
UNIVERSIDAD POLITÉCNICA DE MADRID

FACULTAD DE INFORMÁTICA

Poly-Controlled Partial
Evaluation and its Application
to Resource-Aware Program

Specialization

PhD Thesis

Claudio J. G. Ochoa
March 2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148651749?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

PhD Thesis

Poly-Controlled Partial Evaluation and its

Application to Resource-Aware Program

Specialization

presented at the Computer Science School

of the Technical University of Madrid

in partial fulfillment of the degree of

Doctor in Computer Science

PhD Candidate: Claudio Ochoa

Licenciado en Ciencias de la Computación

Universidad Nacional de San Luis, Argentina

Master of Computer Science

University of Illinois at Urbana-Champaign, US

Advisor: Germán Puebla

Profesor Titular de Universidad

Madrid, March 2007

This work is licensed under the Creative Commons Attribution-Share Alike 3.0 License. To view a copy of

this license, visit http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to Creative Commons, 543

Howard Street, 5th Floor, San Francisco, California, 94105, USA.

Abstract

Partial Evaluation is an automatic technique for program optimization. The

aim of partial evaluation is to specialize a program with respect to part of its

input, which is known as the static data. Existing algorithms for on-line partial

evaluation of logic programs, given an initial program and a description of run-

time queries, deterministically produce a specialized program. The quality of the

code generated by partial evaluation of logic programs greatly depends on the

control strategy used. Unfortunately, the existence of sophisticated control rules

which behave (almost) optimally for all programs is still far from reality.

The main contribution of this thesis is the development of Poly-Controlled

Partial Evaluation, a novel framework for partial evaluation which is poly-

controlled in that it can take into account repertoires of control strategies instead

of a single, predetermined combination (as done by traditional partial evaluation).

This approach is more flexible than existing ones since it allows assigning different

control strategies to different call patterns, thus generating results that cannot

be obtained using traditional partial evaluation. As a result, sets of candidate

specialized programs can be generated, instead of a single one. In order to make

the algorithm fully automatic, it requires the use of self-tuning techniques which

allow automatically measuring the quality of the different candidate specialized

programs. Our approach is resource aware in that every solution obtained by

poly-controlled partial evaluation is assessed by means of fitness functions, which

can consider multiple factors such as run-time and code size for the specialized

programs. The framework has been implemented in the CiaoPP system, and

tested on numerous benchmarks. Experimental results show that our proposal

obtains better specializations than those achieved using traditional partial eval-

uation, especially in the context of resource-aware program specialization.

Another main contribution of this thesis is the presentation of a unifying view

v

to the problem of eliminating superfluous polyvariance in both partial evaluation

and abstract multiple specialization, through the use of a minimization step that

collapses equivalent predicate versions. This step can be applied to any Prolog

program (that may include builtins or calls to external predicates) being special-

ized. Additionally, we offer the possibility of collapsing non strictly equivalent

versions, in order to obtain smaller programs.

Contents

Abstract v

1 Introduction 1

1.1 Logic Programming and Program Specialization 1

1.1.1 Declarative Programming Languages 1

1.1.2 Logic Programming . 2

1.1.3 Program Specialization and Resource-Awareness 2

1.2 Overview of the Thesis . 4

1.2.1 Thesis Objectives . 4

1.3 Structure of the Work . 4

1.4 Main Contributions . 8

I Technical Background 13

2 Logic and Logic Programming 15

2.1 Syntax of Logic Programs . 15

2.2 Semantics of Logic Programs . 18

3 Partial Evaluation 25

3.1 Basics of Partial Evaluation . 25

3.1.1 Offline vs Online Partial Evaluation 26

3.2 Partial Evaluation of Logic Programs 27

3.2.1 A Greedy Partial Evaluation Algorithm 29

3.3 Control and Termination of Partial Evaluation 31

3.3.1 Local Termination . 31

3.3.2 Global Termination . 33

vii

3.4 Unfolding Strategies . 34

3.4.1 Determinate Unfolding . 34

3.4.2 One-Step Unfolding . 35

3.4.3 Unfolding Based on Homeomorphic Embedding 35

3.4.4 Computation Rules . 36

3.5 Partial Evaluation of Full Prolog Programs 38

3.5.1 Performing Derivation Steps over External Predicates . . . 38

3.6 Partial Evaluation: an Example 40

II Reducing the Size of
Specialized Programs 45

4 Removing Superfluous Versions in Polyvariant Specialization 47

4.1 Polyvariant Specialization: an Example 49

4.2 A General View of Polyvariance and Minimization 52

4.2.1 Minimizing the Results of Polyvariant Specialization . . . 52

4.3 Characteristic Trees with External Predicates 57

4.3.1 Handling Builtins in Characteristic Trees 58

4.4 Isomorphic Characteristic Trees 61

4.5 Local Trace Terms . 65

4.6 Minimization via Residualization of External Calls 67

4.7 Experimental Results . 71

4.7.1 The Benefits of Minimization 72

4.7.2 The Cost of Minimization 75

4.7.3 Benefits of Minimization in Runtime 75

4.8 Discussion and Related Work . 77

III Poly-Controlled Partial Evaluation: Foundations 79

5 Poly-Controlled Partial Evaluation 81

5.1 The Dilemma of Controlling PE 82

5.1.1 A Motivating Example . 86

5.2 Poly-Controlled Partial Evaluation 88

5.3 A Greedy PCPE Algorithm . 92

5.4 A Search-based PCPE Algorithm 94

5.5 Searching for All Specializations 97

5.6 Self-Tuning, Resource-Aware PE 100

5.7 Correctness of PCPE . 101

5.8 Some Notes on the Termination of PCPE 104

5.9 Preliminary Evaluation . 106

5.9.1 Benefits of PCPE . 108

5.9.2 Cost of PCPE . 112

5.10 Highlights of PCPE . 114

5.11 Related Work . 116

6 Heterogeneity of Solutions 117

6.1 Choosing an Adequate Set of Specialization Strategies 118

6.2 Heterogeneity of the Fitness of PCPE Solutions 119

6.2.1 Heterogeneity of Solutions: Speedup 119

6.2.2 Heterogeneity of Solutions: Bytecode 122

6.2.3 Heterogeneity of Solutions: Balance 126

6.3 Heterogeneity of PCPE Solutions: Highlights 126

IV Poly-Controlled Partial Evaluation In Practice 129

7 The Search Space Explosion Problem 131

7.1 The Search Space of PCPE . 132

7.1.1 Eliminating Equivalent Sibling Configurations 132

7.2 Control Strategies and the Size of the Search Space 134

8 Heuristic Pruning 139

8.1 Predicate-Consistency Heuristics 139

8.2 Mode-Consistency Heuristics . 140

8.3 An Heuristic-Based PCPE Algorithm 142

8.4 Experimental Results . 142

8.4.1 Benefits of Heuristic-Based PCPE 145

8.4.2 Search Space of Heuristic-Based PCPE 148

8.4.3 Time Cost of Heuristic-Based PCPE 149

9 Branch and Bound Pruning 153

9.1 A Branch and Bound-Based Pruning 153

9.2 Estimating Fitness Values . 154

9.2.1 Estimated Bytecode (Memory) Fitness Function 155

9.2.2 Estimated Speedup Fitness Function 156

9.2.3 Estimated Balance and Bounded Size Fitness Functions 158

9.3 A Branch and Bound-Based PCPE Algorithm 160

9.4 Experimental Results . 162

9.4.1 Benefits of BPCPE . 164

9.4.2 Search Space of BnB-based PCPE 165

9.4.3 Time Cost of BnB-based PCPE 167

10 An Oracle-Based Poly-Controlled Partial Evaluation Approach 169

10.1 Oracle-Based PCPE . 170

10.2 An Empirical Oracle using a Linear Model 172

10.2.1 Useful Observables for Resource-Aware Specialization . . . 172

10.2.2 A Linear Model for the Oracle 175

10.3 An Oracle-Based PCPE Algorithm 177

10.4 Experimental Results . 178

10.4.1 Using our Model within the Calibration Set 179

10.4.2 Using our Model for Other Programs 183

V Poly-Controlled Partial Evaluation: Implementa-
tion 189

11 Guidelines for the Use of PCPE 191

11.1 Integration of Poly-Controlled Partial Evaluation into CiaoPP . . 191

11.2 A Poly-Controlled Partial Evaluation Session Example 192

11.3 Available Options for Poly-Controlled Partial Evaluation 194

11.3.1 Options for Näıve Users 195

11.3.2 Options for Expert Users 197

11.4 A Session Example for Expert Users 200

11.4.1 A PCPE Session in the Top Level of Ciao 200

11.4.2 Available Flags for Controlling PCPE from the Top Level . 202

12 Conclusions 207

A Fitness Functions 213

A.1 Fitness Function Speedup . 213

A.2 Fitness Function Bytecode . 214

A.3 Fitness Function Memory . 214

A.4 Fitness Function Bounded Size 215

A.5 Fitness Function Balance . 216

B Benchmark Programs 219

C Program Slicing in CiaoPP 225

C.1 Program Slicing for Specializing Logic Programs 226

C.2 A Slicing Session in CiaoPP . 226

List of Figures

2.1 SLD-trees for Example 2.2.14 . 23

3.1 An Online Partial Evaluator . 26

3.2 An Offline Partial Evaluator . 27

3.3 Different Unfolding Trees . 35

3.4 Unfolding Tree for exp(A,B,C) When B Is Known 41

3.5 Possibly Infinite Unfolding Tree for exp(A,B,C) 42

3.6 Unfolding Tree for exp(A,B,C) When A Is Known 43

4.1 Adding Pairs of Lists. 49

4.2 Specialization of addlists/3 via Partial Evaluation. 50

4.3 Specialization of addlists/3 after Minimization. 51

4.4 SLD-trees τA and τB for Example 4.3.3. 58

4.5 Characteristic Trees for addlists/3 Versions. 61

4.6 Local Trace Terms for addlists/3 Versions. 66

4.7 msg of Versions addlists 2, addlists 3, addlists 4 and addlists 5. 69

4.8 Specialization of addlists/3 after Minimization with Residualiza-

tion. 72

5.1 Complete PCPE-tree for the Motivating Example 5.9 97

6.1 PCPE Solutions for nrev (Speedup) 121

6.2 PCPE Solutions for permute (Speedup) 122

6.3 PCPE Solutions for permute (Bytecode) 124

6.4 PCPE Solutions for relative (Bytecode) 124

6.5 PCPE Solutions for transpose (Bytecode) 125

6.6 PCPE Solutions for nrev (Bytecode) 125

6.7 PCPE Solutions for nrev (Balance) 127

xiii

6.8 PCPE Solutions for permute (Balance) 127

7.1 Search Space for nrev (With Equivalent Sibling Configurations) . 133

7.2 Search Space for nrev (Removing Equivalent Sibling Configurations)133

9.1 Profiling an Intermediate Configuration (Speedup) 157

10.1 PCPE tree for program 5.9 . 170

11.1 Starting Menu for Browsing CiaoPP Options. 193

11.2 Optimization Menu. 194

11.3 NaÏve Mode for Poly-Controlled Partial Evaluation. 195

11.4 Expert Mode for Poly-Controlled Partial Evaluation. 198

11.5 Residual Program Obtained by Poly-Controlled Partial Evaluation. 201

C.1 Starting Menu for Browsing CiaoPP Options. 227

C.2 Optimization Menu. 228

C.3 Slice of the Original Program . 229

List of Tables

4.1 Minimization Ratios over Selected Benchmarks 73

4.2 Minimization Times for Selected Benchmarks 76

4.3 Speedup over Selected Benchmarks 77

5.1 Comparison of Solutions . 99

5.2 Specialization Strategies . 106

5.3 Size and Number of Versions of Benchmarks 107

5.4 Specialization Queries Used in our Experiment 108

5.5 Preliminary Results of PCPE (Speedup). 109

5.6 Preliminary Results of PCPE (Bytecode). 110

5.7 Preliminary Results of PCPE (Balance). 111

5.8 Cost of PCPE (Specialization Time in msecs.) 112

5.9 Total Cost of PCPE (Speedup) (Time in msecs.) 113

5.10 Total Cost of PCPE (Bytecode) (Time in msecs.) 114

5.11 Total Cost of PCPE (Balance) (Time in msecs.) 116

6.1 Input Queries Used to Specialize Each Benchmark 119

6.2 PCPE Statistics over Different Benchmarks (Speedup) 120

6.3 PCPE Statistics over Different Benchmarks (Bytecode) 123

6.4 PCPE Statistics over Different Benchmarks (Balance) 126

7.1 Codes for Global Control Strategies 134

7.2 Codes for Local Control Strategies 134

7.3 Codes for Input Queries . 135

7.4 Solutions Generated by PCPE for rev Benchmark 136

7.5 Solutions Generated by PCPE for Different Benchmarks 138

8.1 Abstraction of Calls Using Different Domains 141

xv

8.2 Fitness for H-PCPE and Traditional PE 145

8.3 Normalized Size of Search Space w.r.t PE 146

8.4 Number of Evaluations Performed 147

8.5 Analysis Times of H-PCPE (fitness = Balance) 148

8.6 Code Generation Times of H-PCPE (fitness = Balance) 149

8.7 Evaluation Times of H-PCPE (fitness = Balance) 150

8.8 Total Specialization Times of H-PCPE (fitness = Balance) . . . 151

9.1 Fitness of BnB-based PCPE and Traditional PE 162

9.2 Normalized Size of Search Space 163

9.3 Number of Evaluations Performed 164

9.4 Analysis Times (fitness = Balance) 165

9.5 Code Generation and Evaluation Times (fitness = Balance) . . 166

9.6 Total Specialization Times (fitness = Balance) 167

10.1 Quality of Specialized Programs (Calibration Benchmarks) 179

10.2 Number of Configurations and Details on Specialization (Calibra-

tion Benchmarks) . 181

10.3 Total Specialization Time in msecs. (Calibration Benchmarks) . . 182

10.4 Specialization Time in msecs. (Calibration Benchmarks) 183

10.5 Benchmarks for experiments . 184

10.6 Quality of Specialized Programs 185

10.7 Number of Configurations and Details on Specialization 186

10.8 Specialization Time . 187

Chapter 1

Introduction

1.1 Logic Programming and Program Speciali-

zation

1.1.1 Declarative Programming Languages

High level languages are characterized by allowing the programmer to write pro-

grams not in terms of the particular machine being used, but rather in terms of

the tasks the programs must perform. Thus, the programmer does not have to

worry about the specifics of the machine. This results in a less time-consuming

and error-prone developing process. Programs written in such high level lan-

guages are automatically translated into the language of a particular machine by

another program referred to as compiler .

An important kind of high level languages are the so-called declarative lan-

guages. They are called declarative in contrast to the traditional high level lan-

guages such as C, Pascal, Java, Ada, etc., which are generally referred to as

imperative languages. The main difference between declarative languages, a good

example of them being logic programming in its pure form, and imperative lan-

guages, is that in the former the programmer only needs to express what the

program should compute. In imperative languages it is also required to express

how to compute it by explicitly specifying in the program the control flow.

Among the most prominent members of declarative languages we can find

logic programming and functional programming. Logic programming is based on

1

first-order logic and automated theorem proving, while functional programming

has its roots in λ-calculus. In both approaches, a program is considered a theory

while its execution consists in performing deduction from such a theory (some-

times complemented by induction or abduction). Also, modern functional logic

languages like Curry [51, 52] and Toy [87] combine the most important features

of functional and logic languages (see [50] for a survey).

1.1.2 Logic Programming

The Logic Programming paradigm [65, 66, 24] is characterized by its appropriate-

ness for knowledge representation and has been used for the implementation of

expert systems, knowledge bases, etc. Such applications are in general complex

and with a strong symbolic component.

Among the most characteristic and useful features of logic programming lan-

guages we can mention:

• they can compute with partially specified data,

• the input/output characteristics of predicate arguments is not fixed before-

hand,

• they allow non-determinism, making them well-suited for applications like

parsing,

• they provide for automatic memory management, thus avoiding a major

source of errors present in other programming languages (specially impera-

tive ones).

It is worth to note that late implementations of logic programming languages

have become very efficient, and many times they reach and even surpass the speed

of imperative languages for some applications.

1.1.3 Program Specialization and Resource-Awareness

Program specialization is an automatic technique for program optimization. In

logic programming, given a program P and a (possibly partially instantiated)

query G for P , the goal of program specialization is to derive a more efficient

2

program P ′
G that gives exactly the same answers for any instance Gθ of G as

P does [42]. Among the most well-known program specialization techniques we

can mention partial evaluation, program slicing, as well as other (compiler-based)

techniques for optimizing programs in order to perform more efficient computa-

tions.

Partial Evaluation Partial evaluation [59, 60, 85, 44] is a source-to-source pro-

gram transformation technique which specializes programs by fixing part of

the input of some source program P and then pre-computing those parts

of P that only depend on the known part of the input. The so-obtained

transformed programs are less general than the original one, but can be

much more efficient. The part of the input that is fixed is referred to as the

static input, while the remainder of the input is called the dynamic input.

In general, most partial evaluators are not resource aware, as they focus on

time-efficiency, the main goal being the generation of specialized programs

which run faster than the original. Other factors such as the size of the

specialized program (also called residual program), and the memory required

to run it, are most often neglected, a relevant exception being the works [34,

28, 27].

Program Slicing Program slicing [120, 53], originally proposed as a technique

for program debugging, has also been proposed as a resource aware program

specialization technique for declarative languages [111, 99, 97, 95]. Program

slicing is a method for decomposing programs by analyzing their data and

control flow. As already mentioned, it was first proposed as a debugging

tool to allow a better understanding of the portion of code which revealed an

error. Since this concept was originally introduced by Weiser [127, 128]—in

the context of imperative programs—it has been successfully applied to a

wide variety of software engineering tasks (e.g., program understanding,

debugging, testing, differencing, specialization, merging). Although it is

not so popular in the declarative programming community, several slicing

techniques for declarative programs have also been developed during the

last decade (see, e.g., [47, 76, 96, 111, 116, 119, 122, 96, 77, 100]).

3

1.2 Overview of the Thesis

1.2.1 Thesis Objectives

The final objective of the work presented in this thesis is the development, im-

plementation, and experimental assessment of a poly-controlled partial evaluator.

Poly-controlled partial evaluation [110] is a powerful resource aware approach for

program specialization. It takes into account repertoires of global control and

local control rules instead of a single, predetermined, combination—as done by

traditional partial evaluation—. Thus, different control strategies can be assigned

to different call patterns, obtaining results that are hybrid in the sense that they

cannot be obtained using a single combination of control rules, as traditional

partial evaluation does.

