3,500 research outputs found

    Entropic Image Restoration as a Dynamic System with Entropy Operator

    Get PDF

    Contribution à la planification de mouvement pour robots humanoïdes

    Get PDF
    cette thèse porte sur des algorithmes de contrôle et de planification de mouvements pour les robots humanoïdes. Le grand nombre de paramètres caractérisant ces systèmes a conduit au développement de méthodes numériques, d'abord appliquées aux bras manipulateurs et récemment adaptées pour les structures plus complexes. On relève particulièrement les formalismes de commande cinématique et dynamique par priorité qui permettent de produire un mouvement selon une hiérarchie préétablie des tâches. Au cours de ce travail, nous avons identifié le besoin d'étendre ce formalisme afin de tenir compte de contraintes unilatérales. Nous nous sommes par ailleurs intéressés à la planification de la locomotion en fonction des tâches. Nous proposons une modélisation jointe du robot et de sa trajectoire de marche comme une structure articulée unique saisissant à la fois les degrés de liberté actionnés (articulations motorisées du robot) et non actionnés (positionnement absolu dans l'espace). L'ensemble de ces algorithmes, qui seront longuement illustrés, ont été implémentés au sein du projet HPP (Humanoid Path Planner) et validés sur le robot humanoïde HRP-2.this thesis is related to motion control and planning algorithms for humanoid robots. For such highly-parameterized systems, numerical methods are well adapted and have thus been the enter of increasing attention in the recent years. Among the prominent numerical schemes, we recognized the prioritized inverse kinematics and dynamics frameworks to hold key features to plan motion for humanoid robots, such as the possibility to control the motion while enforcing a strict priority order among tasks. We have, however, identified a lack of support of strict priority enforcement when inequality constraints are to be accounted for in the numerical schemes and we were successful in proposing a solution to this shortcoming. We also considered the problem of planning bipedal locomotion according to any given tasks. We proposed to model this problem as an inverse kinematics problem, by considering the kinematic structure of the robot and its walk path as a single unified structure that captures both the degrees of freedom of the robot which are actuated (motorized joints) and those which are not (position and orientation in space). The presented algorithms, which will be abundantly illustrated, have been implemented within the HPP (Humanoid Path Planner) project and validated on the humanoid robot HRP-2

    Decision procedures for linear arithmetic

    Get PDF
    In this thesis, we present new decision procedures for linear arithmetic in the context of SMT solvers and theorem provers: 1) CutSat++, a calculus for linear integer arithmetic that combines techniques from SAT solving and quantifier elimination in order to be sound, terminating, and complete. 2) The largest cube test and the unit cube test, two sound (although incomplete) tests that find integer and mixed solutions in polynomial time. The tests are especially efficient on absolutely unbounded constraint systems, which are difficult to handle for many other decision procedures. 3) Techniques for the investigation of equalities implied by a constraint system. Moreover, we present several applications for these techniques. 4) The Double-Bounded reduction and the Mixed-Echelon-Hermite transformation, two transformations that reduce any constraint system in polynomial time to an equisatisfiable constraint system that is bounded. The transformations are beneficial because they turn branch-and-bound into a complete and efficient decision procedure for unbounded constraint systems. We have implemented the above decision procedures (except for Cut- Sat++) as part of our linear arithmetic theory solver SPASS-IQ and as part of our CDCL(LA) solver SPASS-SATT. We also present various benchmark evaluations that confirm the practical efficiency of our new decision procedures.In dieser Arbeit präsentieren wir neue Entscheidungsprozeduren für lineare Arithmetik im Kontext von SMT-Solvern und Theorembeweisern: 1) CutSat++, ein korrekter und vollständiger Kalkül für ganzzahlige lineare Arithmetik, der Techniken zur Entscheidung von Aussagenlogik mit Techniken aus der Quantorenelimination vereint. 2) Der Größte-Würfeltest und der Einheitswürfeltest, zwei korrekte (wenn auch unvollständige) Tests, die in polynomieller Zeit (gemischt-)ganzzahlige Lösungen finden. Die Tests sind besonders effizient auf vollständig unbegrenzten Systemen, welche für viele andere Entscheidungsprozeduren schwer sind. 3) Techniken zur Ermittlung von Gleichungen, die von einem linearen Ungleichungssystem impliziert werden. Des Weiteren präsentieren wir mehrere Anwendungsmöglichkeiten für diese Techniken. 4) Die Beidseitig-Begrenzte-Reduktion und die Gemischte-Echelon-Hermitesche- Transformation, die ein Ungleichungssystem in polynomieller Zeit auf ein erfüllbarkeitsäquivalentes System reduzieren, das begrenzt ist. Vereint verwandeln die Transformationen Branch-and-Bound in eine vollständige und effiziente Entscheidungsprozedur für unbeschränkte Ungleichungssysteme. Wir haben diese Techniken (ausgenommen CutSat++) in SPASS-IQ (unserem theory solver für lineare Arithmetik) und in SPASS-SATT (unserem CDCL(LA) solver) implementiert. Basierend darauf präsentieren wir Benchmark-Evaluationen, die die Effizienz unserer Entscheidungsprozeduren bestätigen

