6,197 research outputs found

    Synchronicity From Synchronized Chaos

    Get PDF
    The synchronization of loosely coupled chaotic oscillators, a phenomenon investigated intensively for the last two decades, may realize the philosophical notion of synchronicity. Effectively unpredictable chaotic systems, coupled through only a few variables, commonly exhibit a predictable relationship that can be highly intermittent. We argue that the phenomenon closely resembles the notion of meaningful synchronicity put forward by Jung and Pauli if one identifies "meaningfulness" with internal synchronization, since the latter seems necessary for synchronizability with an external system. Jungian synchronization of mind and matter is realized if mind is analogized to a computer model, synchronizing with a sporadically observed system as in meteorological data assimilation. Internal synchronization provides a recipe for combining different models of the same objective process, a configuration that may also describe the functioning of conscious brains. In contrast to Pauli's view, recent developments suggest a materialist picture of semi-autonomous mind, existing alongside the observed world, with both exhibiting a synchronistic order. Basic physical synchronicity is manifest in the non-local quantum connections implied by Bell's theorem. The quantum world resides on a generalized synchronization "manifold", a view that provides a bridge between nonlocal realist interpretations and local realist interpretations that constrain observer choice .Comment: 1) clarification regarding the connection with philosophical synchronicity in Section 2 and in the concluding section 2) reference to Maldacena-Susskind "ER=EPR" relation in discussion of role of wormholes in entanglement and nonlocality 3) length reduction and stylistic changes throughou

    Extension of Lorenz Unpredictability

    Get PDF
    It is found that Lorenz systems can be unidirectionally coupled such that the chaos expands from the drive system. This is true if the response system is not chaotic, but admits a global attractor, an equilibrium or a cycle. The extension of sensitivity and period-doubling cascade are theoretically proved, and the appearance of cyclic chaos as well as intermittency in interconnected Lorenz systems are demonstrated. A possible connection of our results with the global weather unpredictability is provided.Comment: 32 pages, 13 figure

    Hidden attractors in fundamental problems and engineering models

    Full text link
    Recently a concept of self-excited and hidden attractors was suggested: an attractor is called a self-excited attractor if its basin of attraction overlaps with neighborhood of an equilibrium, otherwise it is called a hidden attractor. For example, hidden attractors are attractors in systems with no equilibria or with only one stable equilibrium (a special case of multistability and coexistence of attractors). While coexisting self-excited attractors can be found using the standard computational procedure, there is no standard way of predicting the existence or coexistence of hidden attractors in a system. In this plenary survey lecture the concept of self-excited and hidden attractors is discussed, and various corresponding examples of self-excited and hidden attractors are considered

    Fluctuation Analysis of the Atmospheric Energy Cycle

    Full text link
    The atmosphere gains available potential energy by solar radiation and dissipates kinetic energy mainly in the atmospheric boundary layer. We analyze the fluctuations of the global mean energy cycle defined by Lorenz (1955) in a simulation with a simplified hydrostatic model. The energy current densities are well approximated by the generalized Gumbel distribution (Bramwell, Holdsworth and Pinton, 1998) and the Generalized Extreme Value (GEV) distribution. In an attempt to assess the fluctuation relation of Evans, Cohen, and Morriss (1993) we define entropy production by the injected power and use the GEV location parameter as a reference state. The fluctuation ratio reveals a linear behavior in a finite range.Comment: 17 pages, 5 figure

    Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion

    Full text link
    In this tutorial, we discuss self-excited and hidden attractors for systems of differential equations. We considered the example of a Lorenz-like system derived from the well-known Glukhovsky--Dolghansky and Rabinovich systems, to demonstrate the analysis of self-excited and hidden attractors and their characteristics. We applied the fishing principle to demonstrate the existence of a homoclinic orbit, proved the dissipativity and completeness of the system, and found absorbing and positively invariant sets. We have shown that this system has a self-excited attractor and a hidden attractor for certain parameters. The upper estimates of the Lyapunov dimension of self-excited and hidden attractors were obtained analytically.Comment: submitted to EP

    Reduction of dimension for nonlinear dynamical systems

    Get PDF
    We consider reduction of dimension for nonlinear dynamical systems. We demonstrate that in some cases, one can reduce a nonlinear system of equations into a single equation for one of the state variables, and this can be useful for computing the solution when using a variety of analytical approaches. In the case where this reduction is possible, we employ differential elimination to obtain the reduced system. While analytical, the approach is algorithmic, and is implemented in symbolic software such as {\sc MAPLE} or {\sc SageMath}. In other cases, the reduction cannot be performed strictly in terms of differential operators, and one obtains integro-differential operators, which may still be useful. In either case, one can use the reduced equation to both approximate solutions for the state variables and perform chaos diagnostics more efficiently than could be done for the original higher-dimensional system, as well as to construct Lyapunov functions which help in the large-time study of the state variables. A number of chaotic and hyperchaotic dynamical systems are used as examples in order to motivate the approach.Comment: 16 pages, no figure
    • …
    corecore