the host (lines 65-81), S � searches for H � , to
find out if it switched the cell in the mean while, and
delivers the message to the MSS that is currently serv-
ing H � . If H � is in disconnected mode, S � waits for the
reconnection of H � and delivers the message.

4.3.2 Analysis of the protocol

In this section, we present intuition behind the correctness
of the protocol. This protocol guarantees that the E-ticket is
accepted exactly once.

Suppose, a client H � submits the same ticket T, to a set
of servers. If S � accepts that ticket, an entry for that ticket
is made at the root. Any other server S � , which contacts the
root will get a negative acknowledgement and has to reject
the ticket. As mentioned in the previous section, if both
the servers request the server at root at the same time, the
request with the greater time stamp will be accepted and the
other is rejected.

For example, consider a tree as shown in figure 3. The
tree is constructed of eight servers based on their respective
work loads. Say, the server S � may be having less number
of clients than the servers S � and S � .

Figure 3. A tree constructed using eight
server

Suppose, a client submits a ticket T, at S � and S � . Due
to message delay and other factors, say S � , the root, is con-
tacted first by S � . So, S � gives an positive acknowledge-
ment to S � and negative acknowledgement to S � . If both
the requests reach S � at the same time, since the client sub-
mitted the ticket to S � before S � and so the time stamp on
the request of S � will be larger than S � , S � gives a positive
acknowledgement to S � and negative acknowledgement to
S � . Whom ever may accept the ticket, it is their duty to

Proceedings of the IEEE International Conference on E-Commerce (CEC’03)
0-7695-1969-5/03 $17.00 © 2003 IEEE

search for the client who produced the ticket and provide
the service to the client.

In this protocol, there are two types of messages that
are transacted in the system. They are acknowledgement
request messages from client that will be moving up the
tree and the acknowledgement message that comes down
the tree. At the worst case, where the Server that gets the
ticket is at the highest level, the number of messages will
be

�
� � � � � , where h is the height of the tree. In the best

case, where the server that gets the ticket and the root being
the same, the number of messages is 0. In an average case,
where the server that gets the ticket is at a level l, the num-
ber of messages will be

�
� � � � � � � , where h is the height

of the tree.

5 Comparison of the protocols

Our comparison assumes executions without failures,
and the most common case where the same E-ticket is used
once by the users. We compare the protocols based on (a)
their resilience, and (b) the latency and (c) the number of
messages exchanged to validate an E-ticket.

In the two-phase E-ticket protocol for the internet users,
E-tickets are accepted in phase 1 after two communications
steps: the initial acknowledgement request sent to all the
servers by the server that receives the E-ticket, and the re-
ply message sent by each server. This amounts to a latency
of � � � 	

, where
	

is the maximum message delay, and�
� � � � � messages. To accept or reject an E-ticket, the pro-

tocol requires that a majority of the servers to reply. So, the
resilience becomes � � � � �

.
In the two-phase E-ticket protocol for the mobile users,

E-tickets are also accepted in phase 1 after two communica-
tions steps: the initial acknowledgement request sent to all
the servers, that the client visited previously, by the server
that receives the E-ticket, and the reply message sent by
each server. This amounts to a latency of � �

� 	
, since

maximum message delay will be less than
	

due to less
number of servers visited. The total messages transacted
will be

�
� � � � � � � � � � � � messages where � � is the num-

ber of servers visited by the client. To accept or reject an
E-ticket, the protocol requires that a majority of the servers
to reply. So, the resilience here also is � � � � �

.
In the tree based protocol, the latency amounts to � � �� 	
, since the maximum message delay will be the time taken

to pass the request from a leaf node to the root and the time
taken to pass the acknowledgement from root to a leaf node.
So, the maximum number of messages are 2(h-1) where h
is the height of the tree. Similarly, to accept or reject an
E-ticket, the protocol requires that at least the servers upto
the root should give response. So, the resilience in this case
becomes � � � . Table 1 compares the cost of the three
protocols.

E-ticket Pro-
tocols

2PE Inter-
net Users

2PE Mobile
Users

Tree
Proto-
col

Distributed
Environment

yes no yes

Mobile Envi-
ronment

no yes yes

Resilience � � � � � � � � � � � � �
Latency

� 	
�

� 	
� �

� 	

Messages
�

� � � � �
�

� � � � � � �
� � � � �

�
� � � � �

Table 1. Comparison of the protocols

6 Conclusions

In this paper we study E-Ticket validation problem and
propose a validation algorithm that is suitable to run in mo-
bile computing environment. The algorithm transacts less
messages than the similar algorithm [7] proposed for the
internet environment. The algorithm is sensitive to discon-
nection as well as location. In case of host disconnection,
the algorithm waits to communicate validation result on re-
connection of the host while major computational steps of
the algorithm is performed on static network. On valida-
tion of a ticket, the algorithm cares to provide service at the
cell nearest to the current location of the host. Here, in ad-
dition to proposing an algorithm for E-ticket validation for
mobile computing environment, we show the possibility of
restructuring of a distributed algorithm for this new com-
puting paradigm.

