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Abstract

It is found that Lorenz systems can be unidirectionally coupled such that the chaos expands from

the drive system. This is true if the response system is not chaotic, but admits a global attractor,

an equilibrium or a cycle. The extension of sensitivity and period-doubling cascade are theoretically

proved, and the appearance of cyclic chaos as well as intermittency in interconnected Lorenz systems are

demonstrated. A possible connection of our results with the global weather unpredictability is provided.

Keywords: Lorenz system; Chaos extension; Sensitivity; Period-doubling cascade; Intermittency; Cyclic
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1 Introduction

In his famous study, to investigate the dynamics of the atmosphere, Lorenz [43] built a mathematical

model consisting of a system of three differential equations in the following form,

dx1
dt

= −σx1 + σx2

dx2
dt

= −x1x3 + rx1 − x2

dx3
dt

= x1x2 − bx3,

(1.1)

where σ, r and b are constants.

System (1.1) is a simplification of a model, derived by Saltzman [61], to study finite amplitude

convection. The studies of Saltzman originate from the Rayleigh-Bénard convection, which describes

heat flow through a fluid, like air or water. In this modelling, one considers a fluid between two horizontal

plates where the gravity is assumed to be in the downward direction and the temperature of the lower

plate is maintained at a higher value than the temperature of the upper one. Rayleigh [55] found that if

the temperature difference is kept at a constant value, then the system possesses a steady-state solution

in which there is no motion and convection should take place if this solution becomes unstable. In

other words, depending on the temperature difference between the plates, heat can be transferred by

∗Corresponding Author Tel.: +90 312 210 5355, Fax: +90 312 210 2972, E-mail: marat@metu.edu.tr

1

http://arxiv.org/abs/1509.01054v1


conduction or by convection. Assuming variations in only x1 − x3 plane, Saltzman [61] considered the

equations

∂

∂t
∇2ψ +

∂
(

ψ,∇2ψ
)

∂(x1, x3)
− gε

∂θ

∂x1
− ν∇4ψ = 0

∂θ

∂t
+

∂ (ψ, θ)

∂(x1, x3)
− ∆T0

H

∂ψ

∂x1
− κ∇2θ = 0,

(1.2)

where ψ is a stream function for the two dimensional motion, θ is the departure of temperature from that

occurring in the state of no convection and the constants ∆T0, H, g, ε, ν and κ denote, respectively, the

temperature contrast between the lower and upper boundaries of the fluid, the height of the fluid under

consideration, the acceleration of gravity, the coefficient of thermal expansion, the kinematic viscosity

and the thermal conductivity [43, 61]. In his study, Saltzman [61] achieved an infinite system by means

of applying Fourier series methods to system (1.2), and then used the simplification procedure proposed

by Lorenz [42] to obtain a system with finite number of terms. Lorenz [43] set all but three Fourier

coefficients equal to zero and as a consequence attained system (1.1), which describes an idealized model

of a fluid.

In system (1.1), the variable x1 is proportional to the circulatory fluid flow velocity, while the variable

x2 is proportional to the temperature difference between the ascending and descending currents. Positive

x1 values indicate clockwise rotations of the fluid and negative x1 values mean counterclockwise motions.

The variable x3, on the other hand, is proportional to the distortion of the vertical temperature profile

from linearity, a positive value indicating that the strongest gradients occur near the boundaries. The

parameters σ and r are called the Prandtl and Rayleigh numbers, respectively [11, 43, 65].

The dynamics of the Lorenz system (1.1) is very rich. For instance, with different values of the

parameters σ, r and b, the system can exhibit stable periodic orbits, homoclinic explosions, period-

doubling bifurcations, and chaotic attractors [65].

The appearance of chaos in differential/discrete equations may be either endogenous or exogenous.

As the first type of chaos birth, one can take into account the irregular motions that occur in Lorenz,

Rössler, Chua systems, the logistic map, Duffing and Van der Pol equations [18, 19, 29, 40, 58, 66]. To

indicate the endogenous irregularity, we use: (i) ingredients of Devaney and Li-Yorke chaos, (ii) period-

doubling route to chaos, (iii) intermittency, (iv) positive Lyapunov exponents. Symbolic dynamics and

Smale horseshoes have been widely used for that purpose [19, 21, 36, 37, 40, 54, 64, 69]. While the

endogenous chaos production is widespread and historically unique, the exogenous chaos as generated

by irregular perturbations has not been intensively investigated yet. In our study, we will appeal to

endogenous chaos, but mostly to exogenous chaos.

In this paper, the main attention is given to the extension of chaos among interconnected Lorenz

systems. We make use of unidirectionally coupled Lorenz systems such that the drive system is chaotic
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and the response system possesses a stable equilibrium or a limit cycle. We theoretically prove that the

chaos of the drive system makes the response system behave also chaotically. Extension of sensitivity and

period-doubling cascade are rigorously approved. The appearance of cyclic irregular behavior is discussed,

and it is shown that the phenomenon cannot be explained by means of generalized synchronization.

Intermittency in coupled Lorenz systems is also demonstrated.

The principal novelty of our investigation is that we create exogenous chaotic perturbations by means

of the solutions of a chaotic Lorenz system, plug it into a regular Lorenz system, and find that chaos

is inherited by the solutions of the latter. Such an approach has been widely used for differential

equations before, but for regular disturbance functions. That is, it has been shown that an (almost)

periodic perturbation function implies the existence of an (almost) periodic solution of the system.

While the literature on chaos synchronization [1, 25, 33, 35, 38, 47, 53, 60] has also produced methods

of generating chaos in a system by plugging in terms that are chaotic, it relies on the asymptotic

convergence between the chaotic exogenous terms and the solution of the response system for the proof

of chaos creation. Instead, we provide a direct verification of the ingredients of chaos for the perturbed

system [2]–[10]. Moreover, in Section 6 we represent the appearance of cyclic chaos, which cannot be

reduced to generalized synchronization. Very interesting examples of applications of discrete dynamics to

continuous chaos analysis were provided in the papers [14]–[17]. In these studies, the general technique

of dynamical synthesis [14] was developed, and this technique was used in the paper [4].

There are many published papers which have results about chaos considering first of all its mathe-

matical meaning. This is true either for differential equations [41, 69] or data analysis [22]. Apparently

there are still few articles with meteorological interpretation of chaos ingredients. We suppose that our

rigorously approved idea for the extension of chaotic behavior from one Lorenz system to another will

give a light for the justification of the erratic behavior observed in dynamical systems of meteorology.

The question “Does the flap of a butterfly’s wings in Brazil set off a tornado in Texas?" is very im-

pressive and it has done a lot to popularize chaos for both mathematicians and non-mathematicians [45].

From this question one can immediately decide that the butterfly effect is a global phenomenon, and con-

sequently, the underlying mathematics has to be investigated. Some of the authors say that the question

relates sensitive dependence on initial conditions in dynamical systems considered as unpredictability

for meteorological observations. Lorenz himself, in successive his talks and the book [45], was obsessed

by the question and sincerely believed its possibility. He also supposed that his system can give a key

for the positive answer of the question. Generally, analysis of chaotic dynamics in atmospheric models

is rather numerical [23, 34, 39, 46, 50] or depend on the observation of time-series [26, 27]. In Section

8, we describe how one can use the rigorously approved results of the present paper to investigate the

global behavior of the weather unpredictability. Our suggestions are not about a modelling, but rather

an effort to answer the question why the weather is unpredictable at each point of the Earth, on the
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basis of the Lorenz’s meteorological model and other models. We should recognize that all our discus-

sions can be considered as a “toy object" in the theory, and according to the complexity phenomenon in

meteorological investigations one can say that the investigation of chaos in meteorology still remains as

a “toy object" [28, 43].

