
Higher-Order Lazy Functional Slicing

Nuno F. Rodrigues
(DI-CCTC, Universidade do Minho, Portugal

nfr@di.uminho.pt)

Lúıs S. Barbosa
(DI-CCTC, Universidade do Minho, Portugal

lsb@di.uminho.pt)

Abstract: Program slicing is a well known family of techniques intended to identify
and isolate code fragments which depend on, or are depended upon, specific program
entities. This is particularly useful in the areas of reverse engineering, program under-
standing, testing and software maintenance. Most slicing methods, and corresponding
tools, target either the imperative or the object oriented paradigms, where program
slices are computed with respect to a variable or a program statement.

Taking a complementary point of view, this paper focuses on the slicing of higher-order
functional programs under a lazy evaluation strategy. A prototype of a Haskell slicer,
built as proof-of-concept for these ideas, is also introduced.

Key Words: Program slicing, functional programming, program analysis

Category: D.1.1, I.2.2, I.2.4

1 Introduction

Introduced by Weiser [13, 11, 12] in the late Seventies, program slicing is a
family of techniques for isolating parts of a program which depend on or are de-
pended upon a specific computational entity referred to as the slicing criterion.
In Weiser’s view, program slicing is an abstraction exercise that every program-
mer has gone through, aware of it or not, every time he undertakes source code
analysis.

Weiser’s original definition has been since then re-worked and expanded sev-
eral times, leading to the emergence of different methods for defining and com-
puting program slices. Despite this diversity, most of the methods and corre-
sponding tools target either the imperative or the object oriented paradigms,
where program slices are computed with respect to a variable or a program
statement.

Weiser approach corresponds to what would now be classified as a backward,
static slicing method. A dual concept is that of forward slicing introduced by
Horwitz et al [3]. In forward slicing one is interested on what depends on or is
affected by the entity selected as the slicing criterion. Note that combining the
two methods also gives interesting results. In particular the union of a backward

Journal of Universal Computer Science, vol. 13, no. 6 (2007), 854-873
submitted: 19/1/07, accepted: 22/3/07, appeared: 28/6/07 © J.UCS

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55634082?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


to a forward slice for the same criterion n provides a sort of a selective window
over the code highlighting the region relevant for entity n.

Another duality pops up between static and dynamic slicing. In the first case
only static program information is used, while the second one also considers input
values [4, 5] leading frequently, due to the extra information used, to smaller and
easier to analyse slices, although with a restricted validity.

Taking a different perspective, this paper focuses on the problem of slic-
ing functional programs [1]. Since slicing is a technique intended to be used by
programmers while developing, analyzing or transforming source code in a pro-
duction context, it should target real languages and in a most complete way.
Otherwise, such techniques would be useless by failing to stand up to the expec-
tations of their natural clients i.e., programmers and software analysts. Thus,
our approach to functional slicing targets an emerging programming paradigm:
functional programs with higher-order constructs sharing a lazy strategy evalu-
ation. Additionally it will be shown in section 7, that the strict version of the
proposed technique can be easily derived from the lazy one, and that the removal
of higher-order constructs represents a trivial simplification of the method intro-
duced here.

By the beginning of this work we thought that the development of higher-
order lazy functional slicer represented a more or less straightforward engineering
problem that could be easily solved by making use of some combination of parsing
and syntax tree traversal operations. However, all attempts to build such a tool
resorting to a direct implementation of these operations invariantly ended by the
discovery of some particular case where the resulting slices did not correspond
to the expected correct ones. Even more, by performing minor changes in the
implementations in order to correctly cover some special cases, one often ended
up introducing new problems or preventing the treatment of other special cases.

Soon, however, we realized the problem complexity had been underestimated
from the outset. This lead to the development of a semantic-based approach,
providing a suitable level of abstraction, in which the lazy slicing problem could
be specified and solved. Furthermore, the formed framework makes it possible
to state and verify relevant properties of the slicing process.

The research background of this paper amounts to the development of HaSlicer
1, a functional slicer targeting the functional language Haskell [1]. Before de-
veloping HaSlicer it was decided to pay special attention to high order entities,
somehow related to an architectural view over functional systems. Thus, HaSlicer
deals with code entities such as modules, data-types and functions, ignoring
completely more fine grained entities like functional combinator expressions. Al-
though the success of this decision is attested by the system high level views
given by the Functional Dependency Graph visualizer [10], there was still a lack

1 The tool is available online at http://labdotnet.di.uminho.pt/HaSlicer/HaSlicer.aspx

855Rodrigues N.F., Barbosa L.S.: Higher-Order Lazy Functional Slicing



of proper foundations and techniques for what may be called low level slicing of
functional programs. This paper is a step in that direction.

The context for this research is a broader project on program understanding
and re-engineering of legacy code supported by formal methods. Actually, if
forward software engineering can be regarded as an almost lost opportunity for
formal methods (with notable exceptions in areas such as safety-critical and
dependable computing), reverse engineering looks more and more a promising
area for their application, due to the engineering complexity and exponential
costs involved. In a situation in which the only quality certificate of the running
software artifact still is life-cycle endurance, customers and software producers
are little prepared to modify or improve running code. However, faced with so
risky a dependence on legacy software, managers are more and more prepared
to spend resources to increase confidence on — i.e., the level of understanding
of — their code.