Poly-controlled partial evaluation can be implemented as a search-based algo-

rithm, producing sets of candidate specialized programs (most of them hybrid),

instead of a single one. The quality of each of these programs is assessed through

the use of different fitness functions, which can be resource aware, taking into

account multiple factors such as run-time, memory consumption, and code size

of the specialized programs, among others.

In this way, we will try to fill the existing gap of building a resource aware

partial evaluator. Poly-controlled partial evaluation will bring along other ad-

vantages. Since it can generate hybrid solutions not achievable by traditional

partial evaluation, we hope that for some problems and some fitness functions,

hybrid solutions will have better performance than pure solutions, i.e., solutions

obtained by using a single combination of control rules. Also, existing partial

evaluators offer a wide set of parameters and flags to be set in order to deal with

termination problems, or to obtain better specialized programs. The drawback

is that the result of the interaction of such parameters is often very difficult to

predict, even for experienced users. We will aim at implementing a partial eval-

uator that is auto-tunable, in the sense that it will try to automatically set some

parameters, making it also more user-friendly, especially for novice users.

1.3 Structure of the Work

This thesis consists of five parts. Each of these parts is described in detail below.

4

Part I: Technical Background

In order to make this thesis as self-contained as possible, we start by pro-

viding some basic knowledge on the terminology of first-order logic, logic

programming and partial evaluation.

The roots of logic programming in first-order logic are described in Chap-

ter 2, with special emphasis on the syntax and semantics of logic programs.

Chapter 3 describes the basics of partial evaluation of logic programs, in

terms of SLD semantics, introduced in Chapter 2. Control issues of partial

evaluation are introduced in this chapter, since they play a very important

role in the poly-controlled partial evaluation framework.

Part II: Reducing the Size of Specialized Programs

This part deals with the problem of eliminating unneeded polyvariance

in partial evaluation. Polyvariant specialization allows the generation of

multiple versions of a procedure, which can be separately optimized for

different uses. Though polyvariance is often very important for achieving

good specialized programs, it also sometimes results in unnecessarily large

residual programs. This problem not only affects code size, sometimes

specialized programs run slower due to cache miss effects [34, 121].

A possible solution to this problem is to introduce a minimization step

which identifies sets of equivalent versions, and replace all occurrences of

such versions by a single one. Previous work on eliminating superfluous

polyvariance has dealt with pure logic programs (programs containing no

builtins) and a very limited class of builtins. Chapter 4 tackles the problem

of performing this minimization step even in the presence of calls to (any)

external predicate, including builtins, libraries, other user modules, etc.

Also, we propose the possibility of collapsing versions which are not strictly

equivalent. This allows trading time for space and can be useful in the

context of embedded and pervasive systems.

Note that this minimization step can be applied to specialized programs

obtained by either traditional partial evaluation or poly-controlled partial

evaluation.

5

Part III: Poly-Controlled Partial Evaluation: Foundations

In this part we introduce the main idea of poly-controlled partial evaluation.

Chapter 5 explains the dilemma of choosing adequate control rules when

specializing programs through partial evaluation. We show by means of sim-

ple examples that the existence of sophisticated control rules which behave

(almost) optimally for all programs is still far from reality.

As already mentioned, poly-controlled partial evaluation tries to cope with

this problem by allowing the use of different control strategies for different

call patterns, obtaining potentially different specialized programs depending

on the control strategy used for each call pattern.

We formalize poly-controlled partial evaluation and present two algorithms

implementing it. The first algorithm is greedy, and uses a pick function

to non-deterministically select a control strategy to be used at each mo-

ment. The second algorithm is search-based, producing sets of candidate

specialized programs (most of them hybrid), instead of a single one. The

quality of each of these programs is assessed through the use of different

resource aware fitness functions. Some preliminary evaluation results are

also provided in this chapter.

Then, Chapter 6 studies the properties of the solutions (specialized pro-

grams) obtained by poly-controlled partial evaluation. In particular, we are

interested in determining the heterogeneity of the solutions. If the solutions

are different enough when compared with one another there will be more

chances of finding interesting solutions, i.e., it will be more probable that

these solutions can be better than any solution obtained by traditional par-

tial evaluation in similar conditions (i.e., using the same control strategies).

Part IV: Poly-Controlled Partial Evaluation In Practice

In this part we explain the difficulties of implementing the algorithms of

poly-controlled partial evaluation, and introduce different techniques for

dealing with such problems.

Chapter 7 explains in detail, and through a simple experiment, the main

problem poly-controlled partial evaluation suffers when implemented as a

6

search-based algorithm: its search space experiments a (potentially) expo-

nential growth. We identify the causes of the problem in this chapter, whilst

solutions to this problem are proposed in the following chapters of this part.

Chapter 8 explores some techniques for pruning the search space of poly-

controlled partial evaluation when implemented as a search-based algo-

rithm. The proposed techniques are based on heuristics, they are simple

to understand and implement, and in many cases they achieve a drastic

reduction of the size of the search space. It is well known that heuristics

may behave well in some cases and not so well in others. Since in this

context behaving not so well would mean pruning away the solutions of

maximal fitness, we empirically check whether this is the case by running

these heuristics against a good number of benchmark programs.

In Chapter 9 we propose a branch and bound-based pruning technique. This

technique outperforms the previous one in that it guarantees that solutions

of maximal fitness are not lost. The main drawbacks of this technique are

the facts that it is more difficult to implement, and that, in order to prune

branches, we need to evaluate intermediate configurations, which introduce

a non negligible cost.

Finally, we propose in Chapter 10 an oracle-based poly-controlled partial

evaluation algorithm. This algorithm aims at achieving results compara-

ble to those of the search-based algorithm introduced in Chapter 5, while

having a specialization cost that is a constant factor of that of traditional

partial evaluation. Basically, given a call pattern, we first apply all con-

trol strategies to it and then an oracle makes an informed decision—based

on heuristics— of which control strategy is the most promising one. Thus,

similarly to the greedy algorithm from Chapter 5, the most promising inter-

mediate solution is kept active while the rest are discarded, thus avoiding

search, and traversing just one branch of the search tree.

Part V: Poly-Controlled Partial Evaluation: Implementation

In this part we present the current implementation of poly-controlled partial

evaluation in CiaoPP [55], the pre-processor of Ciao.

Chapter 11 shows some guidelines on the use of poly-controlled partial

7

evaluation in CiaoPP, by means of an example session, where we enumerate

the available flags for adjusting the behaviour of the poly-controlled partial

evaluator. We also show how this framework is user-friendly for novice users,

who just need to set very few parameters through a graphical interface in

order to run the poly-controlled partial evaluator, but also allows expert

users to tweak several different parameters by setting different flags in a

expert-oriented interface.

Then, in Chapter 12 we provide some conclusions of this thesis.

Appendices

Finally, we add some useful appendices.

In Appendix A we describe the fitness functions that are used in order

to evaluate the different candidate specialized programs that are found by

poly-controlled partial evaluation. As already mentioned, these functions

are resource-aware, in that they can take different parameters into account,

other than runtime, such as size of the resulting specialized program, mem-

ory taken by the programs, etc.

Appendix B describes the set of benchmark programs used throughout

this thesis. Some of these benchmarks have been borrowed from Michael

Leuschel’s Dozen of Problems of Partial Deduction library [79], while some

others have been adapted from Lam and Kusalik’s set of problems [69]. The

rest of benchmarks are taken from different sources, such as Prolog libraries,

CiaoPP [55] analysis benchmarks, internet, etc.

As explained in Section 1.1.3, program slicing is another resource-aware

program specialization technique. We have undertaken an implementation

of a slicer in CiaoPP, based on the ideas of [77]. In Appendix C we describe

a slicing session of a Ciao program in CiaoPP.

1.4 Main Contributions

The main contributions of this thesis are described below. Some of these results

have already been published and presented in international forums, in which

case the relevant publication(s) is(are) explicitly mentioned. Also, some of these

8

contributions have been made in collaboration with other researchers in addition

to the thesis supervisor. This is also explicitly mentioned below.

• The main contribution of this thesis is the development, implementation,

and experimental assessment of the novel concept of poly-controlled par-

tial evaluation. The most important advantages of poly-controlled partial

evaluation over traditional partial evaluation are:

– it allows obtaining better specialized programs than traditional partial

evaluation. Moreover, in most cases these programs cannot be ob-

tained through traditional partial evaluation using the same control

strategies.

– it is a resource-aware approach, taking into account factors such as

size of the compiled residual program, and the memory required to

run the residual program, besides the speed of the residual program.

– it is not yet another control strategy, but a framework allowing the

co-existence and cooperation of any set of control strategies. In fact,

poly-controlled partial evaluation will benefit from any further research

on control strategies.

– it is user-friendly, allowing the user to simultaneously experiment with

different combinations of parameters in order to achieve a specialized

program with the desired characteristics.

– it performs on-line partial evaluation, and thus it is fully automatic,

and it can take advantage of the great body of work available for on-

line partial evaluation of logic programs.

This framework has been presented on the 8th ACM-SIGPLAN Interna-

tional Symposium on Principles and Practice of Declarative Programming

(PPDP’2006) [110].

• We have studied the properties of the different specialized programs gener-

ated by the poly-controlled partial evaluation algorithm. A paper on this

work has been presented in the 15th Workshop on Functional and (Con-

straint) Logic Programming (WFLP’2006) [92]. This paper will be pub-

lished as a special number of Electronic Notes in Theoretical Computer

Science (Elsevier) [98].

9

• Two algorithms for poly-controlled partial evaluation have been imple-

mented:

– One of them is search-based, relatively simple to implement, but suf-

fering from an exponential blowup of its search space. For this reason,

in this thesis we also tackle the problem of pruning the search space

in different ways, in order to make this algorithm able to deal with

realistic Prolog programs. These pruning techniques and the obtained

results have been presented in the ACM SIGPLAN 2007 Symposium

on Partial Evaluation and Program Manipulation (PEPM’2007) [93].

– The other one is greedy. It is based on a variation of the search-based

algorithm, and relies on an oracle that decides which control strategy

is the most promising for every call pattern. This algorithm is almost

as efficient as traditional partial evaluation in terms of specialization

time and memory consumption, achieving at the same time specialized

programs as good as those obtained by the search-based approach. De-

tails on the implementation of this algorithm, and experimental results

have already been submitted to a relevant international conference on

the subject.

• The problem of superfluous polyvariance has been studied both in the con-

text of abstract multiple specialization [130, 108] and in the context of

partial evaluation of normal logic programs [84]. The common idea is to

identify sets of versions which are equivalent and replace all occurrences of

such versions by a single, canonical, one. In this thesis we compare differ-

ent approaches for controlling polyvariance, and we also extend previous

approaches in two ways:

– First, we tackle in an accurate way the case in which programs con-

tain external predicates, i.e., predicates whose code is not defined in

the program being specialized, and thus it is not available to the spe-

cializer.

– Second, previously proposed minimization techniques do not provide

any degrees of freedom at the minimization stage. We propose the pos-

sibility of collapsing versions which are not strictly equivalent. This is

10

achieved by residualizing certain computations for external predicates

which would otherwise be performed at specialization time. This al-

lows automatically trading time for space.

– we present the first experimental evaluation of the benefits of post-

minimization in partial evaluation.

Interestingly, this approach can be applied to both traditional partial eval-

uation and poly-controlled partial evaluation. This work, co-authored

with Manuel Hermenegildo, has been published in the 15th International

Symposium on Logic-based Program Synthesis and Transformation (LOP-

STR’2005) [94].

11

12

Part I

Technical Background

13

Chapter 2

Logic and Logic Programming

This chapter provides an essential background in first-order logic and logic pro-

gramming. It is mainly inspired in [80], which, in turn, it is based on [86] and [7],

and adheres to the same terminology. If desired, advanced readers can quickly

skim through this chapter, or skip it completely.

2.1 Syntax of Logic Programs

We start by briefly introducing the syntax of well-formed formulas of a first order

theory.

Definition 2.1.1 (alphabet). An alphabet consists of the following classes of

symbols:

1. variables

2. function symbols

3. predicate symbols

4. connectives

5. quantifiers

6. punctuation symbols

15

Classes 1 to 3 vary from alphabet to alphabet, while classes 4 to 6 are the

same for all alphabets.

Function and predicate symbols have an associated arity, a natural number

indicating how many arguments they can take. Constants are function symbols

of arity 0, while propositions are predicate symbols of arity 0.

The connectives are negation (¬), conjunction (∧), disjunction (∨), implica-

tion (←), and equivalence (↔). The quantifiers are the existential quantifier (∃),
and the universal quantifier (∀). Finally, the punctuation symbols are “(”, “)”

and “,”. To avoid having formulas cluttered with brackets, we give connectives

and quantifiers the following precedence, with the highest precedence at the top:

¬,∀,∃
∨
∧
←,↔

Throughout this thesis, we adhere as much as possible to the following nota-

tional conventions:

• Variables will be denoted by uppercase letters—possibly subscripted—, usu-

ally taken from the later part from the (Latin) alphabet, such as X, Y, Z.

• Constants will be denoted by lowercase letters, usually taken from the be-

ginning of the (Latin) alphabet, such as a, b, c, while other function symbols

will be denoted by lowercase letters such as f, g, h.

• Predicates will be denoted by lowercase letters, such as p, q, r.

We give now a series of basic definitions.

Definition 2.1.2 (term). A term is inductively defined as follows:

• A variable is a term.

• A constant is a term.

• A function f of arity n > 0 applied to a sequence of terms t1, . . . , tn, denoted

by f(t1, . . . , tn), is a term.

16

Definition 2.1.3 (atom). An atom is defined inductively as follows:

• A proposition is an atom.

• A predicate p of arity n > 0 applied to a sequence of terms t1, . . . , tn, denoted

by p(t1, . . . , tn), is an atomic formula, or more simply, an atom.

The function pred applied to a given atom A, i.e., pred(A), returns the cor-

responding predicate symbol p/n for A.

Definition 2.1.4 (formula). A (well-formed) formula is defined inductively as

follows:

• An atom is a formula.

• If F and G are formulas, then so are (¬F), (F ∧ G), (F ∨ G), (F ← G),

and (F ↔ G).

• Given a formula F and a variable X, then (∀X F) and (∃X F) are formu-

las.

For example, ∀(p(X, g(X)) ← q(X) ∧ ¬r(X)) is a formula, whose informal

semantics is “for every X, if q(X) is true and r(X) is false, then p(X, g(X)) is

true”.

Some important classes of formulas, especially in the context of logic program-

ming, are defined below.

Definition 2.1.5 (expression). An expression is either a term, an atom or a

conjunction or disjunction of atoms.

Definition 2.1.6 (clause). A clause is a formula of the form ∀H1 ∨ . . . ∨Hm ←
B1 ∧ . . . ∧ Bn, where m ≥ 0, n ≥ 0 and H1, . . . , Hm, B1, . . . , Bn are all atoms.

H1∨ . . .∨Hm is called the head of the clause and B1∧ . . .∧Bn is called the body

of the clause.

A (normal) program clause is a clause of the form H ← B1 ∧ . . .∧Bn, where

H is an atom.

A definite program clause is a normal program clause where B1∧ . . .∧Bn are

atoms.

A fact is a program clause of the form H ←.

A query or goal is a clause of the form ← B1 ∧ . . . ∧Bn, with n > 0.

A definite goal is a goal where B1 ∧ . . . ∧Bn are atoms.

17

It is important to distinguish the scope of variables present in a given formula.

Definition 2.1.7 (scope). The scope of ∀X (resp. ∃X) in a given formula

(∀X F) (resp. (∃X F)) is F . A bound occurrence of a variable X inside a

formula F is any occurrence immediately following a quantifier or an occurrence

within the scope of a quantifier ∀X or ∃X. Any other occurrence of a variable is

said to be free.

Definition 2.1.8 (closed formula). A closed formula is a formula with no free

variables.

Definition 2.1.9 (universal and existential closure). Given a formula F , the

universal closure of F , denoted by ∀(F), is the closed formula obtained by adding

a universal quantifier to every free variable in F . Similarly, the existential closure

of F , denoted by ∃(F), is obtained by adding an existential quantifier to every

free variable in F .

Universal quantifiers are usually omitted when writing logic programs, and

commas are used instead of conjunctions in the body. For instance, the formula

∀X∀Y p(X, Y) ← q(X) ∧ r(Y) is written as p(X, Y) ← q(X), r(Y). Throughout

this thesis we adhere to this convention.

After the definitions above, we can now define two important concepts, that

of a first order language, and that of a program.

Definition 2.1.10 (first order language). The first order language given by an

alphabet A consists of the set of all formulas constructed from the symbols of A.

Definition 2.1.11 (program). A (normal) program is a set of (normal) program

clauses. A definite program is a set of definite program clauses.

2.2 Semantics of Logic Programs

The declarative semantics of a program is given by the semantics of formulas in

first-order logic, assigning meaning to formulas in the form of interpretations over

some domain D. This means that every function symbol of arity n is assigned

a n-ary mapping Dn 7→ D, each predicate symbol of arity n is assigned a n-ary

relation on D (i.e., a subset of Dn), and variables range over D. Finally, each

18

formula is assigned a truth value (true or false) depending on the truth value

of every subformula. This intuition can be formalized as follows.

Definition 2.2.1 (model). A model of a formula is an interpretation in which

the formula has the truth value true assigned to it.

For example, let I be an interpretation whose domain D is the set of natural

numbers N with the following mappings

a 7→ 1

b 7→ 2

p 7→ {(1)}
Then the truth value of p(a) under I is true and the truth value of p(b) is

false. So I is a model of p(a) but not of p(b).

Definition 2.2.2 (logical consequence). A formula F is a logical consequence of

a set of formulas S, denoted by S |= F , if F is assigned the truth value true in

all models of S.

The following shorthands are used for formulas:

• Given a formula F , then F ← denotes the formula F ← true and ← F

denotes the formula false← F .

• The empty clause is a clause of the form←, and corresponds to the formula

false← true, i.e., a contradiction.

Given a definite program P , and since P is just a set of clauses, and clauses

are simply formulas, the logical meaning of P might be seen as the set of all

formulas F for which P |= F 1. Thus, from a programming point of view, we are

interested in the bindings made for all variables of P to obtain each formula in

F .