2 Coupled Lorenz Systems

We couple Lorenz systems unidirectionally in such a way that the existing chaos propagates from one to

another. We suppose that the coefficients σ, r and b are properly chosen in (1.1) so that the system is

chaotic. In addition to system (1.1), we consider another Lorenz system,

du1
dt

= −σu1 + σu2

du2
dt

= −u1u3 + ru1 − u2

du3
dt

= u1u2 − bu3,

(2.3)

where the parameters σ, r and b are such that the system is non-chaotic. That is, the system does not

possess chaotic motions such that, for example, it admits a global asymptotically stable equilibrium or

a globally attracting limit cycle.

In order to realize the chaos extension, we perturb (2.3) with the solutions of (1.1) to set up the

system

dy1
dt

= −σy1 + σy2 + g1(x(t))

dy2
dt

= −y1y3 + ry1 − y2 + g2(x(t))

dy3
dt

= y1y2 − by3 + g3(x(t)),

(2.4)

where x(t) = (x1(t), x2(t), x3(t)). The conditions on the continuous function g(x) = (g1(x), g2(x), g3(x))

is mentioned in the Appendix.

3 Extension of Sensitivity

In this section, we will demonstrate that the divergence of two initially nearby solutions (sensitivity)

in the driving chaotic Lorenz system (1.1) leads to the presence of the same feature in system (2.4).

Additionally, a third Lorenz system will be considered in order to show the maintainability of the process.

The mathematical description of sensitivity and a theoretical proof for its extension are presented in the

Appendix.
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Let us take into account the system

dy1
dt

= −10y1 + 10y2 + 0.3x1(t)− 0.15 sin (x1(t))

dy2
dt

= −y1y3 + 0.35y1 − y2 + 1.6x2(t)

dy3
dt

= y1y2 − (8/3)y3 + 0.1 tan(x3(t)/65),

(3.5)

which is in the form of (2.4) with σ = 10, r = 0.35, b = 8/3, g1(x(t)) = 0.3x1(t) − 0.15 sin (x1(t)) ,

g2(x(t)) = 1.6x2(t) and g3(x(t)) = 0.1 tan(x3(t)/65). Here, x(t) = (x1(t), x2(t), x3(t)) is a solution of

(1.1) with σ = 10, r = 28 and b = 8/3. The coefficients σ, r and b are chosen such that chaos takes place

in the dynamics of (1.1) [43]. Besides, system (2.3) with the given values of σ, r, and b possesses a stable

equilibrium point [65].

To reveal numerically the extension of sensitivity in system (3.5), we represent in Figure 1 the

projections of two initially nearby trajectories of the unidirectionally coupled system (1.1)+(3.5) on

the y1 − y2 − y3 space for t ∈ [0, 3]. The trajectory with blue color corresponds to the initial data

x1(0) = −8.57, x2(0) = −2.39, x3(0) = 33.08, y1(0) = 3.91, y2(0) = 1.86, y3(0) = 4.39, and the one with

red color corresponds to the initial data x1(0) = −8.53, x2(0) = −2.47, x3(0) = 33.05, y1(0) = 3.91,

y2(0) = 1.87, y3(0) = 4.40. The divergence of the initially nearby trajectories seen in Figure 1 manifests

the sensitivity feature in (3.5).
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Figure 1: Extension of sensitivity in system (3.5). The divergence of the initially nearby solutions of
system (3.5) is observable in the figure.

Now, we consider the system

dz1
dt

= −10z1 + 10z2 + 12y1(t)

dz2
dt

= −z1z3 + 0.1z1 − z2 + 20[y2(t) + 2 arctan(y2(t)/5)]

dz3
dt

= z1z2 − (8/3)z3 − 8y3(t).

(3.6)

System (3.6) is also in the form of (2.4), but this time the perturbations h1(y(t)) = 12y1(t), h2(y(t)) =
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20[y2(t) + 2 arctan(y2(t)/5)] and h3(y(t)) = −8y3(t) are provided by the solutions of (3.5).
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Figure 2: Extension of sensitivity in system (3.6).

Figure 2 shows the projections of two trajectories, which are initially nearby, of the 9−dimensional

system (1.1)+(3.5)+(3.6) on the z1 − z2 − z3 space. The trajectory with blue color has the initial data

x1(0) = −8.57, x2(0) = −2.39, x3(0) = 33.08, y1(0) = 3.91, y2(0) = 1.86, y3(0) = 4.39, z1(0) = 6.92,

z2(0) = −6.18, z3(0) = 10.48, whereas the one with red color has the initial data x1(0) = −8.53,

x2(0) = −2.47, x3(0) = 33.05, y1(0) = 3.91, y2(0) = 1.87, y3(0) = 4.40, z1(0) = 6.89, z2(0) = −6.18,

z3(0) = 10.47. The utilized time interval is the same with Figure 1. It is seen in Figure 2 that although

the depicted trajectories are initially nearby, later they diverge from each other. In other words, it is

demonstrated that the sensitivity of system (3.5) is extended to (3.6). Moreover, one can conclude from

Figure 1 and Figure 2 that the system (1.1)+(3.5)+(3.6) is also sensitive.

In the next simulation, the trajectory of system (1.1)+(3.5)+(3.6) with x1(0) = −12.89, x2(0) =

−8.91, x3(0) = 36.59, y1(0) = −4.21, y2(0) = −4.96, y3(0) = 3.07, z1(0) = −14.06, z2(0) = −8.38,

z3(0) = 16.93 is considered. The three dimensional projections of the trajectory on the y1 − y2 − y3 and

z1 − z2 − z3 spaces are depicted in Figure 3, (a) and (b), respectively. Both of the pictures represented

in Figure 3 manifest not only the chaos extension, but also the existence of a chaotic attractor in the

9−dimensional phase space. It is worth noting that the projection on the x1 − x2 − x3 space is the

classical Lorenz attractor [43, 65].

The next section is devoted to the extension of chaos obtained through period-doubling cascade.

4 Extension of Period-Doubling Cascade

Consider the Lorenz system (1.1) in which σ = 10, b = 8/3 and r is a parameter [24, 65]. For the

values of r between 99.98 and 100.795 the system possesses two symmetric stable periodic orbits such

that one of them spirals round twice in x1 > 0 and once in x1 < 0, whereas another spirals round twice

in x1 < 0 and once in x1 > 0. The book [65] calls such periodic orbits as x2y and y2x, respectively.
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Figure 3: The 3−dimensional projections of the chaotic trajectory of system (1.1)+(3.5)+(3.6). (a) The
projection on the y1−y2−y3 space, (b) The projection on the z1−z2−z3 space. The picture represented
in (a) illustrates the chaotic trajectory of the perturbed Lorenz system (3.5), while the picture in (b)
corresponds to the perturbed Lorenz system (3.6). The pictures represented in (a) and (b) confirm both
the extension of chaos and the existence of a chaotic attractor in the 9−dimensional phase space.

More precisely, “x” is written every time when the orbit spirals round in x1 > 0, while “y” is written

every time when it spirals round in x1 < 0. As r decreases towards 99.98 a period-doubling bifurcation

occurs in the system such that two new symmetric stable periodic orbits (x2yx2y and y2xy2x) appear

and the previous periodic orbits lose their stability [24, 65]. According to Franceschini [24], system (1.1)

undergoes infinitely many period-doubling bifurcations at the parameter values 99.547, 99.529, 99.5255

and so on. The sequence of bifurcation parameter values accumulates at r∞ = 99.524. For values of r

smaller than r∞ infinitely many unstable periodic orbits take place in the dynamics of (1.1) [24, 65].

