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Abstract

Partial Evaluation is an automatic technique for program optimization. The
aim of partial evaluation is to specialize a program with respect to part of its
input, which is known as the static data. Existing algorithms for on-line partial
evaluation of logic programs, given an initial program and a description of run-
time queries, deterministically produce a specialized program. The quality of the
code generated by partial evaluation of logic programs greatly depends on the
control strategy used. Unfortunately, the existence of sophisticated control rules
which behave (almost) optimally for all programs is still far from reality.

The main contribution of this thesis is the development of Poly-Controlled
Partial Fvaluation, a novel framework for partial evaluation which is poly-
controlled in that it can take into account repertoires of control strategies instead
of a single, predetermined combination (as done by traditional partial evaluation).
This approach is more flexible than existing ones since it allows assigning different
control strategies to different call patterns, thus generating results that cannot
be obtained using traditional partial evaluation. As a result, sets of candidate
specialized programs can be generated, instead of a single one. In order to make
the algorithm fully automatic, it requires the use of self-tuning techniques which
allow automatically measuring the quality of the different candidate specialized
programs. Our approach is resource aware in that every solution obtained by
poly-controlled partial evaluation is assessed by means of fitness functions, which
can consider multiple factors such as run-time and code size for the specialized
programs. The framework has been implemented in the CiaoPP system, and
tested on numerous benchmarks. Experimental results show that our proposal
obtains better specializations than those achieved using traditional partial eval-
uation, especially in the context of resource-aware program specialization.

Another main contribution of this thesis is the presentation of a unifying view



to the problem of eliminating superfluous polyvariance in both partial evaluation
and abstract multiple specialization, through the use of a minimization step that
collapses equivalent predicate versions. This step can be applied to any Prolog
program (that may include builtins or calls to external predicates) being special-
ized. Additionally, we offer the possibility of collapsing non strictly equivalent

versions, in order to obtain smaller programs.
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Chapter 1

Introduction

1.1 Logic Programming and Program Speciali-

zation

1.1.1 Declarative Programming Languages

High level languages are characterized by allowing the programmer to write pro-
grams not in terms of the particular machine being used, but rather in terms of
the tasks the programs must perform. Thus, the programmer does not have to
worry about the specifics of the machine. This results in a less time-consuming
and error-prone developing process. Programs written in such high level lan-
guages are automatically translated into the language of a particular machine by
another program referred to as compiler.

An important kind of high level languages are the so-called declarative lan-
guages. They are called declarative in contrast to the traditional high level lan-
guages such as C, Pascal, Java, Ada, etc., which are generally referred to as
imperative languages. The main difference between declarative languages, a good
example of them being logic programming in its pure form, and imperative lan-
guages, is that in the former the programmer only needs to express what the
program should compute. In imperative languages it is also required to express
how to compute it by explicitly specifying in the program the control flow.

Among the most prominent members of declarative languages we can find

logic programming and functional programming. Logic programming is based on



first-order logic and automated theorem proving, while functional programming
has its roots in A-calculus. In both approaches, a program is considered a theory
while its execution consists in performing deduction from such a theory (some-
times complemented by induction or abduction). Also, modern functional logic
languages like Curry [51, 52] and Toy [87] combine the most important features

of functional and logic languages (see [50] for a survey).

1.1.2 Logic Programming

The Logic Programming paradigm [65, 66, 24| is characterized by its appropriate-
ness for knowledge representation and has been used for the implementation of
expert systems, knowledge bases, etc. Such applications are in general complex
and with a strong symbolic component.

Among the most characteristic and useful features of logic programming lan-

guages we can mention:

e they can compute with partially specified data,

e the input/output characteristics of predicate arguments is not fixed before-
hand,

e they allow non-determinism, making them well-suited for applications like

parsing,

e they provide for automatic memory management, thus avoiding a major
source of errors present in other programming languages (specially impera-

tive ones).

It is worth to note that late implementations of logic programming languages
have become very efficient, and many times they reach and even surpass the speed

of imperative languages for some applications.

1.1.3 Program Specialization and Resource-Awareness

Program specialization is an automatic technique for program optimization. In
logic programming, given a program P and a (possibly partially instantiated)

query G for P, the goal of program specialization is to derive a more efficient



program Py, that gives exactly the same answers for any instance G6 of G as
P does [42]. Among the most well-known program specialization techniques we
can mention partial evaluation, program slicing, as well as other (compiler-based)
techniques for optimizing programs in order to perform more efficient computa-

tions.

Partial Evaluation Partial evaluation [59, 60, 85, 44] is a source-to-source pro-
gram transformation technique which specializes programs by fixing part of
the input of some source program P and then pre-computing those parts
of P that only depend on the known part of the input. The so-obtained
transformed programs are less general than the original one, but can be
much more efficient. The part of the input that is fixed is referred to as the

static input, while the remainder of the input is called the dynamic input.

In general, most partial evaluators are not resource aware, as they focus on
time-efficiency, the main goal being the generation of specialized programs
which run faster than the original. Other factors such as the size of the
specialized program (also called residual program), and the memory required
to run it, are most often neglected, a relevant exception being the works [34,
28, 27].

Program Slicing Program slicing [120, 53], originally proposed as a technique
for program debugging, has also been proposed as a resource aware program
specialization technique for declarative languages [111, 99, 97, 95]. Program
slicing is a method for decomposing programs by analyzing their data and
control flow. As already mentioned, it was first proposed as a debugging
tool to allow a better understanding of the portion of code which revealed an
error. Since this concept was originally introduced by Weiser [127, 128]—in
the context of imperative programs—it has been successfully applied to a
wide variety of software engineering tasks (e.g., program understanding,
debugging, testing, differencing, specialization, merging). Although it is
not so popular in the declarative programming community, several slicing
techniques for declarative programs have also been developed during the
last decade (see, e.g., [47, 76, 96, 111, 116, 119, 122, 96, 77, 100]).



1.2 Overview of the Thesis

1.2.1 Thesis Objectives

The final objective of the work presented in this thesis is the development, im-
plementation, and experimental assessment of a poly-controlled partial evaluator.
Poly-controlled partial evaluation [110] is a powerful resource aware approach for
program specialization. It takes into account repertoires of global control and
local control rules instead of a single, predetermined, combination—as done by
traditional partial evaluation—. Thus, different control strategies can be assigned
to different call patterns, obtaining results that are hybrid in the sense that they
cannot be obtained using a single combination of control rules, as traditional
partial evaluation does.

Poly-controlled partial evaluation can be implemented as a search-based algo-
rithm, producing sets of candidate specialized programs (most of them hybrid),
instead of a single one. The quality of each of these programs is assessed through
the use of different fitness functions, which can be resource aware, taking into
account multiple factors such as run-time, memory consumption, and code size
of the specialized programs, among others.

In this way, we will try to fill the existing gap of building a resource aware
partial evaluator. Poly-controlled partial evaluation will bring along other ad-
vantages. Since it can generate hybrid solutions not achievable by traditional
partial evaluation, we hope that for some problems and some fitness functions,
hybrid solutions will have better performance than pure solutions, i.e., solutions
obtained by using a single combination of control rules. Also, existing partial
evaluators offer a wide set of parameters and flags to be set in order to deal with
termination problems, or to obtain better specialized programs. The drawback
is that the result of the interaction of such parameters is often very difficult to
predict, even for experienced users. We will aim at implementing a partial eval-
uator that is auto-tunable, in the sense that it will try to automatically set some

parameters, making it also more user-friendly, especially for novice users.

1.3 Structure of the Work

This thesis consists of five parts. Each of these parts is described in detail below.

4



Part I: Technical Background

In order to make this thesis as self-contained as possible, we start by pro-
viding some basic knowledge on the terminology of first-order logic, logic

programming and partial evaluation.

The roots of logic programming in first-order logic are described in Chap-

ter 2, with special emphasis on the syntax and semantics of logic programs.

Chapter 3 describes the basics of partial evaluation of logic programs, in
terms of SLD semantics, introduced in Chapter 2. Control issues of partial
evaluation are introduced in this chapter, since they play a very important

role in the poly-controlled partial evaluation framework.
Part II: Reducing the Size of Specialized Programs

This part deals with the problem of eliminating unneeded polyvariance
in partial evaluation. Polyvariant specialization allows the generation of
multiple versions of a procedure, which can be separately optimized for
different uses. Though polyvariance is often very important for achieving
good specialized programs, it also sometimes results in unnecessarily large
residual programs. This problem not only affects code size, sometimes

specialized programs run slower due to cache miss effects [34, 121].

A possible solution to this problem is to introduce a minimization step
which identifies sets of equivalent versions, and replace all occurrences of
such versions by a single one. Previous work on eliminating superfluous
polyvariance has dealt with pure logic programs (programs containing no
builtins) and a very limited class of builtins. Chapter 4 tackles the problem
of performing this minimization step even in the presence of calls to (any)
external predicate, including builtins, libraries, other user modules, etc.
Also, we propose the possibility of collapsing versions which are not strictly
equivalent. This allows trading time for space and can be useful in the

context of embedded and pervasive systems.

Note that this minimization step can be applied to specialized programs
obtained by either traditional partial evaluation or poly-controlled partial

evaluation.



Part III: Poly-Controlled Partial Evaluation: Foundations

In this part we introduce the main idea of poly-controlled partial evaluation.

Chapter 5 explains the dilemma of choosing adequate control rules when
specializing programs through partial evaluation. We show by means of sim-
ple examples that the existence of sophisticated control rules which behave

(almost) optimally for all programs is still far from reality.

As already mentioned, poly-controlled partial evaluation tries to cope with
this problem by allowing the use of different control strategies for different
call patterns, obtaining potentially different specialized programs depending

on the control strategy used for each call pattern.

We formalize poly-controlled partial evaluation and present two algorithms
implementing it. The first algorithm is greedy, and uses a pick function
to non-deterministically select a control strategy to be used at each mo-
ment. The second algorithm is search-based, producing sets of candidate
specialized programs (most of them hybrid), instead of a single one. The
quality of each of these programs is assessed through the use of different
resource aware fitness functions. Some preliminary evaluation results are

also provided in this chapter.

Then, Chapter 6 studies the properties of the solutions (specialized pro-
grams) obtained by poly-controlled partial evaluation. In particular, we are
interested in determining the heterogeneity of the solutions. If the solutions
are different enough when compared with one another there will be more
chances of finding interesting solutions, i.e., it will be more probable that
these solutions can be better than any solution obtained by traditional par-

tial evaluation in similar conditions (i.e., using the same control strategies).
Part IV: Poly-Controlled Partial Evaluation In Practice

In this part we explain the difficulties of implementing the algorithms of
poly-controlled partial evaluation, and introduce different techniques for

dealing with such problems.

Chapter 7 explains in detail, and through a simple experiment, the main

problem poly-controlled partial evaluation suffers when implemented as a



search-based algorithm: its search space experiments a (potentially) expo-
nential growth. We identify the causes of the problem in this chapter, whilst

solutions to this problem are proposed in the following chapters of this part.

Chapter 8 explores some techniques for pruning the search space of poly-
controlled partial evaluation when implemented as a search-based algo-
rithm. The proposed techniques are based on heuristics, they are simple
to understand and implement, and in many cases they achieve a drastic
reduction of the size of the search space. It is well known that heuristics
may behave well in some cases and not so well in others. Since in this
context behaving not so well would mean pruning away the solutions of
maximal fitness, we empirically check whether this is the case by running

these heuristics against a good number of benchmark programs.

In Chapter 9 we propose a branch and bound-based pruning technique. This
technique outperforms the previous one in that it guarantees that solutions
of maximal fitness are not lost. The main drawbacks of this technique are
the facts that it is more difficult to implement, and that, in order to prune
branches, we need to evaluate intermediate configurations, which introduce

a non negligible cost.

Finally, we propose in Chapter 10 an oracle-based poly-controlled partial
evaluation algorithm. This algorithm aims at achieving results compara-
ble to those of the search-based algorithm introduced in Chapter 5, while
having a specialization cost that is a constant factor of that of traditional
partial evaluation. Basically, given a call pattern, we first apply all con-
trol strategies to it and then an oracle makes an informed decision—based
on heuristics— of which control strategy is the most promising one. Thus,
similarly to the greedy algorithm from Chapter 5, the most promising inter-
mediate solution is kept active while the rest are discarded, thus avoiding

search, and traversing just one branch of the search tree.
Part V: Poly-Controlled Partial Evaluation: Implementation

In this part we present the current implementation of poly-controlled partial

evaluation in CiaoPP [55], the pre-processor of Ciao.

Chapter 11 shows some guidelines on the use of poly-controlled partial
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evaluation in CiaoPP, by means of an example session, where we enumerate
the available flags for adjusting the behaviour of the poly-controlled partial
evaluator. We also show how this framework is user-friendly for novice users,
who just need to set very few parameters through a graphical interface in
order to run the poly-controlled partial evaluator, but also allows expert
users to tweak several different parameters by setting different flags in a

expert-oriented interface.

Then, in Chapter 12 we provide some conclusions of this thesis.
Appendices

Finally, we add some useful appendices.

In Appendix A we describe the fitness functions that are used in order
to evaluate the different candidate specialized programs that are found by
poly-controlled partial evaluation. As already mentioned, these functions
are resource-aware, in that they can take different parameters into account,
other than runtime, such as size of the resulting specialized program, mem-

ory taken by the programs, etc.
Appendix B describes the set of benchmark programs used throughout

this thesis. Some of these benchmarks have been borrowed from Michael
Leuschel’s Dozen of Problems of Partial Deduction library [79], while some
others have been adapted from Lam and Kusalik’s set of problems [69]. The
rest of benchmarks are taken from different sources, such as Prolog libraries,

CiaoPP [55] analysis benchmarks, internet, etc.

As explained in Section 1.1.3, program slicing is another resource-aware
program specialization technique. We have undertaken an implementation
of a slicer in CiaoPP, based on the ideas of [77]. In Appendix C we describe

a slicing session of a Ciao program in CiaoPP.

1.4 Main Contributions

The main contributions of this thesis are described below. Some of these results
have already been published and presented in international forums, in which

case the relevant publication(s) is(are) explicitly mentioned. Also, some of these
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contributions have been made in collaboration with other researchers in addition

to the thesis supervisor. This is also explicitly mentioned below.

e The main contribution of this thesis is the development, implementation,
and experimental assessment of the novel concept of poly-controlled par-
tial evaluation. The most important advantages of poly-controlled partial

evaluation over traditional partial evaluation are:

— it allows obtaining better specialized programs than traditional partial
evaluation. Moreover, in most cases these programs cannot be ob-
tained through traditional partial evaluation using the same control

strategies.

— it is a resource-aware approach, taking into account factors such as
size of the compiled residual program, and the memory required to

run the residual program, besides the speed of the residual program.

— it is mot yet another control strategy, but a framework allowing the
co-existence and cooperation of any set of control strategies. In fact,
poly-controlled partial evaluation will benefit from any further research

on control strategies.

— it is user-friendly, allowing the user to simultaneously experiment with
different combinations of parameters in order to achieve a specialized

program with the desired characteristics.

— it performs on-line partial evaluation, and thus it is fully automatic,
and it can take advantage of the great body of work available for on-

line partial evaluation of logic programs.

This framework has been presented on the 8th ACM-SIGPLAN Interna-
tional Symposium on Principles and Practice of Declarative Programming
(PPDP’2006) [110].

e We have studied the properties of the different specialized programs gener-
ated by the poly-controlled partial evaluation algorithm. A paper on this
work has been presented in the 15th Workshop on Functional and (Con-
straint) Logic Programming (WFLP’2006) [92]. This paper will be pub-
lished as a special number of Electronic Notes in Theoretical Computer
Science (Elsevier) [98].



e Two algorithms for poly-controlled partial evaluation have been imple-

mented:

— One of them is search-based, relatively simple to implement, but suf-
fering from an exponential blowup of its search space. For this reason,
in this thesis we also tackle the problem of pruning the search space
in different ways, in order to make this algorithm able to deal with
realistic Prolog programs. These pruning techniques and the obtained
results have been presented in the ACM SIGPLAN 2007 Symposium
on Partial Evaluation and Program Manipulation (PEPM’2007) [93].

— The other one is greedy. It is based on a variation of the search-based
algorithm, and relies on an oracle that decides which control strategy
is the most promising for every call pattern. This algorithm is almost
as efficient as traditional partial evaluation in terms of specialization
time and memory consumption, achieving at the same time specialized
programs as good as those obtained by the search-based approach. De-
tails on the implementation of this algorithm, and experimental results
have already been submitted to a relevant international conference on
the subject.

e The problem of superfluous polyvariance has been studied both in the con-
text of abstract multiple specialization [130, 108] and in the context of
partial evaluation of normal logic programs [84]. The common idea is to
identify sets of versions which are equivalent and replace all occurrences of
such versions by a single, canonical, one. In this thesis we compare differ-
ent approaches for controlling polyvariance, and we also extend previous

approaches in two ways:

— First, we tackle in an accurate way the case in which programs con-
tain external predicates, i.e., predicates whose code is not defined in
the program being specialized, and thus it is not available to the spe-

cializer.

— Second, previously proposed minimization techniques do not provide
any degrees of freedom at the minimization stage. We propose the pos-

sibility of collapsing versions which are not strictly equivalent. This is
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achieved by residualizing certain computations for external predicates
which would otherwise be performed at specialization time. This al-

lows automatically trading time for space.

— we present the first experimental evaluation of the benefits of post-

minimization in partial evaluation.

Interestingly, this approach can be applied to both traditional partial eval-
uation and poly-controlled partial evaluation. This work, co-authored
with Manuel Hermenegildo, has been published in the 15th International
Symposium on Logic-based Program Synthesis and Transformation (LOP-
STR’2005) [94].
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Part 1

Technical Background
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Chapter 2
Logic and Logic Programming

This chapter provides an essential background in first-order logic and logic pro-
gramming. It is mainly inspired in [80], which, in turn, it is based on [86] and [7],
and adheres to the same terminology. If desired, advanced readers can quickly

skim through this chapter, or skip it completely.

2.1 Syntax of Logic Programs

We start by briefly introducing the syntax of well-formed formulas of a first order
theory.

Definition 2.1.1 (alphabet). An alphabet consists of the following classes of

symbols:

1. wvariables

2. function symbols
3. predicate symbols
4. connectives

5. quantifiers

6. punctuation symbols

15



Classes 1 to 3 vary from alphabet to alphabet, while classes 4 to 6 are the
same for all alphabets.

Function and predicate symbols have an associated arity, a natural number
indicating how many arguments they can take. Constants are function symbols
of arity 0, while propositions are predicate symbols of arity 0.

The connectives are negation (—), conjunction (A), disjunction (V), implica-
tion («), and equivalence («»). The quantifiers are the existential quantifier (3),
and the universal quantifier (V). Finally, the punctuation symbols are “(”, «)”
and “”. To avoid having formulas cluttered with brackets, we give connectives
and quantifiers the following precedence, with the highest precedence at the top:

-, V,d
\
A
%, —
Throughout this thesis, we adhere as much as possible to the following nota-

tional conventions:

e Variables will be denoted by uppercase letters—possibly subscripted—, usu-
ally taken from the later part from the (Latin) alphabet, such as X, Y, Z.

e Constants will be denoted by lowercase letters, usually taken from the be-
ginning of the (Latin) alphabet, such as a, b, ¢, while other function symbols

will be denoted by lowercase letters such as f, g, h.

e Predicates will be denoted by lowercase letters, such as p, ¢, r.

We give now a series of basic definitions.

Definition 2.1.2 (term). A term is inductively defined as follows:
e A wariable is a term.
o A constant is a term.

o A function f of arityn > 0 applied to a sequence of termsty, ..., t,, denoted
by f(t1,...,t,), is a term.
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Definition 2.1.3 (atom). An atom is defined inductively as follows:

o A proposition is an atom.

o A predicate p of arityn > 0 applied to a sequence of termstq, ..., t,, denoted

by p(t1,...,tn), is an atomic formula, or more simply, an atom.