Definition 2.2.3 (substitution, binding). A substitution θ is a finite set of the

form θ = {X1 7→ t1, . . . , Xn 7→ tn}, where θ(Xi) = ti for all i = 1, . . . , n (with

1In the case of normal programs, since negations can occur in the bodies of clauses, the
truth of ¬F can propagate further and may be used to infer positive formulas as well. For a
more detailed discussion on this, see [8, 80]. In this work, we consider negations as regular
builtins.

19

Xi 6= Xj if i 6= j) and θ(X) = X for any other variable X, and where ti are

terms (with ti 6= Xi).

Each element Xi 7→ ti ∈ θ is called a binding.

We denote with ε the empty substitution. Also, vars(E) denotes the set of

variables occurring inside an expression E, and dom(θ) denotes the set of variables

affected by substitution θ, i.e., dom({X1 7→ t1, . . . , Xn 7→ tn}) = {X1, . . . , Xn}.

Definition 2.2.4 (variable renaming). Let E be an expression. A substitution θ

is called a variable renaming iff all the following applies:

• ∀X ∈ vars(E) exists a variable Y s.t. θ(X) = Y ,

• vars(E) ∩ vars(Eθ) = ∅,

• ∀X ∈ vars(E) ∀Y ∈ vars(E) . X 6= Y ⇒6 ∃Z ∈ vars(Eθ) s.t. X 7→ Z ∈
Eθ ∧ Y 7→ Z ∈ Eθ.

Definition 2.2.5 (answer). Let P be a definite program and let G =← A1, . . . , An

be a definite goal. An answer for P ∪ {G} is a substitution θ iff P |= ∀((A1 ∧
. . . ∧ An)θ).

For example, given a program P = {p(a) ←} and a goal G =← p(X), the

substitution {X 7→ a} is an answer, but {X 7→ b} is not.

Answers can be calculated based on the concepts of resolution and unification.

These concepts are defined below, together with some preliminary definitions.

Definition 2.2.6 (instance). A term t is more general than another term s (or

s is an instance of t), denoted by t ≤ s, if ∃θ. tθ = s.

For example, let F = p(a, X, Y) and θ = {X 7→ b, Y 7→ c}, then Fθ =

p(a, b, c), i.e., p(a, b, c) is an instance of p(a, X, Y). Note that there may exist

many instances of a given term, for instance p(a, b, Y) is also an instance of

p(a, X, Y).

Definition 2.2.7 (variant). Two terms t and t′ are variants, denoted t ≈ t′, if

both t ≤ t′ and t′ ≤ t.

If t and t′ are variants then there exists a variable renaming ρ such that tρ = t′.

20

For example, p(a, X) and p(a, Y) are variants since p(a, X) ≤ p(a, Y) and

p(a, Y) ≤ p(a, X).

Definition 2.2.8 (unifier, generalization). Let S be a finite set of simple expres-

sions. A substitution θ is called a unifier for S if Sθ is a singleton, i.e., a set

containing a unique element.

A unifier θ is called most general unifier (mgu) for S, if for each unifier σ of

S, there exists a substitution γ such that σ = θγ.

A generalization of a set of terms {t1, . . . , tn} is another term t such that

∃θ1, . . . , θn with ti = tθi, i = 1, . . . , n.

A generalization t is the most specific generalization (msg) of {t1, . . . , tn} if

for every other term t′ s.t. t′ is a generalization of {t1, . . . , tn}, t′ ≤ t.

For example, {p(a, f(X)), p(Y, b)} is not unifiable because the second ar-

guments cannot be unified. However, {p(a, f(X)), p(Y, Z)} is unifiable since

θ′ = {Y 7→ a, X 7→ b, Z 7→ f(b)} is a unifier. A most general unifier is

θ = {Y 7→ a, Z 7→ f(X)}. Note that θ′ = θ{X 7→ b}
From the definition of an mgu follows that if θ and σ are both mgu’s of a set

of expressions {E1, . . . , En}, then Eiσ is a variant of Eiθ. In [86] is shown that

each Eiσ can be obtained from Eiθ by simply renaming variables.

Unifiability of a set of expressions is decidable, and there exist efficient algo-

rithms for calculating the mgu of two given terms [7, 86].

Given a set of clauses {Cl1 = H1 ← B1, . . . , Cln = Hn ← Bn}, n ≥ 0, we

denote by instantiate({Cl1, . . . , Cln}, A) the set of clauses {Cl1θ1, . . . , Clnθn}
where each θi = mgu(Hi, A).

We can now define SLD-resolution, which is based on the resolution princi-

ple [112], and is a special case of SL-resolution [64]. Each SLD-derivation employs

a computation rule to select an atom within a goal for its evaluation.

Definition 2.2.9 (computation rule). A computation rule is a function R from

goals to atoms. Let G be a goal of the form ← A1, . . . , AR, . . . , Ak, k ≥ 1. If

R(G) =AR we say that AR is the selected atom in G.

Definition 2.2.10 (derivation step).

Let G be ← A1, . . . , AR, . . . , Ak. Let R be a computation rule and let

R(G) =AR. Let C = H ← B1, . . . , Bm be a renamed apart clause in P . Then G′

21

is derived from G and C via R if the following conditions hold:

θ = mgu(AR, H)

G′ is the goal ← (A1, . . . , AR−1, B1, . . . , Bm, AR+1, . . . , Ak)θ

G′ is also called a resolvent of G and C.

Definition 2.2.11 (complete SLD-derivation). Given a program P and a goal

G, a complete SLD derivation for P ∪{G} consists of a possibly infinite sequence

G = G0 : G1 : G2 : . . . of goals, a sequence C1 : C2 : . . . of properly renamed apart

clauses of P , and a sequence θ1 : θ2 : . . . of mgus such that each Gi+1 is derived

from Gi and Ci+1 using θi+1.

Definition 2.2.12 (SLD-refutation). An SLD-refutation of P ← {G} is a finite

complete SLD-derivation of P ← {G} which has an empty clause as the last goal

of the derivation.

A derivation step can be non-deterministic when AR unifies with several

clauses in P , giving rise to several possible SLD derivations for a given goal.

SLD derivations can be organized in SLD trees.

Definition 2.2.13 (SLD-tree). A complete SLD-tree for P ∪ {G} is a labelled

tree which satisfies:

• Each node of the tree is labelled with a definite goal along with an indication

of the selected atom.

• The root node is labelled with G.

• Let ← A1, . . . , AR, . . . , Ak be the label of a node in tree, and let AR be

the atom selected by the computation rule R. Then for each clause A ←
B1, . . . , Bn in P such that AR and A are unifiable the node has a child

labelled with

← (A1, . . . , AR−1, B1, . . . , Bn, AR+1, . . . , Ak)θ

where θ is the mgu of AR and A.

• Nodes labelled with the empty goal have no children. We graphically repre-

sent an empty goal with the symbol �.

22

p(b)

q(b)

p(X)

r(X)q(X) r(b)

b

{X a}

{X b} {X b}

a

Figure 2.1: SLD-trees for Example 2.2.14

Every branch of a complete SLD-tree corresponds to a complete SLD-

derivation. In graphical representations of SLD-trees, selected atoms are un-

derlined.

A finite derivation G = G0, G1, G2, . . . , Gn is called successful if Gn is an

empty clause. In that case θ = θ1θ2 . . . θn is called the computed answer for goal

G. Such a derivation is called failed if it is not possible to perform a derivation

step with Gn.

Example 2.2.14. Let us take the program P = {p(X) ← q(X), p(X) ←
r(X), q(a) ←}. Given a goal G = {← p(X)}, then a possible SLD-tree for

P ∪ {G}, with computed answer {X 7→ a}, is shown in Figure 2.1(a). In this

figure, successful derivations are represented with 2, while failed derivations are

represented with ×.

Given a goal G′ = {← p(b)}, then a possible SLD-tree for P ∪ {G′} is shown

in Figure 2.1(b). There are no successful derivations in this case.

23

24

Chapter 3

Partial Evaluation

In this chapter we provide the basics of partial evaluation of logic programs. For

a more detailed discussion we refer the reader to works such as [85, 44].

3.1 Basics of Partial Evaluation

The main aim of partial evaluation is to specialize a program w.r.t. part of its

input, which is known as the static data, the idea being that once the rest of

the input (dynamic data) is provided, the specialized program—also known as

residual program—will be more efficient than the original one, since those compu-

tation steps which only depend on the static data are performed at specialization

time. Thus, in order to obtain the residual program P ′ of an input program P , a

partial evaluator executes those parts of P which depend only on the static input

S, and generates residual code for those parts of P which require the dynamic

input D. This process is also called mixed computation [38].

Partial evaluation has been applied in a good number of programming

paradigms such as imperative programming [6, 5], functional programming [60,

59], logic programming [44, 101], functional logic programming [4, 1], and term

rewriting systems [12]. In this thesis we concentrate on partial evaluation of logic

programs.

25

Evaluator

Partial
Static Data

Dynamic Data

Source

Program

Program

Specialized
Output

Figure 3.1: An Online Partial Evaluator

3.1.1 Offline vs Online Partial Evaluation

Partial evaluation can be performed in an online or offline manner. In online par-

tial evaluation, the static data is used in order to compute parts of the specialized

program as early as possible, taking decisions “on the fly” [61, 10, 114, 126]. This

process is illustrated in Figure 3.1.

In offline partial evaluation [61, 13, 25], the specialization process is split into

two phases:

• First, a binding-time analysis (BTA) is performed which, given a program

and an approximation of the input available for specialization, approximates

all values within the program during specialization time, and generates an

annotated program.

• Then, a (simplified) specialization phase takes place, which is guided by the

annotations generated by the BTA.

26

Source

Program

Evaluator

Partial
Static Data

Dynamic Data
Program

Specialized
Output

Binding Time

Analysis

Annotated

Program

Figure 3.2: An Offline Partial Evaluator

This approach is illustrated in Figure 3.2 and is called offline because most

control decisions are taken beforehand.

One of the main advantages of the offline approach is the efficiency of the

specialization process. Once the annotations have been derived, the specializer is

relatively simple and can be made to be very efficient. These annotations can be

user-provided, and sometimes almost fully automatic. The online approach, on

the other hand, is fully automatic. Also, the offline approach can only use more

restricted specialization strategies.

3.2 Partial Evaluation of Logic Programs

When performing partial evaluation of logic programs1, the static input is a par-

tially instantiated goal G. In logic programming, one can still execute a program

1The term partial deduction [62] is usually used when referring to partial evaluation of pure
logic programs, i.e., programs without extra-logical features such as cuts, bindings, etc [35].
However, we stick to the term partial evaluation since the framework presented in this work
considers these extra-logical features, and is thus oriented to (full) Prolog programs.

27

P for G and (try to) construct a SLD-tree for P ∪ {G}. However, since G is par-

tially instantiated, this tree is usually infinite, so ordinary evaluation will often

not terminate, and we need a more refined approach to partially evaluate logic

programs.

Partial evaluation of logic programs is traditionally presented in terms of

SLD semantics, which has been introduced in Chapter 2. In partial evaluation,

SLD semantics is extended in order to also allow incomplete derivations, which

are finite derivations of the form G = G0, G1, G2, . . . , Gn and where no atom is

selected in Gn for further resolution. This is needed in order to avoid (local)

non-termination of the specialization process. Thus, a SLD-derivation can be

successful, failed, incomplete or infinite. The substitution θ = θ1θ2 . . . θn is called

the computed answer substitution for goal G.

An incomplete SLD-tree is defined in the same way as a complete SLD-tree,

but possibly containing incomplete derivations. This means that in addition to

success and failure leaves, it can also contain dangling leaves which correspond

to goals which have not been further unfolded, i.e., leaves where no literal has

been selected for further derivation. A SLD-tree is called trivial iff its root is a

dangling leaf.

In short, in order to compute a partial evaluation (PE) [85], given an input

program and a set of atoms (goal), the first step consists in computing finite

incomplete SLD trees for these atoms. Then, a set of resultants or residual rules

are systematically extracted from the SLD trees.

Definition 3.2.1 (resultant). Let P be a program, let ← G be a goal, and let D

be a finite SLD-derivation of P ∪ {← G} with computed answer θ and resolvent

← B. Then the formula Gθ ← B is a resultant of D.

Definition 3.2.2 (partial evaluation). Let P be a definite program and let A

be an atom. Let τ be a SLD tree for P ∪ {← A}, and let ← G1, . . . ,← Gn

be goals chosen from the non-root nodes of τ such that there is exactly one goal

from each non-failing branch of τ . Let θ1, . . . , θn be the computed answers of the

derivations from ← A to ← G1, . . . , Gn respectively. Then the set of resultants

{Aθ1 ← G1, . . . , Aθn ← Gn} is called a partial evaluation of A in P .

If A is a finite set of atoms, then a partial evaluation of A in P is the union

of the partial evaluations of the elements of A.

28

Given a program P and an atom A, there exist in general infinitely many

different partial evaluations of A in P [44]. An unfolding rule is a fixed rule for

generating resultants.

Definition 3.2.3 (unfolding rule).

Given a program P and an atom A, an unfolding rule computes a SLD tree

for P ∪ {← A}.
We use U(P, A) = τ to denote the fact that the unfolding rule U , when applied

to an atom A in program P , returns the SLD tree τ .

We now introduce the concepts of closedness and independence, necessary to

establish correctness of partial evaluation.

Definition 3.2.4 (closed). Let S be a set of first-order formulas and let A be a

finite set of atoms. Then S is A-closed if every atom in S containing a predicate

symbol occurring in A is an instance of an atom in A.

Definition 3.2.5 (independence). Let A be a set of atoms. Then A is indepen-

dent if no two atoms in A have a common instance.

The central result proved in [85] is the following theorem about correctness of

partial evaluation.

Theorem 3.2.6. Let P be a definite program, and let A be an independent set

of atoms. Let P ′ be a partial evaluation of A in P . Then for all goals G such

that P ′ ∪ {G} is A-closed

• P ∪ {G} has a SLD-refutation with computed answer θ iff P ′ ∪ {G} has a

SLD-refutation with computed answer θ.

• P ∪{G} has a finitely-failed SLD-tree iff P ′∪{G} has a finitely-failed SLD-

tree.

3.2.1 A Greedy Partial Evaluation Algorithm

Algorithm 1 shows a greedy algorithm for performing partial evaluation of a given

program. In this algorithm, besides an unfolding rule U , an abstract operation G

is used, and whose main purposes are:

29

• to ensure termination of the algorithm, and

• to satisfy the independence requirement described above.

Algorithm 1 Partial Evaluation Algorithm (PE)

Input: Program P

Input: Set of atoms of interest A
Input: An abstraction rule G

Input: An unfolding rule U

Output: A partial evaluation for P and A, encoded by Hi

1: i = 0

2: H0 = ∅
3: A0 = A
4: repeat

5: Ai = Select(Ai)

6: A′
i = G(Hi, Ai)

7: τi = U(P, A′
i)

8: Hi+1 = Hi ∪ {〈Ai, A
′
i〉}

9: Ai+1 = (Ai − {Ai}) ∪ {A ∈ leaves(τi) | ∀ 〈B, 〉 ∈ Hi+1 . B 6≈ A}
10: i = i + i

11: until Ai = ∅

The potential queries to the program are represented by the set of atoms A.

In each iteration of the algorithm, an atom Ai from Ai is selected (line 5). Then,

global control and local control as defined by the G and U rules, respectively, are

applied (lines 6 and 7). This builds an SLD-tree for A′
i, a generalization of Ai as

determined by G, using the predefined unfolding rule U . Once the SLD-tree τi

is computed, the leaves in its resultants, i.e., the atoms in the residual code for

A′
i are collected by the function leaves. Those atoms in leaves(τi) which are not

a variant of an atom handled in previous iterations of the algorithm are added

to the set of atoms to be considered (Ai+1). We use B ≈ A to denote that B

and A are variants, i.e., they are equal modulo variable renaming. The algorithm

finishes when Ai becomes empty.

The specialized program P ′ corresponds to

30

P ′=
⋃

〈A,A′〉∈Hi
resultants(U(P, A′)).

where resultants extracts the residual rules from the SLD trees resulting from

unfolding each of the abstracted atoms in all tuples of Hi.

Note that this algorithm differs from those in [44, 71] in that once an atom Ai

is abstracted into A′
i, code for A′

i will be generated, and it will not be abstracted

any further no matter which other atoms are handled in later iterations of the

algorithm. As a result, the set of atoms for which code is generated are not

guaranteed to be independent. However, the pairs in Hi uniquely determine the

version used at each program point. Since code generation produces a new pred-

icate name per entry in Hi, independence is guaranteed, and thus the specialized

program will not produce more solutions than the original one.

The ecce system [84] can be made to behave as Algorithm 1 by setting the

parent abstraction flag to off.

3.3 Control and Termination of Partial Evalua-

tion

As mentioned before, in partial evaluation we can distinguish two levels of con-

trol [44], the so-called global control, in which one decides which atoms are to be

partially evaluated, and the local control, in which one constructs the (possibly

incomplete) SLD-tree for each atom in the set of atoms being handled by the par-

tial evaluation algorithm. Thus, we must consider two distinct questions about

termination:

• Termination of the iterative algorithm, also known as global termination.

• Termination of the unfolding rule U , better known as local termination.

We briefly discuss these issues below.

3.3.1 Local Termination

In order to ensure the local termination of the partial evaluation algorithm while

producing useful specializations, the unfolding rule must incorporate some non-

trivial mechanism to stop the construction of SLD trees. Nowadays, well-founded

31

orderings (wfo) [16, 88] and well-quasi orderings (wqo) [117, 81] are broadly used

in the context of on-line partial evaluation techniques (see, e.g., [44, 84, 117]).

We now formally define well-founded orderings and well-quasi orderings.

Definition 3.3.1 (s-poset). A strict partial order on a set S is an anti-reflexive,

anti-symmetric and transitive binary relation on S×S. A partially strictly ordered

set, or s-poset S, >S, consists of a set S and a strict partial order >S on S.

Definition 3.3.2 (wfo). An s-poset S, >S is well-founded iff there is no infinite

sequence of elements s1 : s2 : . . . in S such that si > si+1 for all i ≥ 1. The order

>S is called a well-founded order (wfo) on S.

Definition 3.3.3 (poset). A (non-strict) partial order on a set S is a reflexive

and transitive binary relation on S × S. A partially ordered set, or poset S,≥S,

consists of a set S and a partial order ≥S on S.

Definition 3.3.4 (wqo). A poset S,≤S is well-quasi-ordered (wqo) iff for any

infinite sequence of elements s1 : s2 : . . . in S there are i < j such that si ≤S sj.