To extend the period-doubling cascade of (1.1), we take into account the system

dy1
dt

= −10y1 + 10y2 + 1.8x1(t)

dy2
dt

= −y1y3 + 0.27y1 − y2 + x2(t)

dy3
dt

= y1y2 − (8/3)y3 + 0.3x3(t),

(4.7)

where x(t) = (x1(t), x2(t), x3(t)) is a solution of (1.1). Note that in the absence of driving, system (4.7)

admits a stable equilibrium point, i.e., system (2.3) with σ = 10, r = 0.27 and b = 8/3 does not admit

chaos.

By using Theorem 15.8 [70], one can verify that for each periodic x(t), there exists a periodic solution

of (4.7) with the same period.

In Figure 4, we illustrate the stable periodic orbits of systems (1.1) and (4.7). Figure 4, (a) shows the

y2x periodic orbit of (1.1) for r = 100.36, while Figure 4, (b) depicts the corresponding periodic orbit of

system (4.7). Similarly, Figure 4, (c) and (d) represent the y2xy2x periodic orbit of (1.1) with r = 99.74

and the corresponding periodic orbit of (4.7), respectively. Figure 4 confirms that if (1.1) has a periodic
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orbit, then (4.7) also has a periodic orbit with the same period.
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Figure 4: The stable periodic orbits of the systems (1.1) and (4.7).

Next, we continue with the extension of period-doubling cascade in Figure 5. The projection of the

trajectory of system (1.1) with r = 99.51 corresponding to the initial data x1(0) = 10.58, x2(0) = 28.19,

x3(0) = 53.32 on the x1−x3 plane is shown in Figure 5, (a). Making use of the initial data y1(0) = 2.23,

y2(0) = 1.26, y3(0) = 9.64, the projection of the corresponding trajectory of (4.7) on the y1 − y3 plane is

depicted in Figure 5, (b). Moreover, the irregular behavior of the y3 coordinate over time is illustrated

in Figure 6. The simulation results reveal that the period-doubling cascade of (1.1) is extended to (4.7).

A theoretical investigation of the extension of period-doubling cascade is provided in the Appendix.
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Figure 5: Extension of period-doubling cascade in the unidirectionally coupled Lorenz systems (1.1) +
(4.7).

In the next section, the extension of intermittency is considered.
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Figure 6: The irregular behavior of the y3 coordinate of system (4.7) with r = 99.51.

5 Extension of Intermittency

Pomeau and Manneville [54] observed intermittency in the Lorenz system (1.1), where σ = 10, b = 8/3

and r is slightly larger than the critical value rc ≈ 166.06. Let us use r = 166.3 in system (1.1) such that

intermittency is present. We perturb system (2.3), where σ = 10, r = 0.35, b = 8/3, with solutions of

(1.1), and set up the following system,

dy1
dt

= −10y1 + 10y2 + 0.7x1(t)

dy2
dt

= −y1y3 + 0.35y1 − y2 − x2(t)

dy3
dt

= y1y2 − (8/3)y3 + 0.2x3(t).

(5.8)

The graphs of the y1, y2 and y3 coordinates of (5.8) are shown in Figure 7 by making use of the initial

data x1(0) = −23.3, x2(0) = 38.3, x3(0) = 193.4, y1(0) = 1.3, y2(0) = 5.5, y3(0) = 12.1. It is revealed in

Figure 7 that regular oscillations are interrupted by irregular ones, i.e., the intermittent behavior of the

prior Lorenz system is extended even if system (2.3) admits a stable equilibrium point.
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Figure 7: Extension of intermittency in system (5.8). The behaviors of the y1, y2 and y3 coordinates are
shown in pictures (a), (b) and (c), respectively. The extension of the intermittent behavior is observable
such that regular motions are interrupted by irregular ones.

For some parameter values, the Lorenz system can exhibit limit cycles [65]. In the next section, we
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will consider the Lorenz system (2.3) with a globally attracting limit cycle and verify numerically how

to achieve a motion that behaves chaotically and cyclically in the same time.

6 Cyclic Chaos

In our previous illustrations, we considered system (2.3) with a stable equilibrium point. Now, we consider

the model with a limit cycle. The numerical simulations represented in this section are theoretically

based on the paper [10], where the main result is about the existence of infinitely many unstable periodic

solutions and extension of sensitivity.

Let us consider the systems (1.1) and (2.3) with the coefficients σ = 10, r − 28, b = 8/3 and σ = 10,

r = 350, b = 8/3, respectively, such that (1.1) is chaotic and (2.3) possesses a globally attracting limit

cycle [65]. We perturb system (2.3) with the solutions of (1.1), and constitute the system

dy1
dt

= −10y1 + 10y2 + 2.3x1(t)

dy2
dt

= −y1y3 + 350y1 − y2 + 2x2(t)

dy3
dt

= y1y2 − (8/3)y3 + 1.5x3(t).

(6.9)

Making use of the solution of (1.1) corresponding to the initial data x1(0) = 5.71, x2(0) = 9.01,

x3(0) = 17.06, we depict the trajectory of (6.9) with y1(0) = −21.67, y2(0) = 34.33, y3(0) = 346.38 in

Figure 8, (a). The projection of the same trajectory on the y1 − y2 plane is shown in Figure 8, (b). It is

seen in both figures that the trajectory behaves chaotically around the limit cycle of (2.3).
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Figure 8: The projections of the chaotic trajectory produced by the coupled system (1.1)+(6.9). (a) The
3−dimensional projection on the y1 − y2 − y3 space; (b) The 2−dimensional projection on the y1 − y2
plane. The pictures in (a) and (b) represent a motion that behaves both chaotically and cyclically around
the stable limit cycle of (2.3).

To confirm one more time that the trajectory considered in Figure 8 is essentially chaotic, the graph

of the y2 coordinate of system (6.9) is illustrated in Figure 9. Although system (2.3) possesses a globally

attracting limit cycle, the simulations seen in Figure 8 and Figure 9 indicate that the applied perturbation
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makes the system (6.9) behave chaotically. In other words, the chaotic behavior is seized by the limit

cycle of system (2.3), and as a result a motion which behaves both chaotically and cyclically appears.
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Figure 9: The time-series for the y2−coordinate of system (6.9). The picture confirms the chaotic behavior
of the motion. The remaining coordinates of system (6.9), which are not just pictured here, behave also
chaotically.

In order to compare our approach with that of generalized synchronization [1, 25, 33, 38, 60], let us

apply the auxiliary system approach [1, 25] to the couple (1.1) + (6.9).

The corresponding auxiliary system is

dz1
dt

= −10z1 + 10z2 + 2.3x1(t)

dz2
dt

= −z1z3 + 350z1 − y2 + 2x2(t)

dz3
dt

= z1z2 − (8/3)z3 + 1.5x3(t).

(6.10)

The projection of the stroboscopic plot of the 9−dimensional system (1.1) + (6.9) + (6.10) on the

y2 − z2 plane is depicted in Figure 10. The figure is obtained by marking the trajectory with the

initial data x1(0) = 5.71, x2(0) = 9.01, x3(0) = 17.06, y1(0) = −21.67, y2(0) = 34.33, y3(0) = 346.38,

z1(0) = −46.26, z2(0) = −49.73, z3(0) = 415.87, and by omitting the first 200 iterations. It is observable

in Figure 10 that the stroboscopic plot is not on the line z2 = y2. Therefore, we conclude that generalized

synchronization does not take place in the dynamics of the couple (1.1) + (6.9).
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Figure 10: Application of the auxiliary system approach to system (1.1)+(6.9) indicates that generalized
synchronization does not exist for the couple.