The function pred applied to a given atom A, i.e., pred(A), returns the cor-

responding predicate symbol p/n for A.

Definition 2.1.4 (formula). A (well-formed) formula is defined inductively as

follows:

o An atom is a formula.

o [f F and G are formulas, then so are (=F), (FANG), (FVG), (F «— G),
and (F < G).

o Given a formula F' and a variable X, then (VX F) and (3X F) are formu-
las.

For example, V(p(X, g(X)) < q(X) A =r(X)) is a formula, whose informal
semantics is “for every X, if ¢(X) is true and r(X) is false, then p(X, g(X)) is
true”.

Some important classes of formulas, especially in the context of logic program-

ming, are defined below.

Definition 2.1.5 (expression). An expression is either a term, an atom or a

conjunction or disjunction of atoms.

Definition 2.1.6 (clause). A clause is a formula of the form VH,V ...V H,, «—
BiAN...\NB,, where m >0, n >0 and Hy,...,H,,, By,...,B, are all atoms.
H,Vv...VH,, is called the head of the clause and By N\ ...\ B, is called the body
of the clause.

A (normal) program clause is a clause of the form H «— By A ... A By, where
H is an atom.

A definite program clause is a normal program clause where By \...\B,, are
atoms.

A fact is a program clause of the form H «.

A query or goal is a clause of the form <« By A ...\ B,, with n > 0.

A definite goal is a goal where By A ... A B, are atoms.
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It is important to distinguish the scope of variables present in a given formula.

Definition 2.1.7 (scope). The scope of VX (resp. 3X) in a given formula
(VX F) (resp. (3X F)) is F. A bound occurrence of a variable X inside a
formula F is any occurrence immediately following a quantifier or an occurrence
within the scope of a quantifier VX or 3X. Any other occurrence of a variable is

said to be free.

Definition 2.1.8 (closed formula). A closed formula is a formula with no free

variables.

Definition 2.1.9 (universal and existential closure). Given a formula F, the
universal closure of F', denoted by V(F), is the closed formula obtained by adding
a unwersal quantifier to every free variable in F'. Similarly, the existential closure
of F, denoted by 3(F), is obtained by adding an existential quantifier to every
free variable in F.

Universal quantifiers are usually omitted when writing logic programs, and
commas are used instead of conjunctions in the body. For instance, the formula
VXVYp(X,Y) « q(X) Ar(Y) is written as p(X,Y) « ¢(X),r(Y). Throughout
this thesis we adhere to this convention.

After the definitions above, we can now define two important concepts, that

of a first order language, and that of a program.

Definition 2.1.10 (first order language). The first order language given by an
alphabet A consists of the set of all formulas constructed from the symbols of A.

Definition 2.1.11 (program). A (normal) program is a set of (normal) program

clauses. A definite program s a set of definite program clauses.

2.2 Semantics of Logic Programs

The declarative semantics of a program is given by the semantics of formulas in
first-order logic, assigning meaning to formulas in the form of interpretations over
some domain D. This means that every function symbol of arity n is assigned
a n-ary mapping D" — D, each predicate symbol of arity n is assigned a n-ary

relation on D (i.e., a subset of D"), and variables range over D. Finally, each
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formula is assigned a truth value (true or false) depending on the truth value

of every subformula. This intuition can be formalized as follows.

Definition 2.2.1 (model). A model of a formula is an interpretation in which

the formula has the truth value true assigned to it.

For example, let I be an interpretation whose domain D is the set of natural
numbers N with the following mappings
ar—1
b— 2
P {(1)}
Then the truth value of p(a) under I is true and the truth value of p(b) is
false. So [ is a model of p(a) but not of p(b).

Definition 2.2.2 (logical consequence). A formula F' is a logical consequence of
a set of formulas S, denoted by S |= F, if F' is assigned the truth value true in
all models of S.

The following shorthands are used for formulas:

e Given a formula F, then F' < denotes the formula F' «— true and «— F

denotes the formula false < F.

e The empty clause is a clause of the form «—, and corresponds to the formula

false < true, i.e., a contradiction.

Given a definite program P, and since P is just a set of clauses, and clauses
are simply formulas, the logical meaning of P might be seen as the set of all
formulas F for which P = F' . Thus, from a programming point of view, we are

interested in the bindings made for all variables of P to obtain each formula in

F.

Definition 2.2.3 (substitution, binding). A substitution 6 is a finite set of the
form 0 = {Xy — t1,..., X, — t,}, where 0(X;) = t; for all i = 1,...,n (with

'In the case of normal programs, since negations can occur in the bodies of clauses, the
truth of =F can propagate further and may be used to infer positive formulas as well. For a
more detailed discussion on this, see [8, 80]. In this work, we consider negations as regular
builtins.
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Xi # X ifi # j) and 0(X) = X for any other variable X, and where t; are
terms (with t; # X;).
Each element X; — t; € 0 is called a binding.

We denote with e the empty substitution. Also, vars(E) denotes the set of
variables occurring inside an expression F, and dom () denotes the set of variables
affected by substitution 0, i.e., dom({X; — t1,..., X, — t,}) = {Xy1,..., Xp.}.

Definition 2.2.4 (variable renaming). Let E be an expression. A substitution 6

is called a variable renaming iff all the following applies:
o VX € wvars(E) exists a variable Y s.t. 0(X) =Y,
e vars(E) Nwvars(EQ) =0,

o VX € wvars(E) VY €wvars(E) . X #Y = AZ € vars(E0) s.t. X — Z €
EONY — Z € Ef.

Definition 2.2.5 (answer). Let P be a definite program and let G =« Ay, ..., A,
be a definite goal. An answer for P U{G} is a substitution 0 iff P = V((A; A
N AYD).

For example, given a program P = {p(a) <} and a goal G =« p(X), the
substitution {X +— a} is an answer, but {X — b} is not.
Answers can be calculated based on the concepts of resolution and unification.

These concepts are defined below, together with some preliminary definitions.

Definition 2.2.6 (instance). A term t is more general than another term s (or
s is an instance of t), denoted by t < s, if 30. t0 = s.

For example, let F' = p(a,X,Y) and § = {X — b, Y — c}, then FO =
p(a,b,c), ie., p(a,b,c) is an instance of p(a, X,Y). Note that there may exist
many instances of a given term, for instance p(a,b,Y) is also an instance of
pla, X, Y).

Definition 2.2.7 (variant). Two terms t and t' are variants, denoted t ~ t', if
botht <t andt <t.

Ift andt' are variants then there exists a variable renaming p such thattp =t'.

20



For example, p(a, X) and p(a,Y’) are variants since p(a, X) < p(a,Y) and
p(a,Y) < p(a, X).

Definition 2.2.8 (unifier, generalization). Let S be a finite set of simple expres-
sions. A substitution 0 is called a unifier for S if SO is a singleton, i.c., a set
containing a unique element.

A wunifier 0 is called most general unifier (mgu) for S, if for each unifier o of

S, there exists a substitution v such that o = 6.

A generalization of a set of terms {ti,...,t,} is another term t such that
36,,...,0, witht; =t0;,i=1,...,n.

A generalization t is the most specific generalization (msg) of {t1,...,t,} if
for every other term t' s.t. t' is a generalization of {t1,...,t,}, t' <t.

For example, {p(a, f(X)),p(Y,b)} is not unifiable because the second ar-
guments cannot be unified. However, {p(a, f(X)),p(Y,Z)} is unifiable since
¢ ={Y — a,X — b, Z — f(b)} is a unifier. A most general unifier is
0 ={Y —a,Z— f(X)}. Note that 0/ = 0{X — b}

From the definition of an mgu follows that if # and ¢ are both mgu’s of a set
of expressions {E, ..., E,}, then E;o is a variant of E;0. In [86] is shown that
each F;o can be obtained from FE;f by simply renaming variables.

Unifiability of a set of expressions is decidable, and there exist efficient algo-
rithms for calculating the mgu of two given terms [7, 86].

Given a set of clauses {Cly = H; « By,...,Cl, = H, <« B,}, n > 0, we
denote by instantiate({Cly,...,Cl,}, A) the set of clauses {Cl,04,...,Cl,0,}
where each 6; = mgu(H;, A).

We can now define SLD-resolution, which is based on the resolution princi-
ple [112], and is a special case of SL-resolution [64]. Each SLD-derivation employs

a computation rule to select an atom within a goal for its evaluation.

Definition 2.2.9 (computation rule). A computation rule is a function R from
goals to atoms. Let G be a goal of the form «— Ay,...  Ag,..., Ay, k > 1. If
R(G) =Ag we say that Ag is the selected atom in G.

Definition 2.2.10 (derivation step).
Let G be «— Aq,...,AR,...,Ar. Let R be a computation rule and let
R(G) =Ag. Let C = H « By,..., By, be a renamed apart clause in P. Then G’
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is derived from G and C via R if the following conditions hold:

szgu(ARaH)
G’ is the goal «— (Ay,...,Ar_1,B1,...,Bm, Ars1,..., Ar)0

G’ is also called a resolvent of G and C.

Definition 2.2.11 (complete SLD-derivation). Given a program P and a goal
G, a complete SLD derivation for PU{G} consists of a possibly infinite sequence
G=Gy:G1:Gy:...o0f goals, a sequence Cy : Cy : ... of properly renamed apart
clauses of P, and a sequence 0, : 05 : ... of mgus such that each G;y1 is derived

from G; and C;yq using 0;,1.

Definition 2.2.12 (SLD-refutation). An SLD-refutation of P < {G} is a finite
complete SLD-deriation of P «— {G} which has an empty clause as the last goal

of the derivation.

A derivation step can be non-deterministic when Ag unifies with several
clauses in P, giving rise to several possible SLD derivations for a given goal.

SLD derivations can be organized in SLD trees.

Definition 2.2.13 (SLD-tree). A complete SLD-tree for P U {G} is a labelled

tree which satisfies:

e Fach node of the tree is labelled with a definite goal along with an indication

of the selected atom.
e The root node is labelled with G.

o Let — Ay,...,Agr,..., Ay be the label of a node in tree, and let Agr be
the atom selected by the computation rule R. Then for each clause A «—
By,...,B, in P such that Arp and A are unifiable the node has a child
labelled with

— (Ala'"7AR—17B17'"7Bn7AR+17°";Ak‘)0
where 0 is the mgu of Ag and A.

e Nodes labelled with the empty goal have no children. We graphically repre-
sent an empty goal with the symbol 1.
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Figure 2.1: SLD-trees for Example 2.2.14

Every branch of a complete SLD-tree corresponds to a complete SLD-
derivation. In graphical representations of SLD-trees, selected atoms are un-
derlined.

A finite derivation G = Gqo,G1,Ga, ..., G, is called successful if G, is an
empty clause. In that case 8 = 610, ...0, is called the computed answer for goal
G. Such a derivation is called failed if it is not possible to perform a derivation
step with G,.

Example 2.2.14. Let us take the program P = {p(X) «— ¢(X),p(X) <
r(X),q(a) <}. Given a goal G = {— p(X)}, then a possible SLD-tree for
P U{G}, with computed answer {X — a}, is shown in Figure 2.1(a). In this
figure, successful derivations are represented with O, while failed derivations are
represented with X.

Given a goal G' = {<— p(b)}, then a possible SLD-tree for P U{G'} is shown

in Figure 2.1(b). There are no successful derivations in this case.
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Chapter 3

Partial Evaluation

In this chapter we provide the basics of partial evaluation of logic programs. For

a more detailed discussion we refer the reader to works such as [85, 44].

3.1 Basics of Partial Evaluation

The main aim of partial evaluation is to specialize a program w.r.t. part of its
input, which is known as the static data, the idea being that once the rest of
the input (dynamic data) is provided, the specialized program—also known as
residual program—will be more efficient than the original one, since those compu-
tation steps which only depend on the static data are performed at specialization
time. Thus, in order to obtain the residual program P’ of an input program P, a
partial evaluator executes those parts of P which depend only on the static input
S, and generates residual code for those parts of P which require the dynamic

input D. This process is also called mized computation [38].

Partial evaluation has been applied in a good number of programming
paradigms such as imperative programming [6, 5], functional programming [60,
59], logic programming [44, 101], functional logic programming [4, 1], and term
rewriting systems [12]. In this thesis we concentrate on partial evaluation of logic

programs.
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Figure 3.1: An Online Partial Evaluator

3.1.1 Offline vs Online Partial Evaluation

Partial evaluation can be performed in an online or offline manner. In online par-
tial evaluation, the static data is used in order to compute parts of the specialized
program as early as possible, taking decisions “on the fly” [61, 10, 114, 126]. This
process is illustrated in Figure 3.1.

In offline partial evaluation [61, 13, 25], the specialization process is split into

two phases:

e First, a binding-time analysis (BTA) is performed which, given a program
and an approximation of the input available for specialization, approximates
all values within the program during specialization time, and generates an

annotated program.

e Then, a (simplified) specialization phase takes place, which is guided by the
annotations generated by the BTA.
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Figure 3.2: An Offline Partial Evaluator

This approach is illustrated in Figure 3.2 and is called offline because most
control decisions are taken beforehand.

One of the main advantages of the offline approach is the efficiency of the
specialization process. Once the annotations have been derived, the specializer is
relatively simple and can be made to be very efficient. These annotations can be
user-provided, and sometimes almost fully automatic. The online approach, on
the other hand, is fully automatic. Also, the offline approach can only use more

restricted specialization strategies.

3.2 Partial Evaluation of Logic Programs

When performing partial evaluation of logic programs®, the static input is a par-

tially instantiated goal G. In logic programming, one can still execute a program

!The term partial deduction [62] is usually used when referring to partial evaluation of pure
logic programs, i.e., programs without extra-logical features such as cuts, bindings, etc [35].
However, we stick to the term partial evaluation since the framework presented in this work

considers these extra-logical features, and is thus oriented to (full) Prolog programs.
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P for G and (try to) construct a SLD-tree for P U {G}. However, since G is par-
tially instantiated, this tree is usually infinite, so ordinary evaluation will often
not terminate, and we need a more refined approach to partially evaluate logic
programs.

Partial evaluation of logic programs is traditionally presented in terms of
SLD semantics, which has been introduced in Chapter 2. In partial evaluation,
SLD semantics is extended in order to also allow incomplete derivations, which
are finite derivations of the form G = Gq, G1, G, ..., G, and where no atom is
selected in G, for further resolution. This is needed in order to avoid (local)
non-termination of the specialization process. Thus, a SLD-derivation can be
successful, failed, incomplete or infinite. The substitution 6 = 616, ...0,, is called
the computed answer substitution for goal G.

An incomplete SLD-tree is defined in the same way as a complete SLD-tree,
but possibly containing incomplete derivations. This means that in addition to
success and failure leaves, it can also contain dangling leaves which correspond
to goals which have not been further unfolded, i.e., leaves where no literal has
been selected for further derivation. A SLD-tree is called trivial iff its root is a
dangling leaf.

In short, in order to compute a partial evaluation (PE) [85], given an input
program and a set of atoms (goal), the first step consists in computing finite
incomplete SLD trees for these atoms. Then, a set of resultants or residual rules

are systematically extracted from the SLD trees.

Definition 3.2.1 (resultant). Let P be a program, let < G be a goal, and let D
be a finite SLD-derivation of P U {« G} with computed answer 6 and resolvent
«— B. Then the formula GO < B is a resultant of D.

Definition 3.2.2 (partial evaluation). Let P be a definite program and let A
be an atom. Let T be a SLD tree for P U {«— A}, and let — G1,...,— G,
be goals chosen from the mon-root nodes of T such that there is exactly one goal
from each non-failing branch of 7. Let 61, ...,0, be the computed answers of the
derivations from «— A to «— Gy,..., G, respectively. Then the set of resultants
{40, — Gy,..., A0, — G} is called a partial evaluation of A in P.

If A is a finite set of atoms, then a partial evaluation of A in P is the union

of the partial evaluations of the elements of A.
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Given a program P and an atom A, there exist in general infinitely many
different partial evaluations of A in P [44]. An unfolding rule is a fixed rule for

generating resultants.

Definition 3.2.3 (unfolding rule).

Given a program P and an atom A, an unfolding rule computes a SLD tree
for PU {« A}.

We use UP, A) = 1 to denote the fact that the unfolding rule U, when applied

to an atom A in program P, returns the SLD tree T.

We now introduce the concepts of closedness and independence, necessary to
establish correctness of partial evaluation.

Definition 3.2.4 (closed). Let S be a set of first-order formulas and let A be a
finite set of atoms. Then S is A-closed if every atom in S containing a predicate

symbol occurring in A is an instance of an atom in A.

Definition 3.2.5 (independence). Let A be a set of atoms. Then A is indepen-

dent if no two atoms in A have a common instance.

The central result proved in [85] is the following theorem about correctness of

partial evaluation.

Theorem 3.2.6. Let P be a definite program, and let A be an independent set
of atoms. Let P’ be a partial evaluation of A in P. Then for all goals G such
that P'U{G} is A-closed

e PU{G} has a SLD-refutation with computed answer 6 iff P' U{G} has a

SLD-refutation with computed answer 6.
o PU{G} has a finitely-failed SLD-tree iff P"U{G} has a finitely-failed SLD-
tree.

3.2.1 A Greedy Partial Evaluation Algorithm

Algorithm 1 shows a greedy algorithm for performing partial evaluation of a given
program. In this algorithm, besides an unfolding rule U, an abstract operation G

is used, and whose main purposes are:
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e to ensure termination of the algorithm, and

e to satisfy the independence requirement described above.

Algorithm 1 Partial Evaluation Algorithm (PE)
Input: Program P

Input: Set of atoms of interest A

Input: An abstraction rule G

Input: An unfolding rule U

Output: A partial evaluation for P and A, encoded by H;

1=10

Hy=10

Ay =A

repeat
A; = Select(A;)
A = G(H;, 4;)
7, = U(P, A))
Hipy = Hi U{(A;, A}
A1 = (A, — {A;}) U{A € leaves(r;) |V (B, ) € Hiy1 . B A}
1=1+1

cuntil 4; =0

— =
— O

The potential queries to the program are represented by the set of atoms A.
In each iteration of the algorithm, an atom A; from A, is selected (line 5). Then,
global control and local control as defined by the G and U rules, respectively, are
applied (lines 6 and 7). This builds an SLD-tree for A’, a generalization of A; as
determined by G, using the predefined unfolding rule U. Once the SLD-tree 7;
is computed, the leaves in its resultants, i.e., the atoms in the residual code for
Al are collected by the function leaves. Those atoms in leaves(7;) which are not
a variant of an atom handled in previous iterations of the algorithm are added
to the set of atoms to be considered (A;;1). We use B ~ A to denote that B
and A are variants, i.e., they are equal modulo variable renaming. The algorithm
finishes when 4; becomes empty.

The specialized program P’ corresponds to
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P'=U s anyen, resultants(U(P, A')).

where resultants extracts the residual rules from the SLD trees resulting from
unfolding each of the abstracted atoms in all tuples of H;.

Note that this algorithm differs from those in [44, 71] in that once an atom A,
is abstracted into A%, code for A} will be generated, and it will not be abstracted
any further no matter which other atoms are handled in later iterations of the
algorithm. As a result, the set of atoms for which code is generated are not
guaranteed to be independent. However, the pairs in H; uniquely determine the
version used at each program point. Since code generation produces a new pred-
icate name per entry in H;, independence is guaranteed, and thus the specialized
program will not produce more solutions than the original one.

The ECCE system [84] can be made to behave as Algorithm 1 by setting the

parent abstraction flag to off.

3.3 Control and Termination of Partial Evalua-
tion

As mentioned before, in partial evaluation we can distinguish two levels of con-
trol [44], the so-called global control, in which one decides which atoms are to be
partially evaluated, and the local control, in which one constructs the (possibly
incomplete) SLD-tree for each atom in the set of atoms being handled by the par-
tial evaluation algorithm. Thus, we must consider two distinct questions about

termination:
e Termination of the iterative algorithm, also known as global termination.
e Termination of the unfolding rule U, better known as local termination.

We briefly discuss these issues below.