The order ≤S is called a well-quasi order (wqo) on S.

It is well known that the use of wfos and wqos allows the definition of admis-

sible sequences which are always finite. Intuitively, derivations are expanded as

long as there is some evidence that interesting computations are performed and

also guaranteed to terminate (according to the selected ordering).

Intuitively, a sequence of elements s1 : s2 : . . . in S is called admissible with

respect to an order ≤S [16] iff there are no i < j such that si ≤S sj. If the order is

a wqo, given a derivation G1, G2, · · · , Gn+1 in order to decide whether to evaluate

Gn+1 or not, we check that the selected atom in Gn+1 is strictly smaller than any

previous (comparable) selected atom. A more formal definition is provided below.

Definition 3.3.5 (admissible). Let ≤S be a wqo. We denote by

Admissible(A, (A1, . . . , An),≤S), with n ≥ 0, the truth value of the expression

∀Ai, i ∈ {1, . . . , n} : Ai 6≤S A. In a wfo, it is sufficient to verify that the selected

atom is strictly smaller than the previous comparable one (if one exists). Let < be

a wfo, by Admissible(A, (A1, . . . , An), <), with n ≥ 0, we denote the truth value

of the expression An 6< A if n ≥ 1 and true if n = 0.

32

We will denote by structural order a wfo or a wqo (written as / to represent

any of them). Among the structural orders, well-quasi orderings have proved

to be very powerful in practice. In particular, the homeomorphic embedding

[67] ordering is the wqo we will use in our experiments. Informally, an atom t1

embeds atom t2 if t2 can be obtained from t1 by deleting some operators, e.g.,

s(s(U+ W)×(U+s(V))) embeds s(U× (U+ V)). The interested reader is referred to

[37, 81] where a detailed description of homeomorphic embedding can be found.

3.3.2 Global Termination

In addition to local control, an abstraction operator is applied to properly add

the atoms in the right-hand sides of resultants to the set of atoms to be partially

evaluated (line 6 of Algorithm 1). This abstraction operator performs the global

control and is in charge of guaranteeing that the number of atoms which are

generated remains finite by replacing atoms by more general ones, i.e., by losing

precision in order to guarantee termination.

Definition 3.3.6 (abstraction). Let A be a set of atoms. The set of atoms A′ is

an abstraction of A iff every atom of A is an instance of an atom in A′.

The use of an abstraction operator does not guarantee global termination in

itself. Some abstraction operators guarantee termination by losing some precision.

For instance, we could impose a finite number of atoms in A and apply the most

specific generalization (msg) operator to enforce not exceeding such limit.

Throughout this thesis, we will use in most of examples and experiments the

following global control rules:

id: is the identity abstraction rule, i.e., for any atom A, G(A) = A. This rule

is equivalent to not performing any abstraction at all, and thus it does

not guarantee termination of the partial evaluation algorithm. It is there-

fore only used in cases where global termination is achieved, even when no

abstraction is performed.

dynamic: is the most abstract global control rule possible, which abstracts away

the value of all arguments of the atom and replaces them with distinct

variables. For example, G(p(1, X, [a, b]) = p(X ′, Y ′, Z ′)

33

hom emb: is based on homeomorphic embedding [71, 81] and optionally also on

global trees [74]. It flags atoms as potentially dangerous (and are thus gen-

eralized) when they homeomorphically embed any of the previously visited

atoms.

3.4 Unfolding Strategies

In the basic partial evaluation algorithm we assume the existence of an unfolding

rule U , which takes an atomic goal and a program, and returns a finite, possibly

incomplete SLD tree for them. There are many possible unfolding strategies.

Some of them perform better in some situations and worse in others when com-

pared with one another.

In CiaoPP [54, 106, 55], an unfolding rule is composed of an unfolding strat-

egy, a computation rule and a unfolding branching factor. We present in this

section some of the several unfolding strategies and computation rules available

in CiaoPP. The ones presented here will be used later for our experiments.

3.4.1 Determinate Unfolding

Determinate unfolding is a quite simple unfolding strategy where unfolding is

performed only if the current selected atom of a goal matches at most a single

clause head of the program. As shown in [44], unfolding determinate goals does

not introduce extra computation into a program, even if the selected atom is

non-leftmost. However, in many cases this unfolding strategy is too conservative.

Also, it is not always guaranteed to obtain finite SLD trees.

Definition 3.4.1 (determinate unfolding). A SLD tree is (purely) determinate

if each node of the tree has at most 1 child. An unfolding strategy U is purely

determinate if it returns a determinate SLD-tree for any program P and any goal

G.

A “look-ahead” of a finite number of computation steps can be used to detect

further cases of determinacy. For instance, given the program

p(X) :- X>0, q(X).

p(X) :- X<=0, r(X).

34

dcba

Figure 3.3: Different Unfolding Trees

the goal ← p(1) is determinate after look-ahead of 1 step.

In Figure 3.3 we can see several unfolding trees where failing derivations are

marked with ×. Tree a is purely determinate. Tree b is determinate after look-

ahead of 1 step. Tree c is determinate after look-ahead of 2 steps. Finally,

tree d is not determinate after look-ahead of 2 steps (although it could become

determinate later, but this is an undecidable problem).

3.4.2 One-Step Unfolding

The rule one step is the simplest possible unfolding strategy which always per-

forms just one unfolding step for any atom.

3.4.3 Unfolding Based on Homeomorphic Embedding

It is well-known that imposing some well-founded order on selected atoms guar-

antees termination while leading to overly eager unfolding [16, 88]. Instead of

well-founded orders, it is possible to use well-quasi orders as well [11].

Intuitively, and in order to ensure local termination, if an atom we want to

select is homeomorphically embedded by one of its ancestor then we have to

select a different atom or we have to stop unfolding. State-of-the-art unfolding

strategies allow performing ordering comparisons over subsequences of the full

sequence of the selected atoms of a derivation by organizing atoms in a proof tree

35

[15]. This allows considering the embedding relation with the covering ancestors

of the selected atom, achieving further specialization in many cases while still

guaranteeing termination.

CiaoPP provides several unfolding strategies based on homeomorphic embed-

ding. Throughout this work we will extensively use an unfolding rule called

df hom emb as. It can handle external predicates safely and can perform non-

leftmost unfolding (see below) as long as unfolding is safe (see [2]) and local

(see [106]).

3.4.4 Computation Rules

Besides the unfolding strategy chosen for partially evaluating a program, we need

to define the computation rule that is going to be used. Although CiaoPP offers

several posibilities, there are two important classes of computation rules that we

will use throughout this thesis:

leftmost This is the trivial computation rule which always returns the leftmost

atom in a goal. This computation rule is interesting in that it avoids sev-

eral correctness and efficiency issues in the context of PE of full Prolog

programs [2, 44].

non-leftmost Informally, given a program P and a goal ← A1, . . . , An, it can

happen that the leftmost atom A1 cannot be selected for unfolding due

to several circumstances. Among others, if A1 is an atom for a predicate

defined in P (thus the code is available to the partial evaluator) it can

happen that:

• unfolding A1 endangers termination (for example, A1 may homeomor-

phically embed some selected atom in its sequence of covering ances-

tors), or

• the atom A1 unifies with several clause heads (deterministic unfolding

strategies do not unfold non-deterministically for atoms other than the

initial query).

If A1 is an atom for an external predicate whose code is not present nor

available to the partial evaluator, it can happen that

36

• A1 is not sufficiently instantiated so as to be executed at this moment.

In cases like this it is interesting to select a non-leftmost atom. It is well-

known that the ability of performing non-leftmost unfolding is essential in

partial evaluation in some cases for the satisfactory propagation of static

information (see, e.g., [71]).

For logic programs without impure predicates, non-leftmost unfolding is sound

thanks to the independence of the computation rule (see for example [86])2. Un-

fortunately, non-leftmost unfolding poses several problems in the context of full

Prolog programs with impure predicates, where such independence does not hold

anymore. For instance, ground/1 is an impure predicate since, under LD res-

olution3, the goal ground(X),X=a fails whereas X=a,ground(X) succeeds with

computed answer X/a. Those executions are not equivalent and, thus, the inde-

pendence of the computation rule does no longer hold. As a result, given the goal

← ground(X),X=a, if we allow the non-leftmost unfolding step which binds the

variable X in the call to ground(X), the goal will succeed at specialization time,

whereas the initial goal fails in LD resolution at run-time. The above problem

was early detected [115] and it is known as the problem of backpropagation of

bindings. Also, backpropagation of failure is problematic in the presence of im-

pure predicates. For instance, ← write(hello),fail behaves differently from

← fail. For a thorough discussion of these problems, see for example [2].

CiaoPP provides a parameter that is used to decide when unfolding should be

avoided, when using a non-leftmost computation rule. This parameter is called

unf bra fac, standing for unfolding branching factor, and its value is a natural

number. For example, if set to i, i > 0, it means that if the selected atom

unifies with j clause heads, j ≤ i, then unfolding continues, otherwise it stops.

We reserve the value 0 for indicating that no limit is imposed on the branching

factor. If unf bra fac is different from 1, it is not guaranteed that the residual

program will execute fewer resolution steps.

In some chapters of this thesis, we will use hom emb aggr to refer to the

unfolding rule using an unfolding strategy based on homeomorphic embedding for

2However, non-deterministic unfolding of nonleftmost atoms can degrade efficiency.
3LD resolution is a case of SLD resolution where the selection rule is set to the left-to-right

selection rule of Prolog [35, 118].

37

flagging possible non-termination, and using 0 as an unfolding branching factor,

and hom emb cons when using 1 as the unfolding branching factor. In both cases,

the computation rule will allow selecting non-leftmost atoms. Note that when

one step is being used as an unfolding strategy, then neither the computation

rule nor the unfolding branching factor make any difference.

In the literature, and also throughout this thesis, we will use (non-)leftmost

unfolding to denote that we are performing unfolding using a (non-)leftmost com-

putation rule.

3.5 Partial Evaluation of Full Prolog Programs

Most of real-life Prolog programs use predicates which are not defined in the

program (module) being developed. We will refer to such predicates as external.

Examples of external predicates are the traditional “builtin” predicates such as

arithmetic operations (e.g., is/2, <, =<, etc.) or basic input/output facilities.

We will also consider as external predicates those defined in a different module,

predicates written in another language, etc.

Although some builtins, usually taken to be higher-order, such as map/3, can

be mapped to pure definite (first-order) logic programs [125], most builtins like

assert/1 and retract/1 are extra-logical and ruin the declarative nature of the

underlying program. In this section we explain the difficulties that such external

predicates pose during partial evaluation.

3.5.1 Performing Derivation Steps over External Predi-

cates

When an atom A, such that pred(A) = p/n is an external predicate, is selected

during partial evaluation, it imposes several difficulties for performing a derivation

step.

• First, we may not have the code defining p/n and, even if we have it, the

derivation step may introduce in the residual program calls to predicates

which are private to the module M where p/n is defined.

38

• In spite of this, if the executable code for the external predicate p/n is

available, and under certain conditions, it can be possible to fully evaluate

calls to external predicates at specialization time. We use Exec(Sys, M, A)

to denote the execution of atom A on a logic programming system Sys, in

which the module M where the external predicate p/n is defined has been

loaded. In the case of logic programs, Exec(Sys, M, A) can return zero,

one, or several computed answers for M ∪A and then execution can either

terminate or loop.

We will use substitution sequences [21] to represent the outcome of the exe-

cution of external predicates. A substitution sequence is either

• a finite sequence of the form θ1 : . . . : θn, n ≥ 0, or

• an incomplete sequence of the form θ1 : . . . : θn : ⊥, n ≥ 0, where ⊥
indicates that the execution loops, or

• an infinite sequence θ1 : . . . : θi : . . ., i ∈ IN∗, where IN∗ is the set of positive

natural numbers.

We say that an execution universally terminates if Exec(Sys, M, A) = θ1 :

. . . : θn, n ≥ 0.

In addition to producing substitution sequences, it can be the case that the

execution of atoms for (external) predicates produces other outcomes such as

side-effects, errors, and exceptions. Note that this precludes in principle the

evaluation of such atoms to be performed at partial evaluation time, since those

effects need to be performed at run-time.

The notion of evaluable atom was introduced in [106], in order to capture

the requirements which allow executing external predicates at partial evaluation

time.

Definition 3.5.1 (evaluable). Let A be an atom such that pred(A) = p/n is an

external predicate defined in module M . We say that A is evaluable in a logic

programming system Sys if Exec(Sys, M, A) satisfies the following conditions:

1. it universally terminates

2. it does not produce side-effects

39

3. it does not issue errors

4. it does not generate exceptions

We also say that an expression E is evaluable if

1. E is an evaluable atom, or

2. E is a conjunction of evaluable expressions, or

3. E is a disjunction of evaluable expressions.

3.6 Partial Evaluation: an Example

As an example, let us take the Ciao program in Listing 3.1, where exp(A,B,C)

returns in C the result of computing AB.

Listing 3.1: The exp/3 Example

:- module(_,[exp/3],[assertions]).

:- pred exp(+Base ,+Exp ,-Res).

exp(Base ,Exp ,Res):- exp_ac(Exp ,Base ,1,Res).

exp_ac(0,_,Res ,Res).

exp_ac(Exp ,Base ,Tmp ,Res):-

Exp > 0,

Exp1 is Exp - 1,

NTmp is Tmp * Base ,

exp_ac(Exp1 ,Base ,NTmp ,Res).

Note that this program is not a pure logic program, since it uses builtins such

as is/2. A pure predicate does not distinguish between input and output argu-

ments, and any of them can be instantiated when calling the predicate. However,

the situation is different when we consider impure predicates. In this case, the

input to predicate exp(A,B,C) is represented by the arguments A and B, while

C is the output. This means that when calling exp/3 at runtime, both A and

B must be instantiated, in this case to numbers. As shown in the program, the

40

direction of arguments can be expressed in the program by using CiaoPP asser-

tions [107]. In this example we use modes to indicate with + and - that the first

two arguments are input, while the third argument is output.

exp(A,3,B)

{E 7→ 2}

N is 1*A,exp ac(2,A,N,B)

3>0,E is 3-1,N is 1*A,exp ac(E,A,N,B)

{E 7→ 1}

{E 7→ 0}

{N” 7→ B}

exp ac(3,A,1,B)

N is 1*A,2>0,E is 2-1,N’ is N*A,exp ac(E,A,N’,B)

N is 1*A,N’ is N*A,exp ac(1,A,N’,B)

N is 1*A,N’ is N*A,1>0,E is 1-1,N” is N’*A,exp ac(E,A,N”,B)

N is 1*A,N’ is N*A,N” is N’*A, exp ac(0,A,N”,B)

N is 1*A,N’ is N*A,B is N’*A

Figure 3.4: Unfolding Tree for exp(A,B,C) When B Is Known

If we know in advance the value of some input argument of exp/3, we could

use partial evaluation to specialize this predicate w.r.t. the known input. For

example, let us say that we know that the value of B (the exponent) is 3, then

we can specialize this program and obtain the (more efficient) residual program

shown in Listing 3.2.

41

Listing 3.2: Residual Code of the exp/3 Example

exp(A,3,B) :- N is 1*A, N’ is N*A, B is N’*A.

Note that this specialized program can be obtained using a non-leftmost com-

putation rule, and jumping over the builtin is/3 in Figure 3.4 (e.g. N is 1*A,

�
�

�
�

�

Q
Q

Q
Q

Q
Q

2

�
�

�
�

�

Q
Q

Q
Q

Q
Q

2

�
�

�
�

�

Q
Q

Q
Q

Q
Q

2

exp(3,A,B)

exp ac(A,3,1,B)

{A 7→ 0, B 7→ 1}

A>0,E is A-1,N is 1*3,exp ac(E,3,N,B)

{N 7→ 3}

A>0,E is A-1,exp ac(E,3,3,B)

{A 7→ 0, B 7→ 1}

A>0,E is A-1,E>0,E’ is E-1,N is 3*3,exp ac(E’,3,N,B)

{N 7→ 9}

A>0,E is A-1,E>0,E’ is E-1,exp ac(E’,3,9,B)

{A 7→ 2, B 7→ 1}

Figure 3.5: Possibly Infinite Unfolding Tree for exp(A,B,C)

N’ is N*A, ...), which is safe since the pred assertion in Listing 3.1 indicate us

that A (the base) will be instantiated at runtime [2]. In the SLD-tree repre-

sented in Figure 3.4, selected atoms are underlined, and sometimes we squeeze

the graphical representation (in order to make the tree smaller) by representing

two consecutive resolution steps in one node, as done for example when selecting

3>0 and E is 3-1.

42

�
�

�
�

�

Q
Q

Q
Q

Q
Q

2

{A 7→ 1, B 7→ 1}

�
�

�
�

�

Q
Q

Q
Q

Q
Q

2

{A 7→ 0, B 7→ 1}

exp ac(A,3,B,C)

A>0,E is A-1,N is 1*3,exp ac(E,3,N,B)

exp(3,A,B)

exp ac(A,3,1,B)

A>0,E is A-1,N is 1*3,exp ac(E,3,N,B)

Figure 3.6: Unfolding Tree for exp(A,B,C) When A Is Known

The specialized program is not only more efficient in terms of speed (the loop

of the original program has been wiped out), but also in terms of size of code,

and memory taken by the residual program. Obtaining a specialized program

that outperforms the original one in several performance aspects represents an

ideal situation, but unfortunately not achieved often. In general, we will have a

tradeoff between size- and speed-efficiency, as we will see later in this thesis.

However, also note that in some situations partial evaluation cannot be of

much help. For instance, let us assume that we know in advance that the value

of the base is 3, i.e., A=3. If we use a leftmost computation rule then we would

stop in Exp>0 since the value of the exponent is unknown. Using a non-leftmost

computation rule we could continue unfolding, as shown in Figure 3.5. However,

the unfolding tree is potentially infinite, and the process could continue forever.

If we use an unfolding strategy based on homeomorphic embedding (see

Figure 3.6), then we can realize that exp ac(E,3,N,B) embeds its ancestor

exp ac(A,3,1,B)(indicated by curved arrows in the figure) and stop unfold-

ing. Later, when unfolding exp ac(E,3,N,B) we would find a similar embedding.

From these two SLD-trees, we obtain the residual program shown in Listing 3.3.

As can be seen, this code is larger than the original and it does not reduce the

43

number of computation steps.