The paper is organised as follows. Section introduces the functional language
FL, a “sugared” λ-calculus used to express our programs. Section 3 discusses the
relationship between slicing and evaluation and justifies the use of a semantic
approach to reason about slicing of functional programs. Sections 4 and 5 present
two algorithms for performing lazy functional slicing. In section 6 a strict version
of the slicing algorithm presented in section 5 is discussed. Section 7 resorts to the
semantics presented in sections 5 and 6 to prove that lazy slices are smaller than
or equal to their strict counterparts. Finally section 8 concludes and discusses
topics for future work.

1.1 Contributions

We formally introduce a dynamic slicing algorithm for higher-order lazy func-
tional languages which, to the best of our knowledge, is a first attempt to address
slicing for this kind of programs. It is also shown how the same formal setting
can be used to state and prove slicing properties. The whole approach is proto-
typed in a library developed for Haskell a pure higher-order lazy functional
language, as a proof-of-concept2.

2 Related Work

While we regard this work as a first incursion on higher-order lazy functional
slicing, there are a number of related works that should be mentioned.

In [8] Reps and Turnidge provide a static functional slicing algorithm but,
in contrast to our approach, theirs target first-order strict functional programs.
2 The library is available online at http://alfa.di.uminho.pt/∼nfr/Tools/Tools.html

856 Rodrigues N.F., Barbosa L.S.: Higher-Order Lazy Functional Slicing



Besides considering a different language class (first-order) and a different evalu-
ation strategy (strict), the authors define slicing criteria by means of projection
functions, a strategy that we regard as more rigid when compared to our own
approach which resorts to a subexpression labeling mechanism.

In [7] the authors present a strategy to dynamically slice lazy functional
languages. Nevertheless, they leave higher-order constructs as a topic for future
work, and base their approach on redex trails. This leads to a slicing criterion
definition (which consists of a tuple containing a function call with full evaluated
arguments, its value in a particular computation, the occurrence of the function
call and a pattern indicating the interesting part of the computed value) which
is much more complex to use in practice than our own. The latter, by pointing
out a specific (sub)expression in the code, represents a more natural way for the
analyst to encode the relevant aspects of the code that he/she wants isolated.

Perhaps the work most related to ours is [2], where the author presents an
algorithm for dynamic slicing of strict higher-order functional languages followed
by a brief adaptation of the algorithm to lazy evaluation. A major difference with
the approach proposed in their paper is that, recursive calls must be explicitly
declared in the language and there is no treatment of mutual recursive functions
which, as pointed out by the author, results in a considerable simplification of
the slicing process. Again, we believe that our definition of the slicing criterion
is more precise than the one used in [2], which consists of the value computed
by the program in question (even though more flexible slicing criteria are briefly
discussed).

Finally, it should be emphasized that a slicing criterion, like the one we pro-
pose, that permits to choose any (sub)expression of the program under analysis,
deeply influences and augments the complexity of the slicing process, specially
under a lazy evaluation framework like the one we address. In fact, this aspect is
the responsible for the evolution of the slicing algorithm from a one phase pro-
cess, like the one presented in section 5, to a two phase process where one must
first keep track of internal (sub)expression lazy dependencies before calculating
the final slicing with respect to the relevant (sub)expressions.

3 The Functional Language

Given that one is not interested on focusing on a single functional language,
but rather to come up with a technique that is potentially applicable to all
higher-order lazy functional languages, one has decided to introduce a common
level functional language which can easily serve several functional programming
language implementations.

The process of choosing such a syntax had to fulfill two main requisites. The
language could not be excessively broad since this would introduce an unneces-
sary notational burden in the representation. On the other hand it could not be

857Rodrigues N.F., Barbosa L.S.: Higher-Order Lazy Functional Slicing



excessively small because this would make translations from/to real functional
languages too complex to achieve.

Values z ::= (λx.e)
| (C x1 · · ·xa) a ≥ 0

Expressions e ::= z

| e x

| x

| let xn = en in e n > 0
| case e of {(Cj x1j · · ·xaj -> ej}n

j=1 n > 0, a ≥ 0
Programs prog ::= x1 = e1, . . . , xn = en

Figure 1: The FL syntax

Thus, one had to find a tradeoff between this conditions to make the entire
process feasible. Such a tradeoff is captured in language FL where the syntax is
presented in figure 1. FL notation is basically a λ-Calculus enriched with let

and case statements. It introduces the domain U of values, the domain E of
expressions, the domain P of programs and the domain of V of variables. Note
that values are also expressions by the first rule in the definition of expressions.

A very important detail about the language in figure 1 is that functional
application cannot occur between two arbitrary functional expressions, but only
between an expression and a variable previously defined. In practice this implies
that at evaluation time the applied expression must have been previously added
to the heap so that it can be used on a functional application. This requisite may
seem strange for now, but it is necessary to deal correctly with the semantics
upon which we define the slicing process.

It requires, however, some care when converting concrete functional programs
to FL. In practice, the translation is achieved by the introduction of a new free
variable with a let expression and the subsequent substitution of the expression
by the newly introduced variable.