3.3.1 Local Termination

In order to ensure the local termination of the partial evaluation algorithm while
producing useful specializations, the unfolding rule must incorporate some non-

trivial mechanism to stop the construction of SLD trees. Nowadays, well-founded
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orderings (wfo) [16, 88] and well-quasi orderings (wqo) [117, 81] are broadly used
in the context of on-line partial evaluation techniques (see, e.g., [44, 84, 117]).

We now formally define well-founded orderings and well-quasi orderings.

Definition 3.3.1 (s-poset). A strict partial order on a set S is an anti-reflexive,
anti-symmetric and transitive binary relation on SxS. A partially strictly ordered

set, or s-poset S, >g, consists of a set S and a strict partial order >g on S.

Definition 3.3.2 (wfo). An s-poset S, >g is well-founded iff there is no infinite
sequence of elements sy : s : ... in S such that s; > s;.1 for alli > 1. The order

>g is called a well-founded order (wfo) on S.

Definition 3.3.3 (poset). A (non-strict) partial order on a set S is a reflezive
and transitive binary relation on S x S. A partially ordered set, or poset S, >g,

consists of a set S and a partial order >g on S.

Definition 3.3.4 (wqo). A poset S, <g is well-quasi-ordered (wqo) iff for any
infinite sequence of elements sy : sy ... in S there arei < j such that s; <g s;.

The order <g is called a well-quasi order (wqo) on S.

It is well known that the use of wfos and wqos allows the definition of admis-
sible sequences which are always finite. Intuitively, derivations are expanded as
long as there is some evidence that interesting computations are performed and
also guaranteed to terminate (according to the selected ordering).

Intuitively, a sequence of elements s; : so : ... in S is called admissible with
respect to an order <g [16] iff there are no ¢ < j such that s; <g s;. If the order is
a wqo, given a derivation Gy, Gs, --- , G,y in order to decide whether to evaluate
Gp41 or not, we check that the selected atom in G,,41 is strictly smaller than any

previous (comparable) selected atom. A more formal definition is provided below.

Definition 3.3.5 (admissible). Let <g be a wgo. We denote by

Admissible(A, (Ay, ..., An), <g), with n > 0, the truth value of the expression
VA;, i€ {l,...,n} : A; L5 A. In a wfo, it is sufficient to verify that the selected
atom is strictly smaller than the previous comparable one (if one exists). Let < be
a wfo, by Admissible(A, (Ay, ..., A,), <), with n > 0, we denote the truth value
of the expression A, £ A if n > 1 and true if n = 0.
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We will denote by structural order a wfo or a wqo (written as < to represent
any of them). Among the structural orders, well-quasi orderings have proved
to be very powerful in practice. In particular, the homeomorphic embedding
[67] ordering is the wqo we will use in our experiments. Informally, an atom t;
embeds atom t, if t5 can be obtained from ¢; by deleting some operators, e.g.,
s(s(U+W)x(U+s(V))) embeds s(U x (U+V)). The interested reader is referred to

(37, 81] where a detailed description of homeomorphic embedding can be found.

3.3.2 Global Termination

In addition to local control, an abstraction operator is applied to properly add
the atoms in the right-hand sides of resultants to the set of atoms to be partially
evaluated (line 6 of Algorithm 1). This abstraction operator performs the global
control and is in charge of guaranteeing that the number of atoms which are
generated remains finite by replacing atoms by more general ones, i.e., by losing

precision in order to guarantee termination.

Definition 3.3.6 (abstraction). Let A be a set of atoms. The set of atoms A’ is

an abstraction of A iff every atom of A is an instance of an atom in A’.

The use of an abstraction operator does not guarantee global termination in
itself. Some abstraction operators guarantee termination by losing some precision.
For instance, we could impose a finite number of atoms in A and apply the most
specific generalization (msg) operator to enforce not exceeding such limit.

Throughout this thesis, we will use in most of examples and experiments the

following global control rules:

id: is the identity abstraction rule, i.e., for any atom A, G(A) = A. This rule
is equivalent to not performing any abstraction at all, and thus it does
not guarantee termination of the partial evaluation algorithm. It is there-
fore only used in cases where global termination is achieved, even when no

abstraction is performed.

dynamic: is the most abstract global control rule possible, which abstracts away
the value of all arguments of the atom and replaces them with distinct
variables. For example, G(p(1, X, [a,b]) = p(X", Y, Z')
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hom_emb: is based on homeomorphic embedding [71, 81] and optionally also on
global trees [74]. It flags atoms as potentially dangerous (and are thus gen-
eralized) when they homeomorphically embed any of the previously visited

atoms.

3.4 Unfolding Strategies

In the basic partial evaluation algorithm we assume the existence of an unfolding
rule U, which takes an atomic goal and a program, and returns a finite, possibly
incomplete SLD tree for them. There are many possible unfolding strategies.
Some of them perform better in some situations and worse in others when com-
pared with one another.

In CiaoPP [54, 106, 55], an unfolding rule is composed of an unfolding strat-
eqy, a computation rule and a unfolding branching factor. We present in this
section some of the several unfolding strategies and computation rules available

in CiaoPP. The ones presented here will be used later for our experiments.

3.4.1 Determinate Unfolding

Determinate unfolding is a quite simple unfolding strategy where unfolding is
performed only if the current selected atom of a goal matches at most a single
clause head of the program. As shown in [44], unfolding determinate goals does
not introduce extra computation into a program, even if the selected atom is
non-leftmost. However, in many cases this unfolding strategy is too conservative.

Also, it is not always guaranteed to obtain finite SLD trees.

Definition 3.4.1 (determinate unfolding). A SLD tree is (purely) determinate
if each node of the tree has at most 1 child. An unfolding strategy U is purely

determinate if it returns a determinate SLD-tree for any program P and any goal

G.

A “look-ahead” of a finite number of computation steps can be used to detect
further cases of determinacy. For instance, given the program

p(X) :- X>0, q(X).

p(X) :- X<=0, r(X).
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Figure 3.3: Different Unfolding Trees

C d

the goal «— p(1) is determinate after look-ahead of 1 step.

In Figure 3.3 we can see several unfolding trees where failing derivations are
marked with x. Tree a is purely determinate. Tree b is determinate after look-
ahead of 1 step. Tree c is determinate after look-ahead of 2 steps. Finally,
tree d is not determinate after look-ahead of 2 steps (although it could become

determinate later, but this is an undecidable problem).

3.4.2 One-Step Unfolding

The rule one_step is the simplest possible unfolding strategy which always per-

forms just one unfolding step for any atom.

3.4.3 Unfolding Based on Homeomorphic Embedding

It is well-known that imposing some well-founded order on selected atoms guar-
antees termination while leading to overly eager unfolding [16, 88]. Instead of
well-founded orders, it is possible to use well-quasi orders as well [11].
Intuitively, and in order to ensure local termination, if an atom we want to
select is homeomorphically embedded by one of its ancestor then we have to
select a different atom or we have to stop unfolding. State-of-the-art unfolding
strategies allow performing ordering comparisons over subsequences of the full

sequence of the selected atoms of a derivation by organizing atoms in a proof tree
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[15]. This allows considering the embedding relation with the covering ancestors
of the selected atom, achieving further specialization in many cases while still
guaranteeing termination.

CiaoPP provides several unfolding strategies based on homeomorphic embed-
ding. Throughout this work we will extensively use an unfolding rule called
df _hom_emb_as. It can handle external predicates safely and can perform non-

leftmost unfolding (see below) as long as unfolding is safe (see [2]) and local
(see [106]).

3.4.4 Computation Rules

Besides the unfolding strategy chosen for partially evaluating a program, we need
to define the computation rule that is going to be used. Although CiaoPP offers
several posibilities, there are two important classes of computation rules that we

will use throughout this thesis:

leftmost This is the trivial computation rule which always returns the leftmost
atom in a goal. This computation rule is interesting in that it avoids sev-
eral correctness and efficiency issues in the context of PE of full Prolog

programs [2, 44].

non-leftmost Informally, given a program P and a goal < A;,..., A,, it can
happen that the leftmost atom A; cannot be selected for unfolding due
to several circumstances. Among others, if A; is an atom for a predicate
defined in P (thus the code is available to the partial evaluator) it can

happen that:

e unfolding A; endangers termination (for example, A; may homeomor-
phically embed some selected atom in its sequence of covering ances-

tors), or

e the atom A; unifies with several clause heads (deterministic unfolding
strategies do not unfold non-deterministically for atoms other than the

initial query).

If A; is an atom for an external predicate whose code is not present nor

available to the partial evaluator, it can happen that

36



e A; is not sufficiently instantiated so as to be executed at this moment.

In cases like this it is interesting to select a non-leftmost atom. It is well-
known that the ability of performing non-leftmost unfolding is essential in
partial evaluation in some cases for the satisfactory propagation of static
information (see, e.g., [71]).

For logic programs without impure predicates, non-leftmost unfolding is sound
thanks to the independence of the computation rule (see for example [86])2. Un-
fortunately, non-leftmost unfolding poses several problems in the context of full
Prolog programs with impure predicates, where such independence does not hold
anymore. For instance, ground/1 is an impure predicate since, under LD res-
olution®, the goal ground(X),X=a fails whereas X=a,ground(X) succeeds with
computed answer X/a. Those executions are not equivalent and, thus, the inde-
pendence of the computation rule does no longer hold. As a result, given the goal
«— ground (X) ,X=a, if we allow the non-leftmost unfolding step which binds the
variable X in the call to ground (X), the goal will succeed at specialization time,
whereas the initial goal fails in LD resolution at run-time. The above problem
was early detected [115] and it is known as the problem of backpropagation of
bindings. Also, backpropagation of failure is problematic in the presence of im-
pure predicates. For instance, «<— write(hello),fail behaves differently from
«— fail. For a thorough discussion of these problems, see for example [2].

CiaoPP provides a parameter that is used to decide when unfolding should be
avoided, when using a non-leftmost computation rule. This parameter is called
unf_bra_fac, standing for unfolding branching factor, and its value is a natural
number. For example, if set to 7, ¢« > 0, it means that if the selected atom
unifies with j clause heads, j < ¢, then unfolding continues, otherwise it stops.
We reserve the value 0 for indicating that no limit is imposed on the branching
factor. If unf bra_fac is different from 1, it is not guaranteed that the residual
program will execute fewer resolution steps.

In some chapters of this thesis, we will use hom_emb_aggr to refer to the

unfolding rule using an unfolding strategy based on homeomorphic embedding for

2However, non-deterministic unfolding of nonleftmost atoms can degrade efficiency.
3LD resolution is a case of SLD resolution where the selection rule is set to the left-to-right
selection rule of Prolog [35, 118].
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flagging possible non-termination, and using 0 as an unfolding branching factor,
and hom_emb_cons when using 1 as the unfolding branching factor. In both cases,
the computation rule will allow selecting non-leftmost atoms. Note that when
one_step is being used as an unfolding strategy, then neither the computation
rule nor the unfolding branching factor make any difference.

In the literature, and also throughout this thesis, we will use (non-)leftmost
unfolding to denote that we are performing unfolding using a (non-)leftmost com-

putation rule.

3.5 Partial Evaluation of Full Prolog Programs

Most of real-life Prolog programs use predicates which are not defined in the
program (module) being developed. We will refer to such predicates as external.
Examples of external predicates are the traditional “builtin” predicates such as
arithmetic operations (e.g., is/2, <, =<, etc.) or basic input/output facilities.
We will also consider as external predicates those defined in a different module,
predicates written in another language, etc.

Although some builtins, usually taken to be higher-order, such as map/3, can
be mapped to pure definite (first-order) logic programs [125], most builtins like
assert/1 and retract/1 are extra-logical and ruin the declarative nature of the
underlying program. In this section we explain the difficulties that such external

predicates pose during partial evaluation.

3.5.1 Performing Derivation Steps over External Predi-

cates

When an atom A, such that pred(A) = p/n is an external predicate, is selected
during partial evaluation, it imposes several difficulties for performing a derivation

step.

e First, we may not have the code defining p/n and, even if we have it, the
derivation step may introduce in the residual program calls to predicates

which are private to the module M where p/n is defined.
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e In spite of this, if the executable code for the external predicate p/n is
available, and under certain conditions, it can be possible to fully evaluate
calls to external predicates at specialization time. We use Exec(Sys, M, A)
to denote the execution of atom A on a logic programming system Sys, in
which the module M where the external predicate p/n is defined has been
loaded. In the case of logic programs, Exec(Sys, M, A) can return zero,
one, or several computed answers for M U A and then execution can either

terminate or loop.

We will use substitution sequences [21] to represent the outcome of the exe-

cution of external predicates. A substitution sequence is either

e a finite sequence of the form 6, :...:6,, n >0, or

e an incomplete sequence of the form 6; : ... : 6, : L, n > 0, where L

indicates that the execution loops, or

e an infinite sequence 6y : ... :0; : ..., 1 € IN*, where IN" is the set of positive

natural numbers.

We say that an execution universally terminates if Exec(Sys, M, A) = 6, :
.10, n>0.

In addition to producing substitution sequences, it can be the case that the
execution of atoms for (external) predicates produces other outcomes such as
side-effects, errors, and exceptions. Note that this precludes in principle the
evaluation of such atoms to be performed at partial evaluation time, since those
effects need to be performed at run-time.

The notion of evaluable atom was introduced in [106], in order to capture
the requirements which allow executing external predicates at partial evaluation

time.

Definition 3.5.1 (evaluable). Let A be an atom such that pred(A) = p/n is an
external predicate defined in module M. We say that A is evaluable in a logic

programming system Sys if Exec(Sys, M, A) satisfies the following conditions:
1. it uniwversally terminates

2. it does not produce side-effects

39



3. it does mot issue errors
4. it does not generate exceptions

We also say that an expression E is evaluable if

1. E is an evaluable atom, or
2. E is a conjunction of evaluable expressions, or

3. E is a disjunction of evaluable expressions.

3.6 Partial Evaluation: an Example

As an example, let us take the Ciao program in Listing 3.1, where exp(A,B,C)

returns in C the result of computing A%.

Listing 3.1: The exp/3 Example

:- module(_,[exp/3],[assertions]).
:- pred exp(+Base,+Exp,-Res).

exp (Base ,Exp,Res):- exp_ac(Exp,Base,1,Res).

exp_ac(0,_,Res,Res).
exp_ac (Exp,Base,Tmp,Res): -
Exp > O,
Expl is Exp - 1,
NTmp is Tmp * Base,
exp_ac (Expl ,Base ,NTmp,Res).

Note that this program is not a pure logic program, since it uses builtins such
as is/2. A pure predicate does not distinguish between input and output argu-
ments, and any of them can be instantiated when calling the predicate. However,
the situation is different when we consider impure predicates. In this case, the
input to predicate exp(A,B,C) is represented by the arguments A and B, while
C is the output. This means that when calling exp/3 at runtime, both A and

B must be instantiated, in this case to numbers. As shown in the program, the
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direction of arguments can be expressed in the program by using CiaoPP asser-
tions [107]. In this example we use modes to indicate with + and - that the first

two arguments are input, while the third argument is output.

exp(A,3,B)

exp.ac(3,A,1,B)

3>0,E is 3-1,N is 1*A exp_ac(E,A,N,B)

{E — 2}
N is 1*A exp_ac(2,A,N,B)

Nis 1*A,2>0,E is 2-1,N” is N*A exp_ac(E,A,N’,B)

{F 1}
N is 1*A,N” is N*A exp_ac(1,A,N’.B)

Nis 1*A N’ is N*A 1>0,E is 1-1,N” is N"*A exp_ac(E,A,N” B)
‘{E — 0}

N is 1*A N’ is N*A N” is N"*A, exp_ac(0,A,N” .B)

{N?? —s B}
N is 1*A N’ is N*A B is N"*A

Figure 3.4: Unfolding Tree for exp(A,B,C) When B Is Known

If we know in advance the value of some input argument of exp/3, we could
use partial evaluation to specialize this predicate w.r.t. the known input. For
example, let us say that we know that the value of B (the exponent) is 3, then
we can specialize this program and obtain the (more efficient) residual program

shown in Listing 3.2.
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Listing 3.2: Residual Code of the exp/3 Example
exp(A,3,B) :- N is 1xA, N’ is N*A, B is N’x*A.

Note that this specialized program can be obtained using a non-leftmost com-

putation rule, and jumping over the builtin is/3 in Figure 3.4 (e.g. N is 1*A,

exp(3,A,B)

exp.ac(A,3,1,B)

{A— 0B 1}

0 A>0,E is A-1,N is 1*3,exp-ac(E,3,N,B)
(N 3)
A>0,E is A-1,exp_ac(E,3,3,B)

{AHO,BHV\

O A>0,E is A-1,E>0,E’ is E-1,N is 3*3,exp_ac(E’,;3,N,B)

- - )

o)

A>0.E is A-1,E>0,E’ is E-1,exp_ac(E’,3,9,B)

{AHzgjg//\\\\

Figure 3.5: Possibly Infinite Unfolding Tree for exp(A,B,C)

N’ is NxA, ...), which is safe since the pred assertion in Listing 3.1 indicate us
that A (the base) will be instantiated at runtime [2]. In the SLD-tree repre-
sented in Figure 3.4, selected atoms are underlined, and sometimes we squeeze
the graphical representation (in order to make the tree smaller) by representing
two consecutive resolution steps in one node, as done for example when selecting
3>0 and E is 3-1.
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exp(3 A.B)

exp_ ac A3,1,B
{A—1,B l—>/

A>0,E is A-1,N is 1*3,exp_ac(E,3,N,B)

eXpaC(A?)BC/_\
{A0, BH/\

A>0,E is A-1,N is 1*3,exp_ac(E,3,N,B)

Figure 3.6: Unfolding Tree for exp(A,B,C) When A Is Known

The specialized program is not only more efficient in terms of speed (the loop
of the original program has been wiped out), but also in terms of size of code,
and memory taken by the residual program. Obtaining a specialized program
that outperforms the original one in several performance aspects represents an
ideal situation, but unfortunately not achieved often. In general, we will have a
tradeoff between size- and speed-efficiency, as we will see later in this thesis.

However, also note that in some situations partial evaluation cannot be of
much help. For instance, let us assume that we know in advance that the value
of the base is 3, i.e., A=3. If we use a leftmost computation rule then we would
stop in Exp>0 since the value of the exponent is unknown. Using a non-leftmost
computation rule we could continue unfolding, as shown in Figure 3.5. However,
the unfolding tree is potentially infinite, and the process could continue forever.

If we use an unfolding strategy based on homeomorphic embedding (see
Figure 3.6), then we can realize that exp_ac(E,3,N,B) embeds its ancestor
exp_ac(A,3,1,B) (indicated by curved arrows in the figure) and stop unfold-
ing. Later, when unfolding exp_ac(E, 3,N,B) we would find a similar embedding.
From these two SLD-trees, we obtain the residual program shown in Listing 3.3.

As can be seen, this code is larger than the original and it does not reduce the
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number of computation steps.

Listing 3.3: Residual Code for the exp/3 Example (II)
exp(3,0,1).
exp(3,A,B) :- A>0, C is A-1,

D is 1%3, exp_ac_1(C,3,D,B)

exp_ac_1(0,3,A,A).

exp_ac_1(A,3,B,C) :- A>0, D is A-1,
E is B*3, exp_ac_1(D,3,E,C)
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Part 11

Reducing the Size of

Specialized Programs
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Chapter 4

Removing Superfluous Versions

in Polyvariant Specialization

As mentioned in Chapter 3, traditional partial evaluation (PE) of logic programs
aims at obtaining code which is as optimized as possible. In general, this is
achieved by performing aggressive unfolding at the local control level, and by
being as accurate as possible (generalize the least possible) at the global con-
trol level, as long as termination is guaranteed [71]. In particular, given a fixed
local control rule, different global control rules will have different effects on the
polyvariance level of partial evaluation, i.e., the number of versions produced for
each procedure. A common heuristic is to allow a high degree of polyvariance as
long as termination is not compromised, the idea being that by considering differ-
ent versions separately, further optimizations may be uncovered. This heuristic
makes sense from the point of view of optimizing programs in terms of resolution
steps, but it can produce unnecessarily large results, and may even slow down
programs due to cache miss effects (see e.g. [121, 28|.