Listing 3.3: Residual Code for the exp/3 Example (II)

exp(3,0,1).

exp(3,A,B) :- A>0, C is A-1,

D is 1*3, exp_ac_1(C,3,D,B) .

exp_ac_1 (0,3,A,A).

exp_ac_1(A,3,B,C) :- A>0, D is A-1,

E is B*3, exp_ac_1(D,3,E,C) .

44

Part II

Reducing the Size of

Specialized Programs

45

Chapter 4

Removing Superfluous Versions

in Polyvariant Specialization

As mentioned in Chapter 3, traditional partial evaluation (PE) of logic programs

aims at obtaining code which is as optimized as possible. In general, this is

achieved by performing aggressive unfolding at the local control level, and by

being as accurate as possible (generalize the least possible) at the global con-

trol level, as long as termination is guaranteed [71]. In particular, given a fixed

local control rule, different global control rules will have different effects on the

polyvariance level of partial evaluation, i.e., the number of versions produced for

each procedure. A common heuristic is to allow a high degree of polyvariance as

long as termination is not compromised, the idea being that by considering differ-

ent versions separately, further optimizations may be uncovered. This heuristic

makes sense from the point of view of optimizing programs in terms of resolution

steps, but it can produce unnecessarily large results, and may even slow down

programs due to cache miss effects (see e.g. [121, 28].

The problem of superfluous polyvariance has been studied both in the con-

text of abstract multiple specialization [130, 108] and in the context of partial

evaluation of normal logic programs [84]. The common idea is to identify sets of

versions which are equivalent and replace all occurrences of such versions by a

single, canonical, one. This poses two questions:

1. under which conditions can we consider two given versions as equivalent?

2. how can we efficiently check for equivalence?

47

To address the first question, we need to first accurately define the notion

of equivalence of versions. Then, in order to make this comparison in an effi-

cient way, we can use some additional information such as making sure that the

versions correspond to the same predicate in the original program, and also use

their specialization history, which can be collected through abstractions such as

characteristic trees [42, 84] and trace terms [43].

In this chapter, we provide a thorough analysis of these questions, comparing

different approaches for controlling polyvariance, and we also extend previous

approaches in two ways.

• First, we tackle in an accurate way the case in which programs contain ex-

ternal predicates, i.e., predicates whose code is not defined in the program

being specialized, and thus it is not available to the specializer. This in-

cludes predicates defined in other user modules, library predicates, builtins,

predicates implemented in other languages, etc. Note that external pred-

icates differ from regular ones in that they cannot be unfolded using the

traditional mechanism, and in that they may have impure features.

We show an extension to traditional characteristic trees and trace terms

which can be used in the presence of calls to external predicates. This

extension was first proposed in [94]. Based on this extension, we define suf-

ficient conditions for minimization, which are more accurate than those used

in previous work, potentially resulting in a higher degree of minimization.

• Second, previously proposed minimization techniques do not provide any

degrees of freedom at the minimization stage. We propose an additional

generalization of the notion of equivalence which introduces the possibility

of collapsing versions which are not strictly equivalent. This is achieved

by residualizing certain computations for external predicates which would

otherwise be performed at specialization time. This allows automatically

trading time for space and is of interest in the context of embedded and

pervasive systems, where computing resources and storage are often limited.

A completely different approach to that studied in this chapter is to incorpo-

rate within the global control certain heuristics which limit polyvariance based for

example on characteristic trees [42, 78, 83]. Such approach has both advantages

48

(1) main(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O):-

write(C),

addlists ([4,4|A],[0,3|B],[4,7|C]),

addlists ([3,3|D],[1,4|E],[4,7|F]),

addlists ([3,3|G],[1,4|H],I),

addlists ([1,1|J],[3,6|K],L),

addlists ([7,1|M],[1,5|N],O).

(2) addlists ([] ,[] ,[]).

(3) addlists ([A|B],[C|D],[H|T]):-

H is A+C,

addlists(B,D,T).

Figure 4.1: Adding Pairs of Lists.

and disadvantages. The advantage is that there is no need to perform a post

minimization phase, such as that discussed in this chapter. On the other hand,

the disadvantage of that approach is that it sometimes produces results which are

suboptimal, since the fact that characteristic trees are equal not always means

that the corresponding versions should be merged.

We argue that a minimization phase is important in specialization algorithms,

since it allows using very accurate global control rules while limiting the risk of

generating large residual code with many similar versions. Rather than deciding

a priori the best global control possible, this technique allows using aggressive

control strategies. We can minimize the program a posteriori and eliminate those

specialized versions which are redundant.

4.1 Polyvariant Specialization: an Example

Example 4.1.1. In order to see the effects of polyvariance, let us use the example

in Figure 4.1. Predicate addlists/3 adds the contents of two lists, using the

builtin is/2. Clauses are numbered for later reference. A possible result of partial

evaluation for the initial query main/15 is shown in Figure 4.2.

49

main(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O) :- write(C),

addlists_2 ([4,4|A],[0,3|B],[4,7|C]),

addlists_3 ([3,3|D],[1,4|E],[4,7|F]),

addlists_4 ([3,3|G],[1,4|H],I),

addlists_5 ([1,1|J],[3,6|K],L),

addlists_6 ([7,1|M],[1,5|N],O).

addlists_1 ([] ,[] ,[]).

addlists_1 ([A|B],[C|D],[E|F]) :-

E is A+C, addlists_1(B,D,F).

addlists_2 ([4 ,4] ,[0 ,3] ,[4 ,7]).

addlists_2 ([4,4,A|B],[0,3,C|D],[4,7,E|F]) :-

E is A+C, addlists_1(B,D,F).

addlists_3 ([3 ,3] ,[1 ,4] ,[4 ,7]).

addlists_3 ([3,3,A|B],[1,4,C|D],[4,7,E|F]) :-

E is A+C, addlists_1(B,D,F).

addlists_4 ([3 ,3] ,[1 ,4] ,[4 ,7]).

addlists_4 ([3,3,A|B],[1,4,C|D],[4,7,E|F]) :-

E is A+C, addlists_1(B,D,F).

addlists_5 ([1 ,1] ,[3 ,6] ,[4 ,7]).

addlists_5 ([1,1,A|B],[3,6,C|D],[4,7,E|F]) :-

E is A+C, addlists_1(B,D,F).

addlists_6 ([7 ,1] ,[1 ,5] ,[8 ,6]).

addlists_6 ([7,1,A|B],[1,5,C|D],[8,6,E|F]) :-

E is A+C, addlists_1(B,D,F).

Figure 4.2: Specialization of addlists/3 via Partial Evaluation.

Here, we use df hom emb as as the unfolding strategy. As we mentioned in

50

Chapter 3, this rule is based on homeomorphic embedding [71] and it never per-

forms non-leftmost unfolding steps to the right of a (possibly) impure predicate.

This guarantees the correctness of the partial evaluation process even in the pres-

ence of impure predicates. Note, however, that the issue of redundant polyvariance

may occur for any unfolding strategy. The global control used is hom emb, which

is based on homeomorphic embedding and global trees [74].

Unfolding of main/15 only performs one step since the leftmost literal write(C)

has side-effects, and performing non-leftmost unfolding of any other literal may

backpropagate bindings (as variables may be aliases) onto write(C). Note that

one version has been generated for each call to addlists/3 within the body of

main/15, plus one version for the general case. However, the four versions

addlists 2 through addlists 5 are indeed equivalent and could be replaced by a

single one, resulting in the (smaller) program shown in Figure 4.3.

main(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O) :- write(C),

addlists_5 ([4,4|A],[0,3|B],[4,7|C]),

addlists_5 ([3,3|D],[1,4|E],[4,7|F]),

addlists_5 ([3,3|G],[1,4|H],I),

addlists_5 ([1,1|J],[3,6|K],L),

addlists_6 ([7,1|M],[1,5|N],O) .

addlists_1 ([] ,[] ,[]).

addlists_1 ([A|B],[C|D],[E|F]) :-

E is A+C, addlists_1(B,D,F) .

addlists_5 ([A,A],[_1,_2],[4,7]).

addlists_5 ([A,A,B|C],[_1,_2,D|E],[4,7,F|G]) :-

F is B+D, addlists_1(C,E,G).

addlists_6 ([7 ,1] ,[1 ,5] ,[8 ,6]).

addlists_6 ([7,1,A|B],[1,5,C|D],[8,6,E|F]) :-

E is A+C, addlists_1(B,D,F).

Figure 4.3: Specialization of addlists/3 after Minimization.

51

4.2 A General View of Polyvariance and Mini-

mization

We now present a very general description of a polyvariant specialization pro-

cess which includes both partial evaluation [85, 44, 71] and abstract multiple

specialization [108].

Given a program P and a set of atoms A = {A1, . . . , Am}, which describe

the possible initial queries to P , polyvariant specialization performs the following

three steps:

1. Analysis. In this phase, we compute a set of call patterns {A1, . . . , An} ⊇ A
which cover all calls in the specialized program. We write Analysis(P,A) =

{A1, . . . , An} to denote that the result of analysis for P and A is the set of

call patterns {A1, . . . , An}.

2. Code Generation. The aim of this phase is, for each call pattern Ai ∈
Analysis(P,A), to compute properly optimized residual code. We denote

by code(Ai) the code (set of clauses) associated to Ai. In partial evaluation,

an unfolding rule U is used for generating code, i.e.,

code(Ai) = U(P, Ai).

3. Renaming. In this phase we assign a fresh predicate name to each atom in

{A1, . . . , An}. Then, for each code(Ai), we perform appropriate renamings

in the head and body atoms so that each program point uses a correct (and

as optimized as possible) version. Ren denotes the renaming function.

The polyvariant specialized program PA is then defined as:

PA =

Analysis(P,A)⋃
Ai

Ren(code(Ai))

4.2.1 Minimizing the Results of Polyvariant Specializa-

tion

The aim of minimization is to group the call patterns (or versions) in {A1, . . . , An}
into equivalence classes, obtaining a minimal program that allows the same set of

52

optimizations, and that can be implemented without introducing run-time tests

to select amongst different versions of a predicate.

We start recalling some definitions introduced in [109].

Definition 4.2.1 (feasible program). Is a specialized program in which no run-

time tests are introduced.

Definition 4.2.2 (minimal program). A specialized program is minimal if when-

ever two call patterns are equivalent, they are placed into the same version.

Definition 4.2.3 (program of maximal optimization). We say that a program is

of maximal optimization if no two call patterns with different optimizations are

placed into the same version.

Using this terminology, we can rephrase our earlier statement to say that the

goal of minimization is to group call patterns in {A1, . . . , An} into equivalence

classes in order to obtain a feasible minimal program of maximal optimization.

Deciding whether two versions Ai and Aj with pred(Ai) = pred(Aj) are equiv-

alent is not straightforward, as we have to consider not only the code of Ai and

Aj, but also the code of all other versions which are reachable from them. In the

case of the main predicate in a program, we would have to take the code of all the

specialized program into account. Thus, we will split the notion of equivalence

into a local equivalence and a global equivalence level.

Local equivalence Local equivalence concentrates on comparing the code for

Ai and Aj only, without worrying about the other predicates which are

reachable from them.

Global equivalence Global equivalence will only hold if Ai and Aj are locally

equivalent and all reachable versions for the corresponding program points

are also locally equivalent.

The minimization algorithm (called Minimize from now on) consists of two

phases.

Reunion phase the first phase is called reunion and its aim is to obtain a

program of maximal optimization while remaining minimal. This is done by

producing a partition {V1, . . . , Vm} from a given a set of atoms {A1, . . . , An},

53

with m ≤ n s.t. ∀A, A′ ∈ Vi . A ≡ A′, where A ≡ A′ denotes the fact that

A and A′ are locally equivalent.

Unfortunately, if we generate code from versions resulting from this phase,

we would obtain a program which is not feasible in general. This is be-

cause two call patterns allowing the same set of local optimizations may

use different versions for the same literal, and thus they cannot be blindly

collapsed into the same version.

Splitting phase the second phase is called splitting, and its aim is to obtain a

feasible program, while remaining minimal and of maximal optimization.

Further details about this algorithm can be found in [109].

The reunion phase is concerned with local equivalence only and it places to-

gether all versions for the same predicate which are considered locally equivalent

according to some criteria. The splitting phase is concerned with global equiva-

lence and splits sets of versions which are not globally equivalent until no more

splitting is needed, i.e., until we have reached a partition where all sets contain

versions which are globally equivalent.

This minimization process is isomorphic to the minimization of deterministic

finite automata (DFA) [57], by considering each call pattern Ai as a state and

each program point in code(Ai) as a symbol. In [57] an algorithm is proposed

for, given a DFA M , achieving a minimal DFA M ′ equivalent to M . If M has k

symbols and n states, the complexity of this algorithm is O(kn2). The algorithm

consists of two phases.

• In the first one, pairs of states (atoms) which are candidates for being

equivalent are identified. All other pairs are marked as not equivalent.

• Then, the second phase keeps on marking pairs of states which are not

equivalent until all pairs of potentially equivalent states are visited. Two

states (call patterns) are not equivalent when they behave differently for

the same symbol (program point), i.e., they call predicates which have been

identified not to be equivalent.

A crucial point thus is, given a pair of atoms A and A′, to decide whether they

can be safely considered locally equivalent. The decision criteria has to satisfy

two properties:

54

1. it must produce correct results, and

2. it must be effective, i.e. it must be possible to efficiently decide whether A

and A′ are candidates for equivalence based on syntactic, local conditions.

For this purpose, we use the notion of structural equivalence.

Definition 4.2.4 (structurally equivalent). Let A1 and A2 be two call patterns

such that pred(A1) = pred(A2). We say that A1 and A2 are structurally equiva-

lent iff

C = msg(code(A1), code(A2))

∧ instantiate(C, A1) ≈ code(A1)

∧ instantiate(C, A2) ≈ code(A2)

where A1 ≈ A2 denotes that A1 and A2 are variants, as mentioned in Chapter 2.

Clearly, if code(A1) ≈ code(A2) then A1 and A2 are structurally equivalent. How-

ever the definition above allows also considering as structurally equivalent call

patterns whose code only differs in constants which are input arguments to the

predicate but which do not play an important role for local optimization.

Note that structural equivalence is just a syntactic characterization which

guarantees that two call patterns are locally equivalent. In fact, there can be

call patterns which are locally equivalent in the sense that their behaviours un-

der the semantics of interest are identical but which our definition of structural

equivalence would not capture.

Also, structural equivalence in particular, and local equivalence in general

do not guarantee global equivalence. It often happens that two call patterns

which are structurally equivalent end up in different equivalence classes after the

splitting phase. Only after this phase terminates we can be sure that two call

patterns are globally equivalent.

The polyvariant specialized program with minimization PMin
A is defined as:

PMin
A =

Minimize(Analysis(P,A))⋃
Vi

Ren≡(code(Vi))

where given a set of atoms {A1, . . . , An}, we partition them in equivalence classes

{V1, . . . , Vk}, k ≤ n, s.t. ∀A, A′ ∈ Vi . A and A′ are structurally equivalent. We

55

use code({A1, . . . , Ai}) to denote msg({code(A1), . . . , code(Ai)}). Also, Ren≡ is

a new renaming function which always uses the same (canonical) predicate name

for any atom in {A1, . . . , Ai}.
Our definition of structural equivalence plays several roles. It underlies the

notions of local equivalence used both in abstract multiple specialization and

partial evaluation, thus allowing us to present a unified view of both minimization

processes. Furthermore, it can also be used in order to determine whether two

versions are locally equivalent.

Existing approaches to minimization do not compare the syntactic structure

of the residual code directly (as this definition would require) but rather use

the specialization history in order to decide local equivalence. In [108] two call

patterns are considered locally equivalent iff (1) they correspond to the same

predicate in the original program and (2) the set of optimizations in both call

patterns is the same. In [84] two call patterns are locally equivalent iff they have

the same characteristic tree.

In a way, we could think that given two call patterns A1 and A2, the task

of checking whether they are structurally equivalent may be done in one of the

following scenarios:

• using no additional information at all, by just applying the definition of

structural equivalence to A1 and A2, i.e., generating code from the call

patterns, obtaining their msg, and then instantiating back using A1 and A2

to determine whether a variant of the original code is obtained. Clearly,

even though this is a feasible approach, it may also be very inefficient.

• using syntactic information, such as determining that A1 and A2 are candi-

dates for being structurally equivalent if they have the same original predi-

cate name, and when the amount of clauses of code(A1) and code(A2) match.

When these conditions are met, then we can check whether A1 and A2 are

structurally equivalent as before. This method is clearly more efficient than

using no information at all.

• using specialization history. We could also determine that any two call

patterns are candidates for minimization if their specialization history is the

same. Their specialization history can be abstracted away by means of their

characteristic trees [42, 84] or trace terms [43]. Under the usual assumption

56

that the unfolding strategy must perform at least one unfolding step, the

fact that two call patterns have the same characteristic tree (or trace term)

implies that they correspond to the same predicate in the original program.

This will be explained in detail in the next three sections.

4.3 Characteristic Trees with External Predi-

cates

Characteristic trees were introduced in [42] and also used in [78, 84]. Their aim

is to capture all the relevant aspects of the unfolding process.

A characteristic tree is a data structure which encapsulates the evaluation

behaviour of an atom, i.e., a trace of the unfolding process. This provides a

powerful mechanism to guide generalization and polyvariance throughout the

transformation process.

The following definitions are taken from [84], which in turn were derived from

[42], and the SP system [40]).

Definition 4.3.1 (characteristic path). Let G0 be a goal, and let P be a definite

program whose clauses are numbered. Let G0, . . . , Gn be the goals of a finite,

possibly incomplete SLD-derivation D of P ∪ {G0}. The characteristic path of

the derivation D is the sequence 〈l0 : c0, . . . , ln−1 : cn−1〉, where li is the position

of the selected atom in Gi, and ci is the number of the clause chosen to resolve

with Gi.

Now that we have characterized derivations, we can characterize goals through

the derivations in their associated SLD-trees.

Definition 4.3.2 (characteristic tree). Let G be a goal, P a definite program,

and τ a finite SLD-tree for P ∪{G}. Then the characteristic tree τ̂ of τ is the set

containing the characteristic paths of the nonfailing SLD-derivations associated

with the branches of τ .

Let U be an unfolding rule such that U(P, G) = τ . Then τ̂ is also called the char-

acteristic tree of G (in P) via U . We introduce the notation ch tree(G, P,U) = τ̂ .