    PLANET : a hierarchical network simulator

    Get PDF

    A Reduction from Unbounded Linear Mixed Arithmetic Problems into Bounded Problems

    Get PDF
    We present a combination of the Mixed-Echelon-Hermite transformation and the Double-Bounded Reduction for systems of linear mixed arithmetic that preserve satisfiability and can be computed in polynomial time. Together, the two transformations turn any system of linear mixed constraints into a bounded system, i.e., a system for which termination can be achieved easily. Existing approaches for linear mixed arithmetic, e.g., branch-and-bound and cuts from proofs, only explore a finite search space after application of our two transformations. Instead of generating a priori bounds for the variables, e.g., as suggested by Papadimitriou, unbounded variables are eliminated through the two transformations. The transformations orient themselves on the structure of an input system instead of computing a priori (over-)approximations out of the available constants. Experiments provide further evidence to the efficiency of the transformations in practice. We also present a polynomial method for converting certificates of (un)satisfiability from the transformed to the original system

    Decomposition Techniques for Bilinear Saddle Point Problems and Variational Inequalities with Affine Monotone Operators on Domains Given by Linear Minimization Oracles

    Full text link
    The majority of First Order methods for large-scale convex-concave saddle point problems and variational inequalities with monotone operators are proximal algorithms which at every iteration need to minimize over problem's domain X the sum of a linear form and a strongly convex function. To make such an algorithm practical, X should be proximal-friendly -- admit a strongly convex function with easy to minimize linear perturbations. As a byproduct, X admits a computationally cheap Linear Minimization Oracle (LMO) capable to minimize over X linear forms. There are, however, important situations where a cheap LMO indeed is available, but X is not proximal-friendly, which motivates search for algorithms based solely on LMO's. For smooth convex minimization, there exists a classical LMO-based algorithm -- Conditional Gradient. In contrast, known to us LMO-based techniques for other problems with convex structure (nonsmooth convex minimization, convex-concave saddle point problems, even as simple as bilinear ones, and variational inequalities with monotone operators, even as simple as affine) are quite recent and utilize common approach based on Fenchel-type representations of the associated objectives/vector fields. The goal of this paper is to develop an alternative (and seemingly much simpler) LMO-based decomposition techniques for bilinear saddle point problems and for variational inequalities with affine monotone operators

    AI Hilbert: A New Paradigm for Scientific Discovery by Unifying Data and Background Knowledge

    Full text link
    The discovery of scientific formulae that parsimoniously explain natural phenomena and align with existing background theory is a key goal in science. Historically, scientists have derived natural laws by manipulating equations based on existing knowledge, forming new equations, and verifying them experimentally. In recent years, data-driven scientific discovery has emerged as a viable competitor in settings with large amounts of experimental data. Unfortunately, data-driven methods often fail to discover valid laws when data is noisy or scarce. Accordingly, recent works combine regression and reasoning to eliminate formulae inconsistent with background theory. However, the problem of searching over the space of formulae consistent with background theory to find one that fits the data best is not well-solved. We propose a solution to this problem when all axioms and scientific laws are expressible via polynomial equalities and inequalities and argue that our approach is widely applicable. We further model notions of minimal complexity using binary variables and logical constraints, solve polynomial optimization problems via mixed-integer linear or semidefinite optimization, and prove the validity of our scientific discoveries in a principled manner using Positivestellensatz certificates. Remarkably, the optimization techniques leveraged in this paper allow our approach to run in polynomial time with fully correct background theory, or non-deterministic polynomial (NP) time with partially correct background theory. We demonstrate that some famous scientific laws, including Kepler's Third Law of Planetary Motion, the Hagen-Poiseuille Equation, and the Radiated Gravitational Wave Power equation, can be derived in a principled manner from background axioms and experimental data.Comment: Slightly revised from version 1, in particular polished the figure
    corecore