The problem of superfluous polyvariance has been studied both in the con-
text of abstract multiple specialization [130, 108] and in the context of partial
evaluation of normal logic programs [84]. The common idea is to identify sets of
versions which are equivalent and replace all occurrences of such versions by a

single, canonical, one. This poses two questions:
1. under which conditions can we consider two given versions as equivalent?

2. how can we efficiently check for equivalence?
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To address the first question, we need to first accurately define the notion
of equivalence of versions. Then, in order to make this comparison in an effi-
cient way, we can use some additional information such as making sure that the
versions correspond to the same predicate in the original program, and also use
their specialization history, which can be collected through abstractions such as
characteristic trees [42, 84] and trace terms [43].

In this chapter, we provide a thorough analysis of these questions, comparing
different approaches for controlling polyvariance, and we also extend previous

approaches in two ways.

e First, we tackle in an accurate way the case in which programs contain ex-
ternal predicates, i.e., predicates whose code is not defined in the program
being specialized, and thus it is not available to the specializer. This in-
cludes predicates defined in other user modules, library predicates, builtins,
predicates implemented in other languages, etc. Note that external pred-
icates differ from regular ones in that they cannot be unfolded using the

traditional mechanism, and in that they may have impure features.

We show an extension to traditional characteristic trees and trace terms
which can be used in the presence of calls to external predicates. This
extension was first proposed in [94]. Based on this extension, we define suf-
ficient conditions for minimization, which are more accurate than those used

in previous work, potentially resulting in a higher degree of minimization.

e Second, previously proposed minimization techniques do not provide any
degrees of freedom at the minimization stage. We propose an additional
generalization of the notion of equivalence which introduces the possibility
of collapsing versions which are not strictly equivalent. This is achieved
by residualizing certain computations for external predicates which would
otherwise be performed at specialization time. This allows automatically
trading time for space and is of interest in the context of embedded and

pervasive systems, where computing resources and storage are often limited.

A completely different approach to that studied in this chapter is to incorpo-
rate within the global control certain heuristics which limit polyvariance based for

example on characteristic trees [42, 78, 83]. Such approach has both advantages
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(1) main(A,B,C,D,E,F,G,H,I,J,K,L,M,N,0):-
write(C),
addlists ([4,41A],[0,3IB],[4,7IC]),
addlists ([3,3|D],[1,41E],[4,7IF]),
addlists ([3,31G],[1,4[H],I),
addlists ([1,11J],[3,6[K],L),
addlists ([7,1IM],[1,5IN],0).

(2) addlists ([1,0]1,([1).

(3) addlists([AIB],[CID],[HIT]):-
H is A+C,
addlists(B,D,T).

Figure 4.1: Adding Pairs of Lists.

and disadvantages. The advantage is that there is no need to perform a post
minimization phase, such as that discussed in this chapter. On the other hand,
the disadvantage of that approach is that it sometimes produces results which are
suboptimal, since the fact that characteristic trees are equal not always means
that the corresponding versions should be merged.

We argue that a minimization phase is important in specialization algorithms,
since it allows using very accurate global control rules while limiting the risk of
generating large residual code with many similar versions. Rather than deciding
a priori the best global control possible, this technique allows using aggressive
control strategies. We can minimize the program a posteriori and eliminate those

specialized versions which are redundant.

4.1 Polyvariant Specialization: an Example

Example 4.1.1. In order to see the effects of polyvariance, let us use the example
in Figure J.1. Predicate addlists/3 adds the contents of two lists, using the
builtin is/2. Clauses are numbered for later reference. A possible result of partial

evaluation for the initial query main/15 is shown in Figure 4.2.
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main(A,B,C,D,E,F,G,H,I,J,K,L,M,N,0) :- write(C),
addlists_2([4,4|A],[0,3|B],[4,7IC]),
addlists_3([3,3|D],[1,41E],[4,7IF]),
addlists_4([3,31G],[1,4]1H],I),
addlists_5([1,11J]1,[3,61K],L),
addlists_6([7,1IM],[1,5|N],0).

addlists_1([1,0],[1).
addlists_1([A|B],[CID],[EIF]) :-
E is A+C, addlists_1(B,D,F).

addlists_2([4,4],[0,3],[4,7]).
addlists_2([4,4,A|B],[0,3,CID],[4,7,EIF]) :-
E is A+C, addlists_1(B,D,F).

addlists_3([3,3]1,[1,4]1,[04,7]1).
addlists_3([3,3,A|B],[1,4,CID],[4,7,EIF]) :-
E is A+C, addlists_1(B,D,F).

addlists_4([3,3],[1,4],[4,7]).
addlists_4([3,3,A|B],[1,4,C|D],[4,7,E|F]) :-
E is A+C, addlists_1(B,D,F).

addlists_5([1,1],[3,6]1,[4,7]).
addlists_5([1,1,A|B],[3,6,CID],[4,7,EIF]) :-
E is A+C, addlists_1(B,D,F).

addlists_6([7,1],[1,5],[8,6]).
addlists_6([7,1,A|B],[1,5,CID],[8,6,E|F])
E is A+C, addlists_1(B,D,F).

Figure 4.2: Specialization of addlists/3 via Partial Evaluation.

Here, we use df _hom_emb_as as the unfolding strateqy. As we mentioned in
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Chapter 3, this rule is based on homeomorphic embedding [71] and it never per-
forms non-leftmost unfolding steps to the right of a (possibly) impure predicate.
This guarantees the correctness of the partial evaluation process even in the pres-
ence of impure predicates. Note, however, that the issue of redundant polyvariance
may occur for any unfolding strategy. The global control used is hom_emb, which
is based on homeomorphic embedding and global trees [74].

Unfolding of main/15 only performs one step since the leftmost literal write (C)
has side-effects, and performing non-leftmost unfolding of any other literal may
backpropagate bindings (as variables may be aliases) onto write(C). Note that
one version has been generated for each call to addlists/3 within the body of
main/15, plus one version for the general case. However, the four versions
addlists 2 through addlists 5 are indeed equivalent and could be replaced by a

single one, resulting in the (smaller) program shown in Figure 4.3.

main(A,B,C,D,E,F,G,H,I,J,K,L,M,N,0) :- write(C),
addlists_5([4,41A],[0,3IB],[4,7IC]),
addlists_5([3,3|D],[1,4|E],[4,7IF]),
addlists_5([3,31G],[1,4|H],I),
addlists_5([1,11J],[3,6/K],L),
addlists_6([7,1IM],[1,5IN],0)

addlists_1([]1,[1,[1).
addlists_1([AIB],[CID],[EIF]) :-
E is A+C, addlists_1(B,D,F)

addlists_5([A,A],[_1,_21,[4,7]1).
addlists_b5([A,A,B|C],[_1,_2,D|E],[4,7,F|G]) :-
F is B+D, addlists_1(C,E,G).

addlists_6([7,1],[1,5],[8,6]).
addlists_6([7,1,A|B],[1,5,CID],[8,6,EIF]) :-
E is A+C, addlists_1(B,D,F).

Figure 4.3: Specialization of addlists/3 after Minimization.
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4.2 A General View of Polyvariance and Mini-

mization

We now present a very general description of a polyvariant specialization pro-
cess which includes both partial evaluation [85, 44, 71| and abstract multiple
specialization [108].

Given a program P and a set of atoms A = {A;,..., A, }, which describe
the possible initial queries to P, polyvariant specialization performs the following

three steps:

1. Analysis. In this phase, we compute a set of call patterns {A4;,...,A4,} O A
which cover all calls in the specialized program. We write Analysis(P, A) =
{A;,..., A,} to denote that the result of analysis for P and A is the set of
call patterns {A;,..., A,}.

2. Code Generation. The aim of this phase is, for each call pattern A; €
Analysis(P, A), to compute properly optimized residual code. We denote
by code(A;) the code (set of clauses) associated to A;. In partial evaluation,

an unfolding rule U is used for generating code, i.e.,

code(A;) = U(P, A;).

3. Renaming. In this phase we assign a fresh predicate name to each atom in
{A1,..., A,}. Then, for each code(A;), we perform appropriate renamings
in the head and body atoms so that each program point uses a correct (and

as optimized as possible) version. Ren denotes the renaming function.

The polyvariant specialized program P, is then defined as:

Analysis(P,A)
Py= U Ren(code(A;))

A;
4.2.1 Minimizing the Results of Polyvariant Specializa-
tion

The aim of minimization is to group the call patterns (or versions) in {Ay, ..., A, }

into equivalence classes, obtaining a minimal program that allows the same set of
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optimizations, and that can be implemented without introducing run-time tests
to select amongst different versions of a predicate.

We start recalling some definitions introduced in [109].

Definition 4.2.1 (feasible program). Is a specialized program in which no run-

time tests are introduced.

Definition 4.2.2 (minimal program). A specialized program is minimal if when-

ever two call patterns are equivalent, they are placed into the same version.

Definition 4.2.3 (program of maximal optimization). We say that a program is
of maximal optimization if no two call patterns with different optimizations are

placed into the same version.

Using this terminology, we can rephrase our earlier statement to say that the
goal of minimization is to group call patterns in {Ay,..., A,} into equivalence
classes in order to obtain a feasible minimal program of maximal optimization.

Deciding whether two versions A; and A; with pred(A;) = pred(A;) are equiv-
alent is not straightforward, as we have to consider not only the code of A; and
A;, but also the code of all other versions which are reachable from them. In the
case of the main predicate in a program, we would have to take the code of all the
specialized program into account. Thus, we will split the notion of equivalence

into a local equivalence and a global equivalence level.

Local equivalence Local equivalence concentrates on comparing the code for
A; and A; only, without worrying about the other predicates which are

reachable from them.

Global equivalence Global equivalence will only hold if A; and A; are locally
equivalent and all reachable versions for the corresponding program points

are also locally equivalent.

The minimization algorithm (called Minimize from now on) consists of two

phases.

Reunion phase the first phase is called reunion and its aim is to obtain a
program of maximal optimization while remaining minimal. This is done by

producing a partition {V3, ..., V,,} from a given a set of atoms { A1, ..., A,},
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with m < mnst. VA, A €V, . A= A, where A = A’ denotes the fact that

A and A’ are locally equivalent.

Unfortunately, if we generate code from versions resulting from this phase,
we would obtain a program which is not feasible in general. This is be-
cause two call patterns allowing the same set of local optimizations may
use different versions for the same literal, and thus they cannot be blindly

collapsed into the same version.

Splitting phase the second phase is called splitting, and its aim is to obtain a
feasible program, while remaining minimal and of maximal optimization.
Further details about this algorithm can be found in [109].

The reunion phase is concerned with local equivalence only and it places to-
gether all versions for the same predicate which are considered locally equivalent
according to some criteria. The splitting phase is concerned with global equiva-
lence and splits sets of versions which are not globally equivalent until no more
splitting is needed, i.e., until we have reached a partition where all sets contain
versions which are globally equivalent.

This minimization process is isomorphic to the minimization of deterministic
finite automata (DFA) [57], by considering each call pattern A; as a state and
each program point in code(4;) as a symbol. In [57] an algorithm is proposed
for, given a DFA M, achieving a minimal DFA M’ equivalent to M. If M has k
symbols and n states, the complexity of this algorithm is O(kn?). The algorithm
consists of two phases.

e In the first one, pairs of states (atoms) which are candidates for being

equivalent are identified. All other pairs are marked as not equivalent.

e Then, the second phase keeps on marking pairs of states which are not
equivalent until all pairs of potentially equivalent states are visited. Two
states (call patterns) are not equivalent when they behave differently for
the same symbol (program point), i.e., they call predicates which have been

identified not to be equivalent.

A crucial point thus is, given a pair of atoms A and A’, to decide whether they
can be safely considered locally equivalent. The decision criteria has to satisfy

two properties:

o4



1. it must produce correct results, and

2. it must be effective, i.e. it must be possible to efficiently decide whether A

and A’ are candidates for equivalence based on syntactic, local conditions.

For this purpose, we use the notion of structural equivalence.

Definition 4.2.4 (structurally equivalent). Let A; and Ay be two call patterns
such that pred(A;) = pred(As). We say that Ay and Ay are structurally equiva-
lent iff

C' = msg(code(Ay), code(As))
A instantiate(C, A1) =~ code(A;)
A instantiate(C, Ag) =~ code(As)

where A, ~ A, denotes that A; and A, are variants, as mentioned in Chapter 2.
Clearly, if code(A;) =~ code(A;) then A; and A, are structurally equivalent. How-
ever the definition above allows also considering as structurally equivalent call
patterns whose code only differs in constants which are input arguments to the
predicate but which do not play an important role for local optimization.

Note that structural equivalence is just a syntactic characterization which
guarantees that two call patterns are locally equivalent. In fact, there can be
call patterns which are locally equivalent in the sense that their behaviours un-
der the semantics of interest are identical but which our definition of structural
equivalence would not capture.

Also, structural equivalence in particular, and local equivalence in general
do not guarantee global equivalence. It often happens that two call patterns
which are structurally equivalent end up in different equivalence classes after the
splitting phase. Only after this phase terminates we can be sure that two call
patterns are globally equivalent.

The polyvariant specialized program with minimization Pj/”” is defined as:

Minimize(Analysis(P,A))

P = U Ren=(code(V;))
Vi
where given a set of atoms {A;, ..., A,}, we partition them in equivalence classes

{Vi,....Vih, k< mn,st. VAJA €V, . Aand A’ are structurally equivalent. We
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use code({Ay,...,A;}) to denote msg({code(A;),...,code(A;)}). Also, Ren= is
a new renaming function which always uses the same (canonical) predicate name
for any atom in {Aq,..., A;}.

Our definition of structural equivalence plays several roles. It underlies the
notions of local equivalence used both in abstract multiple specialization and
partial evaluation, thus allowing us to present a unified view of both minimization
processes. Furthermore, it can also be used in order to determine whether two
versions are locally equivalent.

Existing approaches to minimization do not compare the syntactic structure
of the residual code directly (as this definition would require) but rather use
the specialization history in order to decide local equivalence. In [108] two call
patterns are considered locally equivalent iff (1) they correspond to the same
predicate in the original program and (2) the set of optimizations in both call
patterns is the same. In [84] two call patterns are locally equivalent iff they have
the same characteristic tree.

In a way, we could think that given two call patterns A; and As, the task
of checking whether they are structurally equivalent may be done in one of the

following scenarios:

e using no additional information at all, by just applying the definition of
structural equivalence to A; and A,, i.e., generating code from the call
patterns, obtaining their msg, and then instantiating back using A; and A,
to determine whether a variant of the original code is obtained. Clearly,

even though this is a feasible approach, it may also be very inefficient.

e using syntactic information, such as determining that A; and A, are candi-
dates for being structurally equivalent if they have the same original predi-
cate name, and when the amount of clauses of code(A;) and code(As) match.
When these conditions are met, then we can check whether A; and A, are
structurally equivalent as before. This method is clearly more efficient than

using no information at all.

e using specialization history. We could also determine that any two call
patterns are candidates for minimization if their specialization history is the
same. Their specialization history can be abstracted away by means of their

characteristic trees [42, 84] or trace terms [43]. Under the usual assumption
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that the unfolding strategy must perform at least one unfolding step, the
fact that two call patterns have the same characteristic tree (or trace term)
implies that they correspond to the same predicate in the original program.

This will be explained in detail in the next three sections.

4.3 Characteristic Trees with External Predi-

cates

Characteristic trees were introduced in [42] and also used in [78, 84]. Their aim
is to capture all the relevant aspects of the unfolding process.

A characteristic tree is a data structure which encapsulates the evaluation
behaviour of an atom, i.e., a trace of the unfolding process. This provides a
powerful mechanism to guide generalization and polyvariance throughout the
transformation process.

The following definitions are taken from [84], which in turn were derived from
[42], and the SP system [40]).

Definition 4.3.1 (characteristic path). Let Gy be a goal, and let P be a definite

program whose clauses are numbered. Let Gg,...,G, be the goals of a finite,
possibly incomplete SLD-derivation D of P U{Go}. The characteristic path of
the derivation D is the sequence (ly : co, ..., l,_1 : Ch_1), where l; is the position

of the selected atom in G;, and c; is the number of the clause chosen to resolve

Now that we have characterized derivations, we can characterize goals through

the derivations in their associated SLD-trees.

Definition 4.3.2 (characteristic tree). Let G be a goal, P a definite program,
and 7 a finite SLD-tree for PU{G}. Then the characteristic tree 7 of T is the set
containing the characteristic paths of the nonfailing SLD-derivations associated
with the branches of T.

Let U be an unfolding rule such that U(P,G) = 1. Then 7 is also called the char-
acteristic tree of G (in P) via U. We introduce the notation ch_tree(G, P,U) = 7.

Example 4.3.3. Let P be the append program:
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« append(la], X,Y) «— append(X, [al],Y)

(2) (1) (2)
4 » 4
— append([], X,Y") O — append(X', [a], Y")

(1)
»
O

Figure 4.4: SLD-trees 74 and 7 for Example 4.3.3.

(1) append([],Z,Z).
(2) append([HI|X],Y,[HIZ]) :- append(X,Y,Z).

We have added clause numbers, which are incorporated into Figure 4.4 in
order to clarify which clauses have been resolved with. To avoid cluttering this
figure we have dropped the substitutions.

Given for example the atom A=append([a],X,Y), we can fully unfold it dur-

ing partial evaluation, obtaning the resultant
append ([a]l ,X,[alX]).

The corresponding SLD-tree T4 s depicted in Figure 4.4, and its associated
characteristic tree is {(1:2,1:1)}.
If we take the atom B=append(X, [al,Y) and perform partial evaluation, a

possible outcome can be the set of clauses

append ([],[a],[a]).
append ([H|X],[al,[HIZ]) :- append(X,[al,Z).

The corresponding SLD-tree g is depicted in Figure 4.4, and its associated
characteristic tree is {(1: 1), (1 : 2)}.

4.3.1 Handling Builtins in Characteristic Trees

Although existing partial evaluators such as SP [40] and ECCE [79] perform
some limited handling of builtins within characteristic trees, the existing formal
definitions of characteristic trees do not contemplate the existence of builtins

nor of external predicates. We now extend the standard definitions in order to
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accurately include external predicates. This will allow us to introduce powerful

sufficient conditions for isomorphism of characteristic trees in Section 4.4 below.

Definition 4.3.4 (characteristic path with external predicates). Let G be a goal,
and let P be a program whose clauses are numbered. Let Gy, ..., G, be the goals
of a finite, possibly incomplete SLD-derivation D of PU{Gy}. Let Ao, ..., Ap_q
be the selected atoms in D. The characteristic path with external predicates of
the derivation D is the sequence (ly : co,...,ln—1 : Ch_1), where l; is the position
of A; in Gy, and c; is defined as follows:

o if pred(A;) is defined in P, then c; is the number of the clause in P chosen

to resolve with G;;

o if pred(A;) is an external predicate, then let 6 be a computed answer gener-

ated when performing exec(A;). Then, ¢; is a pair (A;, 0).

In the definition above, exec(A;) represents the execution of A;. For this, the
external call A; has to be evaluable [106], i.e., A; is both well-moded and well-
typed, it does not produce any side-effect, and it universally terminates. Note
that exec(A;) can succeed more than once and possibly with different computed
answers.

Reconsidering characteristic paths, each pair (I; : ¢;) in a characteristic path

must uniquely identify:

1. the position of the selected atom A;,
2. the bindings introduced by this step on the current goal, and

3. the atoms which must be introduced in the goal in place of the selected

atom A;.