Example 4.3.3. Let P be the append program:

57

	 RR

	

← append([a], X, Y) ← append(X, [a], Y)

2 ← append(X ′, [a], Y ′)

(1) (2)

← append([], X, Y ′)

2

(1)

(2)

Figure 4.4: SLD-trees τA and τB for Example 4.3.3.

(1) append ([],Z,Z).

(2) append ([H|X],Y,[H|Z]) :- append(X,Y,Z).

We have added clause numbers, which are incorporated into Figure 4.4 in

order to clarify which clauses have been resolved with. To avoid cluttering this

figure we have dropped the substitutions.

Given for example the atom A=append([a],X,Y), we can fully unfold it dur-

ing partial evaluation, obtaning the resultant

append ([a],X,[a|X]).

The corresponding SLD-tree τA is depicted in Figure 4.4, and its associated

characteristic tree is {〈1 : 2, 1 : 1〉}.
If we take the atom B=append(X,[a],Y) and perform partial evaluation, a

possible outcome can be the set of clauses

append ([],[a],[a]).

append ([H|X],[a],[H|Z]) :- append(X,[a],Z).

The corresponding SLD-tree τB is depicted in Figure 4.4, and its associated

characteristic tree is {〈1 : 1〉, 〈1 : 2〉}.

4.3.1 Handling Builtins in Characteristic Trees

Although existing partial evaluators such as SP [40] and ECCE [79] perform

some limited handling of builtins within characteristic trees, the existing formal

definitions of characteristic trees do not contemplate the existence of builtins

nor of external predicates. We now extend the standard definitions in order to

58

accurately include external predicates. This will allow us to introduce powerful

sufficient conditions for isomorphism of characteristic trees in Section 4.4 below.

Definition 4.3.4 (characteristic path with external predicates). Let G0 be a goal,

and let P be a program whose clauses are numbered. Let G0, . . . , Gn be the goals

of a finite, possibly incomplete SLD-derivation D of P ∪ {G0}. Let A0, . . . , An−1

be the selected atoms in D. The characteristic path with external predicates of

the derivation D is the sequence 〈l0 : c0, . . . , ln−1 : cn−1〉, where li is the position

of Ai in Gi, and ci is defined as follows:

• if pred(Ai) is defined in P , then ci is the number of the clause in P chosen

to resolve with Gi;

• if pred(Ai) is an external predicate, then let θ be a computed answer gener-

ated when performing exec(Ai). Then, ci is a pair (Ai, θ).

In the definition above, exec(Ai) represents the execution of Ai. For this, the

external call Ai has to be evaluable [106], i.e., Ai is both well-moded and well-

typed, it does not produce any side-effect, and it universally terminates. Note

that exec(Ai) can succeed more than once and possibly with different computed

answers.

Reconsidering characteristic paths, each pair (li : ci) in a characteristic path

must uniquely identify:

1. the position of the selected atom Ai,

2. the bindings introduced by this step on the current goal, and

3. the atoms which must be introduced in the goal in place of the selected

atom Ai.

An important obvious difference between external and regular predicates is

that the code for external predicates may not be available, so it is not possible,

as done with regular predicates, to assign clause numbers to them or to unfold

them. Instead of unfolding external predicates, we will fully execute them. As

a result, no atoms will be introduced in the current goal and, thus, (3) is not

needed in this case.

59

In the case of external predicates, we introduce in the characteristic tree an ex-

ternal success, i.e., a pair (Ai, θ) containing the call pattern Ai and the bindings θ

generated during evaluation for each external predicate. Note that, in contrast to

the handling of builtins within characteristic trees in the systems SP and ECCE,

this makes it possible to reconstruct the residual code for an atom without the

need for (re-)evaluating external predicates, even if the external predicates suc-

ceed several times with (possibly) different computed answers. The notion of

characteristic paths with external predicates is indeed consistent with traditional

characteristic paths. In the case of regular predicates, the same implicit rep-

resentation as in traditional characteristic paths is used. This representation is

efficient in space since rather than introducing (an instantiated version of) the

clause chosen for resolving the selected atom directly in the characteristic tree,

only the number of the clause used for unfolding is stored. This suffices since the

actual instantiation can be performed later if needed using the actual clause. In

the case of external predicates, this implicit representation is no longer possible,

since the clauses are not available. Instead, the call pattern and the corresponding

bindings are explicitly stored.

Definition 4.3.5 (characteristic trees with external predicates). Let G be a goal,

P a definite program, and τ a finite SLD-tree for P∪{G}. Then the characteristic

tree with external predicates of τ is the set containing the characteristic paths

with external predicates of the non-failing SLD-derivations associated with the

branches of τ . We also assume from now on that “ch tree” refers to characteristic

trees with external predicates.

Let U be an unfolding rule such that U(P, G) = τ . Then ˆτ is also

called the characteristic tree of G (in P) via U , and we use the notation

ch tree(G, P,U) =ˆτ to denote it.

Characteristic trees are extended to handle external predicates by simply

considering characteristic paths with external predicates. Figure 4.5 shows the

characteristic trees with external predicates τ2, τ3, τ4, τ5 and τ6 for versions

addlists 2/3, addlists 3/3, addlists 4/3, addlists 5/3, and addlists 6/3,

respectively.

60

τ2 = {〈1 : 3, 1 : (4 is 4 + 0, ε), 1 : 3, 1 : (7 is 4 + 3, ε), 1 : 2〉,
〈1 : 3, 1 : (4 is 4 + 0, ε), 1 : 3, 1 : (7 is 4 + 3, ε), 1 : 3〉},

τ3 = {〈1 : 3, 1 : (4 is 3 + 1, ε), 1 : 3, 1 : (7 is 3 + 4, ε), 1 : 2〉,
〈1 : 3, 1 : (4 is 3 + 1, ε), 1 : 3, 1 : (7 is 3 + 4, ε), 1 : 3〉},

τ4 = {〈1 : 3, 1 : (A is 3 + 1, {A 7→ 4}), 1 : 3, 1 : (B is 3 + 4, {B 7→ 7}), 1 : 2〉,
〈1 : 3, 1 : (C is 3 + 1, {C 7→ 4}), 1 : 3, 1 : (D is 3 + 4, {D 7→ 7}), 1 : 3〉},

τ5 = {〈1 : 3, 1 : (E is 1 + 3, {E 7→ 4}), 1 : 3, 1 : (F is 1 + 6, {F 7→ 7}), 1 : 2〉,
〈1 : 3, 1 : (G is 1 + 3, {G 7→ 4}), 1 : 3, 1 : (H is 1 + 6, {H 7→ 7}), 1 : 3〉},

τ6 = {〈1 : 3, 1 : (I is 7 + 1, {I 7→ 8}), 1 : 3, 1 : (J is 1 + 5, {J 7→ 6}), 1 : 2〉,
〈1 : 3, 1 : (L is 7 + 1, {L 7→ 8}), 1 : 3, 1 : (M is 1 + 5, {M 7→ 6}), 1 : 3〉}.

Figure 4.5: Characteristic Trees for addlists/3 Versions.

4.4 Isomorphic Characteristic Trees

In this section we provide novel sufficient conditions for considering two call pat-

terns as locally equivalent. For this we define the notion of isomorphic charac-

teristic trees with external predicates, which guarantees that the corresponding

code is structurally equivalent. We assume that predicate names cannot be num-

bers, as is the case in most existing logic programming systems. Also, number(X)

succeeds iff X is a number.

First, we introduce the concept of quasi-isomorphic characteristic trees, for

identifying characteristic trees which only (possibly) differ in the input and/or

output values of arguments in calls to external predicates:

Definition 4.4.1 (quasi-isomorphic characteristic trees). Two characteristic

paths δ1 = 〈l0 : c1
0, . . . , lm : c1

m〉 and δ2 = 〈l0 : c2
0, . . . , lm : c2

m〉 are quasi-isomorphic

and we denote it δ1 ≈q δ2 iff ∀i ∈ {1..m} . number(c1
i)⇒ c1

i = c2
i .

Two characteristic trees τ1 and τ2 are quasi-isomorphic, denoted τ1 ≈q τ2, iff

• ∀δ1 ∈ τ1 . ∃δ2 ∈ τ2 s.t. δ1 ≈q δ2 and

• ∀δ2 ∈ τ2 . ∃δ1 ∈ τ1 s.t. δ2 ≈q δ1.

Note that quasi-isomorphic characteristic paths must have the same length and

the selected atom must be in the same position in each resolution step. Further-

61

more, if the atom is not for an external predicate, then the atom must have been

resolved against the same clause. In Figure 4.5, τ2 ≈q τ3 ≈q τ4 ≈q τ5 ≈q τ6.

Now we define some relationships among external successes, after some aux-

iliary definitions. A position uniquely determines a subterm within a term.

Definition 4.4.2 (position). A position ω is either the empty position ε, or n.ω′,

where n is a natural number and ω′ is a position.

Definition 4.4.3 (getval, Pos, and Allpos). Let A = f(tn) be a term. Let ω be

a position. Let X be a variable s.t. X ∈ vars(A). Let θ be a substitution.

• We define getval(ω,A) as A if ω = ε and as getval(ω′, ti) if ω = i.ω′.

• We define Pos(A, X) as {ω | getval(ω,A) = X}.

• We define Allpos(A, θ) as ∪X∈dom(θ){ω}, s.t. ω ∈ Pos(A, X).

Example 4.4.4. getval(2.1.ε, f(a, g(b, c))) = b, and Pos(f(a, g(b, Y)), Y) =

{2.2.ε}. If A is not linear, then for some X, the set Pos(A, X) may have more

than one element. E.g., Pos(f(Z, g(Z)), Z) = {1.ε, 2.1.ε}. In such case, any

ω ∈ Pos(A, X) can be used for our purposes. Also Allpos(A is 3 + 1, {A 7→
4}) = {1.ε}.

Definition 4.4.5 (isomorphic external successes). Let c = (A, θ) and c′ = (A′, θ′)

be external successes. Then c and c′ are isomorphic external successes, denoted

by c ' c′, iff ∀ω ∈ Allpos(A, θ)∪Allpos(A′, θ′) . getval(ω,Aθ) = getval(ω,A′θ′).

Example 4.4.6. This definition tries to consider as isomorphic as many pairs of

external successes as possible. A particular subcase of this definition corresponds

to the case where the calls to external predicates generate no bindings. For exam-

ple, the pair (4 is 4 + 0, ε) and (4 is 3 + 1, ε) is isomorphic, whereas the notion of

equivalence in [84] cannot capture this since the builtin predicate is/2 potentially

generates bindings, though in this case it does not. Note that (4 is 4 + 0, ε) and

(8 is 2 ∗ 4, ε) are also considered as isomorphic although their syntactic structure

is very different.

Another interesting subcase is when the external successes have different levels

of instantiation but on success they are variants. This happens with (A is 3 +

1, {A 7→ 4}) and (4 is 3 + 1, ε), that are isomorphic according to Definition 4.4.5.

62

Furthermore, it allows considering as isomorphic external successes which

have the same values in all positions which are instantiated in either external

success. For example (A is 3 + 1, {A 7→ 4}) and (4 is 4 + 0, ε) are considered

isomorphic since

• Allpos(A is 3 + 1, {A 7→ 4}) = {1.ε}∧

• Allpos(4 is 4 + 0, ε}) = ∅∧

• getval(1.ε, 4 is 3 + 1) = getval(1.ε, 4 is 4 + 0) = 4

However, (E is 1 + 3, {E 7→ 4}) 6' (I is 7 + 1, {I 7→ 8}), since

• Allpos(E is 1 + 3, {E 7→ 4}) = Allpos(I is 7 + 1, I) = {1.ε}, but

• getval(1.ε, 4 is 1 + 3) = 4 6= getval(1.ε, 8 is 7 + 1) = 8.

As a side note, the minimization approach in [84] only considers as isomorphic

a restricted version of 'ε where the external predicate involved in c and c′ must

be well-known and safe. In such approach, none of the external successes above

are considered isomorphic since predicate is/2 is not safe in general, as it can

generate bindings for its first argument.

Definition 4.4.7 (isomorphic characteristic trees). Two characteristic paths δ1 =

〈l0 : c1
0, . . . , lm : c1

m〉 and δ2 = 〈l0 : c2
0, . . . , lm : c2

m〉 are isomorphic and we denote

it δ1 ≈ δ2 iff

• δ1 ≈q δ2 and

• δ1 ≈q δ2 ∧ ∀i ∈ {1..m} . c1
i = (A1

i , θ
1
i)⇒ c2

i = (A2
i , θ

2
i) ∧ c1

i ' c2
i .

Two characteristic trees τ1 and τ2 are isomorphic, denoted τ1 ≈ τ2, iff ∀δ1 ∈
τ1 . ∃δ2 ∈ τ2 s.t. δ1 ≈ δ2 and ∀δ2 ∈ τ2 . ∃δ1 ∈ τ1 s.t. δ2 ≈ δ1.

The following proposition provides the basis for our minimization approach.

Proposition 4.4.8 (structural equivalence). Let P be a program with external

predicates, let U be an unfolding rule, let A1 and A2 be two call patterns such that

τ1 = ch tree(A1, P,U) and τ2 = ch tree(A2, P,U). If τ1 ≈ τ2 then A1 and A2 are

structurally equivalent.

63

A difficulty with our notion ≈ of isomorphic characteristic trees and its usage

as a condition for local equivalence is that though the ≈ relation is reflexive and

symmetric, it is not transitive. This means that (τ1 ≈ τ2 ∧ τ2 ≈ τ3) 6→ τ1 ≈ τ3.

As a result, in order to be able to state that all characteristic trees in a set

{τ1, . . . , τn} are isomorphic we have to check that ∀τ, τ ′ ∈ {τ1, . . . , τn} .τ ≈ τ ′.

Example 4.4.9. Let us consider again the characteristic trees in Figure 4.5. We

have already noticed that all of them are quasi-isomorphic. If we take the quasi-

isomorphic paths of τ2, τ3, τ4 and τ5, and extract their external successes, we

can see that they are isomorphic. For example, if we take c21 = (4 is 4 + 0, ε),

c31 = (4 is 3+1, ε), c41 = (A is 3+1, {A 7→ 4}) and c51 = (C is 1+3, {C 7→ 4}),
we can compute ∪i∈{2...5}Allpos(ci1) = {1.ε}. Since getval(1.ε, 4 is 4 + 0) =

getval(1.ε, 4 is 3 + 1) = getval(1.ε, 4 is 1 + 3) = 4, we can conlude that they are

isomorphic.

However, note that even though τ5 ≈q τ6, they are not (fully) isomorphic since,

for instance, (E is 1 + 3, {E 7→ 4}) 6' (I is 7 + 1, {I 7→ 8}). Indeed, addlists 5/3

and addlists 6/3 are not structurally equivalent.

By Prop. 4.4.8 the sets which are identified as locally equivalent during the

reunion phase are:

• {main/15},

• {addlists 1/3},

• {addlists 2/3,addlists 3/3,addlists 4/3,addlists 5/3},

• {addlists 6/3}.

This is also the final partition after applying the splitting phase. This produces

the minimized program which was shown in Figure 4.3.

In the implementation, in order to reduce the cost of checking every character-

istic tree against all other trees which are quasi-isomorphic to it before being able

to consider them isomorphic, each set of versions is augmented with a canonical

representative, which stores the set of positions in each of the members in the

set. This way, a new candidate only needs to be checked against such canonical

representative but taking into account all positions stored for them, and not only

the ones which actually are bound at the corresponding external successes.

64

4.5 Local Trace Terms

Trace terms [43] are an abstraction of AND-trees, which are a representation of

successful computation paths. They are similar in some ways to characteristic

trees, the main difference being that trace terms abstract away the computation

rule, and that they represent complete answers rather than partial unfolding

traces.

In this section we introduce local trace terms, which extend trace terms al-

lowing to reflect traces of incomplete derivations. We start by introducing first

clause identifiers.

Definition 4.5.1 (clause identifiers). Let P be a normal program, and {c1 . . . cn}
the set of clauses in P . Let ai, 1 ≤ i ≤ n be the number of atoms in the body of ci

. Then each clause ci in P is associated with a functor ϕi/ai, where ϕi is not in

the language of P , and ϕi/ai 6= ϕj/aj iff i 6= j. These functors are called clause

identifiers.

Any successful SLD-derivation can be transformed into an AND-tree. Now

we introduce an extension to the concept of AND-trees, in order to support

incomplete computations. Thus, an incomplete AND-tree can represent either a

successful computation or an incomplete one.

Definition 4.5.2 (incomplete AND-trees). Let P be a program. Then an ex-

tended AND-tree for P is a tree where each node can be either a

non-leaf node labelled by a clause A← A1, . . . , Ak, and an atom Aθ (for some

substitution θ), and has children A1θ, . . . , Akθ, or

leaf node which can be further classified in

final labelled by a clause A ← true and an atom θ, for some substitution

θ,

local labelled by a clause A ← A1, . . . , Ak, and an atom Aθ (for some

substitution θ), representing an incomplete computation and therefore

having no children, and

external labelled by an external success (B, θ′) and an atom Bθ, where

B is an external predicate, θ′ is the computed answer generated when

65

α2 = addl2((4 is 4 + 0, ε), addl2((7 is 4 + 3, ε), X2))

α3 = addl2((4 is 3 + 1, ε), addl2((7 is 3 + 4, ε), X3))

α4 = addl2((A is 3 + 1, {A 7→ 4}), addl2((B is 3 + 4, {B 7→ 7}), X4))

α5 = addl2((C is 1 + 3, {C 7→ 4}), addl2((D is 1 + 6, {D 7→ 7}), X5))

α6 = addl2((E is 7 + 1, {E 7→ 8}), addl2((F is 1 + 5, {F 7→ 6}), X6))

Figure 4.6: Local Trace Terms for addlists/3 Versions.

executing B, and θ is some substitution. Here θ′ can the empty substi-

tution ε if B was not executed.

We now introduce local trace terms, which abstract incomplete AND-trees.

Definition 4.5.3 (local trace terms). Let T be an AND-tree, then a local trace

term for T , denoted by α(T), is either

• ϕi, if T is a final leaf node labelled by the clause identified by ϕi/ai, or

• X, if T is a local leaf node, where X ∈ V ars is an arbitrary variable, or

• (B, θ), if T is an external leaf node labelled by (B, θ), or

• ϕi(α(T1), . . . , α(Tai
)), if T is labelled by ϕi/ai and has immediate subtrees

T1, . . . , Tai
.