Of course, to treat real functional languages, some other straightforward
syntactic translations are in demand. These includes the substitution of if then

else by case expressions with the respective True and False values or the
substitution of where constructions by let.

Such syntactic transformations have been implemented, as a prove of con-
cept, in a front end functional language (Haskell). Even more, they were im-
plemented isomorphically because by the end of the slicing process, one wants
to be able to reconstruct the slice exactly like the original program except by

858 Rodrigues N.F., Barbosa L.S.: Higher-Order Lazy Functional Slicing



the removal of some sliced expressions.
Finally, we have to uniquely identify the functional expressions and sub-

expressions of a program, such that the slicing process refer to these identifiers
in order to specify what parts of the program belong to a specific slice. Such
identifiers, collected in a set L, are introduced by expression labeling as shown
in figure 2, where a ≥ 0 and n > 0.

Values z ::= (λx : l1.e) : l

| (C x1 : l1 · · ·xa : la) : l

Expressions e ::= z

| e (x : l′) : l

| x : l

| let xn = en : ln in e : l

| case e of {(Cj x1j : l1j · · ·xaj : laj) : l′ -> ej}n
j=1 : l

Programs prog ::= x1 = e1, . . . , xn = en

Figure 2: Labeled FL syntax

For the moment, one may look at labels from L as simple unique identifiers of
functional expressions. Latter, these labels will be used to capture information
about the source language representation of the expression they denote, so that,
by the end of the slicing process, one can be able to construct a sliced source
code version of the program under analysis.

4 Slicing and Evaluation

Slicing of functional programs is an operation that largely depends on the under-
lying evaluation strategy for expressions. This can be exemplified in programs
where strict evaluation introduces non termination whereas a lazy strategy pro-
duces a result. As an example, consider the following functional program.

fact :: Int -> Int

fact 0 = 1

fact k = k * fact (k-1)

ssuc :: Int -> Int -> Int

ssuc r y = y + 1

g :: Int -> [Int] -> [Int]

g x z = map (ssuc (fact x)) z

859Rodrigues N.F., Barbosa L.S.: Higher-Order Lazy Functional Slicing



If we calculate the slice of the above program w.r.t. expression g (-3) [1,2],
taking into account that the program is being evaluated under a strict strategy,
the evaluation will never terminate and the slice fails to compute.

On the other hand, under a lazy evaluation strategy, the evaluation is possible
because succ is not strict over its arguments, and therefore (fact x) which
introduces non terminating behaviour is not computed. Thus, slicing is now
feasible and one would expect to obtain the following slice:

ssuc :: Int -> Int -> Int

ssuc r y = y + 1

g :: [Int] -> [Int]

g z = map (ssuc (fact x)) z

Note that strictly speaking the computed slice is not executable. Actually this
would require definition of function fact in order to be interpreted or compiled.
This was a deliberate choice because, in a functional framework, if one calcu-
lates executable slices (without using any further program transformation), it
often happens that such slices take enormous proportions when compared to the
original code. Nevertheless, and because the expressions that are sliced away do
not interfere with the selected slicing criterion, a program transformation to be
used for this case is to substitute the expression in question by some special
value of the same type. In Haskell, for instance, and because types have a
cpo structure, one could use the bottom value (usually denoted by ⊥) of the
type in question to signal the superfluous expression. These and other possible
code transformations that target the execution of slices are, however, beyond
the scope of this paper.

The approach to low level slicing of functional programs proposed in this pa-
per is mainly oriented (but see section 6) to lazy languages. Our motivation was
that slicing has never been treated under such an evaluation strategy (combined
with higher-order constructs). Moreover, intuition suggests, as in the example
above, that lazy slices tend to be smaller than their strict counterparts.

Therefore, our starting point was a lazy semantics for FL introduced by
Launchbury in [6], which is presented in figure 3. In this semantics, expression
Γ � e ⇓ Δ � z states that expression e under heap Γ evaluates to value z

producing heap Δ as result.
In figure 3 and throughout the paper the following syntactic abbreviations

are used: ẑ standing for α−conversion, [xi �→ ei] for [x1 �→ e1, . . . , xi �→ ei],
Γ [xi �→ ei] to express the update of mapping [xi �→ ei] in heap Γ and e[xi/yi]
for the substitution e[x1/y1, . . . , xi/yi].

860 Rodrigues N.F., Barbosa L.S.: Higher-Order Lazy Functional Slicing



Γ � λy.e ⇓ Γ � λy.e Lamb

Γ � C x1 · · ·xa ⇓ Γ � C x1 · · ·xa Con

Γ � e ⇓ Δ � λy.e′ Δ � e′[x/y] ⇓ Θ � z

Γ � e x ⇓ Θ � z
App

Γ � e ⇓ Δ � z

Γ [x �→ e ] � x ⇓ Δ[x �→ z ] � ẑ
Var

Γ [xn �→ en] � e ⇓ Δ � z

Γ � let {xn = en} in e ⇓ Δ � z
Let

Γ � e ⇓ Δ � Ck x1 · · ·xak
Δ � ek[xi/yik] ⇓ Θ � z

Γ � case e of {Cj y1 · · · yaj -> ej}n
j=1 ⇓ Θ � z

Case

Figure 3: Lazy Semantics

5 Lazy Forward Slicing

We start by analyzing a simplified version of the more general problem of higher-
order lazy functional slicing, which we have called lazy print. The calculation of
this particular kind of slice is completely based on the lazy evaluation coverage
of a program, without taking any extra explicit slicing criterion. This means that
a lazy print calculation amounts to extracting the program fragment that has
some influence on the lazy evaluation of an expression within that program. For
an example, consider the following trivial functional program.