Another approach to investigate the presence or absence of generalized synchronization is the evalu-
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ation of conditional Lyapunov exponents [25, 38, 53].

To determine the conditional Lyapunov exponents, we take into account the following variational

equations for system (6.9),

dξ1
dt

= −10ξ1 + 10ξ2

dξ2
dt

= (−y3(t) + 350)ξ1 − ξ2 − y1(t)ξ3

dξ3
dt

= y2(t)ξ1 + y1(t)ξ2 − (8/3)ξ3.

(6.11)

Utilizing the solution y(t) of (6.9) corresponding to the initial data x1(0) = 5.71, x2(0) = 9.01, x3(0) =

17.06, y1(0) = −21.67, y2(0) = 34.33, y3(0) = 346.38, the largest Lyapunov exponent of system (6.11) is

evaluated as 0.0226. That is, system (6.9) possesses a positive conditional Lyapunov exponent, and this

result reveals one more time the absence of generalized synchronization.

7 Self-organization and Synergetics in Lorenz Systems

To illustrate the extension of chaos in large collections of interconnected Lorenz systems, let us introduce

the following 27−dimensional system consisting of the subsystems S1, S2, . . . , S9 :

dx1
dt

= −10x1 + 10x2

dx2
dt

= −x1x3 + 28x1 − x2

dx3
dt

= x1x2 − (8/3)x3



























S1

dy1
dt

= −10y1 + 10y2 + 8x1(t)

dy2
dt

= −y1y3 + 0.21y1 − y2 + x2(t) + 0.001x32(t)

dy3
dt

= y1y2 − (8/3)y3 + 2x3(t)



























S2

dz1
dt

= −10z1 + 10z2 + 4x2(t)

dz2
dt

= −z1z3 + 0.02z1 − z2 + 3x3(t)

dz3
dt

= z1z2 − (8/3)z3 + x1(t) + 0.1 cos(x1(t))



























S3

dw1

dt
= −10w1 + 10w2 − x1(t)

dw2

dt
= −w1w3 + 0.34w1 − w2 + 4 tanh(x2(t))

dw3

dt
= w1w2 − (8/3)w3 − 5x3(t)



























S4
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dζ1
dt

= −10ζ1 + 10ζ2 + tan(y1(t)/20)

dζ2
dt

= −ζ1ζ3 + 0.12ζ1 − ζ2 + 2.5y2(t)

dζ3
dt

= ζ1ζ2 − (8/3)ζ3 − 10y3(t)



























S5

dη1
dt

= −10η1 + 10η2 + 8y1(t)

dη2
dt

= −η1η3 + 0.29η1 − η2 + 4.5y3(t)

dη3
dt

= η1η2 − (8/3)η3 − ey2(t)/30



























S6

dκ1
dt

= −10κ1 + 10κ2 + 4z1(t)

dκ2
dt

= −κ1κ3 + 0.19κ1 − κ2 + 9z2(t)

dκ3
dt

= κ1κ2 − (8/3)κ3 + 6z3(t)



























S7

dρ1
dt

= −10ρ1 + 10ρ2 + 4w1(t)

dρ2
dt

= −ρ1ρ3 + 0.17ρ1 − ρ2 + 7w2(t)

dρ3
dt

= ρ1ρ2 − (8/3)ρ3 − 3 tanh(w3(t))



























S8

dτ1
dt

= −10τ1 + 10τ2 + arctan(w1(t))

dτ2
dt

= −τ1τ3 + 0.32τ1 − τ2 + 9w2(t)

dτ3
dt

= τ1τ2 − (8/3)τ3 + w3(t).



























S9

The coefficients of S1 are chosen in such a way that the system is chaotic [43]. The systems

S2, S3, . . . , S9 are designed such that if the corresponding perturbations x(t), y(t), z(t), w(t) are chaotic,

then the systems possess chaos. However, in the absence of the perturbations, S2, S3, . . . , S9 admit

stable equilibria and they are all non-chaotic. The connection topology of the systems S1, S2, . . . , S9 is

represented in Figure 11. On the other hand, Figure 12 depicts the chaotic attractors corresponding the

each Si, i = 1, 2, . . . , 9, such that collectively the picture can be considered as the chaotic attractor of

the whole 27−dimensional system. One can confirm that Figure 12 supports our ideas such that the

chaos of S1 generates chaos in the remaining subsystems even if they are non-chaotic in the absence of

the perturbations.

The idea of the transition of chaos from one system to another as well as the arrangement of chaos in an

ordered way can be considered as another level of self-organization [30, 52]. Durrenmatt [20] described

that “... a system is self-organizing if it acquires a spatial, temporal or functional structure without

specific interference from the outside. By “specific" we mean that the structure of functioning is not

impressed on the system, but the system is acted upon from the outside in a nonspecific fashion." There

are three approaches to self-organization, namely thermodynamic (dissipative structures), synergetic and
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Figure 11: The topology of the chaos extension through the interconnected Lorenz systems S1, S2, . . . , S9.

the autowave. For the theory of dynamical systems (e.g. differential equations) the phenomenon means

that an autonomous system of equations admits a regular and stable motion (periodic, quasiperiodic,

almost periodic). In the literature, this is called as autowaves processes [12] or self-excited oscillations

[49]. We are inclined to add to the list another phenomenon, which is a consequence of the chaos

extension. Consider the subsystems S1, S2, . . . , S9 once again (in general, arbitrary finite number of

systems can be considered). Because of the connections and the conditions discovered in our analysis

(see Appendix), likewise S1 all the other subsystems, Si, i = 2, 3, . . . , 9, are also chaotic. We suppose that

this is a self-organization. This phenomenon can be restricted only for autonomous systems or it can be

even interpreted for non-autonomous systems, too. So, we can say that the extension of unpredictability

is an example of self-organization, that is a coherent behavior of a large number of systems [30].

In his fascinating paper, the German theoretical physicist Hermann Haken [30] introduced a new inter-

disciplinary field of science, synergetics, which deals with the origins and the evolution of spatio-temporal

structures. The profound part of synergetics is based on the dynamical systems theory. Depending on

the discussion of our manuscript, it is natural that we concentrate on the differential equations, and

everything that will be mentioned below about synergetics concerns first of all dynamical systems with

mathematical approach. One of the main features of systems in synergetics is self-organization, which

has been discussed above, and we approved that the phenomenon is present in the extension of chaos

among Lorenz systems. According to Haken [30], the central question in synergetics is whether there

are general principles that govern the self-organized formation of structures and/or functions. The main

principles by the founder of the theory are instability, order parameters, and slaving [30]. Instability is

understood as the formation or collapse of structures (patterns). This is very common in fluid dynamics,

lasers, chemistry and biology [30, 31, 32, 51, 68]. A number of examples of instability can be found in the
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Figure 12: The chaotic attractors of the Lorenz systems S1, S2, . . . , S9.

literature about morphogenesis [67] and the pattern formation examples can be found in fluid dynamics.

The phenomenon is called as instability because the former state of fluid transforms to a new one, loses

its ability to persist, and becomes unstable. We see instability in the chaos extension, as consecutive

chaotification of systems S2, S3, . . . , S9 joined to the source S1 of chaos. The concepts of the order

parameter and slaving are strongly connected in synergetics. For differential equations theory, order

parameters mean those phase variables, whose behavior formate the main properties of a macroscopic

structure, which dominate over all other variables in the formation such that they can even depend on

the order parameters functionally. The dependence that is proved (discovered) mathematically is what

we call as slaving. It is not difficult to see in the chaos extension mechanism that the variables of the

system S1 are order parameters, and they determine the chaotic behavior of the joined systems’ variables.

