9 research outputs found

    Higher-order lazy functional slicing

    Get PDF
    Program slicing is a well known family of techniques intended to identify and isolate code fragments which depend on, or are depended upon, specific program entities. This is particularly useful in the areas of reverse engineering, program understanding, testing and software maintenance. Most slicing methods, and corresponding tools, target either the imperative or the object oriented paradigms, where program slices are computed with respect to a variable or a program statement. Taking a complementary point of view, this paper focuses on the slicing of higher-order functional programs under a lazy evaluation strategy. A prototype of a Haskell slicer, built as proof-of-concept for these ideas, is also introduced

    System dependence graphs in sequential Erlang

    Full text link
    The system dependence graph (SDG) is a data structure used in the imperative paradigm for different static analysis, and particularly, for program slicing. Program slicing allows us to determine the part of a program (called slice) that influences a given variable of interest. Thanks to the SDG, we can produce precise slices for interprocedural programs. Unfortunately, the SDG cannot be used in the functional paradigm due to important features that are not considered in this formalism (e.g., pattern matching, higher-order, composite expressions, etc.). In this work we propose the first adaptation of the SDG to a functional language facing these problems. We take Erlang as the host language and we adapt the algorithms used to slice the SDG to produce precise slices of Erlang interprocedural programs. As a proof-of-concept, we have implemented a program slicer for Erlang based on our SDGs.This work has been partially supported by the Spanish Ministerio de Ciencia e Innovaci´on under grant TIN2008-06622-C03-02 and by the Generalitat Valenciana under grant PROMETEO/2011/052. Salvador Tamarit was partially supported by the Spanish MICINN under FPI grant BES-2009-015019Silva Galiana, JF.; Tamarit Muñoz, S.; Tomás Franco, C. (2012). System dependence graphs in sequential Erlang. En Fundamental Approaches to Software Engineering. Springer Verlag (Germany). 486-500. https://doi.org/10.1007/978-3-642-28872-2_33S486500Agrawal, H., Horgan, J.R.: Dynamic program slicing. In: Programming Language Design and Implementation (PLDI), pp. 246–256 (1990)Brown, C.: Tool Support for Refactoring Haskell Programs. PhD thesis, School of Computing, University of Kent, Canterbury, Kent, UK (2008)Cheda, D., Silva, J., Vidal, G.: Static slicing of rewrite systems. Electron. Notes Theor. Comput. Sci. 177, 123–136 (2007)Ferrante, J., Ottenstein, K.J., Warren, J.D.: The Program Dependence Graph and Its Use in Optimization. ACM Transactions on Programming Languages and Systems 9(3), 319–349 (1987)Field, J., Ramalingam, G., Tip, F.: Parametric program slicing. In: Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 1995, pp. 379–392. ACM, New York (1995)Horwitz, S., Reps, T., Binkley, D.: Interprocedural slicing using dependence graphs. ACM Transactions Programming Languages and Systems 12(1), 26–60 (1990)Korel, B., Laski, J.: Dynamic Program Slicing. Information Processing Letters 29(3), 155–163 (1988)Larsen, L., Harrold, M.J.: Slicing object-oriented software. In: Proceedings of the 18th International Conference on Software Engineering, ICSE 1996, pp. 495–505. IEEE Computer Society, Washington, DC (1996)Liang, D., Harrold, M.J.: Slicing objects using system dependence graphs. In: Proceedings of the International Conference on Software Maintenance, ICSM 1998, pp. 358–367. IEEE Computer Society, Washington, DC (1998)Lindahl, T., Sagonas, K.F.: Typer: a type annotator of erlang code. In: Sagonas, K.F., Armstrong, J. (eds.) Erlang Workshop, pp. 17–25. ACM (2005)Lindahl, T., Sagonas, K.F.: Practical type inference based on success typings. In: Bossi, A., Maher, M.J. (eds.) PPDP, pp. 167–178. ACM (2006)Ochoa, C., Silva, J., Vidal, G.: Dynamic slicing based on redex trails. In: Proceedings of the 2004 ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program Manipulation, PEPM 2004, pp. 123–134. ACM, New York (2004)Reps, T., Turnidge, T.: Program Specialization via Program Slicing. In: Danvy, O., Thiemann, P., Glück, R. (eds.) Dagstuhl Seminar 1996. LNCS, vol. 1110, pp. 409–429. Springer, Heidelberg (1996)Rodrigues, N.F., Barbosa, L.S.: Component identification through program slicing. In: Proc. of Formal Aspects of Component Software (FACS 2005). Elsevier ENTCS, pp. 291–304. Elsevier (2005)Tip, F.: A survey of program slicing techniques. Journal of Programming Languages 3(3), 121–189 (1995)Tóth, M., Bozó, I., Horváth, Z., Lövei, L., Tejfel, M., Kozsik, T.: Impact Analysis of Erlang Programs Using Behaviour Dependency Graphs. In: Horváth, Z., Plasmeijer, R., Zsók, V. (eds.) CEFP 2009. LNCS, vol. 6299, pp. 372–390. Springer, Heidelberg (2010)Walkinshaw, N., Roper, M., Wood, M., Roper, N.W.M.: The java system dependence graph. In: Third IEEE International Workshop on Source Code Analysis and Manipulation, p. 5 (2003)Weiser, M.: Program Slicing. In: Proceedings of the 5th International Conference on Software Engineering, pp. 439–449. IEEE Press (1981)Widera, M.: Flow graphs for testing sequential erlang programs. In: Proceedings of the 2004 ACM SIGPLAN Workshop on Erlang, ERLANG 2004, pp. 48–53. ACM, New York (2004)Widera, M., Informatik, F.: Concurrent erlang flow graphs. In: Proceedings of the Erlang/OTP User Conference (2005)Zhao, J.: Slicing aspect-oriented software. In: Proceedings of the 10th International Workshop on Program Comprehension, IWPC 2002, pp. 251–260. IEEE Computer Society, Washington, DC (2002