References

[1] James J. Kistler and M. Satyanarayanan. ”Discon-
nected Operation In The Coda File System,” ACM
Transactions on Computer Systems, Vol. 10, No. 1,
February 1992.

[2] Tomasz Imielinski and B. R. Badrinath. ”Data Man-
agement for Mobile Computing,” Sigmod Record,
Vol. 22, No. 1, March 1993.

[3] B. R. Badrinath, Arup Acharya and Tomasz Imielin-
ski. ”Impact of Mobility on Distributed Computa-
tions,” ACM Operating Systems Review, Vol. 27, No.
2, April 1993.

[4] B. R. Badrinath, Arup Acharya and Tomasz Imielin-
ski. ”Structuring Distributed Algorithms for Mobile
Hosts,” 14 �

�
International Conference on Distributed

Computing Systems, June 1994.

Proceedings of the IEEE International Conference on E-Commerce (CEC’03)
0-7695-1969-5/03 $17.00 © 2003 IEEE

[5] N. Asokan, P. A. Janson, M. Steiner and M. Waidner.
”The State of art in the electronic payment systems,”
Computer, Vol. 30, No. 9, pg. 28-35, September 1997.

[6] B. Patel and J. Crowcroft. ”Ticket Based Service Ac-
cess for the Mobile User,” The proceedings of the third
annual ACM/IEEE international conference on Mo-
bile Computing and Networking, Budapest, Hungary,
September 26-30, 1997.

[7] Fernando Pedone. ”A Two-Phase Highly-Available
Protocol for Online Validation of E-Tickets,” HP Lab-
oratory Report, September 2000.

[8] Evaggelia Pitoura and Ioannis Fudos. ”Distributed Lo-
cation Databases for Tracking Highly Mobile Ob-
jects,” The Computer Journal, Vol. 44, No. 2,2001.

[9] Evaggelia Pitoura and George Samaras. ”Locating
Objects in Mobile Computing,” IEEE Transactions on
Knowledge and Data Engineering, Vol. 13, No. 4,
July/August 2001.

[10] W.I. Siu and Z.S. Guo. ”Smart card based Elec-
tronic Ticket Management System (ETMS),”
http://www.sftw.umac.mo/ � utako/research

APPENDIX

A Algorithm for the Structured Two Phase
Protocol

Algorithm to be executed at each MSS S �

1. begin
2. rTkts � �
3. vTkts � �
4. aTkts � �
5. end

6. Event: on Receive (NEWTKT, T, H � , S �)
7. Action:
8. begin
9. if ((T � rTkts) � (T � vTkts)) then
10. begin
11. T.status � REJECT
12. send to MH (T, S � , H �)
13. end
14. else
15. begin
16. rTkts � rTkts � � T 	
17.
 � � � Visited List(H �)
18.
 S � �
 � � , send (REQUEST ACK, T, S � , S �)
19. rep count � � 0
20. pack count � � 0
21. validators � � �
22. end
23. end

24. Event: on Receive (REQUEST ACK, T, S� , S �)
25. Action:
26. begin
27. if (T � vTkts) then
28. begin
29. T.ackStatus � REJECT
30. send (ACK, T, S � , S�)
31. end
32. else
33. begin
34. if(� S � ,(S � , T) � aTkts) then
35. begin
36. T.ackStatus � NACK
37. T.currentValidator � S �
38. send (ACK, T, S � , S�)
39. end
40. else
41. begin
42. aTkts � aTkts � � (S� , T) 	
43. T.ackStatus � PACK
44. send (ACK, T, S � , S�)
45. end
46. end
47. end

48. Event: on Receive (ACK, T, S� , S �)
49. Action:
50. begin
51. if(T �� vTkts) then
52. begin
53. if(T.ackStatus = REJECT) then
54. begin
55. T.status � REJECT
56. vTkts � vTkts � � T 	
57. send to MH (T, S � , H �)
58. end
59. else
60. begin
61. rep count � � rep count � + 1
62. if(T.ackStatus = PACK) then
63. pack count � � pack count � + 1
64. else
65. validators � � validators � � � T.currentValidator 	
66. if(rep count � � � cardinality �
 � � � " $) then
67. begin
68. if(rep count � = pack count �) then
69. begin
70. T.status � ACCEPT
71. vTkts � vTkts � � T 	
72. send to MH (T, S � , H �)
73.
 S � � & (, send (ACCEPT, T, S � , S �)
74. end
75. else
76. begin
77. start PhaseII
78. end
79. end
80. end
81. end
82. end