fst :: (a, b) -> a

fst (x, y) = x

sum :: [Int] -> Int

sum [] = 0

sum (h:t) = h + (sum t)

861Rodrigues N.F., Barbosa L.S.: Higher-Order Lazy Functional Slicing



g :: ([Int], Int) -> Int

g z = sum (fst z)

The lazy print of this program w.r.t. the evaluation of g ([], 3) is

fst :: (a, b) -> a

fst (x, ) = x

sum :: [Int] -> Int

sum [] = 0

g :: ([Int], Int) -> Int

g z = sum (fst z)

Automating this calculation entails the need to derive an augmented seman-
tics from the lazy semantics presented in figure 3. This extends Launchbury
semantics with an extra output value of type set of labels (S), for the evalua-
tion function ⇓. The purpose of this set S is to collect all the labels from the
expressions that constitute the lazy print of a given evaluation. Motivated by
implementation reasons, instead of using an alpha conversion in the original rule
Var, we introduce a fresh variable in rule Let to avoid variable clashing.

The lazy print semantics uses two auxiliary functions, namely ϕ : E×V → P L
and L : E → P L. Function ϕ collects the labels from all the occurrences of a
variable in an expression and function L returns all the labels in an expression.

The intuition behind this augmented semantics is that it works by collecting
all the labels from the expressions as they are being evaluated by the semantic
rules. The only exception is rule Let, which does not collect all the expression
labels immediately. This is explained by the fact that there is not sufficient
information available when rule Let is applied to decide which variable bindings
will be needed in the remainder of the evaluation towards the computation of
the final result. A possible solution for this problem is to have a kind of memory
associating pending labels and expressions such that, if an expression gets to be
used then not only their labels are included in the evaluation labels set, but also
the pending labels that were previously registered in the memory.

A straightforward implementation of such a memory mechanism is the heap
itself. Thus, by extending the heap from a mapping between variables and ex-
pressions to a mapping from variables to pairs of expressions and sets of labels,
the semantics becomes able to capture the “pending labels” introduced by the
Let rule.

A problem is spotted however in slices computed on top of the lazy print
semantics given in figure 4. As an example, consider the following fragment that

862 Rodrigues N.F., Barbosa L.S.: Higher-Order Lazy Functional Slicing



Γ � (λy : l1.e) : l ⇓{l1,l} Γ � (λy : l1.e) Lamb

Γ � (C x1 : l′1 · · ·xa : l′a) : l′ ⇓{l′k,l′} Δ � (C x1 : l′1 · · ·xa : l′a) : l′ Con
where k ∈ {1, . . . , a}

Γ � e ⇓S1 Δ � (λy : l1.e
′) : l2 Δ � e′[x/y] ⇓S2 Θ � z

Γ � e (x : l′) : l ⇓S1∪S2∪{l′,l} Θ � z
App

Γ � e ⇓S1 Δ � z

Γ [x �→ < e, L > ] � x : l ⇓S1∪L∪{l} Δ[x �→ < z, ε > ] � z
Var

Γ [yn �→ < en[yn/xn], {ln} ∪ ϕ(e, xn) ∪ ϕ(en, xn) ∪ L(en) > ] �
e[yn/xn] ⇓S1 Δ � z

yn fresh
Γ � let {xn = en : ln} in e : l ⇓S1∪{l} Δ � z

Let

Γ � e ⇓S1 Δ � (Ck x1 : l�1 · · ·xak
: l�ak

) : l�k

Δ � ek[xi/yik] ⇓S2 Θ � z

Γ � case e of {(Cj y1 : l′1 · · · yaj : l′aj ) : l�j -> ej}n
j=1 : l ⇓S Θ � z

Case

where S = S1 ∪ S2 ∪ {l�nj
| 1 ≤ n ≤ a} ∪ {l′nj

| 1 ≤ n ≤ a} ∪ {l�k, l�j , l}

Figure 4: Lazy Print Semantics

calls some complex and very cohesive functions funcG and funcHwhich do indeed
contribute to the computation of the values in x and y:

f z w = let x = funcG z w

y = funcH x z

in (x, y)

When computing the lazy print of such a program, no matter what values
are chosen for z w, the returned slice is always

f z w =

(x, y)

863Rodrigues N.F., Barbosa L.S.: Higher-Order Lazy Functional Slicing



as if the variables introduced by the let expression would have no effect on the
result of the overall function, which completely contradicts what one already
knew about the behaviour of functions funcG and funcH.

The reason for such a deviating behaviour induced by the lazy print seman-
tics is explained by the Con rule. Because C x1 : l1 · · ·xa : la expressions are
considered primitive in the language, the Con rule simply collects the outer
labels of such expressions and returns the expression exactly as it was received.