    Dynamic slicing of concurrent specification languages

    Full text link
    This is the author’s version of a work that was accepted for publication in Parallel Computing. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Parallel Computing, 53, 1-22., (2016). DOI 10.1016/j.parco.2016.01.006.[EN] Dynamic slicing is a technique to extract the part of the program (called slice) that influences or is influenced, in a particular execution, by a given point of interest in the source code (called slicing criterion). Since a single execution is considered, the technique often uses a trace of this execution to analyze data and control dependencies. In this work we present the first formulation and implementation of dynamic slicing in the context of CSP. Most of the ideas presented can be directly applied to other concurrent specification languages such as Promela or CCS, but we center the discussion and the implementation on CSP. We base our technique on a new data structure to represent CSP computations called track. A track is a data structure which represents the sequence of expressions that have been evaluated during the computation, and moreover, it is labeled with the location of these expressions in the specification. The implementation of a dynamic slicer for CSP is useful for debugging, program comprehension, and program specialization, and it is also interesting from a theoretical perspective because CSP introduces difficulties such as heavy concurrency and non-determinism, synchronizations, frequent absence of data dependence, etc. © 2016 Elsevier B.V. All rights reservedThis work has been partially supported by the EU (FEDER) and the Spanish Ministerio de Economia y Competitividad under Grant TIN2013-44742-C4-1-R and by the Generalitat Valenciana under Grant PROMETEOII/2015/013 (SmartLogic). Salvador Tamarit was partially supported by Madrid regional projects N-GREENS Software-CM (S2013/ICE-2731), and by European Union project POLCA (STREP FP7-ICT-20133.4 610686).Llorens Agost, ML.; Oliver Villarroya, J.; Silva, J.; Tamarit Muñoz, S. (2016). Dynamic slicing of concurrent specification languages. Parallel Computing. 53:1-22. https://doi.org/10.1016/j.parco.2016.01.006S1225

    Slicing Condicional de Programas Funcionales

    Full text link
    La fragmentación o slicing de programas es un método para aislar partes de un programa que potencialmente afectan al valor computado en un punto de interés, conocido como criterio de slicing. Esta técnica fue ampliamente utilizada e investigada en el paradigma imperativo, pero no ha recibido la misma atención en el contexto declarativo. La técnica denominada slicing condicional brinda un marco común para la realización de slicing y es relevante debido a que subsume al slicing estático y dinámico. Este tipo de descomposición no ha sido definida en el paradigma declarativo. En este trabajo definimos y proponemos un algoritmo para calcular slices condicionales en lenguajes funcionales de primer orden.Cheda, D. (2008). Slicing Condicional de Programas Funcionales. http://hdl.handle.net/10251/12304Archivo delegad

