23 research outputs found

    Structure and Properties of Traces for Functional Programs

    Get PDF
    The tracer Hat records in a detailed trace the computation of a program written in the lazy functional language Haskell. The trace can then be viewed in various ways to support program comprehension and debugging. The trace was named the augmented redex trail. Its structure was inspired by standard graph rewriting implementations of functional languages. Here we describe a model of the trace that captures its essential properties and allows formal reasoning. The trace is a graph constructed by graph rewriting but goes beyond simple term graphs. Although the trace is a graph whose structure is independent of any rewriting strategy, we define the trace inductively, thus giving us a powerful method for proving its properties

    Higher-order lazy functional slicing

    Get PDF
    Program slicing is a well known family of techniques intended to identify and isolate code fragments which depend on, or are depended upon, specific program entities. This is particularly useful in the areas of reverse engineering, program understanding, testing and software maintenance. Most slicing methods, and corresponding tools, target either the imperative or the object oriented paradigms, where program slices are computed with respect to a variable or a program statement. Taking a complementary point of view, this paper focuses on the slicing of higher-order functional programs under a lazy evaluation strategy. A prototype of a Haskell slicer, built as proof-of-concept for these ideas, is also introduced

    Slicing Condicional de Programas Funcionales

    Full text link
    La fragmentación o slicing de programas es un método para aislar partes de un programa que potencialmente afectan al valor computado en un punto de interés, conocido como criterio de slicing. Esta técnica fue ampliamente utilizada e investigada en el paradigma imperativo, pero no ha recibido la misma atención en el contexto declarativo. La técnica denominada slicing condicional brinda un marco común para la realización de slicing y es relevante debido a que subsume al slicing estático y dinámico. Este tipo de descomposición no ha sido definida en el paradigma declarativo. En este trabajo definimos y proponemos un algoritmo para calcular slices condicionales en lenguajes funcionales de primer orden.Cheda, D. (2008). Slicing Condicional de Programas Funcionales. http://hdl.handle.net/10251/12304Archivo delegad

    Dynamic slicing of concurrent specification languages

    Full text link
    This is the author’s version of a work that was accepted for publication in Parallel Computing. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Parallel Computing, 53, 1-22., (2016). DOI 10.1016/j.parco.2016.01.006.[EN] Dynamic slicing is a technique to extract the part of the program (called slice) that influences or is influenced, in a particular execution, by a given point of interest in the source code (called slicing criterion). Since a single execution is considered, the technique often uses a trace of this execution to analyze data and control dependencies. In this work we present the first formulation and implementation of dynamic slicing in the context of CSP. Most of the ideas presented can be directly applied to other concurrent specification languages such as Promela or CCS, but we center the discussion and the implementation on CSP. We base our technique on a new data structure to represent CSP computations called track. A track is a data structure which represents the sequence of expressions that have been evaluated during the computation, and moreover, it is labeled with the location of these expressions in the specification. The implementation of a dynamic slicer for CSP is useful for debugging, program comprehension, and program specialization, and it is also interesting from a theoretical perspective because CSP introduces difficulties such as heavy concurrency and non-determinism, synchronizations, frequent absence of data dependence, etc. © 2016 Elsevier B.V. All rights reservedThis work has been partially supported by the EU (FEDER) and the Spanish Ministerio de Economia y Competitividad under Grant TIN2013-44742-C4-1-R and by the Generalitat Valenciana under Grant PROMETEOII/2015/013 (SmartLogic). Salvador Tamarit was partially supported by Madrid regional projects N-GREENS Software-CM (S2013/ICE-2731), and by European Union project POLCA (STREP FP7-ICT-20133.4 610686).Llorens Agost, ML.; Oliver Villarroya, J.; Silva, J.; Tamarit Muñoz, S. (2016). Dynamic slicing of concurrent specification languages. Parallel Computing. 53:1-22. https://doi.org/10.1016/j.parco.2016.01.006S1225

    A Lightweight Hat::simple type-preserving instrumentation for self-tracing lazy functional programs

    Get PDF
    Existing methods for generating a detailed trace of a computation of a lazy functional program are complex. These complications limit the use of tracing in practice. However, such a detailed trace is desirable for understanding and debugging a lazy functional program. Here we present a lightweight method that instruments a program to generate such a trace, namely the augmented redex trail introduced by the Haskell tracer Hat. The new method is a major step towards an omniscient debugger for real-world Haskell programs

    Causally consistent dynamic slicing

    Get PDF
    We offer a lattice-theoretic account of the problem of dynamic slicing for π-calculus, building on prior work in the sequential setting. For any particular run of a concurrent program, we exhibit a Galois connection relating forward slices of the initial configuration to backward slices of the terminal configuration. We prove that, up to lattice isomorphism, the same Galois connection arises for any causally equivalent execution, allowing an efficient concurrent implementation of slicing via a standard interleaving semantics. Our approach has been formalised in the dependentlytyped programming language Agda