Indeed this explains the odd behaviour of the above example, where function
f returns a pair which falls into the C x1 : l1 · · ·xa : la representation in FL.
Therefore, the only semantic rule being applied during the lazy print calculation
was the Con rule which does not evaluate the constructor (Pair) arguments and
their associated expressions. Thus, one may now understand why the only labels
that the semantics yields during the evaluation are the ones visible at the time
of application of the Con rule.

A possible approach to solve this problem of extra laziness induced by the
semantics would be to evaluate every data constructor parameter in a strict way.
This, however, would throw away most of the lazy motto of the semantics since
the evaluation would become strict on every data type.

A much more effective solution is to divide the slicing calculation into two
phases. The first phase uses the semantics from figure 4. The second one takes
the value and the heap returned by the first phase and passes them to a processor
which restates to a semantics similar to the one used in the first phase except
for rule Con which is substituted by the one from figure 5.

Con
Γ [xk �→ < ek, Lk > ] � xk ⇓S1 Δ � zk

Γ [xk �→ < ek, Lk > ] � (C x1 : l′1 · · ·xa : l′a) : l′ ⇓S

Δ � (C x1 : l′1 · · ·xa : l′a) : l′
where k ∈ {1, . . . , a}

S = Lk ∪ {l′k, l′} ∪ S1

Figure 5: Con Rule for Strict Evaluation of the Result Value

This way, constructor strict evaluation is introduced only over the resulting
value, leaving all intermediate values being evaluated as lazy as possible.

6 Lazy Forward Slicing with Slicing Criterion

However, despite the relevance of the lazy print in, e.g., program understand-
ing, a further step towards effective slicing techniques for functional programs

864 Rodrigues N.F., Barbosa L.S.: Higher-Order Lazy Functional Slicing



requires the explicit consideration of slicing criteria. In this section, we present
an approach where slicing criteria is specified by sets of program labels.

The slicing process proceeds as in the previous case, except that now one is
interested in collecting the program labels affected not only by a given expression,
as before, but also by the expressions associated to the labels introduced by the
user as a slicing criterion.

A first and straightforward approach to implement a slicer with such a slicing
criterion involves taking into account the set of collected labels on both the
output and the input of the evaluation function ⇓. Therefore, the semantic rule
for λ-expressions changes to the one presented by the rule of figure 6.

Lamb
Si, Γ � (λy : l1.e) : l ⇓ Γ � (λy : l1.e) : l, Sf

where Sf = Si ∪ ⋃{ϕ(e, y) | l1 ∈ Si} ∪ {l | l1 ∈ Si}

Figure 6: Improved Semantics

This extra rule enables the semantics to evaluate expressions taking into ac-
count a set of labels Si supplied as a slicing criterion and its impact on the
resulting slice Sf . Putting it in another way, each rule has to compute the re-
sulting set of labels Sf considering the effect that the input labels in Si may
have in the slice being computed.

Soon, however, it became difficult to specify the semantic rules taking into
account the impact of the receiving set of labels. The problem of specifying the
rules is related to the fact that in many cases there is not enough information
to enable the decision of including a certain label or not.

For instance, in the App rule one may not immediately decide whether to
include or not label l1 in the resulting label set. The reason for this is that one
has no means of knowing in advance whether a particular expression in the heap
will ever become part of the slice. If such an expression is to be included into
the slice, sometime along the remainder of the slicing process, then label l1 will
also belong to the slice as well as all the labels that l1 affects by the evaluation
of the first premiss of rule App.

In order to overcome this problem, one should look for some independence
in the slicing process over the partial slices that are being calculated by each
semantic rule. Thus, instead of calculating partial slices on the application of
every rule, one computes partial dependencies between labels. This entails the
need for a further modification in the rules which are now intended to compute
maps of type L → P L, called lmap’s, rather than sets, such that all labels in

865Rodrigues N.F., Barbosa L.S.: Higher-Order Lazy Functional Slicing



Lamb
Γ � (λy : l1.e) : l ⇓F Γ � (λy : l1.e) : l

where F = [l1 �→ ϕ(e, y) ∪ {l}]

Con
Γ � (C x1 : l1 · · ·xa : la) : l ⇓F Γ � (C x1 : l1 · · ·xa : la) : l

where k ∈ {1, . . . , a}
F = [lk �→ l]

App
Γ � e ⇓F Δ � (λy : l1.e

′) : l2 Δ � e′[x/y] ⇓G Θ � z

Γ � e (x : l′) : l ⇓H Θ � z
where H = F ⊕ G ⊕ [l′ �→ {l, l1}]

Var
Γ � e ⇓F Δ � z

Γ [x �→ < e, L > ] � x : l ⇓G Δ[x �→ < z, ε > ] � z
where G = F ⊕ [l �→ L]

Let
Γ [yn �→ < en[yn/xn], {ln, l} ∪ ϕ(e, xn) ∪ ϕ(en, xn) > ] �

e[yn/xn] ⇓F Δ � z

Γ � let {xn = en : ln} in e : l ⇓G Δ � z
where G = F ⊕ [ln �→ {l}] ⊕ [y �→ ϕ(e, xn) ∪ ϕ(en, xn) | y ∈ L(en)]

Case
Γ � e ⇓F Δ � (Ck x1 : l�1 · · ·xak

: l�ak
) : l�k Δ � ek[xi/yik] ⇓G Θ � z

Γ � case e of {(Cj y1 : l′1 · · · yaj : l′aj ) : l�j -> ej}n
j=1 : l ⇓H Θ � z

where G = F ⊕ G ⊕ [l�m �→ ϕ(ek, ym) ∪ {l′m, l�k}|1 ≤ m ≤ ak]⊕
[l�k �→ {l}] ⊕ [l′m �→ ϕ(ek, ym) ∪ {l�k}|1 ≤ m ≤ ak]

Figure 7: Higher-Order Slicing Semantics

the codomain depend on the labels in the domain. The resulting semantics is
presented in figure 7 where in rule Let variable yn is a fresh variable.