An important obvious difference between external and regular predicates is
that the code for external predicates may not be available, so it is not possible,
as done with regular predicates, to assign clause numbers to them or to unfold
them. Instead of unfolding external predicates, we will fully execute them. As
a result, no atoms will be introduced in the current goal and, thus, (3) is not

needed in this case.
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In the case of external predicates, we introduce in the characteristic tree an ez-
ternal success, i.e., a pair (A;, §) containing the call pattern A; and the bindings ¢
generated during evaluation for each external predicate. Note that, in contrast to
the handling of builtins within characteristic trees in the systems SP and ECCE,
this makes it possible to reconstruct the residual code for an atom without the
need for (re-)evaluating external predicates, even if the external predicates suc-
ceed several times with (possibly) different computed answers. The notion of
characteristic paths with external predicates is indeed consistent with traditional
characteristic paths. In the case of regular predicates, the same implicit rep-
resentation as in traditional characteristic paths is used. This representation is
efficient in space since rather than introducing (an instantiated version of) the
clause chosen for resolving the selected atom directly in the characteristic tree,
only the number of the clause used for unfolding is stored. This suffices since the
actual instantiation can be performed later if needed using the actual clause. In
the case of external predicates, this implicit representation is no longer possible,
since the clauses are not available. Instead, the call pattern and the corresponding

bindings are explicitly stored.

Definition 4.3.5 (characteristic trees with external predicates). Let G be a goal,
P a definite program, and T a finite SLD-tree for PU{G}. Then the characteristic
tree with external predicates of 7 is the set containing the characteristic paths
with external predicates of the non-failing SLD-derivations associated with the
branches of 7. We also assume from now on that “ch_tree” refers to characteristic

trees with external predicates.

Let U be an unfolding rule such that U(P,G) = 7. Then 1 is also
called the characteristic tree of G (in P) wvia U, and we use the notation
ch_tree(G, P,U) =T to denote it.

Characteristic trees are extended to handle external predicates by simply
considering characteristic paths with external predicates. Figure 4.5 shows the
characteristic trees with external predicates 7y, 73, 74, 75 and 7¢ for versions
addlists_2/3, addlists_3/3, addlists_4/3, addlists_5/3, and addlists_6/3,

respectively.
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= {(1:3,1:(4is4+0,¢),1:3,1:(Tis4d+3,¢),1:2),
(1:3,1:(4isd+0,6),1:3,1:(Tis4+3,¢),1:3)},

3= {(1:3,1:(4is3+1,¢),1:3,1:(Tis3+4,¢),1:2),
(1:3,1:(4is3+1,€),1:3,1:(Tis3+4,¢),1:3)},

w= {(1:3,1:(Ais3+1,{A—4}),1:3,1:(Bis3+4,{B~—T}),1:2),
(1:3,1:(Cis3+1,{Cw—4}),1:3,1:(Dis3+4,{Dw—T7}),1:3)},

= {(1:3,1:(Fis1+3,{Fw—4}),1:3,1:(Fis1+6{F—T7}),1:2),

(Gis1+3,{G—4}),1:3,1: (His1+6,{H— 7}),1:3)},

—
[

23,1
3,1:(IisT+1,{I+8),1:3,1:(Jis1+5,{Jr6}),1:2),
:3,1:(Lis7+1,{L—8}),1:3,1:(Mis1+5{M—6}),1:3)}.

7_6:{

—~
—_

Figure 4.5: Characteristic Trees for addlists/3 Versions.

4.4 Isomorphic Characteristic Trees

In this section we provide novel sufficient conditions for considering two call pat-
terns as locally equivalent. For this we define the notion of isomorphic charac-
teristic trees with external predicates, which guarantees that the corresponding
code is structurally equivalent. We assume that predicate names cannot be num-
bers, as is the case in most existing logic programming systems. Also, number(X)
succeeds iff X is a number.

First, we introduce the concept of quasi-isomorphic characteristic trees, for
identifying characteristic trees which only (possibly) differ in the input and/or

output values of arguments in calls to external predicates:

Definition 4.4.1 (quasi-isomorphic characteristic trees). Two characteristic
paths 8 = (lo i cgy ... I 1 ch) and 82 = (lg : 3, ..., L, : ¢2,) are quasi-isomorphic
and we denote it ' =, 6% iff Vi € {1..m} . number(c;) = ¢} = ¢}

7 -

Two characteristic trees Ty and o are quasi-isomorphic, denoted 71 ~4 T2, iff
o Volem .32 €m st 6 ~, 8% and
o Vo eT . A0t em st 6% &, bt

Note that quasi-isomorphic characteristic paths must have the same length and

the selected atom must be in the same position in each resolution step. Further-
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more, if the atom is not for an external predicate, then the atom must have been
resolved against the same clause. In Figure 4.5, 1 ~, 73 =4 T4 Ry T5 Rq T6-
Now we define some relationships among external successes, after some aux-

iliary definitions. A position uniquely determines a subterm within a term.

Definition 4.4.2 (position). A position w is either the empty position €, or n.w/',

where n is a natural number and W' is a position.

Definition 4.4.3 (getval, Pos, and Allpos). Let A = f(t,) be a term. Let w be
a position. Let X be a variable s.t. X € vars(A). Let 0 be a substitution.

o We define getval(w, A) as A if w = ¢ and as getval (W', ;) if w = i.w'.
o We define Pos(A, X) as {w | getval(w, A) = X}.
o We define Allpos(A,0) as Uxcaomo){w}, s.t. w € Pos(A, X).

Example 4.4.4. getval(2.1.¢, f(a,g(b,c))) = b, and Pos(f(a,g(b,Y)),Y) =
{2.2.}. If A is not linear, then for some X, the set Pos(A, X) may have more
than one element. E.g., Pos(f(Z,9(Z)),Z) = {l.e,2.1.e}. In such case, any
w € Pos(A,X) can be used for our purposes. Also Allpos(A is 3+ 1,{A —

4}) = {1.¢}.

Definition 4.4.5 (isomorphic external successes). Let ¢ = (A,0) and ¢ = (A’,8)
be external successes. Then ¢ and ¢ are isomorphic external successes, denoted
by c ~ ¢, iff Yw € Allpos(A,0) U Allpos(A’,0") . getval(w, AD) = getval(w, A’0").

Example 4.4.6. This definition tries to consider as isomorphic as many pairs of
external successes as possible. A particular subcase of this definition corresponds
to the case where the calls to external predicates generate no bindings. For exam-
ple, the pair (4 is 4+ 0,¢) and (4 is 3+ 1,¢€) is isomorphic, whereas the notion of
equivalence in [84] cannot capture this since the builtin predicate is/2 potentially
generates bindings, though in this case it does not. Note that (4 is 4+ 0,¢) and
(8 is 2x4,¢) are also considered as isomorphic although their syntactic structure
s very different.

Another interesting subcase is when the external successes have different levels
of instantiation but on success they are variants. This happens with (A is 3 +
1,{A— 4}) and (4 is 3+ 1,¢), that are isomorphic according to Definition 4.4.5.
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Furthermore, it allows considering as isomorphic external successes which
have the same values in all positions which are instantiated in either external
success. For example (A is 3+ 1,{A — 4}) and (4 is 4+ 0,¢) are considered
1somorphic since

o Allpos(Ais 3+ 1,{A— 4})={l.e}A

o Allpos(4 is 4+0,¢}) = 0N

e getval(l.e,4is 3+ 1) = getval(l.e,4 is 44 0) =4

However, (Eis 1 +3,{E+—4}) % (I is T+ 1,{I — 8}), since

o Allpos(E is 1+ 3,{E v 4}) = Allpos(I is 7+ 1,1) = {L1.e}, but
o getval(le, 4 is 1+ 3) = 4 # getval(Le,8 is T+ 1) = 8.

As a side note, the minimization approach in [84] only considers as isomorphic
a restricted version of ~, where the external predicate involved in ¢ and ¢ must
be well-known and safe. In such approach, none of the external successes above
are considered isomorphic since predicate is/2 is not safe in general, as it can

generate bindings for its first argument.

Definition 4.4.7 (isomorphic characteristic trees). Two characteristic paths §' =
(lo:chyeviylmicl) and 6% = (lo: G, ..., Ly : ¢,) are isomorphic and we denote
it 01 = 02 iff

o 0! ~, 0% and

o 0l ~, 0° ANVie{l.m} . cl = (A},0}) = & = (A2,0?) N} ~ .

1771 1771 1

Two characteristic trees 71 and T are isomorphic, denoted 11 =~ 1o, iff Vo' €
7. 302 €T st O~ 6% and Vo2 €y . A0 € st 02 = L.

The following proposition provides the basis for our minimization approach.

Proposition 4.4.8 (structural equivalence). Let P be a program with external
predicates, let U be an unfolding rule, let Ay and As be two call patterns such that
71 = ch_tree(Ay, P,U) and 15 = ch_tree(As, PU). If 11 &= 75 then Ay and Ay are

structurally equivalent.
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A difficulty with our notion = of isomorphic characteristic trees and its usage
as a condition for local equivalence is that though the ~ relation is reflexive and
symmetric, it is not transitive. This means that (1 =& 5 A 7o & 73) / T = 3.
As a result, in order to be able to state that all characteristic trees in a set

{m,..., 7} are isomorphic we have to check that V7,7 € {ry,...,7,} .7~ 7.

Example 4.4.9. Let us consider again the characteristic trees in Figure 4.5. We
have already noticed that all of them are quasi-isomorphic. If we take the quasi-
isomorphic paths of 1o, T3, T4 and T5, and extract their external successes, we
can see that they are isomorphic. For example, if we take cy1 = (4 is 4+ 0,¢€),
cs1 = (4is 3+ 1,¢), ca1 = (Ais 3+1,{A— 4}) and c5; = (C is 1+3,{C — 4}),
we can compute Ujcqa. 53 Allpos(ci) = {l.e}. Since getval(l.e,4 is 4 4+ 0) =
getval(l.e,4 is 3+ 1) = getval(l.e,4 is 1 4+ 3) = 4, we can conlude that they are
1somorphic.

However, note that even though 5 ~, 16, they are not (fully) isomorphic since,
for instance, (E is 1+ 3,{FE +— 4}) # (I is 7+ 1,{I — 8}). Indeed, addlists_5/3
and addlists 6/3 are not structurally equivalent.

By Prop. 4.4.8 the sets which are identified as locally equivalent during the
reunion phase are:

e {main/15},

e {addlists_1/3},

e {addlists 2/3,addlists_3/3,addlists 4/3,addlists_5/3},
e {addlists 6/3}.

This is also the final partition after applying the splitting phase. This produces

the mainimized program which was shown in Figure 4.5.

In the implementation, in order to reduce the cost of checking every character-
istic tree against all other trees which are quasi-isomorphic to it before being able
to consider them isomorphic, each set of versions is augmented with a canonical
representative, which stores the set of positions in each of the members in the
set. This way, a new candidate only needs to be checked against such canonical
representative but taking into account all positions stored for them, and not only

the ones which actually are bound at the corresponding external successes.
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4.5 Local Trace Terms

Trace terms [43] are an abstraction of AND-trees, which are a representation of
successful computation paths. They are similar in some ways to characteristic
trees, the main difference being that trace terms abstract away the computation
rule, and that they represent complete answers rather than partial unfolding
traces.

In this section we introduce local trace terms, which extend trace terms al-
lowing to reflect traces of incomplete derivations. We start by introducing first
clause identifiers.

Definition 4.5.1 (clause identifiers). Let P be a normal program, and {c; . ..c,}
the set of clauses in P. Let a;, 1 <1 <n be the number of atoms in the body of c;
. Then each clause ¢; in P is associated with a functor ;/a;, where p; is not in
the language of P, and ¢;/a; # ¢j/a; iff i # j. These functors are called clause
identifiers.

Any successful SLD-derivation can be transformed into an AND-tree. Now
we introduce an extension to the concept of AND-trees, in order to support
incomplete computations. Thus, an incomplete AND-tree can represent either a

successful computation or an incomplete one.

Definition 4.5.2 (incomplete AND-trees). Let P be a program. Then an ex-

tended AND-tree for P is a tree where each node can be either a

non-leaf node labelled by a clause A «— Ay, ..., Ay, and an atom A0 (for some
substitution ), and has children A0, ..., A0, or

leaf node which can be further classified in

final labelled by a clause A «— true and an atom 0, for some substitution
0,

local labelled by a clause A — Ay, ..., A, and an atom A6 (for some
substitution 0 ), representing an incomplete computation and therefore

having no children, and

external labelled by an external success (B,0') and an atom BO, where

B is an external predicate, 0" is the computed answer generated when

65



ay = addl2((4 is 4+ 0,¢€),addl2((7 is 4+ 3,¢€), X5))
as = addl2((4 is 3+ 1,¢€),addl2((7 is 3+ 4,¢€), X3))
ay = addI2((A is 3+ 1, {A v 4)), addi2((B is 3+ 4,{B — T}), X4))
s = addi2((C is 1+ 3,{C — 4}), add12((D is 1+ 6, {D — T}), X5))
ag = addl2((E is T+ 1,{E — 8}),addl2((F is 1 +5,{F — 6}), X))

Figure 4.6: Local Trace Terms for addlists/3 Versions.

executing B, and 6 is some substitution. Here 6’ can the empty substi-

tution € if B was not executed.

We now introduce local trace terms, which abstract incomplete AND-trees.

Definition 4.5.3 (local trace terms). Let T" be an AND-tree, then a local trace
term for T', denoted by o(T), is either

e ©;, if T is a final leaf node labelled by the clause identified by ¢;/a;, or
e X, if T is a local leaf node, where X € Vars is an arbitrary variable, or
e (B,0), if T is an external leaf node labelled by (B,0), or

o vi(a(Th),...,a(Ty,)), if T is labelled by ¢;/a; and has immediate subtrees
T ... T,.

(3

Let P be a program, and < A be a goal. Let T be an AND-tree for P with
root labelled by A6, and o a local trace term abstracting T'. Then we introduce
the notation ltt(P, A) = a.

For example, given the program in Figure 4.1, where functors m/6,add11/0,add12/2
are assigned to clauses 1, 2 and 3 respectively, we show in Figure 4.6 the local
trace terms s, as, a4, as and «g for versions addlists_2/3, addlists_3/3,
addlists_4/3, addlists_5/3, and addlists_6/3, respectively.

Intuitively, if two call patterns have similar enough associated trace terms,
then we can consider them as structurally equivalent. This notion of similarity is
formalized in terms of isomorphism, as we did above for characteristic trees with

external predicates.

66



Definition 4.5.4 (isomorphic local trace terms). Two local trace terms o' and

a? are isomorphic, denoted by o' ~ o2, iff

o ot =% =, i.e, they are the same clause identifier, or
e o' Aa? are both variables, or
e o' N a? are isomorphic external successes, i.e. o' ~ o (by Def. 4.4.5), or

1:

e ol =p(af,...,al) Na? =p(ad,...,;a2), and Vi € {1...n}.af ~ a?.

The following proposition formalizes the notion that when two call patterns

have isomorphic local trace terms, then they are structurally equivalent.

Proposition 4.5.5 (structural equivalence). Let P be a program with external
predicates, let Ay and Ay be two call patterns such that oy = ltt(P, Ay) and
ag = ltt(P, Ay). If ay = oy then Ay and Ay are structurally equivalent.

Let us consider the local trace terms in Fig. 4.6. If we take, for example, as
and ag, it can be easily verified that they share the same clause identifiers, and
that their external successes are isomorphic (already shown in Sec. 4.4), there-
fore by Prop. 4.5.5 we can consider versions addlists_2/3 and addlists_3/3 as
structurally equivalent. It is not difficult to follow the same reasoning and reach

the same results as in Sec. 4.4, obtaining as candidates for minimization the sets
e {main/15},
e {addlists_1/3},
e {addlists 2/3,addlists_3/3,addlists 4/3,addlists _5/3},

e {addlists_6/3}.

4.6 Minimization via Residualization of Exter-
nal Calls

In previous sections we have established that call patterns with isomorphic char-

acteristic trees (or isomorphic local trace terms) are structurally equivalent, and
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therefore they can be collapsed into the same version. This makes sense if we
want to have a program of maximal optimization. However, there are situations
in which even the minimized program is too large and/or where we would like to
trade space for time efficiency. This would mean achieving programs which are
smaller, but at the cost of introducing some efficiency penalty. In cases like this,
we propose as candidates for minimization, call patterns with quasi-isomorphic
characteristic trees.

An important observation is that if ' a2, §? then the associated resultants
have the same structure. However, this is not a sufficient condition for structural
equivalence. This is because part of the bindings needed for structural equivalence
cannot be achieved by the operation instantiate, as in Def. 4.2.4, but rather they
originate from the execution of calls to external predicates. Thus, the second
important observation is that if the calls to external predicates involved succeed
only once, i.e. they are deterministic, such missing bindings can be recovered at
run-time by residualizing (part of the) calls to external predicates which had in
principle taken place during specialization time.

Note that for detecting determinacy, no static analysis is actually required.
We can simply check whether the calls which are to be residualized succeed just
once by directly executing the calls as they appear in the different characteristic
trees, i.e., before applying the msg to them. After the required external predicates
have been residualized, the corresponding versions will be structurally equivalent.
The strategy we propose is the following: for any pair of versions A; and Ay with
71 = ch_tree(A;, P,U) and 1, = ch_tree(As, P,U) s.t. 11 =, 72 we:

1. Let (A,0) € 6 € 7;, © € {1..2}, then we replace it by A6, i.e., we apply the

corresponding substitution 6 to each external success A6.

2. Compute (C,T) = msg((code(A1),T1), (code(As),T2)), where Vi € {1..2}.7;
is obtained from 7; by evaluating all external successes, i.e., V(B,0) we
replace it by Bf. Since 7 ~, T2, we can simply compute the msg of the
evaluated external successes, i.e, given (A, 6) we apply the msg to A6,

instead of using the whole tree.
3. If Vi € {1..2} . instantiate(C, A;) = code(A;)
e then A; and A, are structurally equivalent. No need to residualize.
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{addlists([4,4],[0,3],[4,7]).,(1: (4is 4+0),1:(7Tis4+3))}
{addlists([3,3],[1,4],[4,7]).,(1: (4is 3+1),1:(Tis 3+4))}
T (addiists(3,3], [1,4], [4, 7)) (1: (4 s 34+ 1),1: (7 is 3+ 4)))
{addlists([1,1],[3,6],[4,7]).,(1: (4is 1 +3),1:(7Tis 1 +6))}

{addlists([X, X],[Y, Z],[4,7])., (1 : (4 is X +Y),1

(Tis X+ 2))}

{addlists([4,4, A|B],[0,3,C|D], 4,7, E|F]) : —E is A+ C,addlists(B,D, F).,
(1:(4is4+0),1:(7Tis4+3))}
{addlists([3,3, A|B|,[1,4,C|D],[4,7, E|F]) : —E is A+ C,addlists(B, D, F).,
(1:(4is3+1),1:(7Tis3+4))}
"9 (addiists([3,3, A| B, [1,4,C|D), [4,7, E|F)) : —E is A + C,addlists(B, D, F).,
(1:(4is3+1),1:(7Tis3+4))}

{addlists([1,1, A|B],[3,6,C|D],[4,7, E|F]) : —E is A+ C,addlists(B, D, F).

(1:(4is1+3),1:(7is 1+6)}’

Figure 4.7:

{addlists([X, X, R|S],[Y, Z,T|U],[4,7, V|W]) :
(1

msg of Versions addlists_2,

(4is X +Y),1

addlists_3,

)
—Vis R+ T,addlists(S,U, W)
)

:(7’L'SX+Z)}7

addlists_ 4 and

addlists_b.

e else if for every evaluated external success ¢ € T such that ¢ is no
longer sufficiently instantiated to be executed we can determine that

its corresponding ¢; € 7y and ¢y € 7, are both deterministic,

— then residualize all ¢ € T being no longer sufficiently instantiated.

— otherwise we cannot collapse A; and A,.

Note that without such residualization, the code generated by the msg is not
directly usable, since there are bindings in the original versions which are lost if

we apply the code produced by the msg.

