803,389 research outputs found

    Nonparametric estimation of the dynamic range of music signals

    Full text link
    The dynamic range is an important parameter which measures the spread of sound power, and for music signals it is a measure of recording quality. There are various descriptive measures of sound power, none of which has strong statistical foundations. We start from a nonparametric model for sound waves where an additive stochastic term has the role to catch transient energy. This component is recovered by a simple rate-optimal kernel estimator that requires a single data-driven tuning. The distribution of its variance is approximated by a consistent random subsampling method that is able to cope with the massive size of the typical dataset. Based on the latter, we propose a statistic, and an estimation method that is able to represent the dynamic range concept consistently. The behavior of the statistic is assessed based on a large numerical experiment where we simulate dynamic compression on a selection of real music signals. Application of the method to real data also shows how the proposed method can predict subjective experts' opinions about the hifi quality of a recording

    Econometric modelling in finance and risk management: An overview

    Get PDF
    This paper gives an overview about the sixteen papers included in this special issue. The papers in this special issue cover a wide range of topics. Such topics include discussing a class of tests for correlation, estimation of realized volatility, modeling time series and continuous-time models with long-range dependence, estimation and specification testing of time series models, estimation in a factor model with high-dimensional problems, finite-sample examination of quasi-maximum likelihood estimation in an autoregressive conditional duration model, and estimation in a dynamic additive quantile model.Continuous-time model; correlation test; dynamic additive model; estimation of realized volatility; factor model; long-range dependence

    An analysis of I/O efficient order-statistic-based techniques for noise power estimation in the HRMS sky survey's operational system

    Get PDF
    Noise power estimation in the High-Resolution Microwave Survey (HRMS) sky survey element is considered as an example of a constant false alarm rate (CFAR) signal detection problem. Order-statistic-based noise power estimators for CFAR detection are considered in terms of required estimator accuracy and estimator dynamic range. By limiting the dynamic range of the value to be estimated, the performance of an order-statistic estimator can be achieved by simpler techniques requiring only a single pass of the data. Simple threshold-and-count techniques are examined, and it is shown how several parallel threshold-and-count estimation devices can be used to expand the dynamic range to meet HRMS system requirements with minimal hardware complexity. An input/output (I/O) efficient limited-precision order-statistic estimator with wide but limited dynamic range is also examined

    Design of a large dynamic range readout unit for the PSD detector of DAMPE

    Full text link
    A large dynamic range is required by the Plastic Scintillator Detector (PSD) of DArk Matter Paricle Explorer (DAMPE), and a double-dynode readout has been developed. To verify this design, a prototype detector module has been constructed and tested with cosmic rays and heavy ion beams. The results match with the estimation and the readout unit could easily cover the required dynamic range

    Ultimate SLAM? Combining Events, Images, and IMU for Robust Visual SLAM in HDR and High Speed Scenarios

    Full text link
    Event cameras are bio-inspired vision sensors that output pixel-level brightness changes instead of standard intensity frames. These cameras do not suffer from motion blur and have a very high dynamic range, which enables them to provide reliable visual information during high speed motions or in scenes characterized by high dynamic range. However, event cameras output only little information when the amount of motion is limited, such as in the case of almost still motion. Conversely, standard cameras provide instant and rich information about the environment most of the time (in low-speed and good lighting scenarios), but they fail severely in case of fast motions, or difficult lighting such as high dynamic range or low light scenes. In this paper, we present the first state estimation pipeline that leverages the complementary advantages of these two sensors by fusing in a tightly-coupled manner events, standard frames, and inertial measurements. We show on the publicly available Event Camera Dataset that our hybrid pipeline leads to an accuracy improvement of 130% over event-only pipelines, and 85% over standard-frames-only visual-inertial systems, while still being computationally tractable. Furthermore, we use our pipeline to demonstrate - to the best of our knowledge - the first autonomous quadrotor flight using an event camera for state estimation, unlocking flight scenarios that were not reachable with traditional visual-inertial odometry, such as low-light environments and high-dynamic range scenes.Comment: 8 pages, 9 figures, 2 table

    High-Dynamic-Range Lighting Estimation From Face Portraits.

    Get PDF
    We present a CNN-based method for outdoor highdynamic-range (HDR) environment map prediction from low-dynamic-range (LDR) portrait images. Our method relies on two different CNN architectures, one for light encoding and another for face-to-light prediction. Outdoor lighting is characterised by an extremely high dynamic range, and thus our encoding splits the environment map data between low and high-intensity components, and encodes them using tailored representations. The combination of both network architectures constitutes an end-to-end method for accurate HDR light prediction from faces at real-time rates, inaccessible for previous methods which focused on low dynamic range lighting or relied on non-linear optimisation schemes. We train our networks using both real and synthetic images, we compare our light encoding with other methods for light representation, and we analyse our results for light prediction on real images. We show that our predicted HDR environment maps can be used as accurate illumination sources for scene renderings, with potential applications in 3D object insertion for augmented reality

    Feature Selection for Dynamic Range Compressor Parameter Estimation

    Get PDF
    date-added: 2018-05-07 00:06:23 +0000 date-modified: 2018-05-07 00:09:42 +0000 keywords: feature selection,. intelligent music production, AES, intelligent audio effects local-url: sheng2018aes.pdfdate-added: 2018-05-07 00:06:23 +0000 date-modified: 2018-05-07 00:09:42 +0000 keywords: feature selection,. intelligent music production, AES, intelligent audio effects local-url: sheng2018aes.pdfdate-added: 2018-05-07 00:06:23 +0000 date-modified: 2018-05-07 00:09:42 +0000 keywords: feature selection,. intelligent music production, AES, intelligent audio effects local-url: sheng2018aes.pdfCasual users of audio effects may lack practical experience or knowledge of their low-level signal processing parameters. An intelligent control tool that allows using sound examples to control effects would strongly benefit these users. In a previous work we proposed a control method for the dynamic range compressor (DRC) using a random forest regression model. It maps audio features extracted from a reference sound to DRC parameter values, such that the processed signal resembles the reference. The key to good performance in this system is the relevance and effectiveness of audio features. This paper focusses on a thorough exposition and assessment of the features, as well as the comparison of different strategies to find the optimal feature set for DRC parameter estimation, using automatic feature selection methods. This enables us to draw conclusions about which features are relevant to core DRC parameters. Our results show that conventional time and frequency domain features well known from the literature are sufficient to estimate the DRC’s threshold and ratio parameters, while more specialized features are needed for attack and release time, which induce more subtle changes to the signal
    • …
    corecore