In the sequel the following three operations over lmap’s are required: an
application operation, resorting to standard finite function application, defined
by

F (x) =

{
F x if x ∈ dom F ,

{} otherwise.

866 Rodrigues N.F., Barbosa L.S.: Higher-Order Lazy Functional Slicing



Con
Γ [xk �→ < ek, Lk > ] � xk ⇓Fk

Δ � zk

Γ [xk �→ < ek, Lk > ] � (C x1 : l′1 · · ·xa : l′a) : l′ ⇓G

Δ � (C x1 : l′1 · · ·xa : l′a) : l′
where k ∈ {1, . . . , a}

G = Fk ⊕ [l′k �→ l′]

Figure 8: Con Rule for Strict Evaluation of the Result Value

a lmap multiplication ⊕, defined as

(F ⊕ G)(x) = F (x) ∪ G(x)

and, finally, a range union operation urng, defined as

urng F =
⋃

x∈dom F

F (x)

Again, this semantics suffers from the problem identified in the lazy print
specification i.e., the semantics is “too lazy”. Once more, to overcome such un-
desired effect, one introduces a new rule (Fig. 8) to replace the original Con rule,
and the slicing process is similarly divided into two phases.

By changing the output of the evaluation function from a set to a lmap of la-
bels, we no longer have a slice of the program by the end of the evaluation. What
is returned, instead, is a lmap specifying the different dependencies between the
different expressions that form the program under analysis. The desired slice is
computed as the transitive closure of such dependencies lmap.

Furthermore, splitting the slicing process into a dependencies calculation
and the computation of a slice for the set of pertinent labels makes easier the
calculation of slices that only differ on the set of pertinent labels. For such cases,
one can rely on a common dependencies lmap and the whole process amounts
to the calculation of the transitive closure for redefined set of labels.

7 Strict Evaluation

Slicing under strict evaluation is certainly easier. A possible semantics, as the
one considered in figure 9, can be obtained by a systematic simplification of the
one used in the lazy case. Of course, this is not the only possibility. To make
comparisons possible between the lazy and strict case, however, we chose to keep
specification frameworks as similar as possible, although we are aware that many
details in the strict side could have been simplified. For example, strict semantics

867Rodrigues N.F., Barbosa L.S.: Higher-Order Lazy Functional Slicing



can always return slices in the form of sets of labels instead of calculating maps
capturing dependencies between code entities.

Lamb
Γ � (λy : l1.e) : l �F Γ � (λy : l1.e) : l

where F = [l1 �→ ϕ(e, y) ∪ {l}]

Con
Γ � (C x1 : l1 · · ·xa : la) : l �F Γ � (C x1 : l1 · · ·xa : la) : l

where k ∈ {1, . . . , a}
F = [lk �→ l]

App
Γ � e �F Δ � (λy : l1.e

′) : l2 Δ � e′[z1/y] �G Θ � z

Γ [x �→ z1] � e (x : l′) : l �H Θ � z
where H = F ⊕ G ⊕ [l′ �→ {l, l1}]

Var (whnf)
Γ � z �F Δ � z

Γ [x �→ z] � x : l �G Δ[x �→ z ] � z
where G = F

Let
Γ � en �F Δ � zn Γ [yn �→ zn] � e[zn/xn] �G Δ � z

yn fresh
Γ � let {xn = en : ln} in e : l �H Δ � z

where H = F ⊕ G ⊕ [ln �→ {l}] ⊕ [y �→ ϕ(e, xn) ∪ ϕ(en, xn) | y ∈ L(en)]

Case
Γ � e �F Δ � (Ck x1 : l�1 · · ·xak

: l�ak
) : l�k Δ � ek[xi/yik] �G Θ � z

Γ � case e of {(Cj y1 : l′1 · · · yaj : l′aj ) : l�j -> ej}n
j=1 : l �H Θ � z

where G = F ⊕ G ⊕ [l�m �→ ϕ(ek, ym) ∪ {l′m, l�k}|1 ≤ m ≤ ak]⊕
[l�k �→ {l}] ⊕ [l′m �→ ϕ(ek, ym) ∪ {l�k}|1 ≤ m ≤ ak]

Figure 9: Strict Slicing Semantics

Moreover, in the strict case there is no need to capture pending labels in the
heap, since let expressions are evaluated as soon as they are found. This leads
to a simplification of the heap from a mapping between variables and pairs of
expressions and set of labels to a mapping between variables and values.

As for the rules, the App and Let rules need to be changed, along with some
minor adaptation of the rules that deal with the (newly modified) heap.