Example 4.6.1. As we have already mentioned, all characteristic trees in Fig-
ure 4.5 are quasi-isomorphic. Therefore, they can be collapsed into one version.
In Figure 4.7 we show the msg of both the code and the characteristic trees for
versions addlists 2, addlists_3, addlists 4 and addlists_ 5. In this figure,
the scope of variables is local to each clause. Since 7o = T3 = T4 = T5, the msg does

not produce any information loss. This can be easily verified by instantiating back
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the msg with any of the call patterns. For instance, if we take addlists ([X,X],
[Y,Z],[4,7]) and instantiate it with addlists([3,3|G],[1,4|H],I) we obtain
the original clause (eighth clause of Figure 4.2). This fact can be easily verified by
taking any pattern call and after instantiating with the msg the original clauses

are retrieved. For example, if we take addlists_2, then

C= {addists([X, X], 1Y, 7], [4,7]),
addlists([X, X, R|S],[Y, Z,T|U), 4,7, V|W]) : =V is R+ T, addlists(S,U, W)},
Ao = addlists([4,4|A4], 0, 3|B], 4, 7|C)]),

and instantiate(C, Ag) is
{addlists([4, 4], 0,3], [4,7),
addlists([4,4, R|S],[0,3,T|U],[4,7,VIW]) : =V is R+ T,addlists(S,U, W)},
i.e, instantiate(C, As) ~ code(As).

Example 4.6.2. Now, let us compute the msg of the generalized code and char-

acteristic tree obtained in Fxample 4.6.1 with addlists_6.

{addlists([X, X),[Y, Z],[4,7]).,{1: (4is X +Y),1:(Tis X + 2Z))}
I\ faddiists( [7, 1,[ 1,5],[8,6])., (1: (8 is T+ 1),1: (6 is 1+5))}
{addlists([A, B], [C, D], (E, F])..(L: (E is A+ C),1: (F is B+ D))}

{addlists([X, X, R|S],[Y, Z, T\U], [4,7,VIW]) : —V is R + T, addlists(S,U, W).,
(1:(dis X+Y),1: (T is X+ 2))}

9 taddiists([7, 1,R|S],[ 1,5, T|U],[8,6, VIW]) : —V is R+ T, addlists(S,U, W).,
(1:(8ds T+1),1:(64s 1+5))

{addlists([A, B,G|H],[C,D,I\J],[E,F,K|L]) : =K is G+ I,addlists(H,J,L).,
(1:(Eis A+C),1: (F is B+ D))}

The msg introduces some information loss
C = {addlists([A, B],[C, D], [E, F)),
addlists([A, B,C|D),[E, F,G|H|,[I,J,K|L]) : =K is G + C,addlists(D,H, L)},
As = addlists([4,4]A], 0, 3|B],[4,7|C)]),

and instantiate(C, As) is
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{addlists([4,4],]0,3],[4,7]),
addlists([4,4, R|S],[0,3,T|U], 4,7, VIW]) : =V is R+ T, addlists(S,U, W)},

i.e., instantiate(C, Ay) ~ code(As).

Since addlists 6 is mnot (fully) isomorphic with the other wver-
sions, the msg introduces some information loss through the wvari-
ables E and F in the new heads addlists([A,B],[C,D],[E,F]) and
addlists([A,B,G|H], [C,D,I|J],[E,F,KIL]). This information loss
cannot be recovered by instantiate, since, for example, when instan-
tiating the wmsg addlists([A,B],[C,D],[E,F]) with the call pattern
addlists([3,3|G],[1,4|H],I) we obtain addlists([3,3],[1,4],[E,F]), in
which E and F are unbound variables. If we take the external successes which
correspond to E is A+C and F is B+D we can verify that the original external
successes were deterministic (indeed, all calls to is/2 are deterministic). Thus,
it is possible to collapse by residualization. As both external calls are no longer
sufficiently instantiated, they are residualized.

Residualized atoms are always placed before any other atom in the generalized
clause, guaranteeing that after execution of such residual atoms at run-time, the
clause as a whole is actually a variant of the original definition of the clause.

The resulting minimized program is shown in Figure 4.8. Residual atoms are

underlined to distinguish them from the rest of atoms in body clauses.

4.7 Experimental Results

In this section we experimentally assess the impact of our proposed minimiza-
tion. Most of the benchmarks considered contain calls to builtins which possibly
generate bindings, such as is/2, and thus the existing partial evaluators which
perform minimization [79, 80] would not be able to minimize them optimally.

In our experiments we use an unfolding strategy based on homeomorphic
embedding (see, e.g., [71]) and which performs leftmost unfolding steps only. This
guarantees the correctness of the partial evaluation process even in the presence
of impure predicates. Note that the issue of redundant polyvariance may occur

for any unfolding strategy. The global control used is based on homeomorphic
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main(A,B,C,D,E,F,G,H,I,J,K,L,M,N,0) :- write(A),
addlists_6([4,41A],[0,3IB],[4,7IC]),
addlists_6([3,3ID],[1,41E],[4,7IF]1),
addlists_6([3,3]G],[1,4|H],I),
addlists_6([1,1]J],[3,61K],L),
addlists_6([7,1IM],[1,5IN],0)

addlists_1([1,0],[1).
addlists_1([A|B],[CID],[EIF]) :-
E is A+C, addlists_1(B,D,F)

addlists_6([A,B],[C,D],[E,F]) :-
E is A+C, F is B+D.

addlists_6 ([A,B,G|H],[C,D,I|J],[E,F,KIL]) :-
E is A+C, F is B+D,
K is G+I, addlists_1(H,J,L)

Figure 4.8: Specialization of addlists/3 after Minimization with Residualiza-

tion.

embedding and global trees [74]. Benchmarks have been run on an Intel Pentium
4, 3.4 GHz processor, with 512 Mb of RAM, and running a 2.6 Linux kernel.

4.7.1 The Benefits of Minimization

Table 4.1 shows the size reduction introduced by the minimization step after
partial evaluation. Each benchmark program is evaluated using five different
minimization criteria, as shown in the Min Crit column. Specialization history
is used in pure, nobinds, and bindings, in order to consider two versions as locally
equivalent, while codemsg directly applies the definition of structural equivalence
for the same purpose. In particular, pure considers two versions as locally equiv-
alent when their characteristic trees are identical. Of course, if external successes
are included, these must be identical too. The criteria nobinds and bindings check

for isomorphism of external successes instead. Nobinds only considers two exter-
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Min Orig Minimization
Benchmark Crit Preds Versions Size (bytes)
PE | Min | Ratio PE | Min | Ratio
pure 36/36 1.78 102651 1.28
nobinds 36/36 1.78 102836 1.28
datetime bindings 15 || 56/31 | 34/35 1.83 || 131377| 102331 1.28
codemsg 34/35 1.83 102295 1.28
residual 31/33 1.94 100976 1.30
pure 22/22 1.50 223320 1.01
nobinds 22/22 1.50 223435 1.01
flattrees bindings | 2 || 33/16 | 22/22 | 1.50 || 226390| 223389 | 1.01
codemsg 17/19 1.74 221513 1.02
residual 16/18 1.83 220796 1.03
pure 35/35 2.66 245262 1.19
nobinds 35/35 2.66 245442 1.19
freeof bindings 3 1| 93/8 |32/35 2.66 || 292642 245370 1.19
codemsg 18/35 2.66 245334 1.19
residual 8/35 2.66 245370 1.19
pure 18/34 2.06 37061 1.57
nobinds 18/34 2.06 37236 1.57
mmatrix bindings 3 70/11 | 18/34 2.06 || 58323 | 37166 1.57
codemsg 18/34 2.06 37131 1.57
residual 11/30 2.33 31781 1.84
pure 3/3 | 13.67 5261 4.77
nobinds 3/3 | 13.67 5281 4.76
nrev bindings 2 || 41/3 3/3 | 13.67 || 25115 5273 4.76
codemsg 3/3 | 13.67 5269 4.77
residual 3/3 | 13.67 5273 4.76
pure 68/68 2.47 166288 1.40
nobinds 50/50 3.36 131650 1.76
gsort bindings 3 168/50| 50/50 3.36 || 232079| 131548 1.76
codemsg 50/50 3.36 131497 1.76
residual 50/50 3.36 131548 1.76
pure 27/27 1.11 99986 1.02
nobinds 27/27 1.11 100121 1.02
sublists bindings 4 29/19 | 19/19 1.58 || 101969 95815 1.06
codemsg 19/19 1.58 95795 1.06
residual 19/19 1.58 95815 1.06
| Overall | 2.88/2.96 | 132/133 |

Table 4.1: Minimization Ratios over Selected Benchmarks

nal successes ¢ and ¢ as isomorphic when they generate no bindings, i.e., when
Allpos(c) = Allpos(c) = 0, while bindings applies the full power of Def. 4.4.5.
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Finally, residual considers two versions as candidates for minimization when their
characteristic trees are quasi-isomorphic, possibly residualizing calls to external

predicates in the resulting program.

The number of predicates in the original program is shown in the column Orig
Preds. The number of predicates in the specialized programs are shown under
the column Versions. PE shows both the number of versions which are generated
after partial evaluation (i.e., the effects of polyvariance) and the number of sets of
predicates with quasi-isomorphic characteristic trees. The latter provides a lower
bound on the number of predicates which the minimized program may have. Min
shows the number of elements in the partition generated by the reunion phase of
the minimization algorithm (local equivalence) and the number of elements in the
partition after the splitting phase (global equivalence). Finally, Ratio shows the
reduction ratio for each criteria compared to the number of versions produced by
partial evaluation. The column Size compares the sizes of the compiled bytecode

of programs minimized using the different criteria.

The last row, Ouverall, shows the weighted geometric mean (wgm) for ratios
in terms of number of versions and size. Weights are number of versions and
size of the PE column, respectively. In both cases, under the column Min we
find the wgm of the codemsg criterion, which achieves the best results while still
producing programs of maximal optimization. Under the column Ratio we find

the wgm of the residual criterion, which achieves highest ratio.

As can be seen in the table, in most of the benchmarks considered, minimiza-
tion is capable of considerably reducing the specialized program, both in terms
of number of versions and of bytecode size. As it is to be expected, out of the
four criteria which are guaranteed to produce programs of maximal optimization,
i.e., pure, bindings, nobinds, and codemsg, the one which produces the best re-
sults is the latter. Among the three of them which take the minimization history
into account—and which are more efficient in terms of specialization time—, the
best is bindings, but it sometimes does not produce as good results as codemsg.
The effects of the splitting phase are clear in many benchmarks, showing that,
in effect, local equivalence does not imply global equivalence. This effect is no-
torious in the case of the residual criterion, since after the reunion phase the
number of locally equivalent versions is equal to the number of sets of versions

having quasi-isomorphic characteristic trees, however, in the splitting phase they
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are split, producing a larger number of versions, as can be clearly seen in the case
of the freeof and mmatrix benchmarks. Finally, for datetime, flattrees and

mmatrix, residual is able to further reduce code size.

4.7.2 The Cost of Minimization

In Table 4.2 we can observe the cost, in terms of specialization time, introduced by
the minimization, expressed in milliseconds. The (Total) time of the whole spe-
cialization process is shown, including the time of partial evaluation (Analysys),
minimization (Minim) and code generation (Code) steps. A new minimization
criteria is introduced, nomin, showing the time employed by partial evaluation
without minimization. The Slow column shows the cost (slowdown) of performing
this minimization post-processing.

Interestingly, the table shows that when minimization is employed, the code
generation phase takes less time in most cases, since fewer versions need to be gen-
erated. This lowers the burden introduced by the minimization post-processing.

However, even in the worst case, the slowdown introduced is reasonable (1.85).
As expected, using specialization history makes minimization faster than just
applying the definition of structural equivalence. Given the fact that employing
structural equivalence generates fewer versions than other criteria based on the
specialization history, the codemsg criterion emerges as a very interesting one.
Also, for the residual minimization criterion, the time spent in code generation
is greater than for the rest of criteria, since it requires deciding which external

successes need to be residualized.

4.7.3 Benefits of Minimization in Runtime

Table 4.3 shows how specialized programs behave in terms of runtime. Benchmark
programs having residualized external predicates (for the residual minimization
criterion) are marked with * in the table. Column PE Time shows the absolute
run-time for the partially evaluated program. The rest of the columns show the
speedup achieved for the minimized programs (for each different minimization
criteria) w.r.t. PE Time. As can be seen in the table, in most benchmarks a
small speedup is achieved (1.00 — 1.20), and no slowdown is produced in any

case. As expected, in the case of programs with residualized external predicates,
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Bench Min Minimization Times (msec)
Crit Total | Analysis | Minim | Code | Slowdown
nomin 556.52 475.33 0 81.19 1
pure 632.90 486.13 | 61.19 | 85.59 1.14
, nobinds 634.30 476.13 | 7279 | 85.39 1.14
datetime |5 gies 640.10 479.93 | 73.99 | 86.19 1.15
codemsg 642.30 47813 | 79.19 | 84.99 1.15
residual 687.30 47993 | 7759 | 129.78 1.23
nomin 299.55 232.56 0 66.99 1
pure 395.14 230.97 | 107.78 | 56.39 1.32
nobinds 396.34 231.57 | 108.58 | 56.19 1.32
flattrees |5 fings | 400.19 230.21 | 113.48 | 56.49 1.34
codemsg 412.74 231.36 | 125.98 | 55.39 1.38
residual 424.94 231.36 | 125.78 | 67.79 1.42
nomin 5732.93 |  5583.15 0| 149.78 1
pure 5833.11 | 5589.95 | 118.98 | 124.18 1.02
nobinds 584411 | 5589.15 | 131.38 | 123.58 1.02
freeof | Fings | 5858.31 | 557335 | 160.38 | 124.58 1.02
codemsg | 5948.90 | 5595.15 | 230.97 | 122.78 1.04
residual 6113.47 | 5613.95 | 221.97 | 277.56 1.07
nomin 316.15 271.76 0 44.39 1
pure 356.55 272.76 | 4839 | 35.39 1.13
[ nobinds 367.14 27456 | 57.39 | 35.19 1.16
mmatrix |7 fines 364.34 272.76 | 55.99 | 35.59 1.15
codemsg 373.34 274.96 63.19 35.19 1.18
residual 435.53 270.76 | 60.79 | 103.98 1.38
nomin 898.26 877.07 0 21.20 1
pure 886.67 861.27 | 13.20 | 12.20 0.99
nobinds 901.86 872.67 | 16.80 | 12.40 1.00
nrev bindings 898.86 870.27 | 16.40 | 12.20 1.00
codemsg 903.86 874.67 | 17.20 | 12.00 1.01
residual 916.26 873.87 17.20 25.20 1.02
nomin 9983.68 |  9745.12 0| 23856 1
pure 10267.64 | 977891 | 282.96 | 205.77 1.03
nobinds | 10303.83 | 9768.12 | 337.75 | 197.97 1.03
asort bindings || 10339.03 | 9771.01 | 368.94 | 198.17 1.04
codemsg || 10401.82 9764.92 | 441.73 | 195.17 1.04
residual || 11241.69 | 973272 | 371.14 | 1137.83 1.13
nomin 401.94 293.56 0 108.38 1
pure 647.70 295.35 | 27856 | 73.79 1.61
, nobinds 651.90 297.75 | 281.36 | 72.79 1.62
sublists "5 Gings | 67950 | 29556 | 280.16 | 103.78 1.69
codemsg 681.30 297.56 | 278.76 | 104.98 1.70
residual 744.09 206.95 | 284.56 | 162.57 1.85

Table 4.2: Minimization Times for Selected Benchmarks
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PE Speedup
Benchmark . - —— -

Time || Pure | No Binds | Bindings | CodeMsg | Residual
datetime* 167.77 1.01 1.02 1.01 1.01 1.01
flattrees® 81.39 1.03 1.01 1.01 1.03 1.01
freeof 246.96 1.04 1.04 1.05 1.04 1.05
mmatrix*® 1920.11 1.02 1.02 1.02 1.02 1.00
nrev 141.38 1.20 1.18 1.18 1.19 1.19
gsort 457.33 1.05 1.04 1.04 1.05 1.04
sublists 15501.44 1.00 1.00 1.00 1.00 1.00

Table 4.3: Speedup over Selected Benchmarks

the speedup achieved is usually smaller than for the other minimization criteria.

4.8 Discussion and Related Work

The problem of superfluous polyvariance has been tackled in the context of ab-
stract multiple specialization in [130, 108], and in the context of partial evaluation
of normal logic programs in [84]. This chapter presents a unifying view under
which the minimization problems in both contexts are isomorphic.

The work in [84], reflected in the ECCE [79] partial evaluator, uses an internal
table of safe builtins which basically correspond to instantiation and type tests
and which are guaranteed (1) not to generate any bindings, and (2) to be deter-
ministic. The minimization phase then would only allow collapsing two predicates
in the same version if their characteristic trees are quasi-isomorphic and all the
builtins executed are listed in the table of pure predicates.

The approach presented herein, and implemented in the Ciao system prepro-
cesor, CiaoPP [54], can handle any external predicate, including non-safe builtins,
and the notion of isomorphic external predicates can be satisfied for builtins which
generate bindings and which are non-deterministic. Also, there is no need for a
static table of builtins. Additionally, the technique automatically applies to any
external predicates, for example other modules written by the user.

To the best of our knowledge, this work presents the first experimental evalua-
tion of the benefits of post-minimization in partial evaluation. We have compared

several criteria, with different cost and potential benefit. We have also applied
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directly the definition of structural equivalence and discovered that it is also ap-
plicable in practice, in addition to the other criteria based on the specialization
history. Finally, we have proposed a criteria which allows residualizing external
calls. The experiments show that it is also applicable in practice and provides

some further program reduction.
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Chapter 5

Poly-Controlled Partial

Evaluation

As mentioned in Chapter 3, the aim of partial evaluation (PE) is to specialize
a program w.r.t. part of its input, which is known as the static data[85]. The
quality of the code generated by partial evaluation greatly depends on the con-
trol strategy used. Traditional algorithms for partial evaluation of logic programs
(LP) are parametric w.r.t. the global control and local control rules. The issue
of devising good control rules has received considerable attention (see for exam-
ple [71] and its references). However, the existence of sophisticated control rules
which behave (almost) optimally for all programs is still far from reality. Fur-
thermore, existing control rules focus on time-efficiency by trying to reduce the
number of resolution steps which are performed in the residual program. Other
factors, such as the size of and the memory required to run the residual program,
are most often neglected, a relevant exception being the work in [34]. In addition
to potentially generating larger programs, it is well known (see e.g. [121, 28])
that partial evaluation can slow-down programs due to lower level issues such
as clause indexing, cache sizes, etc. Also, once a choice of global and local con-
trol rules is made!, such a combination will be applied to all call patterns in the
residual program. Obviously, in practice, it can be very useful to be able to use
different specialization strategies for different call patterns, thus obtaining re-

sults that cannot be produced using traditional partial evaluation with any given

'From now on, we call a combination of a global and a local control rule a specialization

strategy.
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specialization strategy.

In this chapter we describe a framework for on-line partial evaluation which
allows using different specialization strategies for different call patterns and can
generate several candidate specializations. These specializations can then be
empirically compared for efficiency, in terms of multiple factors such as size of the
specialized program and time- and memory-efficiency of such specialized program.

The framework was first introduced in [110], and it is self-tuning in that, as
mentioned above, it uses empirical evaluations for automatically selecting the
best candidates by means of a fitness function. It is also resource-aware in that
multiple factors, such as size of specialized programs and their memory consump-
tion, can be taken into account by the fitness function in addition to the natural
consideration of time-efficiency of the specialized programs. In [27], a self-tuning,
resource aware offline specialization technique was introduced. The algorithm is
based on mutation of annotations of offline partial evaluation. In contrast, our
approach performs online partial evaluation, and thus it is fully automatic. To

the best of our knowledge, there are no similar approaches for online PE.

5.1 The Dilemma of Controlling PE

As mentioned above, when specializing a program there exist many powerful
specialization strategies to choose from. Unfortunately, there is no silver bullet,
i.e., most control rules behave well with some programs, but no so well with
others. Sometimes, choosing the wrong control rule can lead to obtaining a
slower residual program or to a (considerably) larger residual program. But in
other situations, the same control rules can achieve important speedups, or can
lead to residual programs having the properties we are interested in.