83. Event: on Receive (ACCEPT, T, S� , S �)
84. Action:
85. begin
86. vTkts � vTkts � � T 	
87. if (� S � , (S � , T) � aTkts) then
88. aTkts � aTkts – � (S � , T) 	
89. end

Proceedings of the IEEE International Conference on E-Commerce (CEC’03)
0-7695-1969-5/03 $17.00 © 2003 IEEE

Phase II
90. begin
91. if(T �� vTkts) then
92. begin
93. currentMSS � search(H �)
94. if(Nearest(validators � � � S � � , currentMSS) = S �) then
95. begin
96. T.status � ACCEPT
97. send to MH(T, S � , H �)
98. vTkts � vTkts � � T �
99. 	 S
 � � � , send (ACCEPT, T, S � , S
)
100. end
101. else
102. begin
103. T.status � REJECT
104. vTkts � vTkts � � T �
105. send to MH(T, S � , H �)
106. end
107. end
108. else
109. begin
110. T.status � REJECT
111. send to MH(T, S � , H �)
112. end
113. end

114. send to MH (T, S � , H �)
115. begin
116. if ((isUnder(H � , S �) = true)

�
(isAlive (H �) = true)) then

117. begin
118. deliver(T, S � , H �)
119. end
120. else if ((isUnder(H � ,S �) = true)

�
(isAlive (H �) = false)) then

121. begin
122. wait(� t)
123. send to MH (T, S � , H �)
124. end
125. else if (isUnder(H � , S �) = false) then
126. begin
127. currentMSS � search(H �)
128. deliver to MSS(T, H � , S � , currentMSS)
129. end
130. end

B Algorithm for the Tree based Protocol

Algorithm to be executed at each MSS S �

1. begin
2. rTkts

� � �
3. vTkts

� � �
4. end

5. Event: on Receive (NEWTKT, T, H � , S �)
6. Action:
7. begin
8. if ((T � rTkts

�
) � (T � vTkts

�
))

9. begin
10. T.status � REJECT
11. send to MH(T, S � , T.owner)
12. end
13. else
14. begin
15. rTkts

� � rTkts
� � � T �

16. route �� � �
17. route �� .push(S �)

18. send (REQUEST ACK, T, route �� , S � , S � .parent)
19. end
20. end

21. Event: on Receive (REQUEST ACK, T, route �� , S
 , S �)
22. Action:
23. begin
24. if (T � vTkts

�
)

25. begin
26. T.ackStatus � NACK
27. Child � route �� .pop()

28. send (ACK,T,route �� , S � , Child)
29. end
30. else if (S � .parent =

�
)

31. begin
32. T.ackStatus � PACK
33. vTkts

� � vTkts
� � � T �

34. Child � route �� .pop()

35. send (ACK,T,route �� , S � , Child)
36. end
37. else
38. begin
39. route �� .push(S �)

40. send (REQUEST ACK, T, route �� , S � , S � .parent)
41. end
42. end

43. Event: on Receive (ACK, T, route �� , S
 , S �)
44. Action:
45. begin
46. vTkts

� � vTkts
� � � T �

47. if (route �� .isEmpty() = TRUE)
48. begin
49. if (T.ackStatus = NACK)
50. begin
51. T.status � REJECT
52. end
53. else
54. begin
55. T.status � ACCEPT
56. end
57. send to MH(T, S � , T.owner)
58. end
59. else
60. begin
61. Child � route �� .pop()

62. send (ACK,T,route �� , S � , Child)
63. end
64. end

65. send to MH (T, S � , H �)
66. begin
67. if ((isUnder(H � , S �) = true)

�
(isAlive (H �) = true)) then

68. begin
69. deliver(T, S � , H �)
70. end
71. else if ((isUnder(H � ,S �) = true)

�
(isAlive (H �) = false)) then

72. begin
73. wait(� t)
74. send to MH (T, S � , H �)
75. end
76. else if (isUnder(H � , S �) = false) then
77. begin
78. currentMSS � search(H �)
79. deliver to MSS(T, H � , S � , currentMSS)
80. end
81. end

Proceedings of the IEEE International Conference on E-Commerce (CEC’03)
0-7695-1969-5/03 $17.00 © 2003 IEEE

	Two Distributed Algorithms for E-ticket Validation Protocols for Mobile Clients
	Recommended Citation

	Two distributed algorithms for e-ticket validation protocols for mobile clients