That is, the slaving principle is present here.

The next section is devoted to the possible connections of our results about interconnected Lorenz

systems with the global weather unpredictability.

8 Connection with Global Weather Unpredictability

Lorenz [43] was the first who discovered sensitivity with the aid of system (1.1) and then made the

conclusion on the butterfly effect. Nowadays, there is an agreement that the butterfly effect exists, if

we mean sensitivity=unpredictability. It seems that Lorenz himself believed that sensitivity discovered

in his equation is a strong indicator of the butterfly effect in its original meteorological sense. Possibly

his intuition is based on the idea that the system of ordinary differential equations is derived from a

system of partial differential equations. There should be a deeper interpretation for the effect of chaotic
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dynamics in the three dimensional system on the infinite dimensional one. We also believe that the

opinion of Lorenz, who considered his results as an evidence of the meteorological butterfly effect, is very

reasonable. Moreover, his claim has to be considered as a challenging problem for mathematicians. If

one thinks positively on the subject, then by our opinion several next questions emerge. The first one is

whether sensitivity in meteorological models is a reflection of the butterfly effect. Definitely, this question

needs a thoroughly investigation. Possibly it requests a deep analysis on the basis of ordinary and partial

differential equations. The problem is not solved in this section at all. We axiomatize somehow the state

assuming that the butterfly effect is sensitivity in the mathematical sense or, more generally, chaos.

We can also reduce the question by considering the problem of unpredictability through sensitivity.

Consequently, the following questions are reasonable: Can one explain the global unpredictability of

weather by applying models similar to the Lorenz system? How can Lorenz systems be utilized for a

global description of the weather?

The physical properties of the atmosphere are not the same throughout the Earth. The tropical

atmosphere possesses considerably different behavior from those in the temperate and polar latitudes,

as if it were a different fluid [45]. Taking inspiration from its multifaceted structure, we propose to

consider the atmosphere divided into subregions such that the dynamic properties of each region differs

considerably from the others. In this case, one can suppose that the dynamics of each subregion of the

atmosphere subjects to its own Lorenz system. That is, for different subregions the coefficients of the

corresponding Lorenz system are different. Since for some parameter values chaos can take place in the

Lorenz system and for some not, such chaotic or non-chaotic motions should have prolonged forever,

conflicting the realistic dynamics of the atmosphere, where global unpredictability is present. To extend

our attitude for the butterfly effect, we propose that instability, which may occur in a subregion, can be

imported to neighbor subregions of the atmosphere, such that chaos occurs not only endogenously, but

also exogenously. In other words, exterior perturbations influencing a part of the atmosphere may cause

a chaotic behavior to occur in that region. In addition to this, we suppose that these perturbations most

probably originate through the neighboring regions within the atmosphere, and the dynamics of coupled

Lorenz systems can help to analyze this.

The results presented in the previous sections can be useful to investigate the underlying reasons of

the global weather unpredictability under the following assumptions:

(i) The whole atmosphere of the Earth is partitioned in a finite number of subregions;

(ii) In each of the subregions the dynamics of the weather is governed by the Lorenz system with

certain coefficients;

(iii) There are subregions for which the corresponding Lorenz systems admit a chaos with the main

ingredient as sensitivity, which means unpredictability of weather in the meteorological sense, and
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there are subregions, where Lorenz systems are non-chaotic and with equilibriums or cycles as

global attractors;

(iv) The Lorenz systems are connected unidirectionally.

Let us localize the global process by taking into account only two adjacent subregions of the atmo-

sphere, labeled A and B. In the beginning, the subregion A is assumed to be chaotic, while the subregion

B is non-chaotic. By the phrase “chaotic subregion" we mean that the coefficients of the corresponding

Lorenz system are such that the system possesses a chaotic attractor. In a similar way, one should un-

derstand from the phrase “non-chaotic subregion" that the corresponding Lorenz system does not exhibit

chaotic motions such that, for example, it admits a global asymptotically stable equilibrium or a globally

attracting limit cycle.

Suppose that the dynamics of A is described by the chaotic Lorenz system (1.1). Besides, system (2.4)

represents the dynamics of B after the transmission of chaos, and system (2.3) represents the dynamics

of B before the process is carried out. According to the theoretical results of the present paper, the

chaos of the subregion A influences the subregion B in such a way that the latter also becomes chaotic

even if it is initially non-chaotic. The propagation mechanism is represented schematically in Figure 13.

By chaos propagation, we mean the process of unidirectional coupling of Lorenz systems. Figure 13, (a)

illustrates the dynamics during the transmission of chaos. After the transmission of unpredictability is

achieved, the dynamics of both subregions, A and B, exhibit chaotic behavior as shown in Figure 13,

(b).

Figure 13: Schematic representation of the chaos extension mechanism. (a) The dynamics during the
transmission of chaos, (b) The state of the weather after the transmission of chaos. The unidirectional
coupling of Lorenz systems gives rise to the chaotification of the initially non-chaotic system such that
as a result the unpredictability has been propagated from subregion A to subregion B.

The mentioned local process can be maintained by considering more subregions, whose dynamics are

also described by Lorenz systems. For instance, one can suppose that the systems S1, S2, . . . , S9 defined

in Section 7 reflect the dynamics of the weather in nine different subregions. The applied perturbations

may not be in accordance with realistic air flows in the atmosphere. However, the exemplification

reveals the propagation of unpredictability and indicate the possibility for the usage of different types of
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perturbations in the systems. We do not take into account changes which may happen because of the

day light evolution, variety of land forms, seasonal differences in the region etc., but what we propose

is to connect regional mathematical models into a global net so that understanding the unpredictability

becomes possible. We make use of “toy" perturbations due to the lack of preexisting ones, which should

be found through experimental investigations. What we propose in this section is a small step in the

mathematical approach to the complexity of the weather.

It is worth noting that the chaotification principles proposed in this paper are not specific for the

Lorenz system (see Appendix), and they can be applied to other meteorological models as well, without

any restrictions on the dimension and the number of the coupled systems. For example, one can consider

the Lorenz model of general circulation of the atmosphere [44]

dX1

dt
= −X2

2 −X2
3 − ãX1 + ãF

dX2

dt
= X1X2 − b̃X1X3 −X2 +G

dX3

dt
= b̃X1X2 +X1X3 −X3,

(8.12)

where X1 represents the strength of a large scale westerly wind current, X2 and X3 represent the cosine

and sine phases of a chain of superposed large-scale eddies, the parameter F represents the external-

heating contrast, and G represents the heating contrast between oceans and continents. The coefficient

b̃, if greater than unity, allows the displacement to occur more rapidly than the amplification, and

the coefficient ã, if less than unity, allows the westerly current to damp less rapidly than the eddies

[13, 44, 48, 57].

For ã > 0 and b̃ > −1, let us take into account the Lyapunov function V (X) = X2
1 + X2

2 + X2
3 ,

and set a = min {ã, 1} , b =
√
ã2F 2 +G2. One can verify that V ′

(8.12)(X) ≤ −2a
(

X2
1 +X2

2 +X2
3

)

+

2b
√

X2
1 +X2

2 +X2
3 and

∥

∥

∥

∥

∂V

∂X

∥

∥

∥

∥

= 2
√

X2
1 +X2

2 +X2
3 . Therefore, the conditions of Theorem 10.1, which

is mentioned in the Appendix, are satisfied with a(r) = r2, b(r) = 2ar2 − 2br, c(r) = 2r, M0 = 1 and

B =
1 + b

a
. Consequently, our theory is also applicable to the Lorenz model of general circulation of the

atmosphere.