Let P be a program, and ← A be a goal. Let T be an AND-tree for P with

root labelled by Aθ, and α a local trace term abstracting T . Then we introduce

the notation ltt(P, A) = α.

For example, given the program in Figure 4.1, where functors m/6,addl1/0,addl2/2

are assigned to clauses 1, 2 and 3 respectively, we show in Figure 4.6 the local

trace terms α2, α3, α4, α5 and α6 for versions addlists 2/3, addlists 3/3,

addlists 4/3, addlists 5/3, and addlists 6/3, respectively.

Intuitively, if two call patterns have similar enough associated trace terms,

then we can consider them as structurally equivalent. This notion of similarity is

formalized in terms of isomorphism, as we did above for characteristic trees with

external predicates.

66

Definition 4.5.4 (isomorphic local trace terms). Two local trace terms α1 and

α2 are isomorphic, denoted by α1 ≈ α2, iff

• α1 = α2 = ϕ, i.e, they are the same clause identifier, or

• α1 ∧ α2 are both variables, or

• α1 ∧ α2 are isomorphic external successes, i.e. α1 ≈ α2 (by Def. 4.4.5), or

• α1 = ϕ(α1
1, . . . , α

1
n) ∧ α2 = ϕ(α2

1, . . . , α
2
n), and ∀i ∈ {1 . . . n}.α1

i ≈ α2
i .

The following proposition formalizes the notion that when two call patterns

have isomorphic local trace terms, then they are structurally equivalent.

Proposition 4.5.5 (structural equivalence). Let P be a program with external

predicates, let A1 and A2 be two call patterns such that α1 = ltt(P, A1) and

α2 = ltt(P, A2). If α1 ≈ α2 then A1 and A2 are structurally equivalent.

Let us consider the local trace terms in Fig. 4.6. If we take, for example, α2

and α3, it can be easily verified that they share the same clause identifiers, and

that their external successes are isomorphic (already shown in Sec. 4.4), there-

fore by Prop. 4.5.5 we can consider versions addlists 2/3 and addlists 3/3 as

structurally equivalent. It is not difficult to follow the same reasoning and reach

the same results as in Sec. 4.4, obtaining as candidates for minimization the sets

• {main/15},

• {addlists 1/3},

• {addlists 2/3,addlists 3/3,addlists 4/3,addlists 5/3},

• {addlists 6/3}.

4.6 Minimization via Residualization of Exter-

nal Calls

In previous sections we have established that call patterns with isomorphic char-

acteristic trees (or isomorphic local trace terms) are structurally equivalent, and

67

therefore they can be collapsed into the same version. This makes sense if we

want to have a program of maximal optimization. However, there are situations

in which even the minimized program is too large and/or where we would like to

trade space for time efficiency. This would mean achieving programs which are

smaller, but at the cost of introducing some efficiency penalty. In cases like this,

we propose as candidates for minimization, call patterns with quasi-isomorphic

characteristic trees.

An important observation is that if δ1 ≈q δ2 then the associated resultants

have the same structure. However, this is not a sufficient condition for structural

equivalence. This is because part of the bindings needed for structural equivalence

cannot be achieved by the operation instantiate, as in Def. 4.2.4, but rather they

originate from the execution of calls to external predicates. Thus, the second

important observation is that if the calls to external predicates involved succeed

only once, i.e. they are deterministic, such missing bindings can be recovered at

run-time by residualizing (part of the) calls to external predicates which had in

principle taken place during specialization time.

Note that for detecting determinacy, no static analysis is actually required.

We can simply check whether the calls which are to be residualized succeed just

once by directly executing the calls as they appear in the different characteristic

trees, i.e., before applying the msg to them. After the required external predicates

have been residualized, the corresponding versions will be structurally equivalent.

The strategy we propose is the following: for any pair of versions A1 and A2 with

τ1 = ch tree(A1, P, U) and τ2 = ch tree(A2, P, U) s.t. τ1 ≈q τ2 we:

1. Let (A, θ) ∈ δ ∈ τi, i ∈ {1..2}, then we replace it by Aθ, i.e., we apply the

corresponding substitution θ to each external success Aθ.

2. Compute (C, T) = msg((code(A1), τ 1), (code(A2), τ 2)), where ∀i ∈ {1..2}.τ i

is obtained from τi by evaluating all external successes, i.e., ∀(B, θ) we

replace it by Bθ. Since τ1 ≈q τ2, we can simply compute the msg of the

evaluated external successes, i.e, given (A, θ) we apply the msg to Aθ,

instead of using the whole tree.

3. If ∀i ∈ {1..2} . instantiate(C, Ai) ≈ code(Ai)

• then A1 and A2 are structurally equivalent. No need to residualize.

68

msg


{addlists([4, 4], [0, 3], [4, 7])., 〈1 : (4 is 4 + 0), 1 : (7 is 4 + 3)〉}
{addlists([3, 3], [1, 4], [4, 7])., 〈1 : (4 is 3 + 1), 1 : (7 is 3 + 4)〉}
{addlists([3, 3], [1, 4], [4, 7])., 〈1 : (4 is 3 + 1), 1 : (7 is 3 + 4)〉}
{addlists([1, 1], [3, 6], [4, 7])., 〈1 : (4 is 1 + 3), 1 : (7 is 1 + 6)〉}


{addlists([X, X], [Y, Z], [4, 7])., 〈1 : (4 is X + Y), 1 : (7 is X + Z)〉}

msg



{addlists([4, 4, A|B], [0, 3, C|D], [4, 7, E|F]) : −E is A + C, addlists(B,D,F).,
〈1 : (4 is 4 + 0), 1 : (7 is 4 + 3)〉}

{addlists([3, 3, A|B], [1, 4, C|D], [4, 7, E|F]) : −E is A + C, addlists(B,D,F).,
〈1 : (4 is 3 + 1), 1 : (7 is 3 + 4)〉}

{addlists([3, 3, A|B], [1, 4, C|D], [4, 7, E|F]) : −E is A + C, addlists(B,D,F).,
〈1 : (4 is 3 + 1), 1 : (7 is 3 + 4)〉}

{addlists([1, 1, A|B], [3, 6, C|D], [4, 7, E|F]) : −E is A + C, addlists(B,D,F).,
〈1 : (4 is 1 + 3), 1 : (7 is 1 + 6)〉}


{addlists([X, X, R|S], [Y, Z, T |U], [4, 7, V |W]) : −V is R + T, addlists(S, U, W).,

〈1 : (4 is X + Y), 1 : (7 is X + Z)〉}

Figure 4.7: msg of Versions addlists 2, addlists 3, addlists 4 and

addlists 5.

• else if for every evaluated external success c ∈ T such that c is no

longer sufficiently instantiated to be executed we can determine that

its corresponding c1 ∈ τ1 and c2 ∈ τ2 are both deterministic,

– then residualize all c ∈ T being no longer sufficiently instantiated.

– otherwise we cannot collapse A1 and A2.

Note that without such residualization, the code generated by the msg is not

directly usable, since there are bindings in the original versions which are lost if

we apply the code produced by the msg.

Example 4.6.1. As we have already mentioned, all characteristic trees in Fig-

ure 4.5 are quasi-isomorphic. Therefore, they can be collapsed into one version.

In Figure 4.7 we show the msg of both the code and the characteristic trees for

versions addlists 2, addlists 3, addlists 4 and addlists 5. In this figure,

the scope of variables is local to each clause. Since τ2 ≈ τ3 ≈ τ4 ≈ τ5, the msg does

not produce any information loss. This can be easily verified by instantiating back

69

the msg with any of the call patterns. For instance, if we take addlists([X,X],

[Y,Z],[4,7]) and instantiate it with addlists([3,3|G],[1,4|H],I) we obtain

the original clause (eighth clause of Figure 4.2). This fact can be easily verified by

taking any pattern call and after instantiating with the msg the original clauses

are retrieved. For example, if we take addlists 2, then

C = {addlists([X, X], [Y, Z], [4, 7]),
addlists([X, X, R|S], [Y, Z, T |U], [4, 7, V |W]) : −V is R + T, addlists(S, U, W)},

A2 = addlists([4, 4|A], [0, 3|B], [4, 7|C]),

and instantiate(C, A2) is

{addlists([4, 4], [0, 3], [4, 7]),
addlists([4, 4, R|S], [0, 3, T |U], [4, 7, V |W]) : −V is R + T, addlists(S, U, W)},

i.e, instantiate(C, A2) ≈ code(A2).

Example 4.6.2. Now, let us compute the msg of the generalized code and char-

acteristic tree obtained in Example 4.6.1 with addlists 6.

msg

(
{addlists([X, X], [Y, Z], [4, 7])., 〈1 : (4 is X + Y), 1 : (7 is X + Z)〉}
{addlists([7, 1], [1, 5], [8, 6])., 〈1 : (8 is 7 + 1), 1 : (6 is 1 + 5)〉}

)
{addlists([A,B], [C,D], [E,F])., 〈1 : (E is A + C), 1 : (F is B + D)〉}

msg


{addlists([X, X, R|S], [Y, Z, T |U], [4, 7, V |W]) : −V is R + T, addlists(S, U, W).,

〈1 : (4 is X + Y), 1 : (7 is X + Z)〉}
{addlists([7, 1, R|S], [1, 5, T |U], [8, 6, V |W]) : −V is R + T, addlists(S, U, W).,

〈1 : (8 is 7 + 1), 1 : (6 is 1 + 5)〉}


{addlists([A,B, G|H], [C,D, I|J], [E,F, K|L]) : −K is G + I, addlists(H,J, L).,

〈1 : (E is A + C), 1 : (F is B + D)〉}

The msg introduces some information loss
C = {addlists([A,B], [C,D], [E,F]),

addlists([A,B, C|D], [E,F, G|H], [I, J, K|L]) : −K is G + C, addlists(D,H, L)},
A2 = addlists([4, 4|A], [0, 3|B], [4, 7|C]),

and instantiate(C, A2) is

70

{addlists([4, 4], [0, 3], [4, 7]),
addlists([4, 4, R|S], [0, 3, T |U], [4, 7, V |W]) : −V is R + T, addlists(S, U, W)},

i.e., instantiate(C, A2) ≈ code(A2).

Since addlists 6 is not (fully) isomorphic with the other ver-

sions, the msg introduces some information loss through the vari-

ables E and F in the new heads addlists([A,B],[C,D],[E,F]) and

addlists([A,B,G|H],[C,D,I|J],[E,F,K|L]). This information loss

cannot be recovered by instantiate, since, for example, when instan-

tiating the msg addlists([A,B],[C,D],[E,F]) with the call pattern

addlists([3,3|G],[1,4|H],I) we obtain addlists([3,3],[1,4],[E,F]), in

which E and F are unbound variables. If we take the external successes which

correspond to E is A+C and F is B+D we can verify that the original external

successes were deterministic (indeed, all calls to is/2 are deterministic). Thus,

it is possible to collapse by residualization. As both external calls are no longer

sufficiently instantiated, they are residualized.

Residualized atoms are always placed before any other atom in the generalized

clause, guaranteeing that after execution of such residual atoms at run-time, the

clause as a whole is actually a variant of the original definition of the clause.

The resulting minimized program is shown in Figure 4.8. Residual atoms are

underlined to distinguish them from the rest of atoms in body clauses.

4.7 Experimental Results

In this section we experimentally assess the impact of our proposed minimiza-

tion. Most of the benchmarks considered contain calls to builtins which possibly

generate bindings, such as is/2, and thus the existing partial evaluators which

perform minimization [79, 80] would not be able to minimize them optimally.

In our experiments we use an unfolding strategy based on homeomorphic

embedding (see, e.g., [71]) and which performs leftmost unfolding steps only. This

guarantees the correctness of the partial evaluation process even in the presence

of impure predicates. Note that the issue of redundant polyvariance may occur

for any unfolding strategy. The global control used is based on homeomorphic

71

main(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O) :- write(A),

addlists_6 ([4,4|A],[0,3|B],[4,7|C]),

addlists_6 ([3,3|D],[1,4|E],[4,7|F]),

addlists_6 ([3,3|G],[1,4|H],I),

addlists_6 ([1,1|J],[3,6|K],L),

addlists_6 ([7,1|M],[1,5|N],O) .

addlists_1 ([] ,[] ,[]).

addlists_1 ([A|B],[C|D],[E|F]) :-

E is A+C, addlists_1(B,D,F) .

addlists_6 ([A,B],[C,D],[E,F]) :-

E is A+C, F is B+D.

addlists_6 ([A,B,G|H],[C,D,I|J],[E,F,K|L]) :-

E is A+C, F is B+D,

K is G+I, addlists_1(H,J,L) .

Figure 4.8: Specialization of addlists/3 after Minimization with Residualiza-

tion.

embedding and global trees [74]. Benchmarks have been run on an Intel Pentium

4, 3.4 GHz processor, with 512 Mb of RAM, and running a 2.6 Linux kernel.

4.7.1 The Benefits of Minimization

Table 4.1 shows the size reduction introduced by the minimization step after

partial evaluation. Each benchmark program is evaluated using five different

minimization criteria, as shown in the Min Crit column. Specialization history

is used in pure, nobinds, and bindings, in order to consider two versions as locally

equivalent, while codemsg directly applies the definition of structural equivalence

for the same purpose. In particular, pure considers two versions as locally equiv-

alent when their characteristic trees are identical. Of course, if external successes

are included, these must be identical too. The criteria nobinds and bindings check

for isomorphism of external successes instead. Nobinds only considers two exter-

72

Benchmark
Min
Crit

Orig
Preds

Minimization
Versions Size (bytes)

PE Min Ratio PE Min Ratio

datetime

pure

15 56/31

36/36 1.78

131377

102651 1.28
nobinds 36/36 1.78 102836 1.28
bindings 34/35 1.83 102331 1.28
codemsg 34/35 1.83 102295 1.28
residual 31/33 1.94 100976 1.30

flattrees

pure

2 33/16

22/22 1.50

226390

223320 1.01
nobinds 22/22 1.50 223435 1.01
bindings 22/22 1.50 223389 1.01
codemsg 17/19 1.74 221513 1.02
residual 16/18 1.83 220796 1.03

freeof

pure

3 93/8

35/35 2.66

292642

245262 1.19
nobinds 35/35 2.66 245442 1.19
bindings 32/35 2.66 245370 1.19
codemsg 18/35 2.66 245334 1.19
residual 8/35 2.66 245370 1.19

mmatrix

pure

3 70/11

18/34 2.06

58323

37061 1.57
nobinds 18/34 2.06 37236 1.57
bindings 18/34 2.06 37166 1.57
codemsg 18/34 2.06 37131 1.57
residual 11/30 2.33 31781 1.84

nrev

pure

2 41/3

3/3 13.67

25115

5261 4.77
nobinds 3/3 13.67 5281 4.76
bindings 3/3 13.67 5273 4.76
codemsg 3/3 13.67 5269 4.77
residual 3/3 13.67 5273 4.76

qsort

pure

3 168/50

68/68 2.47

232079

166288 1.40
nobinds 50/50 3.36 131650 1.76
bindings 50/50 3.36 131548 1.76
codemsg 50/50 3.36 131497 1.76
residual 50/50 3.36 131548 1.76

sublists

pure

4 29/19

27/27 1.11

101969

99986 1.02
nobinds 27/27 1.11 100121 1.02
bindings 19/19 1.58 95815 1.06
codemsg 19/19 1.58 95795 1.06
residual 19/19 1.58 95815 1.06

Overall 2.88 / 2.96 1.32 / 1.33

Table 4.1: Minimization Ratios over Selected Benchmarks

nal successes c and c′ as isomorphic when they generate no bindings, i.e., when

Allpos(c) = Allpos(c) = ∅, while bindings applies the full power of Def. 4.4.5.

73

Finally, residual considers two versions as candidates for minimization when their

characteristic trees are quasi-isomorphic, possibly residualizing calls to external

predicates in the resulting program.

The number of predicates in the original program is shown in the column Orig

Preds. The number of predicates in the specialized programs are shown under

the column Versions. PE shows both the number of versions which are generated

after partial evaluation (i.e., the effects of polyvariance) and the number of sets of

predicates with quasi-isomorphic characteristic trees. The latter provides a lower

bound on the number of predicates which the minimized program may have. Min

shows the number of elements in the partition generated by the reunion phase of

the minimization algorithm (local equivalence) and the number of elements in the

partition after the splitting phase (global equivalence). Finally, Ratio shows the

reduction ratio for each criteria compared to the number of versions produced by

partial evaluation. The column Size compares the sizes of the compiled bytecode

of programs minimized using the different criteria.

The last row, Overall, shows the weighted geometric mean (wgm) for ratios

in terms of number of versions and size. Weights are number of versions and

size of the PE column, respectively. In both cases, under the column Min we

find the wgm of the codemsg criterion, which achieves the best results while still

producing programs of maximal optimization. Under the column Ratio we find

the wgm of the residual criterion, which achieves highest ratio.

As can be seen in the table, in most of the benchmarks considered, minimiza-

tion is capable of considerably reducing the specialized program, both in terms

of number of versions and of bytecode size. As it is to be expected, out of the

four criteria which are guaranteed to produce programs of maximal optimization,

i.e., pure, bindings, nobinds, and codemsg, the one which produces the best re-

sults is the latter. Among the three of them which take the minimization history

into account—and which are more efficient in terms of specialization time—, the

best is bindings, but it sometimes does not produce as good results as codemsg.

The effects of the splitting phase are clear in many benchmarks, showing that,

in effect, local equivalence does not imply global equivalence. This effect is no-

torious in the case of the residual criterion, since after the reunion phase the

number of locally equivalent versions is equal to the number of sets of versions

having quasi-isomorphic characteristic trees, however, in the splitting phase they

74

are split, producing a larger number of versions, as can be clearly seen in the case

of the freeof and mmatrix benchmarks. Finally, for datetime, flattrees and

mmatrix, residual is able to further reduce code size.

4.7.2 The Cost of Minimization

In Table 4.2 we can observe the cost, in terms of specialization time, introduced by

the minimization, expressed in milliseconds. The (Total) time of the whole spe-

cialization process is shown, including the time of partial evaluation (Analysys),

minimization (Minim) and code generation (Code) steps. A new minimization

criteria is introduced, nomin, showing the time employed by partial evaluation

without minimization. The Slow column shows the cost (slowdown) of performing

this minimization post-processing.

Interestingly, the table shows that when minimization is employed, the code

generation phase takes less time in most cases, since fewer versions need to be gen-

erated. This lowers the burden introduced by the minimization post-processing.