868 Rodrigues N.F., Barbosa L.S.: Higher-Order Lazy Functional Slicing



Another decision taken in the strict slicing semantics specification was to keep
value sharing i.e., sharing of values that are stored in the heap. Nevertheless, one
can easily derive a slicing semantics without any sharing mechanism, for which
case one could probably remove the heap from the semantics.

Finally note that now there is no need to introduce a new Con rule to force
the evaluation of unevaluated expressions inside result value. Thus, unlike the
two previous versions of lazy slicing, strict slicing is accomplished in a single
evaluation phase.

8 Some Considerations About the Slicing Processes

All slicing algorithms presented in this paper were introduced as (evaluators of)
a specific semantics. Such an approach provides an expressive setting on top of
which one may reason formally about slices and slicers. This is illustrated in this
section to confirm the intuitive fact that, in general, lazy slices are smaller than
strict slices.

In the case of the lazy print semantics, such a proof amounts to showing that
the set of labels returned by the lazy print is a subset of the set of labels yielded
by an hypothetical strict print semantics.

But, since both the higher-order lazy slicing semantics and the strict one
do not return sets of labels but maps of dependencies, one has to restate the
proof accordingly. This can be achieved in two ways: either including the final
transitive closure calculation in the slicing process, or introducing a partial order
over the dependency lmap’s that respects subset inclusion.

We chose the latter alternative, and introduce the following partial order over
lmap’s, which is the standard inclusion order on partial functions.

F � G ⇔ dom(F ) ⊆ dom(G) ∧ (∀x ∈ dom(F ).F (x) ⊆ G(x))

Now, the property that “lazy slices are smaller than strict slices” is formu-
lated as follows.

If Γ � e ⇓F Δ � z and Γ � e �G Θ � z then F � G

The proof proceeds by induction over the rule-based semantics. First notice
that the property is trivially true for all identical rules in both semantics. Such
as the cases of rules Lamb, Con and Case for which the resulting lmap’s are
equal. The remaining cases follows.

Case App: Evaluation of expressions under these rules take the following
form, according to the evaluation strategy used.

869Rodrigues N.F., Barbosa L.S.: Higher-Order Lazy Functional Slicing



Γ � e ⇓F Δ � (λy : l1.e
′) : l2 Δ � e′[x/y] ⇓G Ψ � z

Γ � e (x : l′) : l ⇓H Θ � z
App

where H = F ⊕ G ⊕ [l′ �→ {l, l1}]

Γ � e �I Θ � (λy : l1.e
′) : l2 Θ � e′[z1/y] �J Φ � z

Γ [x �→ z1] � e (x : l′) : l �K Φ � z
App

where K = I ⊕ J ⊕ [l′ �→ {l, l1}]

By induction hypothesis one has that F � I. By definition of Let rule,
which is the only rule that changes the heap, one has that L(Δ) ∪ urng F =
L(Θ) ∪ urng I, where function L is overloaded to collect all the labels of the
expressions in a heap. It follows that

L(Δ) ∪ urng F = L(Θ) ∪ urng I

⇒ {Induction Hypothesis}
L(Δ)�L(Θ) ⊆ urng I

⇒ {Defintion of ⊕, noting that every possible label that G

may collect from heap Δ is already in I}
G � I ⊕ J

⇒ {Induction Hypothesis}
F � I ∧ G � I ⊕ J

⇒ {Definition of ⊕}
F ⊕ G � I ⊕ J

⇒ {Definition of ⊕}
F ⊕ G ⊕ [l′ �→ {l, l1}] � I ⊕ J ⊕ [l′ �→ {l, l1}]

⇒ {Defintion of G and H}
G � H

Case Let : Evaluation of expressions under these rules takes the following
format, according to the evaluation strategy used (note that yn is a fresh variable
in both rules).

870 Rodrigues N.F., Barbosa L.S.: Higher-Order Lazy Functional Slicing



Let
Γ [yn �→ < en[yn/xn], {ln, l} ∪ ϕ(e, xn) ∪ ϕ(en, xn) > ] � e[yn/xn] ⇓F Δ � z

Γ � let {xn = en : ln} in e : l ⇓G Δ � z
where G = F ⊕ [ln �→ {l}] ⊕ [y �→ ϕ(e, xn) ∪ ϕ(en, xn) | y ∈ L(en)]

Let
Γ � en �H Θ � zn Γ [yn �→ zn] � e[zn/xn] �I Φ � z

Γ � let {xn = en : ln} in e : l �J Φ � z
where J = H ⊕ I ⊕ [ln �→ {l}] ⊕ [y �→ ϕ(e, xn) ∪ ϕ(en, xn) | y ∈ L(en)]

By induction hypothesis and because L(en) ⊆ urng H one has that F �
H ⊕ I. It follows that

G = F ⊕ [ln �→ {l}]⊕ [y �→ ϕ(e, xn) ∪ ϕ(en, xn) | y ∈ L(en)]

⇒ {F � H ⊕ I}
G � H ⊕ I ⊕ [ln �→ {l}]⊕ [y �→ ϕ(e, xn) ∪ ϕ(en, xn) | y ∈ L(en)]

⇒ {Definition of K}
G � K

Case Var : Evaluation of expressions under these rules take the following form,
according to the evaluation strategy used.