For example, let us take the program from Listing 5.1. In this program, there
is a call to the builtin is/2. Since the call C is B+1 is not sufficiently instantiated
to be executed (B is not yet bound to an arithmetic expression), it is required
to use non-leftmost unfolding in order to jump over this call and unfold q/1.
However, this unfolding generates the residual program shown in Listing 5.2. In
this case, the residual code is less efficient than the original definition of p/1,
since several calls to is/2 may have to be speculatively performed until a success

is found, if any.
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Listing 5.1: Program p/1 having an expensive call

p(B):- C is B+1, q(C).

q(1).
q(2).
q(3).
q(4).
q(5).
q(6).

Note that instead of a call to is/2 we could be calling an external predicate

performing an expensive computation.

Listing 5.2: Residual code of p/1

p(A) - 1 is A + 1.
p(A) :- 2 is A + 1.
p(A) :- 3 is A + 1.
p(A) - 4 is A + 1.
p(A) :- 5 is A + 1.
p(A) :- 6 is A + 1.

A similar example of generating a slower residual program is shown in List-
ing 5.3, borrowed from [80]. In this program, the predicate inboth/3 takes three
input arguments, the last two being lists, and checks whether the element passed

as a first argument is a member of the two given lists.

Listing 5.3: The inboth/3 example

member (X, [X|T]).
member (X,[YIT]) :- member (X,T).

inboth(X,L1,L2) :- member(X,L1),
member (X,L2).

Let us partially evaluate this program w.r.t. the set of atoms {inboth(a,L, [X,Y])}.
By using non-determinate non-leftmost unfolding, we obtain the residual program

in Listing 5.4.
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Listing 5.4: Residual code for inboth/3

member (a,[alT]).

member (a,[Y|T]) :- member(a,T).
inboth(a,L,[a,Y]) :- member(a,L).
inboth(a,L,[X,a]) :- member(a,L).

If we execute both the original and the residual programs with the runtime
query inboth(a, [b,c,d,e,...,al,[X,Y]), then we can see that the original
program only executes once the expensive call to member(a, [b,c,d,e,...,al),
while the residual program does it twice.

The classical solution to these problems is to disable non-leftmost unfolding
unless it is deterministic (Sp [40, 42, 44], ECCE [84]), or to allow non-leftmost un-
folding without left-propagation of bindings (PADDY [104], MIXTUS [115]). Some
partial evaluators, for instance, SAGE [49, 48] do not prevent such work duplica-
tion. This can result in huge slowdowns (see, e.g., [14]).

Also, in the presence of impure predicates, non-leftmost unfolding can even
produce incorrect results [2]. On the other hand, performing non-leftmost unfold-
ing can provide important gains in other cases. See, for example, the program in
Listing 5.5.

Listing 5.5: The exponential/3 Example

exp (Base ,Exp,Res) : -
exp_ac (Exp,Base,1,Res).

exp_ac(0,_,Res,Res).
exp_ac (Exp,Base,Tmp,Res): -
Exp > O,
Expl is Exp - 1,
NTmp is Tmp * Base,
exp_ac (Expl,Base ,NTmp,Res).

If we specialize it w.r.t. the query exp(Base,3,Res), enabling non-leftmost
unfolding allows to unroll the recursive calls. The residual code, after some

arithmetic simplifications?, is shown in Listing 5.6.

2The specializer in CiaoPP actually performs such simplifications of arithmetic operations.
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Listing 5.6: Residual Code of the exponential/3 Example
exp(A,3,B) :- B is AxAxA.

From these examples it is clear that the selected control rule directly affects
the quality of the generated code. Also, it is not trivial to select the appropriate
control rules, since, as we have seen, the same feature of a local control rule,
i.e., whether to allow non-leftmost unfolding, can be beneficial for certain calls
(atoms) and can be harmful for others.

Though one could argue that a good rule of thumb can be to only perform
non-leftmost unfolding for determinate atoms, i.e., those which only unify with
a single clause head, this heuristic does not guarantee to always achieve the best
specialization possible: an atom whose resolution is not determinate can become
deterministic later on, since maybe just one (or even none) of the derivations
which contain such step is successful or incomplete (i.e., all the rest are failing
derivations). For example, in the program of Listing 5.5, although the unfolding
is deterministic, this could be easily converted into non-deterministic by changing
the first clause of exp_ac/4 to exp_ac(Exp,_,R,R):- Exp = 0. Note that the
problem of deciding whether an atom is deterministic is undecidable: it can always
happen that an SLD tree which contains several non-failing derivations at some
depth, contains at most one non-failing derivation in the next depth level.

Another related problem when performing partial evaluation is known as loss
of indexing. In order to be more efficient, most Prolog systems index clauses
according to their first argument [35], i.e., if the first argument of the current
goal is instantiated, the clause head matching this goal can quickly be found. If
this is not the case, then all clauses have to be checked one by one looking for
a matching clause head. This is analogous to indexing in database systems and
can provide an important performance boost when searching over a large set of
clauses. For instance, let us take the program in Listing 5.7, borrowed from [27].
In this example, we have a collection of facts represented by p/2, where indexing
is performed over its first argument, and as long as the first argument in the call
to p/2 is instantiated we will benefit from the speedups of indexing.

If we specialize this program, then we can obtain the program in Listing 5.8,
where, as we can see, indexing over the first argument has been lost, and as a

consequence, this program will perform slower than the original one.
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Listing 5.7: Example using clause indexing

index_test(£f(_),Y,Z) :- p(Y,Z).

p(a,1).
p(b,2).
p(c,3).
p(d,4).
p(e,5).
p(f,6).
p(g,7).
p(h,8).

Listing 5.8: Specialiation of index test/3. Clause indexing has been lost

index_test(f(_), a, 1).
index_test (f(_), b, 2).
index_test (f(_), c, 3).
index_test (£(_), d, 4).
index_test(f(_), e, 5).
index_test(f(_), f, 6).
index_test (£(_), g, 7).
index_test(£f(_), h, 8).

Another related pitfall of partial evaluation is the explosion of code that can
be generated in the residual program, as we have already seen in Chapter 4. This
explosion of code is unacceptable if disk space or memory are important factors,
and can even harmful in terms of speed, due to effects such as cache miss [34].

Many more pitfalls of partial evaluation can be found in [121], most of which

are still valid today.

5.1.1 A Motivating Example

We now show in Listing 5.9 a program which defines the predicate main/3 con-

taining calls to the predicates exp/3 and p/1 defined before:
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Listing 5.9: A Motivating Example

main(A,B,C): -
exp(B,2,C),
p(A).

In Listing 5.10 we can see the residual code obtained when specializing this
program w.r.t. the query main(A,B,C) using leftmost unfolding. Note that
none of the calls to the builtin predicate is/2 are sufficiently instantiated to
be executed at specialization time. Since only leftmost unfolding is allowed, the
unfolding trees computed are not very deep, resulting in a large number of residual

predicates.

Listing 5.10: Result with Leftmost Unfolding
main(A,B,C) :- D is 1xB,
exp_ac_1(1,B,D,C),
p_1(A).

exp_ac_1(1,A,B,C) :- D is B*A,
exp_ac_2(0,A,D,C).

exp_ac_2(0,_1,A,A).

p_1(A) :- B is A+1, q_1(B).

q_1(1).
q_1(2).
q_1(@3).
q_1(4).
q_1(5).
q_1(6).

On the other hand, if we choose to enable non-leftmost unfolding, we obtain
the residual program shown in Listing 5.11, where only an SLD tree has been
required, and thus no auxiliary predicates are defined.

Unfortunately, neither the program in Listing 5.10 nor the one in Listing 5.11

is optimal. This is because, in order to achieve an optimal result, non-leftmost un-
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folding should be used for atoms for predicate exp/3, but only leftmost unfolding

should be used for atoms for predicate p/1.

Listing 5.11: Result with Non-leftmost Unfolding

main(A,B,C) :- D is 1%xB, C is Dx*B, 1 is A+1.
main(A,B,C) :- D is 1%B, C is D*B, 2 is A+1.
main(A,B,C) :- D is 1B, C is D*B, 3 is A+1.
main(A,B,C) :- D is 1*B, C is D*B, 4 is A+1.
main(A,B,C) :- D is 1%B, C is D*B, 5 is A+1.
main(A,B,C) :- D is 1%B, C is D*B, 6 is A+1.

Note that although the rule of thumb discussed above for non-leftmost unfold-
ing happens to provide good results in this example, clearly there is no unfolding
strategy which uniformly obtains the optimal results in all cases.

As we have seen, choosing the right specialization strategy is a tough task. In
this thesis, we propose a poly-controlled partial evaluation (PCPE) approach, in
which several specialization strategies and heuristics can coexist, leaving to the
framework the decision of which strategy is the most appropriate w.r.t. the users

needs (speed, size of the residual program, etc.).

5.2 Poly-Controlled Partial Evaluation

Poly-controlled partial evaluation (PCPFE) takes as input a program P, a set A of
atoms describing the initial call patterns, and a set CS of specialization strategies.
As output, PCPE can generate potentially multiple specialized programs. The
PCPE process starts from an initial configuration, and repeatedly transforms it
into a child configuration until a final configuration is reached. Since we allow
the existence of multiple sepcialization strategies, a non-final configuration can
have several children configurations. Depending on the approach used, a dif-
ferent number of configurations will be expanded and thus, different specialized

programs will be obtained. These concepts are formalized below.

Definition 5.2.1 (configuration). A configuration is a pair (S, H), where S is a
set of atoms and H is a set of tuples of the form (A, A’,(G,U)).
The set S contains the atoms to be specialized and H contains the speciali-

zation history: for each previously specialized atom A we store, in addition to A
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itself, the result A" of applying an abstraction operator G to it, and the speciali-
zation strategy (G,U) which has been applied on A’.

Correctness of the algorithm requires that each A’ is an abstraction of A, i.e.,
A = A’'0. The atom A is stored for precise predicate renaming, while U is stored
in order to use exactly such unfolding rule during code generation (see Def. 5.2.8).

Finally, G will be needed later by some pruning techniques (see Chapter 8).

Definition 5.2.2 (initial, intermediate and final configurations). A configura-
tion is initial when it is of the form (A,0). A configuration is final when it
is of the form (0, H). Configurations that are not final are called intermediate

configurations.

As customary in PE, we consider the existence of an arbitrary function, which
we call TakeOne, that given an intermediate configuration (S, H), decides the
atom A to be specialized at each configuration among those in S, denoted A =
TakeOne(S).

We assume the existence of a function atoms that extracts the generalized

atoms out of the tuples in H.

Definition 5.2.3 (atoms). Let (S, H) be a configuration s.t.
H = {(A1, A, (G1i,,U1;,)), s (An, AL (Griy Unj, ) b Then the set of atoms of
H is defined as atoms(H) = {A},..., Al }.

In an abuse of notation, when referring to abstraction operators we simply
write A’ = G(A, H) instead of A’ = G(A,atoms(H)). Finally, given a con-
figuration T = (S, H), we use 7 = CS(T) to denote that A = TakeOne(S5),
A'=G(A,H)and T =U(P, A").

Definition 5.2.4 (PCPE-step). Let T = (S, H) be an intermediate configuration,
and let A = TakeOne(S). Let CS=(G,U) be a specialization strategy. Then a
PCPE-step for T using C'S generates a new configuration T" = (S’, H'), denoted
T ~cg T, s.t.

o 5" =(S—{A})U{B € leaves(CS(T)) |V (C,_,.) e H. B#%C}
o H=HU{(A A (G, U))}, with A'=G(A, H)
where the function leaves collects the atoms in the bodies of resultants(CS(T)).
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Definition 5.2.5 (resultants). Let P be a program, let A be an atom, let U be
an unfolding rule s.t. U(P,A)=rt.

Then resultants(t) = {A0; «— Ry,..., A0, «— R,} where — Ry,...,<— R,
are goals chosen from all non-failing leaves of T, and 0; is the substitution asso-

ciated with the derivation from < A to «+— R;.

Given T ~cg T', we say that T" is a child of T. PCPE-steps are organized
into PCPE-paths.

Definition 5.2.6 (PCPE-path). A PCPE-path consists of a sequence Ty : T :
: Ty, of configurations and a sequence C'Sy : CSy : ... : CS, of specialization

strategies s.t. fori=1.p, T; ~cgs,,, Tiy1

We say that a PCPE-path Ty ~cg, ... ~¢s, T is complete iff Tj is an initial
configuration and 7}, is a final configuration. A configuration 7" is reachable from
a configuration 7" iff there is a path of the form T ~cg, ... ~¢cg, T', p > 0.

PCPE-paths can be organized into PCPE-trees.

Definition 5.2.7 (PCPE-tree). A PCPE-tree is a tree where each node corre-

sponds to a configuration, and which satisfies:
o The root node is an initial configuration.
e Leaves are final configurations.

e There is an arc from node T to node T" iff there is a specialization strateqy
CS €CS s.t. TMCS T

From a final configuration we can obtain a PCPE specialized program. As
usual in partial evaluation, during code generation we will rename apart atoms
in order to avoid the independence requirement [44]. We use rename to refer
to a procedure which assigns a fresh predicate name to each atom A, € H and
performs appropriate renamings (using the pairs of atoms A;, A; in the tuples
of H) in the head and body of residual rules so that each program point uses a

correct (and as optimized as possible) version.

Definition 5.2.8 (PCPE specialized program, solution, SP). Let T' = (), H) be
a final configuration. Then H is called a solution of PCPE. Also, the PCPE
specialized program Pr obtained from T, denoted Pr = SP(T), is

Pr = U<Ai’A;7<Gi7Ui>>€H rename(resultants(U;(P, AL)), H)
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As already mentioned, PCPE can generate several specialized programs. In
fact, from any intermediate configuration we can reach a set of final configura-

tions, each one corresponding to a possibly different specialized program.

Definition 5.2.9 (solutions). Let T' be a configuration. The set of solutions for
T is defined as solutions(T) = {SP(T") | T" is reachable from T NT" is final}.

Depending on the particular implementation of the PCPE algorithm, we could
generate more than one specialized program. In order to choose the best special-
ized program, we can apply an evaluation step which uses a fitness function Fit
to assess how good each specialized program Py is is w.r.t. the original pro-
gram P. The fitness function returns a value in [0...00), with larger fitness
values indicating better programs. Also, values smaller than one indicate that

the specialized program is worse than the original one.

Definition 5.2.10 (maximal fitness value, mfv). Let T be an intermediate con-
figuration. Let Fit be a fitness function. Then the maximal fitness value of
T w.r.t. Fit, denoted mfvpy(T), is defined as max({Fit(Pr,), ..., Fit(Pr,)}),
where solutions(T') = {Pry, ..., Pr,} and max(R) returns the largest value in the

R set.
We can now define a PCPE-path leading to a solution of maximal fitness.

Definition 5.2.11 (PCPE-path of maximal fitness). A complete PCPE path
Ty ~¢s, - .- ~cs, Tp is of maximal fitness w.r.t. a fitness function F'it iff for
i =0.p, mfopy(T;) = mfopy(Th).

Note that for all pairs of configurations 7" and 7", if 7" is reachable from
T then mfopy(T) > mfop(T'), for any fitness function Fit. In a path of
maximal fitness, we always perform PCPE-steps which preserve the maximal
fitness value. A specialized program P’ obtained by PCPE is of maximal fitness
if Fit(P") = mfopq(Tp).

In the following two sections we consider two possible implementations of
PCPE. The first algorithm is called PCPE,,., is greedy and it obtains only one
specialized program. However, we cannot guarantee that the obtained program
is of maximal fitness. The second one, called PCPE,;, traverses the complete
PCPE-tree, and then evaluates all obtained specialized programs in order to

select a program of maximal fitness.
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5.3 A Greedy PCPE Algorithm

Algorithm 2 One-Solution Poly-Controlled Partial Evaluation Algorithm

(PCPE,..)
Input: Program P

Input: A finite set of atoms S

Input: A finite set of specialization strategies CS

Input: Selection function Pick

Output: A partial evaluation for P and S, encoded by H,

1: =0

2: Hy = 0

35 =-S5

4: repeat

5. A; = TakeOne(S;)

6: (G,U) = Pick(A;, H;,CS)

. Al=G(H,A)

80 1, =U(PA)

9:  Hi = HU{(A4;, A}, (G,U))}

100 Sy = (Si — {Ai}) U{A € leaves(r;) |V (B, _,_) € Hiy1 . B# A}

11: 1 =1+ 1
12: until S; = 0

Algorithm 2, also referred to as PCPE,,., shows a one-solution poly-controlled
partial evaluation (PCPE) algorithm. We refer to this algorithm as poly-
controlled because it allows the use of multiple specialization strategies, possibly
applying different strategies for different atoms. We also refer to it as one-solution
since it is greedy, traversing only one complete PCPE-path, thus obtaining only
one solution. We will see in Section 5.4 a search-based PCPE algorithm that
obtains several candidate solutions.

One difference between this algorithm and the greedy PE algorithm seen in
Chapter 3 is that, rather than receiving as input an abstraction operator and an
unfolding rule, it receives a set CS of specialization strategies. The choice of the

specialization strategy to apply during the handling of each atom is performed
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by the Pick function, which given an atom A, a specialization history H, and
CS, picks up a specialization strategy (G,U) € CS.

The algorithm produces only one final configuration (B, H,). The output of
the algorithm is H,, i.e., H, =PCPE,,. (P, S, CS, Pick).

We define a function peel in order to be able to compare the configurations of
Algorithm 1 (PE) and Algorithm 2 (PCPE,,.).

Definition 5.3.1 (peel). Let H = {<A1, All, <G1i7 U1j>>, ceey <Ak, A;C, <Gki’7 Uk]/>>}
Then peel(H) = {(A1, AY), ..., (A, AL) }.

Lemma 5.3.2. Let P be a program, let S be a finite set of atoms, let G be a local
control rule and let U be a global control rule.
Then PE(P, S, G,U) = peel(PCPE,,. (P, S,{(G,U)}, Pick)).

Proof. As noted before, the differences between Algorithm PE and Algorithm PCPE,,,.

are:

1. Algorithm 2 introduces a new function Pick to select a specialization strat-
egy to be applied to a given atom. However, in our case this function is

deterministic and will always select (G, U).

2. Tuples in the solution obtained by PCPE,,. are different from those in the
solution obtained by PE. However, by using the peel function we get rid of

the extra information.

]

Clearly, different choices for the Pick function will result in different spe-
cialized programs. It is important to note that the finer-grained control of
poly-controlled partial evaluation can potentially produce specialized programs
which are hard or even impossible to obtain by using off-the-shelf specialization
strategies. Also, the addition of the Pick function conceptually makes the poly-
controlled partial evaluation algorithm being composed of three levels of control,
the local control, the global control, and the search control, which is determined
by the function Pick. Note that the inclusion of the history as an input argument
to Pick allows to make hopefully more informed decisions.

Depending on the particular choices of control strategies made by the Pick

function, the solution obtained by PCPE,,. could, in fact, be obtained by using
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always the same specialization strategy, or using different specialization strategies
for different atoms. In our context, solutions of the first kind are called pure,
while the rest of solutions are called hybrid. Pure solutions can be obtained by
traditional partial evaluation, hybrid solutions cannot. We extend this notion of

purity to configurations.

Definition 5.3.3 (pure and hybrid configurations). Let T = (S, H) be a con-
figuration.  Then T is pure iff V(A;, A;,CS;) € H, V(A;,A},CS;) € H .

A configuration that is not pure is called a hybrid configuration.

Lemma 5.3.4. Let P be a program and let S be a finite set of atoms. Let CS
be a set of specialization strategies. Let T = (), H) be a pure final configuration
s.t H =PCPE,,. (P, S, CS, Pick). Then 3(G,U) € CS s.t. PE (P,S,G,U) =
peel(H).