9 Conclusion

In the present study, we investigate the dynamics of unidirectionally coupled Lorenz systems. It is

rigorously proved that chaos can be extended from one Lorenz system to another. The extension of

period-doubling cascade and sensitivity, which is the main ingredient of chaos, are shown both theo-

retically and numerically. Besides, the emergence of cyclic chaos, intermittency, and the concepts of

self-organization and synergetics are considered for interconnected Lorenz systems. The results are valid

if the drive Lorenz system is chaotic and the response system is non-chaotic, but admits a global asymp-
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totically stable equilibrium or a globally attracting limit cycle. Our approach can give a light on the

question about how global weather processes have to be described through mathematical models. A

possible connection of the presented results with the global weather unpredictability is provided in the

paper. The usage of our approach for the investigation of global weather unpredictability is a one more

small step in the mathematical approach to the complexity of the weather. This is not a modelling of the

atmosphere, but rather an effort to explain how the weather unpredictability can be arranged over the

Earth on the basis of the Lorenz’s meteorological model. In fact, this is also true for other meteorological

models, since mathematical properties of stability, attraction and chaotic attractors are common for all

models. It is shown that our results can be used for the Lorenz model of general circulation of the atmo-

sphere [44] too. The question whether the overlapping of two chaotic dynamics may produce regularity

can also be considered in future investigations. We guess that it is not possible, but an analysis has to

be made.

Acknowledgments

The authors wish to express their sincere gratitude to the referees for the helpful criticism and valuable

suggestions, which helped to improve the paper significantly.

The second author is supported by the 2219 scholarship programme of TÜBİTAK, the Scientific and

Technological Research Council of Turkey.

10 Appendix: The Mathematical Background

In our theoretical discussions, we consider more general coupled systems, which are not necessarily Lorenz

systems. We will denote by R and N the sets of real numbers and natural numbers, respectively, and we

will make use of the usual Euclidean norm for vectors.

Let us consider the autonomous systems

dx

dt
= F (x), (10.13)

and

du

dt
= f(u), (10.14)

where t ≥ 0 and the functions F : Rm → R
m and f : Rn → R

n are continuous in their arguments.
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We perturb system (10.14) with the solutions of (10.13) and obtain the system in the form,

dy

dt
= f(y) + µg(x(t)), (10.15)

where the real number µ is nonzero and the function g : Rm → R
n is continuous. It is worth noting that

the systems (1.1), (2.3) and (2.4) are in the form of (10.13), (10.14) and (10.15), respectively.

We mainly assume that system (10.13) possesses a chaotic attractor, let us say a set in R
m. Fix x0

from the attractor and take a solution x(t) of (10.13) with x(0) = x0. Since we use the solution x(t) as

a perturbation in (10.15), we call it as chaotic function. Chaotic functions may be irregular as well as

regular (periodic and unstable) [21, 43, 62, 63, 64, 69].

Our purpose is the prove rigorously the extension of chaos from system (10.13) to system (10.15). In

our theoretical discussions, we request the existence of a bounded positively invariant region for system

(10.15). Such an invariant region can be achieved by different methods and one of them is mentioned

in the next part. We will show the extension of sensitivity and the existence infinitely many unstable

periodic solutions in Subsections 10.2 and 10.3, respectively.

In the following parts, for a given solution x(t) of system (10.13), we will denote by φx(t)(t, t0, y0) the

unique solution of system (10.15) satisfying the initial condition φx(t)(t0, t0, y0) = y0.

10.1 Existence of a bounded positively invariant region

Making benefit of Lyapunov functions and uniform ultimate boundedness [59, 70], we present a method

in Theorem 10.1 for the existence of a bounded positively invariant set of system (10.15). Then, we will

apply this technique to the Lorenz system.

Solutions of system (10.15) are uniformly ultimately bounded if there exists a number B0 > 0 and

corresponding to any number α > 0 there exists a number T (α) > 0 such that ‖y0‖ ≤ α implies that for

each solution x(t) of system (10.13) and t0 ≥ 0 we have
∥

∥φx(t)(t, t0, y0)
∥

∥ < B0 for all t ≥ t0 + T (α).

The following condition is required:

(A1) There exists a positive number Mg such that sup
x∈Rm

‖g(x)‖ ≤Mg.

Theorem 10.1 Suppose that condition (A1) is fulfilled and there exists a Lyapunov function V (x) de-

fined on R
n such that V (x) has continuous first order partial derivatives. Additionally, assume that there

exists a number B ≥ 0 such that the following conditions are satisfied on the region ‖x‖ ≥ B :

(i) V (x) ≥ a (‖x‖) , where a(r) is a continuous, increasing function defined for r ≥ B which satisfies

a(B) > 0 and a(r) → ∞ as r → ∞;

(ii) V ′
(10.14)(x) ≤ −b (‖x‖) , where b(r) is an increasing function defined for r ≥ B which satisfies

b(B) > 0;
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(iii)

∥

∥

∥

∥

∂V

∂x
(x)

∥

∥

∥

∥

≤ c (‖x‖) , where c(r) is a function defined for r ≥ B and there exists a positive number

M0 such that 0 < c(r) ≤M0b(r) for all r ≥ B.

Then, for sufficiently small |µ| , the solutions of system (10.15) are uniformly ultimately bounded.

Proof. Fix arbitrary numbers t0 ≥ 0, α > 0 and a solution x(t) of system (10.13). Take a number

β satisfying 0 < β < b(B). We consider system (10.15) with a nonzero number µ which satisfies the

inequality

|µ| ≤ 1

M0Mg

(

1− β

b(B)

)

.

Our aim is to show the existence of numbers B0 > B and T (α) ≥ 0, independent of t0, such that if

‖y0‖ ≤ α, then
∥

∥φx(t)(t, t0, y0)
∥

∥ < B0 for all t ≥ t0 + T (α).

Consider an arbitrary y0 ∈ R
n such that ‖y0‖ ≤ α. For the sake of brevity, let us denote y(t) =

φx(t)(t, t0, y0). In the proof, both of the possibilities ‖y0‖ < B and ‖y0‖ ≥ B will be considered. We start

with the former.

Let MV = max
‖x‖=B

V (x). Since a(r) → ∞ as r → ∞, there exists a number B0 > B such that

a(B0) ≥MV .

Now, suppose that there exists a moment s1 > t0 such that ‖y(s1)‖ ≥ B0. It is possible to find a

moment s2 satisfying t0 < s2 < s1 such that ‖y(s2)‖ = B and ‖y(t)‖ ≥ B for all t ∈ [s2, s1].

Assumptions (ii) and (iii) imply for s2 ≤ t ≤ s1 that

dV (y(t))

dt
=
∂V

∂x
(y(t)) · (f(y(t)) + µg(x(t)))

≤ −b (‖y(t)‖) + |µ|Mgc (‖y(t)‖)

≤ (|µ|M0Mg − 1)b(B)

≤ −β,

where “ · ” denotes the scalar product.

The last inequality implies that V (y(s1)) < V (y(s2)). On the other hand, by the help of assumption

(i), we have V (y(s2)) ≤ MV ≤ a(B0) ≤ V (y(s1)). This is a contradiction. Therefore, for all t ≥ t0 the

inequality ‖y(t)‖ < B0 is valid.

Next, we consider the possibility ‖y0‖ ≥ B. Since the function V (x) is continuous and ‖y0‖ ≤ α, one

can find a number K(α) > 0 such that V (y0) ≤ K(α). By means of condition (i) used together with the

inequality ‖y0‖ ≥ B, we have that K(α) ≥ a(B).