    Una aproximación offline a la evaluación parcial dirigida por narrowing

    Full text link
    La evaluación parcial dirigida por narrowing (NPE: Narrowing-driven Partial Evaluation) es una técnica potente para la especialización de sistemas de reescritura, i.e., para el componente de primer orden de muchos lenguajes declarativos (lógico) funcionales como Haskell, Curry o Toy. Los evaluadores parciales se clasifican en dos grandes categorías: online y offline, de acuerdo al momento temporal en que se consideran los aspectos de terminación del proceso de especialización. Los evaluadores parciales online son usualmente más precisos ya que tienen más información disponible. Los evaluadores parciales offline proceden comúnmente en dos etapas; la primera etapa procesa un programa (e.g., para identificar aquellas llamadas a función que se pueden desplegar sin riesgo de no terminación) e incluye anotaciones para guiar las computaciones parciales; entonces, una segunda etapa, la de evaluación parcial propiamente dicha, sólo tiene que obedecer las anotaciones y por tanto el especializador es mucho más rápido que en la aproximación online. En esta tesis se presenta un nuevo esquema de evaluación parcial dirigido por narrowing, más eficiente y que asegura la terminación siguiendo el estilo offline. Para ello, identificamos una caracterización de programas cuasi-terminantes a los que llamamos "no crecientes". En tales programas, las computaciones por narrowing necesario presentan sólo un conjunto finito de términos diferentes (módulo renombramiento de variables). La propiedad de la cuasi-terminación es importante toda vez que su presencia es regularmente una condición suficiente para la terminación del proceso de especialización. Sin embargo, la clase de programas cuasi-terminantes es muy restrictiva, por lo que introducimos un algoritmo que acepta programas inductivamente secuenciales---una clase mucho más amplia sobre la que está definido el narrowing necesario---y anota aquellas partes que violan la caracterización de programas no crecientes. Para procesar de maneRamos Díaz, JG. (2007). Una aproximación offline a la evaluación parcial dirigida por narrowing [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/1888Palanci

    Poly-controlled partial evaluation and its application to resource-aware program specialization

    Get PDF
    La Evaluación Parcial es una técnica automática para la optimización de programas. Su objetivo principal es el de especializar un programa con respecto a parte de sus datos de entrada, los que se conocen como datos estáticos. La calidad del código generado por la evaluación parcial de programas lógicos depende, en gran medida, de la estrategia de control que se haya empleado. Desafortunadamente, aún estamos lejos de contar con una estrategia de control suficientemente sofisticada como para comportarse de manera óptima para cualquier programa. La principal contribución de esta tesis es el desarrollo de la Evaluación Parcial Policontrolada, un novedoso entorno para la evaluación parcial de programas lógicos, el cual es policontrolado en el sentido de que puede tomar en cuenta conjuntos de reglas de control global y local, en lugar de emplear una única combinación predeterminada (como es el caso de la evaluación parcial tradicional). Este entorno es más flexible que los enfoques existentes, ya que permite asignar diferentes reglas de control local y global a diferentes patrones de llamada. De este modo, es posible obtener programas especializados que no pueden ser generados usando evaluación parcial tradicional. En consecuencia, el entorno de evaluación parcial policontrolada puede generar conjuntos de programas especializados, en lugar de un único programa. A través de técnicas auto-ajustables, es posible hacer que este enfoque sea completamente automático. Dichas técnicas permiten medir la calidad de los diferentes programas especializados obtenidos. Este entorno es consciente de los recursos, en el sentido de que cada una de las soluciones obtenidas a través de la evaluación parcial policontrolada es valorada utilizando funciones de adecuación, las que pueden tener en cuenta factores tales como el tamaño de los programas especializados, o la cantidad de memoria que consumen, además de la velocidad del programa especializado que es el factor habitualmente considerado en otros entornos de evaluación parcial. Este entorno de evaluación parcial policontrolada ha sido implementado en el sistema CiaoPP, y evaluado con numerosos programas de prueba. Los resultados experimentales muestran que nuestra propuesta obtiene en muchos casos mejores especializaciones que aquellas generadas usando la evaluación parcial tradicional, especialmente cuando la especialización es consciente de los recursos. Otra de las principales contribuciones de esta tesis es la presentación de una visión unificada del problema de eliminar la polivarianza superflua en la evaluación parcial y en la especialización abstracta múltiple, a través del uso de un paso de minimización, el cual agrupa versiones equivalentes de predicados. Este paso se puede aplicar en la especialización de cualquier programa Prolog, inclusive aquellos que contienen llamadas a predicados predefinidos o predicados externos. Además, ofrecemos la posibilidad de agrupar versiones que no sean estrictamente equivalentes, con el propósito de obtener programas más pequeños

    ABSTRACT Dynamic Slicing Based on Redex Trails ∗

    No full text
    Tracing computations is a widely used methodology for program debugging. Lazy languages, in particular, pose new demands on tracing techniques since following the actual trace of a computation is generally useless. Typically, they rely on the construction of a redex trail, a graph that describes the reductions of a computation and its relationships. While tracing provides a significant help for locating bugs, the task still remains complex. A well-known debugging technique for imperative programs is based on dynamic slicing, a method to find the program statements that influence the computation of a value for a specific program input. In this work, we introduce a novel technique for dynamic slicing in lazy functional logic languages. Rather than starting from scratch, our technique relies on (a slight extension of) redex trails. We provide a method to compute a correct and minimal dynamic slice from the redex trail of a computation. A clear advantage of our proposal is that one can enhance existing tracers with slicing capabilities with a modest implementation effort, since the same data structure (the redex trail) can be used for both tracing and slicing
    corecore