Proof. Since T = (), H) is a pure configuration, all tuples in H are of the form
(A;, AL (G, U)) for a given specialization strategy (G,U) € CS. Thus Pick is a
deterministic function that always returns a tuple (G,U). By Lemma 5.3.2, it
follows then that PE(P,S,G,U) = peel(H). O

5.4 A Search-based PCPE Algorithm

PCPE,,.. can provide better specializations than those achievable by traditional
partial evaluation algorithms by assigning different specialization strategies to
different atoms. However, the improvements achieved rely on the behavior of
the function Pick. Unfortunately, choosing a good Pick function can be a very
hard task. Another alternative is, instead of deciding a priori the specialization
strategy to apply to each atom, to generate several (or even all) candidate partial
evaluations and then decide a posteriori which specialized program to use. In the
extreme, this can be done by traversing the complete PCPE-tree.

Algorithm 3 shows a search-based algorithm (PCPE,;) that generates a set of
final configurations {(0, Hy),..., (D, H,)}. In other words,

PCPE.; (P,S,CS) ={Hy,...,H,}.

Obviously, in general we will be interested in selecting only one specialized

program out of all final programs obtained. Clearly, generating all possible can-
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Algorithm 3 All-solutions Search-based Partial Evaluation Algorithm (PCPE,;)
Input: Program P

Input: A finite set of atoms S
Input: A finite set of specialization strategies CS
Output: A finite set of partial evaluations Sols

1:1=0
2: Hy =10
3: So =8
4: create(Confs); Confs = push({Sy, Hy), Confs)
5: Sols = ()
6: repeat
7. (S, H;) = pop(Confs)

8:  A; = TakeOne(S;)

9:  Candidates = CS

10: repeat

11: Candidates = Candidates — {(G, U)}

12: A =G(H;, Ay)

13: 7, = U(P,A))

14: Hivy = HU{{A;, A, (G, U))}

15: Sit1 = (S; —{A:}) U{A € leaves(r;) | ¥V (B, _,_) € Hix1 . B#% A}
16: if S;;1=0 then

17: Sols = Sols U {H; 41}
18: else

19: push((S;11, Hi11),Confs)
20: end if

21:  until Candidates = ()

22 1=1+1

23: until empty_stack(Confs)

didate specialized programs is more costly than computing just one. However,
selecting the best candidate a posteriori allows to make much more informed
decisions than selecting it a priori, as in Algorithm 2. Another difference with

Algorithm 2 is that Algorithm 3 employs two additional data structures:
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e (Confs, which contains the configurations which are currently being explored.

e Sols, which stores the set of solutions found by the algorithm.

As it is well known, the use of different data structures for Confs provides
different traversals of the PCPE-tree. The actual implementation uses both a
stack (depth-first traversal) and a queue (breadth-first traversal). As we will see
later, sometimes we will want to traverse the PCPE-tree in either way. Note
that Algorithm 3 does not work with single configurations but rather with stacks
(queues) of configurations. The process terminates when the stack (queue) of

configurations to handle is empty, i.e. all final configurations have been reached.

Lemma 5.4.1. Let P be a program and let S be a finite set of atoms. Let CS be
a set of specialization strategies. Then, for any arbitrary Pick function,

PCPE,n. (P, S, CS, Pick) € PCPEy, (P, S, CS).

Proof. In each step of the algorithm PCPE,,., for a given configuration T =
(S, H), Pick will select a given tuple C'S;; € CS, and apply it to a selected atom
A € S. PCPE,;, on the other hand, will apply all control strategies in CS for
all configurations. Therefore, C'S;; must be one of the control strategies PCPE,;
will use with T O]

Lemma 5.4.2. Let P be a program and let S be a finite set of atoms. Let CS
be a set of specialization strategies. Then VYHy € PCPEy; (P,S, CS) 3 a Pick
function s.t. Hy = PCPE,,. (P, S, CS, Pick).

PT’OOf. Let Hk = {(Al,All, <G1i, U1j>>7 ey <Ak, A%, <G1ﬁ'/, Uk]/>>}
Then Pick is defined as follows:

<G1,‘,U1j> 1fp: 1
Pick(A,, H,,CS) =
<Gki’> Ukj/> if P = k‘
]

Corollary 5.4.3. Let P be a program and let S be a finite set of atoms. Let CS
be a set of specialization strategies. Then VHy € PCPE,; (P,S, CS) < 3 a Pick
function s.t. Hy = PCPE,,. (P, S, CS, Pick).
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Figure 5.1: Complete PCPE-tree for the Motivating Example 5.9

Proof. 1t follows immediately from Lemma 5.4.1 and Lemma 5.4.2. O]

Lemma 5.4.4. Let P be a program and let S be a finite set of atoms. Let
CS be a set of specialization strategies. Then V{(G,U) € CS . PE (P,S,G,U)
S peel(PCPEa” (P, S, CS) )

Proof. By Lemma 5.3.4, PE (P,S,U,G) = peel(PCPE,,. (P,S, CS, Pick)) for
a deterministic Pick function that always returns (G,U) € CS. Then, by
Lemma 5.4.1, PCPEyn. (P, S, CS, Pick) € PCPEy (P, S, CS). 0

5.5 Searching for All Specializations

Consider again the example in Listing 5.9. Consider also two unfolding rules,

one performing leftmost unfolding only, and the other one performing also non-
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leftmost unfolding, and one abstraction operator hom_emb based on homeomor-
phic embedding (see Chapter 3), s.t.

CS ={(hom_emb, le ftmost), (hom_emb, nonle ftmost)}.
By applying PCPE,;; we get five different specialized programs. In particular, So-

lutionl corresponds to the program in Listing 5.10 and Solution5 to the program
in Listing 5.11. In addition, our algorithm also produces three other candidate
programs which are hybrid in the sense that they use different control rules for
different atoms, and thus cannot be achieved using (hom_emb, le ftmost) nor

(hom_emb, nonle ftmost) only.

The PCPE-tree for this example is shown in Figure 5.1. There, intermediate
configurations are represented by a circle, while final configurations are repre-
sented by a square. As can be seen, the whole search space for the example
consists of 12 configurations, 7 of which are intermediate and 5 are final. The

latter ones correspond to different candidate solutions, as already mentioned.

Each configuration is adorned with the set S of atoms yet to be handled.
Each node can have two children, one per specialization strategy in CS, which
are indicated with arcs. Arcs are labeled either <h,1>, for (hom_emb,leftmost)
or <h,nl> for (hom_emb, nonleftmost). The set of nodes already handled is not
shown explicitly in each node, but it is implicitly represented by traversing the
tree from each node upwards up to the root, since an atom is handled in each
node. For example, in the case of Solution3, the history is {(¢(B), ¢(B), (h,nl)),
(p(A),p(A), (h,1)), (exp_ac(l, A, B,C), exp_ac(l, A, B,C), (h,nl)), (main(A, B,C),
main(A, B,C), (h,1))}. Also, some nodes only have one descendant linked by two
arcs to its parent. This indicates that the two specialization strategies considered

produce equivalent configurations, reducing the search space.

Table 5.1 provides a comparison of the different candidate solutions together
with the original program. The first column indicates the program we refer to in
each row. The second column provides an indication of the run-time efficiency of
the different programs. This time has been obtained by running a million times
the query main(8,9,Result) and subtracting the time required by an empty
loop which performs a million iterations. The third column compares the sizes of
the different programs. This size is in number of bytes of the program compiled
into bytecode using Ciao-1.13 and after subtracting the size of an empty program.

Finally, the last two columns compare the run-time and code-size of the different
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Program | Runtime | Size | Speedup | Code Reduc
Original 5890 | 1606 1.00 1.00
Solutionl 3652 | 1596 1.61 1.01
Solution2 5138 | 1543 1.15 1.04
Solution3 2931 | 1379 2.01 1.16
Solution4 3962 | 1326 1.49 1.21
Solutionb 7223 | 1321 0.82 1.22

Table 5.1: Comparison of Solutions

programs with that of the original program.

As it can be seen, not all programs obtained by partial evaluation are nec-
essarily faster than the original one. In particular, Solutiond, the one obtained
using non-leftmost unfolding for all cases is less efficient than the original one.
This is indicated by an speedup lower than 1, which is 0.82 in this case. On the
other hand, the speedup obtained by Solution! is 1.61, but it is still far from the
fastest program, which is Solution3 with an speedup of 2.01. As regards code
size, in this particular case all solutions achieved are smaller than the original
program, though, as seen in Chapter 4, in some cases partial evaluation can pro-
duce programs which are significantly larger than the original one. The smallest
program is Solutiond, with a code reduction of 1.22, but which happens to be the

slowest program of all, including the original one.

If both the speedup and code reduction factors are taken into account, the
most promising programs are probably Solution3 and Solution4, neither of which
are achievable by using one unfolding rule for all atoms. If code size is not a very
pressing issue, then Solutiond is probably the best one, but otherwise Solution
should be used, since a relative small increase in program size provides significant
time performance improvement. The choice between the two solutions mentioned
will depend on the fitness function used, which can put more emphasis in one

factor or another.
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5.6 Self-Tuning, Resource-Aware PE

Though Algorithm PCPE,; can be used to automatically generate a large number
of candidate specialized programs to choose from, we need some mechanism to
automatically select just one of them since, obviously, the goal of partial evalu-
ation is to obtain a specialized program, not many. There are certainly several
criteria which can be used in order to decide how good a specialized program is.
The framework we propose in this work is resource-aware since it can take the

following criteria into account.

Time efficiency: currently we are measuring speedup w.r.t. the original pro-
gram. In this case, we need a set of test cases which are representative of
the class of run-time queries which will be performed. Another possibility
to be explored is the use of static cost analysis. Cost analysis can aim at
obtaining upper or lower bounds on computational cost or even average

cost.

Size of compiled code: fairly easy to measure. It can be an important factor
if the program will run on devices with limited resources, as is the case
in embedded systems and pervasive computing. Also, even in cases where
code size is not much of an issue, it can happen that different specialized
programs have similar time-efficiency but some of them can be significantly

larger than others.

Memory-consumption: it can be of interest when resources are scarce, simi-

larly to the case of size of compiled code.

Our framework is fully automatic, i.e., there is no need for human intervention
in order to decide which is the best among the candidate specializations. We refer
to this as a self-tuning approach. A fitness function assigns a numeric value in
[0...00) to each candidate specialization, reflecting how good the corresponding
program is w.r.t. the original program. Larger fitness values indicating better
programs. Also, values smaller than one indicate that the specialized program is
worse than the original one.

The framework is parametric w.r.t. the fitness function so that the method

can be applied with different aims in mind. Sometimes we may be interested
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in achieving code which is as time-efficient as possible, whereas in other cases
space-efficiency can be a primary aim. It is important to note that this search-
based approach to partial evaluation is also of interest when only run-time is
taken into account. Even in such case there is no specialization strategy alone
which is guaranteed to always produce the most-efficient code for all compilers
and architectures.

The fitness functions implemented in our framework that take into account

the above resource-aware criteria are fully described in Appendix A.

5.7 Correctness of PCPE

The original definition of partial evaluation in Chapter 3 (borrowed from [85])
does not mention an unfolding rule. However, as observed by [44], given an atom
A and a program P, there may be infinitely many different partial evaluations
of A in P. An unfolding rule is then used to obtain only one of them. We

reformulate the definition of partial evaluation using an unfolding rule below.

Definition 5.7.1 (partial evaluation). Let P be a definite program and let A be
an atom. Let U be an unfolding rule. Then the partial evaluation of A in P using
U is defined as resultants(U(P, A)).

If A is a set of atoms, then a partial evaluation of A in P using U is defined
as |Jyeqresultants(U(P, A)).

Our goal is to prove that PCPE,; is a correct algorithm for partial evaluation
of a program P w.r.t. some goal (). The central result proved by Lloyd and
Shepherdson in [85] on the correctness of partial evaluation is Theorem 3.2.6
from Chapter 3. This theorem implies that, given a program P, an unfolding
rule U and some goal @), a correct algorithm for partial evaluation of P w.r.t. )
must compute an independent set of atoms A s.t. if P’ is a partial evaluation of
A in P using U then P’ U {Q} must be A-closed.

Gallagher [44] observes that it is possible to drop the condition that a partial
evaluation algorithm returns an independent set of atoms A by using a renaming
transformation p, which renames every atom in A by giving it a fresh predicate
symbol and keeping its arguments unmodified. The set of atoms to be specialized
thus become independent without introducing any precision loss. Given a pro-

gram P and a set of atoms A s.t. P’ is a partial evaluation of A in P, a renaming
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for P’, denoted p(P’), is obtained by applying a renaming transformation to all
atoms in A and mapping atoms inside the bodies of the residual program clauses
of P’ (during code generation) to the correct version of the renamed predicate.

As observed in [44], the set A" = p(A) is independent, and thus, when checking
the correctness of a partial evaluation algorithm, we only need to check that
R U{Q} is A'-closed, for some goal Q.

In the definitions and lemmas below, we consider the algorithm PCPE,; for
poly-controlled partial evaluation which takes a definite program P, a finite set of
atoms S (initial queries), a non-empty finite set CS = {(G1,U1), ..., (G, Un)},
producing non-empty set of solutions {Hj, ..., Hy}, where each solution H; is a
set of tuples of the form (A, A", (G, U)).

The following definitions and lemmas help in proving the correctness of
PCPE,;.

As we noted before, in traditional partial evaluation there is an implicit un-
folding rule U. Thus, given a set of atoms 4 and a program P, we can generate
a partial evaluation of A in P using U. However, since PCPE can handle several
unfolding rules, we need to know which unfolding rule is to be used with each
atom when generating a partial evaluation. The following function extracts sets

of tuples containing such information out of a solution.

Definition 5.7.2 (annotated atoms).

Let Hy, be a solution s.t. Hy = {(A1, AL, (G1iy, U1j)), - (A, AL (Grins Unju)) b
Then the set of annotated atoms of Hy, denoted by annotated_atoms(Hg), is
defined as annotated_atoms(Hy) = {(A, U1jy), .-, (AL, Unjn) }-

Now, we can define a poly-controlled partial evaluation in terms of annotated

atoms.

Definition 5.7.3 (poly-controlled partial evaluation). Let P be a definite pro-
gram and let (A,U) be an annotated atom. Then the poly-controlled partial
evaluation of (A,U) in P is defined as resultants(U(P, A)).

If H is a finite set of annotated atoms, then a poly-controlled partial evalua-
tion of H in P is 4 yyen resultants(U(P, A)).

As can be seen, in poly-controlled partial evaluation each annotated atom is
unfolded using its respective unfolding rule. We now formalize a procedure for

synthesizing an unfolding rule from a set of annotated atoms.
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Definition 5.7.4 (combine).

Let P be a definite program. Let H = {(A1,U1),...,(An,Un)} be a set of anno-
tated atoms. Then combine(H) builds an unfolding rule Uy, s.t.

Ul(P7A) ZfA%Al
UH(Pv A) =
Un(P,A) if Ax A,

Note that ﬁH is a partial function built a posteriori, by considering the set
of annotated atoms of a given solution. This rule is instrumental in proving the
correctness of PCPE. Note also that there exists one specific unfolding rule UH
per PCPE solution.

We now prove that the residual program obtained by poly-controlled partial
evaluation could be obtained by traditional partial evaluation using Uy as an

unfolding rule.

Lemma 5.7.5. Let P be a definite program and let Hy be a solution. Let Hp, =
annotated_atoms(Hy,). Let Uy, = combine(Hy,). Let A = atoms(Hy). Let P’
be the partial evaluation of A in P using UH. Let P" the poly-controlled partial
evaluation of Hpy, in P.

Then P' = P”.

Proof. Trivially holds by using the function combine as a glue. In other words,

e By definition 5.7.1, P' = J,, <4 resultants(Up(P, Ay;)).

e By definition 5.7.3, P" = resultants(Ug; (P, Ag;)).

(AkiUki) €M m,,
Thus P" = P” since V<Akz, Ukz> c HHkUH(P; A]m) = U]ﬂ(P, Akz) by defini-

tion 5.7.4.

[

Lemma 5.7.6. Let P be a definite program and let Hy, be a solution. Let Hp, =
annotated_atoms(Hy). Let A = atoms(Hy). Let P" be the poly-controlled partial
evaluation of Hp, in P.

Then P" is A-closed.
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Proof. First note that Hy is a PCPE solution, i.e., it is obtained from a final
configuration (S, Hy) s.t. S, = 0.

By Lemma 5.7.5, we can build an synthetic unfolding rule U = combine(Hp, ),
and obtain a partial evaluation P’ of A in P using Uy s.t. P’ = P”, and prove
by contradiction that P’ is A-closed.

Let us assume that P’ is not A-closed. Then, 3A;; € As.t. resultants(Uy(P, Ay))
is not A-closed. In other words, pred(Ay;) € A A Ay; is not an instance of an
atom in A. By the constructive nature of PCPE,;, A must then belong to Sj.

This is a contradiction since, as we said above, Sj, = (. l

Theorem 5.7.7. Let P be a definite program and let Hy be a solution. Let
Hp, = annotated_atoms(Hy). Let A = atoms(Hy) and let A" = p(A). Let P’ be

a poly-controlled partial evaluation of Hy, in P and let R' = p(P’).
Then for all goals @QQ such that R' U{Q} is A’'-closed

e PU{Q} has a SLD-refutation with computed answer 6 iff R U{Q} has a

SLD-refutation with computed answer 6.

o PU{Q} has a finitely-failed SLD-tree iff R"U{Q} has a finitely-failed SLD-

tree.

Proof. 1t follows immediately from Lemma 5.7.6, and from Lloyd’s Theorem 3.2.6
(see [85]) recalled in Chapter 3. O

5.8 Some Notes on the Termination of PCPE

One question remaining to be answered is whether PCPE is guaranteed to ter-
minate. In other words, given a set CS of specialization strategies, where for
each (G,U) € CS we know that both G and U guarantee termination, does the
combination of different local control and global control rules put at risk the
termination of the whole algorithm?

Let us consider Algorithm 3. This algorithm has two nested loops, and some

calls to external procedures. Let us analyze first the calls to external procedures.

e We assume that simple procedures (create, pop, push) dealing with data

structures terminate.
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e The calls to G and U in lines 12 and 13 correspond to the application
of the abstraction and unfolding functions, respectively. It is our initial

assumption that these procedures guarantee termination on their own.
Now we can analyze the termination of each of the loops.

e In order to guarantee the termination of the inner loop (line 21), the set
Candidates must be finite. As can be seen in line 9, this set contains all

specialization strategies in CS, and CS is a finite set.

e In order to guarantee the termination of the outer loop (line 23), we have
to guarantee that the stack C'onfs becomes empty at some point in the
execution of the algorithm. Note that, besides the initial assignment of
Confs (line 4), configurations are pushed into Confs in line 19. This
occurs every time a new configuration (S;, H;) is generated s.t. S; # (). In
other words, we have to ensure that for all possible configurations, at some
point S; = (). An atom A is introduced in S; (line 15) if A is not a variant
of a (previously visited) atom B s.t. (B,_, ) € H;. Note that atoms to
be added to S are obtained from the leaves of the SLD-tree resulting from
the unfolding of a generalization of the currently selected atom. Since all
global control rules are terminating, this means that they can generalize
a (possibly infinite) set of atoms into a finite one. I.e., at some point all
atoms resulting from unfolding a generalization of a selected atom will be
already in the set of visited atoms, and they will not be added to S, so §

will become empty at some point in time.

In other words, let us assume that there is a combination of local and global
control rules s.t. S never becomes empty, i.e., there is an infinite PCPE-
path Ty ~ Gy, v1s,) T1 ~(GaiyiUniy) -+ -+ 1 We extract the infinite sequence
Ghiy + Gy, & ... of global control rules applied from 7}, then it is possible
to find at least one infinite subsequence containing the same control rule
G,;. But this contradicts the initial assumption that global control rules
guarantee termination on their own. Thus, there cannot be such an infinite
subsequence, i.e., there cannot be an infinite PCPE-path, so .S must become

empty at some point in time.
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ID || Abstraction | Unfolding

cl | hom_emb one_step

c2 || hom_emb df _hom_emb_as
c3 || dynamic one_step

cd || dynamic df _hom_emb_as

Table 5.2: Specialization Strategies

5.