    System dependence graphs in sequential Erlang

    Full text link
    The system dependence graph (SDG) is a data structure used in the imperative paradigm for different static analysis, and particularly, for program slicing. Program slicing allows us to determine the part of a program (called slice) that influences a given variable of interest. Thanks to the SDG, we can produce precise slices for interprocedural programs. Unfortunately, the SDG cannot be used in the functional paradigm due to important features that are not considered in this formalism (e.g., pattern matching, higher-order, composite expressions, etc.). In this work we propose the first adaptation of the SDG to a functional language facing these problems. We take Erlang as the host language and we adapt the algorithms used to slice the SDG to produce precise slices of Erlang interprocedural programs. As a proof-of-concept, we have implemented a program slicer for Erlang based on our SDGs.This work has been partially supported by the Spanish Ministerio de Ciencia e Innovaci´on under grant TIN2008-06622-C03-02 and by the Generalitat Valenciana under grant PROMETEO/2011/052. Salvador Tamarit was partially supported by the Spanish MICINN under FPI grant BES-2009-015019Silva Galiana, JF.; Tamarit Muñoz, S.; Tomás Franco, C. (2012). System dependence graphs in sequential Erlang. En Fundamental Approaches to Software Engineering. Springer Verlag (Germany). 486-500. https://doi.org/10.1007/978-3-642-28872-2_33S486500Agrawal, H., Horgan, J.R.: Dynamic program slicing. In: Programming Language Design and Implementation (PLDI), pp. 246–256 (1990)Brown, C.: Tool Support for Refactoring Haskell Programs. PhD thesis, School of Computing, University of Kent, Canterbury, Kent, UK (2008)Cheda, D., Silva, J., Vidal, G.: Static slicing of rewrite systems. Electron. Notes Theor. Comput. Sci. 177, 123–136 (2007)Ferrante, J., Ottenstein, K.J., Warren, J.D.: The Program Dependence Graph and Its Use in Optimization. ACM Transactions on Programming Languages and Systems 9(3), 319–349 (1987)Field, J., Ramalingam, G., Tip, F.: Parametric program slicing. In: Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 1995, pp. 379–392. ACM, New York (1995)Horwitz, S., Reps, T., Binkley, D.: Interprocedural slicing using dependence graphs. ACM Transactions Programming Languages and Systems 12(1), 26–60 (1990)Korel, B., Laski, J.: Dynamic Program Slicing. Information Processing Letters 29(3), 155–163 (1988)Larsen, L., Harrold, M.J.: Slicing object-oriented software. In: Proceedings of the 18th International Conference on Software Engineering, ICSE 1996, pp. 495–505. IEEE Computer Society, Washington, DC (1996)Liang, D., Harrold, M.J.: Slicing objects using system dependence graphs. In: Proceedings of the International Conference on Software Maintenance, ICSM 1998, pp. 358–367. IEEE Computer Society, Washington, DC (1998)Lindahl, T., Sagonas, K.F.: Typer: a type annotator of erlang code. In: Sagonas, K.F., Armstrong, J. (eds.) Erlang Workshop, pp. 17–25. ACM (2005)Lindahl, T., Sagonas, K.F.: Practical type inference based on success typings. In: Bossi, A., Maher, M.J. (eds.) PPDP, pp. 167–178. ACM (2006)Ochoa, C., Silva, J., Vidal, G.: Dynamic slicing based on redex trails. In: Proceedings of the 2004 ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program Manipulation, PEPM 2004, pp. 123–134. ACM, New York (2004)Reps, T., Turnidge, T.: Program Specialization via Program Slicing. In: Danvy, O., Thiemann, P., Glück, R. (eds.) Dagstuhl Seminar 1996. LNCS, vol. 1110, pp. 409–429. Springer, Heidelberg (1996)Rodrigues, N.F., Barbosa, L.S.: Component identification through program slicing. In: Proc. of Formal Aspects of Component Software (FACS 2005). Elsevier ENTCS, pp. 291–304. Elsevier (2005)Tip, F.: A survey of program slicing techniques. Journal of Programming Languages 3(3), 121–189 (1995)Tóth, M., Bozó, I., Horváth, Z., Lövei, L., Tejfel, M., Kozsik, T.: Impact Analysis of Erlang Programs Using Behaviour Dependency Graphs. In: Horváth, Z., Plasmeijer, R., Zsók, V. (eds.) CEFP 2009. LNCS, vol. 6299, pp. 372–390. Springer, Heidelberg (2010)Walkinshaw, N., Roper, M., Wood, M., Roper, N.W.M.: The java system dependence graph. In: Third IEEE International Workshop on Source Code Analysis and Manipulation, p. 5 (2003)Weiser, M.: Program Slicing. In: Proceedings of the 5th International Conference on Software Engineering, pp. 439–449. IEEE Press (1981)Widera, M.: Flow graphs for testing sequential erlang programs. In: Proceedings of the 2004 ACM SIGPLAN Workshop on Erlang, ERLANG 2004, pp. 48–53. ACM, New York (2004)Widera, M., Informatik, F.: Concurrent erlang flow graphs. In: Proceedings of the Erlang/OTP User Conference (2005)Zhao, J.: Slicing aspect-oriented software. In: Proceedings of the 10th International Workshop on Program Comprehension, IWPC 2002, pp. 251–260. IEEE Computer Society, Washington, DC (2002

    Modeling and Analyzing Reaction Systems in Maude

    Get PDF
    Reaction Systems (RSs) are a successful computational framework for modeling systems inspired by biochemistry. An RS defines a set of rules (reactions) over a finite set of entities (e.g., molecules, proteins, genes, etc.). A computation in this system is performed by rewriting a finite set of entities (a computation state) using all the enabled reactions in the RS, thereby producing a new set of entities (a new computation state). The number of entities in the reactions and in the computation states can be large, making the analysis of RS behavior difficult without a proper automated support. In this paper, we use the Maude language—a programming language based on rewriting logic—to define a formal executable semantics for RSs, which can be used to precisely simulate the system behavior as well as to perform reachability analysis over the system computation space. Then, by enriching the proposed semantics, we formalize a forward slicer algorithm for RSs that allows us to observe the evolution of the system on both the initial input and a fragment of it (the slicing criterion), thus facilitating the detection of forward causality and influence relations due to the absence/presence of some entities in the slicing criterion. The pursued approach is illustrated by a biological reaction system that models a gene regulation network for controlling the process of differentiation of T helper lymphocytes
    corecore