Γ � e ⇓F Δ � z

Γ [x �→ < e, L > ] � x : l ⇓G Δ[x �→ < z, ε > ] � z
Var

where G = F ⊕ [l �→ L]

Γ � z �H Δ � z

Γ [x �→ z] � x : l �I Δ[x �→ z ] � z
Var

where I = H

By induction hypothesis one has that F � H . Since the only way to add
entries to the heap is via the Let rule, and because, in strict semantics, such rule
increments the dependencies lmap with every label from the newly introduced
expressions, it follows that increments to the strict evaluation lmap will contain
every mapping that is pending on the modified higher-order slicing heap. Thus,
even though it may happen that at the time of evaluation of the Var rule, one
may have I � G, in the overall evaluation tree the dependency lmap for the lazy
evaluation is always smaller or equal to the strict evaluation lmap.

9 Conclusions and Future Work

This paper introduced a semantic-based approach to low level slicing of func-
tional programs, highlighting a strong relationship between the slicing problem
and the underlying evaluation strategy.

871Rodrigues N.F., Barbosa L.S.: Higher-Order Lazy Functional Slicing



Due to space restrictions, we have not been able to expose here a real code
example that would highlight the strengths of the presented method. Actually,
a realistic application example needs to have at least one large (more than 20
lines) function with several calls to other functions which would also had to be
presented in order to achieve an understandable practical example. Neverthe-
less, we have tested the method against the Haskell implementation of the
semantics presented in section 6, and the interested reader may consult the re-
sults at http://www.di.uminho.pt/∼nfr/Results/HoSlicingResults.html.
The need for examples with large function definitions to demonstrate our method
capabilities is because in such cases one can point out as a slicing criterion a tag
indicating the particular (sub)expression inside the large function definition, and
by doing so one can more precisely identify the relevant part of the code that
he/she is interested in. Other approaches that rely on slicing criterion defined
by a return value cannot achieve slices as precise as ours.

Although the techniques introduced here are oriented to forward slicing, we
strongly believe that a correct inversion of the dependencies lmap’s, followed by
the same transitive closure calculation, will capture the backward cases.

This research adds to our previous work on high level functional slicing i.e.,
slicing defined over “high level” program entities such as functions, modules,
or data-types, as documented in [10]. Reference [9] reports on a completely al-
ternative approach to the slicing problem based on the so called Bird-Meertens
calculus. The common context of this research effort is a project on program
understanding and re-engineering3, currently running at Minho University, Por-
tugal.

Acknowledgements

The research reported in this paper is supported by FCT, under contract POSI-
ICHS-44304-2002, in the context of the PURe project.

References

1. R. Bird. Functional Programming Using Haskell. Series in Computer Science.
Prentice-Hall International, 1998.

2. S. K. Biswas. Dynamic slicing in higher-order programming languages. PhD thesis,
1997. Supervisor-Carl A. Gunter.

3. S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence
graphs. In PLDI ’88: Proceedings of the ACM SIGPLAN 1988 Conf. on Program-
ming Usage, Design and Implementation, pages 35–46. ACM Press, 1988.

4. B. Korel and J. Laski. Dynamic program slicing. Inf. Process. Lett., 29(3):155–
163, 1988.

5. B. Korel and J. Laski. Dynamic slicing of computer programs. J. Syst. Softw.,
13(3):187–195, 1990.

3 http://wiki.di.uminho.pt/twiki/bin/view/PURe

872 Rodrigues N.F., Barbosa L.S.: Higher-Order Lazy Functional Slicing



6. J. Launchbury. A natural semantics for lazy evaluation. In Conference Record
of the Twentieth Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 144–154, Charleston, South Carolina, 1993.

7. C. Ochoa, J. Silva, and G. Vidal. Dynamic slicing based on redex trails. In PEPM
’04: Proceedings of the 2004 ACM SIGPLAN symposium on Partial evaluation and
semantics-based program manipulation, pages 123–134, New York, NY, USA, 2004.
ACM Press.

8. T. W. Reps and T. Turnidge. Program specialization via program slicing. In
Selected Papers from the International Seminar on Partial Evaluation, pages 409–
429, London, UK, 1996. Springer-Verlag.

9. N. Rodrigues and L. Barbosa. Program slicing by calculation. Journal of Universal
Computer Science, 12(7):828–848, 2006.

10. N. Rodrigues and L. S. Barbosa. Component identification through program slic-
ing. In L. S. Barbosa and Z. Liu, editors, Proc. of FACS’05 (2nd Int. Workshop
on Formal Approaches to Component Software), volume 160, pages 291–304, UNU-
IIST, Macau, 2006. Elect. Notes in Theor. Comp. Sci., Elsevier.

11. M. Weiser. Program Slices: Formal, Psychological and Practical Investigations of
an Automatic Program Abstraction Methods. PhD thesis, University of Michigan,
An Arbor, 1979.

12. M. Weiser. Programmers use slices when debugging. Commun. ACM, 25(7):446–
452, 1982.

13. M. Weiser. Program slicing. IEEE Trans. Software Eng., 10(4):352–357, 1984.

873Rodrigues N.F., Barbosa L.S.: Higher-Order Lazy Functional Slicing