Assume that there exists a moment t > t0 +
K(α)− a(B)

β
such that

∥

∥y(t)
∥

∥ ≥ B.

If there exists t1 ∈ [t0, t] such that ‖y(t1)‖ < B, then by means of uniqueness of solutions, using a

similar discussion to the case ‖y0‖ < B considered above, one can show that for all t ≥ t1 the inequality

‖y(t)‖ < B0 holds. On the other hand, if for all t ∈ [t0, t] the inequality ‖y(t)‖ ≥ B is valid, then one
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can verify that the inequality

V (y(t)) ≤ V (y0)− β(t− t0)

holds. Under the circumstances we attain that

a(B) ≤ V (y0)− β(t− t0) ≤ K(α)− β(t− t0) < a(B).

This is a contradiction. Hence, for all t > t0 + T (α), where T (α) =
K(α)− a(B)

β
, we have ‖y(t)‖ < B0.

Consequently, the solutions of system (10.15) are uniformly ultimately bounded. �

Next, we shall verify the conditions of Theorem 10.1 for the Lorenz model. Let us consider the system

(2.3) with the parameters σ > 0, 0 < r <
√
2− 1, b > 0, and take into account the Lyapunov function

V (u) =
1

σ
u21 + u22 + u23,

where u = (u1, u2, u3) ∈ R
3.

Set γ1 = min

{

1,
1

σ

}

and define the function a(r) through the formula a(r) = γ1r
2. In that case, the

relation V (u) ≥ γ1(u
2
1 + u22 + u23) = a (‖u‖) holds. On the other hand, one can verify that

V ′
(2.3)(u) =

2

σ
u1u

′
1 + 2u2u

′
2 + 2u3u

′
3

=
2

σ
u1[σ(−u1 + u2)] + 2u2(−u1u3 + ru1 − u2) + 2u3(u1u2 − bu3)

= 2(r + 1)u1u2 − 2u21 − 2u22 − 2bu23.

Now, let γ2 = min
{

1, 2− (r + 1)2, 2b
}

. Making use of the identity

2(r + 1)u1u2 = u21 + (r + 1)2u22 − [u1 − (r + 1)u2]
2

we attain the inequality

V ′
(2.3)(u) = − [u1 − (r + 1)u2]

2 − u21 −
[

2− (r + 1)2
]

u22 − 2bu23

≤ −u21 −
[

2− (r + 1)2
]

u22 − 2bu23

≤ −b (‖u‖) ,

where the function b(r) is defined through the formula b(r) = γ2r
2. The last inequality validates the

condition (ii) of Theorem 10.1.
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Furthermore, one can obtain that

∥

∥

∥

∥

∂V

∂u
(u)

∥

∥

∥

∥

= 2

√

1

σ2u
2
1 + u22 + u23 ≤ c (‖u‖) ,

where c(r) = 2γ3r and γ3 = max

{

1,
1

σ

}

. If we take M0 =
2γ3
γ2

, then the inequality c(r) ≤M0b(r) holds

for all r ≥ 1. Consequently, for B = 1, the conditions of Theorem 10.1 are satisfied for system (2.3) with

the coefficients σ > 0, 0 < r <
√
2− 1 and b > 0.

In the next section, we will continue with the extension of sensitivity, which can be considered as the

unique ingredient of chaos for a set of bounded solutions [43, 56, 69].

10.2 Unpredictability analysis

Extension of the sensitivity feature through system (10.15) will be handled in the present part. We shall

begin with the meaning of the aforementioned property for systems (10.13) and (10.15). The main result

will be stated in Theorem 10.2.

System (10.13) is called sensitive if there exist positive numbers ǫ0 and ∆ such that for an arbitrary

positive number δ0 and for each chaotic solution x(t) of system (10.13), there exist a chaotic solution x(t)

of the same system and an interval J ⊂ [0,∞), with a length no less than ∆, such that ‖x(0)− x(0)‖ < δ0

and ‖x(t)− x(t)‖ > ǫ0 for all t ∈ J.

Our main assumption is the existence of a bounded positively invariant set K for system (10.15).

The existence of such an invariant set can be shown, for example, by using Theorem 10.1.

We say that system (10.15) is sensitive if there exist positive numbers ǫ1 and ∆ such that for an

arbitrary positive number δ1, each y0 ∈ K and a chaotic solution x(t) of (10.13), there exist y1 ∈ K ,

a chaotic solution x(t) of (10.13) and an interval J1 ⊂ [0,∞), with a length no less than ∆, such that

‖y0 − y1‖ < δ1 and
∥

∥φx(t)(t, 0, y0)− φx(t)(t, 0, y1)
∥

∥ > ǫ1 for all t ∈ J1.

The following assumptions are needed:

(A2) There exists a positive number MF such that sup
x∈Rm

‖F (x)‖ ≤MF ;

(A3) There exists a positive number Lf such that ‖f(y1)− f(y2)‖ ≤ Lf ‖y1 − y2‖ for all y1, y2 ∈ R
n;

(A4) There exists a positive number Lg such that ‖g(x1)− g(x2)‖ ≥ Lg ‖x1 − x2‖ for all x1, x2 ∈ R
m.

In the next theorem, the extension of sensitivity from system (10.13) to system (10.15) is considered.

Theorem 10.2 Suppose that conditions (A1)− (A4) hold. If system (10.13) is sensitive, then the same

is true for system (10.15).

Proof. Fix an arbitrary positive number δ1, y0 ∈ K and a chaotic solution x(t) of (10.13). Since system

(10.13) is sensitive, one can find ǫ0 > 0 and ∆ > 0 such that for arbitrary δ0 > 0 both of the inequalities
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‖x(0)− x(0)‖ < δ0 and ‖x(t) − x(t)‖ > ǫ0, t ∈ J, hold for some chaotic solution x(t) of (10.13) and for

some interval J ⊂ [0,∞), whose length is not less than ∆.

Take an arbitrary y1 ∈ K such that ‖y0 − y1‖ < δ1. For the sake of brevity, let us denote y(t) =

φx(t)(t, 0, y0) and y(t) = φx(t)(t, 0, y1).

It is worth noting that there exist positive numbers K0 and H0 such that ‖y(t)‖ , ‖y(t)‖ ≤ K0 for all

t ≥ 0 and sup
t≥0

‖x(t)‖ ≤ H0 for each chaotic solution x(t) of system (10.13).

Our aim is to determine positive numbers ǫ1, ∆ and an interval J1 ⊂ [0,∞) with length ∆ such that

the inequality ‖y(t)− y(t)‖ > ǫ1 holds for all t ∈ J1.

Since the derivative of each chaotic solution x(t) of (10.13) lies inside the tube with radius MF , the

collection of chaotic solutions of system (10.13) is an equicontinuous family on [0,∞). Suppose that

g(x) = (g1(x), g2(x), . . . , gn(x)) , where each gj , 1 ≤ j ≤ n, is a real valued function. Making use of

the uniform continuity of the function g : Rm × R
m → R

n, defined as g(ν1, ν2) = g(ν1) − g(ν2), on

the compact region R = {(ν1, ν2) ∈ R
m × R

m : ‖ν1‖ ≤ H0, ‖ν2‖ ≤ H0} together with the equicontinuity

of the collection of chaotic solutions of (10.13), one can verify that the collection F consisting of the

functions of the form gj(x1(t)) − gj(x2(t)), 1 ≤ j ≤ n, where x1(t) and x2(t) are chaotic solutions of

system (10.13), is an equicontinuous family on [0,∞).

According to the equicontinuity of the family F , one can find a positive number τ < ∆, which is

independent of x(t) and x(t), such that for any t1, t2 ∈ [0,∞) with |t1 − t2| < τ, the inequality

|(gj (x(t1))− gj (x(t1)))− (gj (x(t2))− gj (x(t2)))| <
Lgǫ0
2n

(10.16)

holds for all 1 ≤ j ≤ n.

Condition (A4) implies that ‖g(x(t)) − g(x(t))‖ ≥ Lg ‖x(t)− x(t)‖ , t ∈ J. Therefore, for each t ∈ J,

there exists an integer j0, 1 ≤ j0 ≤ n, which possibly depends on t, such that

|gj0(x(t)) − gj0(x(t))| ≥
Lg

n
‖x(t)− x(t)‖ .

Otherwise, if there exists s ∈ J such that for all 1 ≤ j ≤ n the inequality

|gj (x (s))− gj(x(s))| <
Lg

n
‖x(s) − x(s)‖

holds, then one encounters with a contradiction since

‖g(x(s))− g(x(s))‖ ≤
n
∑

j=1

|gj(x(s)) − gj(x(s))| < Lg ‖x(s) − x(s)‖ .

Denote by s0 the midpoint of the interval J, and let θ = s0 − τ/2. There exists an integer j0,
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1 ≤ j0 ≤ n, such that

|gj0(x(s0))− gj0(x(s0))| ≥
Lg

n
‖x(s0)− x(s0)‖ >

Lgǫ0
n

. (10.17)

On the other hand, making use of the inequality (10.16) it can be verified for all t ∈ [θ, θ + τ ] that

|gj0 (x(s0))− gj0 (x(s0))| − |gj0 (x(t)) − gj0 (x(t))|

≤ |(gj0 (x(t)) − gj0 (x(t)))− (gj0 (x(s0))− gj0 (x(s0)))|

<
Lgǫ0
2n

.

Therefore, by means of (10.17), we have that the inequality

|gj0 (x(t)) − gj0 (x(t))| > |gj0 (x(s0))− gj0 (x(s0))| −
Lgǫ0
2n

>
Lgǫ0
2n

(10.18)

is valid for t ∈ [θ, θ + τ ] .

One can find numbers s1, s2, . . . , sn ∈ [θ, θ + τ ] such that

∫ θ+τ

θ

[g(x(s))− g(x(s))] ds =
(

τ [g1(x(s1))− g1(x(s1))] , τ [g2(x(s2))− g2(x(s2))] ,

. . . , τ [gn(x(sn))− gn(x(sn))]
)

.

By using the inequality (10.18), we attain that

∥

∥

∥

∥

∥

∫ θ+τ

θ

[g(x(s)) − g(x(s))] ds

∥

∥

∥

∥

∥

≥ τ |gj0(x(sj0 ))− gj0(x(sj0))| >
τLgǫ0
2n

.

The relation

y(t)− y(t) = (y(θ)− y(θ)) +

∫ t

θ

[f(y(s))− f(y(s))] ds+

∫ t

θ

µ[g(x(s)) − g(x(s))]ds, t ∈ [θ, θ + τ ]

yields

‖y(θ + τ)− y(θ + τ)‖ ≥ |µ|
∥

∥

∥

∥

∥

∫ θ+τ

θ

[g(x(s)) − g(x(s))]ds

∥

∥

∥

∥

∥

−‖y(θ)− y(θ)‖ −
∫ θ+τ

θ

Lf ‖y(s)− y(s)‖ ds

>
|µ| τLgǫ0

2n
− ‖y(θ)− y(θ)‖ −

∫ θ+τ

θ

Lf ‖y(s)− y(s)‖ ds.
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The last inequality implies that

max
t∈[θ,θ+τ ]

‖y(t)− y(t)‖ ≥ ‖y(θ + τ)− y(θ + τ)‖

>
|µ| τLgǫ0

2n
− (1 + τLf ) max

t∈[θ,θ+τ ]
‖y(t)− y(t)‖ .

Therefore, max
t∈[θ,θ+τ ]

‖y(t)− y(t)‖ > |µ| τLgǫ0
2n(2 + τLf )

.

Suppose that max
t∈[θ,θ+τ ]

‖y(t)− y(t)‖ = ‖y(ξ)− y(ξ)‖ for some ξ ∈ [θ, θ + τ ]. Define

∆ = min

{

τ

2
,

|µ| τLgǫ0
8n(K0Lf +Mg |µ|)(2 + τLf )

}

and let

θ1 =











ξ, if ξ ≤ θ + τ/2

ξ −∆, if ξ > θ + τ/2
.

For t ∈ [θ1, θ1 +∆], by favour of the equation

y(t)− y(t) = (y(ξ)− y(ξ)) +

∫ t

ξ

[f(y(s))− f(y(s))] ds+

∫ t

ξ

µ[g(x(s)) − g(x(s))]ds,

one can obtain that

‖y(t)− y(t)‖ ≥ ‖y(ξ)− y(ξ)‖ −
∣

∣

∣

∣

∫ t

ξ

Lf ‖y(s)− y(s)‖ ds
∣

∣

∣

∣

− |µ|
∣

∣

∣

∣

∫ t

ξ

‖g(x(s)) − g(x(s))‖ ds
∣

∣

∣

∣

>
|µ| τLgǫ0

2n(2 + τLf )
− 2∆(K0Lf +Mg |µ|)

≥ |µ| τLgǫ0
4n(2 + τLf )

.

The length of the interval J1 = [θ1, θ1+∆] does not depend on x(t), x(t), and for t ∈ J1 the inequality

‖y(t)− y(t)‖ > ǫ1 holds, where ǫ1 =
|µ| τLgǫ0

4n(2 + τLf )
. Consequently, system (10.15) is sensitive. �

10.3 Existence of unstable periodic motions

Assume that system (10.13) admits a period-doubling cascade. That is, there exists an equation

x′ = G(x, λ), (10.19)

where λ is a parameter and the function G : Rm × R → R
m is such that for some finite number λ∞,

G(x, λ∞) is equal to the function F (x) in the right hand side of system (10.13).
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System (10.13) is said to admit a period-doubling cascade [21, 62, 63, 71] if there exists a sequence of

period-doubling bifurcation values {λj}j∈N
satisfying λj → λ∞ as j → ∞ such that as the parameter λ

increases or decreases through λj system (10.19) undergoes a period-doubling bifurcation for each j ∈ N.

As a consequence, at the parameter value λ = λ∞, there exist infinitely many unstable periodic solutions

of system (10.19), and hence of system (10.13), all lying in a bounded region.

Now, let us introduce the following definition [70]. We say that the solutions of the non-autonomous

system (10.15), with a fixed x(t), are ultimately bounded if there exists a number B > 0 such that

for every solution y(t), y(t0) = y0, of system (10.15), there exists a positive number R such that the

inequality ‖y(t)‖ < B holds for all t ≥ t0 +R.

We say that system (10.15) replicates the period-doubling cascade of system (10.13) if for each periodic

solution x(t) of (10.13), system (10.15) admits a periodic solution with the same period.

The following condition is required in the next theorem, which can be verified by using Theorem 15.8

[70].

(A5) Solutions of system (10.15) are ultimately bounded by a bound common for all x(t).

Theorem 10.3 If conditions (A1)−(A5) hold, then system (10.15) replicates the period-doubling cascade

of system (10.13).

It is worth noting that the instability of the infinite number of periodic solutions of system (10.15) is

ensured by Theorem 10.2.
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