However, even in the worst case, the slowdown introduced is reasonable (1.85).

As expected, using specialization history makes minimization faster than just

applying the definition of structural equivalence. Given the fact that employing

structural equivalence generates fewer versions than other criteria based on the

specialization history, the codemsg criterion emerges as a very interesting one.

Also, for the residual minimization criterion, the time spent in code generation

is greater than for the rest of criteria, since it requires deciding which external

successes need to be residualized.

4.7.3 Benefits of Minimization in Runtime

Table 4.3 shows how specialized programs behave in terms of runtime. Benchmark

programs having residualized external predicates (for the residual minimization

criterion) are marked with * in the table. Column PE Time shows the absolute

run-time for the partially evaluated program. The rest of the columns show the

speedup achieved for the minimized programs (for each different minimization

criteria) w.r.t. PE Time. As can be seen in the table, in most benchmarks a

small speedup is achieved (1.00 – 1.20), and no slowdown is produced in any

case. As expected, in the case of programs with residualized external predicates,

75

Bench
Min
Crit

Minimization Times (msec)
Total Analysis Minim Code Slowdown

datetime

nomin 556.52 475.33 0 81.19 1
pure 632.90 486.13 61.19 85.59 1.14
nobinds 634.30 476.13 72.79 85.39 1.14
bindings 640.10 479.93 73.99 86.19 1.15
codemsg 642.30 478.13 79.19 84.99 1.15
residual 687.30 479.93 77.59 129.78 1.23

flattrees

nomin 299.55 232.56 0 66.99 1
pure 395.14 230.97 107.78 56.39 1.32
nobinds 396.34 231.57 108.58 56.19 1.32
bindings 400.19 230.21 113.48 56.49 1.34
codemsg 412.74 231.36 125.98 55.39 1.38
residual 424.94 231.36 125.78 67.79 1.42

freeof

nomin 5732.93 5583.15 0 149.78 1
pure 5833.11 5589.95 118.98 124.18 1.02
nobinds 5844.11 5589.15 131.38 123.58 1.02
bindings 5858.31 5573.35 160.38 124.58 1.02
codemsg 5948.90 5595.15 230.97 122.78 1.04
residual 6113.47 5613.95 221.97 277.56 1.07

mmatrix

nomin 316.15 271.76 0 44.39 1
pure 356.55 272.76 48.39 35.39 1.13
nobinds 367.14 274.56 57.39 35.19 1.16
bindings 364.34 272.76 55.99 35.59 1.15
codemsg 373.34 274.96 63.19 35.19 1.18
residual 435.53 270.76 60.79 103.98 1.38

nrev

nomin 898.26 877.07 0 21.20 1
pure 886.67 861.27 13.20 12.20 0.99
nobinds 901.86 872.67 16.80 12.40 1.00
bindings 898.86 870.27 16.40 12.20 1.00
codemsg 903.86 874.67 17.20 12.00 1.01
residual 916.26 873.87 17.20 25.20 1.02

qsort

nomin 9983.68 9745.12 0 238.56 1
pure 10267.64 9778.91 282.96 205.77 1.03
nobinds 10303.83 9768.12 337.75 197.97 1.03
bindings 10339.03 9771.91 368.94 198.17 1.04
codemsg 10401.82 9764.92 441.73 195.17 1.04
residual 11241.69 9732.72 371.14 1137.83 1.13

sublists

nomin 401.94 293.56 0 108.38 1
pure 647.70 295.35 278.56 73.79 1.61
nobinds 651.90 297.75 281.36 72.79 1.62
bindings 679.50 295.56 280.16 103.78 1.69
codemsg 681.30 297.56 278.76 104.98 1.70
residual 744.09 296.95 284.56 162.57 1.85

Table 4.2: Minimization Times for Selected Benchmarks

76

Benchmark
PE
Time

Speedup
Pure No Binds Bindings CodeMsg Residual

datetime* 167.77 1.01 1.02 1.01 1.01 1.01

flattrees* 81.39 1.03 1.01 1.01 1.03 1.01

freeof 246.96 1.04 1.04 1.05 1.04 1.05

mmatrix* 1920.11 1.02 1.02 1.02 1.02 1.00

nrev 141.38 1.20 1.18 1.18 1.19 1.19

qsort 457.33 1.05 1.04 1.04 1.05 1.04

sublists 15501.44 1.00 1.00 1.00 1.00 1.00

Table 4.3: Speedup over Selected Benchmarks

the speedup achieved is usually smaller than for the other minimization criteria.

4.8 Discussion and Related Work

The problem of superfluous polyvariance has been tackled in the context of ab-

stract multiple specialization in [130, 108], and in the context of partial evaluation

of normal logic programs in [84]. This chapter presents a unifying view under

which the minimization problems in both contexts are isomorphic.

The work in [84], reflected in the ECCE [79] partial evaluator, uses an internal

table of safe builtins which basically correspond to instantiation and type tests

and which are guaranteed (1) not to generate any bindings, and (2) to be deter-

ministic. The minimization phase then would only allow collapsing two predicates

in the same version if their characteristic trees are quasi-isomorphic and all the

builtins executed are listed in the table of pure predicates.

The approach presented herein, and implemented in the Ciao system prepro-

cesor, CiaoPP [54], can handle any external predicate, including non-safe builtins,

and the notion of isomorphic external predicates can be satisfied for builtins which

generate bindings and which are non-deterministic. Also, there is no need for a

static table of builtins. Additionally, the technique automatically applies to any

external predicates, for example other modules written by the user.

To the best of our knowledge, this work presents the first experimental evalua-

tion of the benefits of post-minimization in partial evaluation. We have compared

several criteria, with different cost and potential benefit. We have also applied

77

directly the definition of structural equivalence and discovered that it is also ap-

plicable in practice, in addition to the other criteria based on the specialization

history. Finally, we have proposed a criteria which allows residualizing external

calls. The experiments show that it is also applicable in practice and provides

some further program reduction.

78

Part III

Poly-Controlled Partial

Evaluation: Foundations

79

Chapter 5

Poly-Controlled Partial

Evaluation

As mentioned in Chapter 3, the aim of partial evaluation (PE) is to specialize

a program w.r.t. part of its input, which is known as the static data[85]. The

quality of the code generated by partial evaluation greatly depends on the con-

trol strategy used. Traditional algorithms for partial evaluation of logic programs

(LP) are parametric w.r.t. the global control and local control rules. The issue

of devising good control rules has received considerable attention (see for exam-

ple [71] and its references). However, the existence of sophisticated control rules

which behave (almost) optimally for all programs is still far from reality. Fur-

thermore, existing control rules focus on time-efficiency by trying to reduce the

number of resolution steps which are performed in the residual program. Other

factors, such as the size of and the memory required to run the residual program,

are most often neglected, a relevant exception being the work in [34]. In addition

to potentially generating larger programs, it is well known (see e.g. [121, 28])

that partial evaluation can slow-down programs due to lower level issues such

as clause indexing, cache sizes, etc. Also, once a choice of global and local con-

trol rules is made1, such a combination will be applied to all call patterns in the

residual program. Obviously, in practice, it can be very useful to be able to use

different specialization strategies for different call patterns, thus obtaining re-

sults that cannot be produced using traditional partial evaluation with any given

1From now on, we call a combination of a global and a local control rule a specialization
strategy.

81

specialization strategy.

In this chapter we describe a framework for on-line partial evaluation which

allows using different specialization strategies for different call patterns and can

generate several candidate specializations. These specializations can then be

empirically compared for efficiency, in terms of multiple factors such as size of the

specialized program and time- and memory-efficiency of such specialized program.

The framework was first introduced in [110], and it is self-tuning in that, as

mentioned above, it uses empirical evaluations for automatically selecting the

best candidates by means of a fitness function. It is also resource-aware in that

multiple factors, such as size of specialized programs and their memory consump-

tion, can be taken into account by the fitness function in addition to the natural

consideration of time-efficiency of the specialized programs. In [27], a self-tuning,

resource aware offline specialization technique was introduced. The algorithm is

based on mutation of annotations of offline partial evaluation. In contrast, our

approach performs online partial evaluation, and thus it is fully automatic. To

the best of our knowledge, there are no similar approaches for online PE.

5.1 The Dilemma of Controlling PE

As mentioned above, when specializing a program there exist many powerful

specialization strategies to choose from. Unfortunately, there is no silver bullet,

i.e., most control rules behave well with some programs, but no so well with

others. Sometimes, choosing the wrong control rule can lead to obtaining a

slower residual program or to a (considerably) larger residual program. But in

other situations, the same control rules can achieve important speedups, or can

lead to residual programs having the properties we are interested in.

For example, let us take the program from Listing 5.1. In this program, there

is a call to the builtin is/2. Since the call C is B+1 is not sufficiently instantiated

to be executed (B is not yet bound to an arithmetic expression), it is required

to use non-leftmost unfolding in order to jump over this call and unfold q/1.

However, this unfolding generates the residual program shown in Listing 5.2. In

this case, the residual code is less efficient than the original definition of p/1,

since several calls to is/2 may have to be speculatively performed until a success

is found, if any.

82

Listing 5.1: Program p/1 having an expensive call

p(B):- C is B+1, q(C).

q(1).

q(2).

q(3).

q(4).

q(5).

q(6).

Note that instead of a call to is/2 we could be calling an external predicate

performing an expensive computation.

Listing 5.2: Residual code of p/1

p(A) :- 1 is A + 1.

p(A) :- 2 is A + 1.

p(A) :- 3 is A + 1.

p(A) :- 4 is A + 1.

p(A) :- 5 is A + 1.

p(A) :- 6 is A + 1.

A similar example of generating a slower residual program is shown in List-

ing 5.3, borrowed from [80]. In this program, the predicate inboth/3 takes three

input arguments, the last two being lists, and checks whether the element passed

as a first argument is a member of the two given lists.

Listing 5.3: The inboth/3 example

member(X,[X|T]).

member(X,[Y|T]) :- member(X,T).

inboth(X,L1,L2) :- member(X,L1),

member(X,L2).

Let us partially evaluate this program w.r.t. the set of atoms {inboth(a,L,[X,Y])}.
By using non-determinate non-leftmost unfolding, we obtain the residual program

in Listing 5.4.

83

Listing 5.4: Residual code for inboth/3

member(a,[a|T]).

member(a,[Y|T]) :- member(a,T).

inboth(a,L,[a,Y]) :- member(a,L).

inboth(a,L,[X,a]) :- member(a,L).

If we execute both the original and the residual programs with the runtime

query inboth(a,[b,c,d,e,...,a],[X,Y]), then we can see that the original

program only executes once the expensive call to member(a,[b,c,d,e,...,a]),

while the residual program does it twice.

The classical solution to these problems is to disable non-leftmost unfolding

unless it is deterministic (sp [40, 42, 44], ecce [84]), or to allow non-leftmost un-

folding without left-propagation of bindings (paddy [104], mixtus [115]). Some

partial evaluators, for instance, sage [49, 48] do not prevent such work duplica-

tion. This can result in huge slowdowns (see, e.g., [14]).

Also, in the presence of impure predicates, non-leftmost unfolding can even

produce incorrect results [2]. On the other hand, performing non-leftmost unfold-

ing can provide important gains in other cases. See, for example, the program in

Listing 5.5.

Listing 5.5: The exponential/3 Example

exp(Base ,Exp ,Res):-

exp_ac(Exp ,Base ,1,Res).

exp_ac(0,_,Res ,Res).

exp_ac(Exp ,Base ,Tmp ,Res):-

Exp > 0,

Exp1 is Exp - 1,

NTmp is Tmp * Base ,

exp_ac(Exp1 ,Base ,NTmp ,Res).

If we specialize it w.r.t. the query exp(Base,3,Res), enabling non-leftmost

unfolding allows to unroll the recursive calls. The residual code, after some

arithmetic simplifications2, is shown in Listing 5.6.

2The specializer in CiaoPP actually performs such simplifications of arithmetic operations.

84

Listing 5.6: Residual Code of the exponential/3 Example

exp(A,3,B) :- B is A*A*A.

From these examples it is clear that the selected control rule directly affects

the quality of the generated code. Also, it is not trivial to select the appropriate

control rules, since, as we have seen, the same feature of a local control rule,

i.e., whether to allow non-leftmost unfolding, can be beneficial for certain calls

(atoms) and can be harmful for others.

Though one could argue that a good rule of thumb can be to only perform

non-leftmost unfolding for determinate atoms, i.e., those which only unify with

a single clause head, this heuristic does not guarantee to always achieve the best

specialization possible: an atom whose resolution is not determinate can become

deterministic later on, since maybe just one (or even none) of the derivations

which contain such step is successful or incomplete (i.e., all the rest are failing

derivations). For example, in the program of Listing 5.5, although the unfolding

is deterministic, this could be easily converted into non-deterministic by changing

the first clause of exp ac/4 to exp ac(Exp, ,R,R):- Exp = 0. Note that the

problem of deciding whether an atom is deterministic is undecidable: it can always

happen that an SLD tree which contains several non-failing derivations at some

depth, contains at most one non-failing derivation in the next depth level.

Another related problem when performing partial evaluation is known as loss

of indexing. In order to be more efficient, most Prolog systems index clauses

according to their first argument [35], i.e., if the first argument of the current

goal is instantiated, the clause head matching this goal can quickly be found. If

this is not the case, then all clauses have to be checked one by one looking for

a matching clause head. This is analogous to indexing in database systems and

can provide an important performance boost when searching over a large set of

clauses. For instance, let us take the program in Listing 5.7, borrowed from [27].

In this example, we have a collection of facts represented by p/2, where indexing

is performed over its first argument, and as long as the first argument in the call

to p/2 is instantiated we will benefit from the speedups of indexing.

If we specialize this program, then we can obtain the program in Listing 5.8,

where, as we can see, indexing over the first argument has been lost, and as a

consequence, this program will perform slower than the original one.

85

Listing 5.7: Example using clause indexing

index_test(f(_),Y,Z) :- p(Y,Z).

p(a,1).

p(b,2).

p(c,3).

p(d,4).

p(e,5).

p(f,6).

p(g,7).

p(h,8).

Listing 5.8: Specialiation of index test/3. Clause indexing has been lost

index_test(f(_), a, 1).

index_test(f(_), b, 2).

index_test(f(_), c, 3).

index_test(f(_), d, 4).

index_test(f(_), e, 5).

index_test(f(_), f, 6).

index_test(f(_), g, 7).

index_test(f(_), h, 8).

Another related pitfall of partial evaluation is the explosion of code that can

be generated in the residual program, as we have already seen in Chapter 4. This

explosion of code is unacceptable if disk space or memory are important factors,

and can even harmful in terms of speed, due to effects such as cache miss [34].

Many more pitfalls of partial evaluation can be found in [121], most of which

are still valid today.

5.1.1 A Motivating Example

We now show in Listing 5.9 a program which defines the predicate main/3 con-

taining calls to the predicates exp/3 and p/1 defined before:

86

Listing 5.9: A Motivating Example

main(A,B,C):-

exp(B,2,C),

p(A).

In Listing 5.10 we can see the residual code obtained when specializing this

program w.r.t. the query main(A,B,C) using leftmost unfolding. Note that

none of the calls to the builtin predicate is/2 are sufficiently instantiated to

be executed at specialization time. Since only leftmost unfolding is allowed, the

unfolding trees computed are not very deep, resulting in a large number of residual

predicates.

Listing 5.10: Result with Leftmost Unfolding

main(A,B,C) :- D is 1*B,

exp_ac_1(1,B,D,C),

p_1(A).

exp_ac_1(1,A,B,C) :- D is B*A,

exp_ac_2(0,A,D,C).

exp_ac_2(0,_1,A,A).

p_1(A) :- B is A+1, q_1(B).

q_1 (1).

q_1 (2).

q_1 (3).

q_1 (4).

q_1 (5).

q_1 (6).

On the other hand, if we choose to enable non-leftmost unfolding, we obtain

the residual program shown in Listing 5.11, where only an SLD tree has been

required, and thus no auxiliary predicates are defined.

Unfortunately, neither the program in Listing 5.10 nor the one in Listing 5.11

is optimal. This is because, in order to achieve an optimal result, non-leftmost un-

87

folding should be used for atoms for predicate exp/3, but only leftmost unfolding

should be used for atoms for predicate p/1.

Listing 5.11: Result with Non-leftmost Unfolding

main(A,B,C) :- D is 1*B, C is D*B, 1 is A+1.

main(A,B,C) :- D is 1*B, C is D*B, 2 is A+1.

main(A,B,C) :- D is 1*B, C is D*B, 3 is A+1.

main(A,B,C) :- D is 1*B, C is D*B, 4 is A+1.

main(A,B,C) :- D is 1*B, C is D*B, 5 is A+1.

main(A,B,C) :- D is 1*B, C is D*B, 6 is A+1.

Note that although the rule of thumb discussed above for non-leftmost unfold-

ing happens to provide good results in this example, clearly there is no unfolding

strategy which uniformly obtains the optimal results in all cases.

As we have seen, choosing the right specialization strategy is a tough task. In

this thesis, we propose a poly-controlled partial evaluation (PCPE) approach, in

which several specialization strategies and heuristics can coexist, leaving to the

framework the decision of which strategy is the most appropriate w.r.t. the users

needs (speed, size of the residual program, etc.).

5.2 Poly-Controlled Partial Evaluation

Poly-controlled partial evaluation (PCPE) takes as input a program P , a set A of

atoms describing the initial call patterns, and a set CS of specialization strategies.

As output, PCPE can generate potentially multiple specialized programs. The

PCPE process starts from an initial configuration, and repeatedly transforms it

into a child configuration until a final configuration is reached. Since we allow

the existence of multiple sepcialization strategies, a non-final configuration can

have several children configurations. Depending on the approach used, a dif-

ferent number of configurations will be expanded and thus, different specialized

programs will be obtained. These concepts are formalized below.

Definition 5.2.1 (configuration). A configuration is a pair 〈S, H〉, where S is a

set of atoms and H is a set of tuples of the form 〈A, A′, 〈G, U〉〉.
The set S contains the atoms to be specialized and H contains the speciali-

zation history: for each previously specialized atom A we store, in addition to A

88

itself, the result A′ of applying an abstraction operator G to it, and the speciali-

zation strategy 〈G, U〉 which has been applied on A′.

Correctness of the algorithm requires that each A′ is an abstraction of A, i.e.,

A = A′θ. The atom A is stored for precise predicate renaming, while U is stored

in order to use exactly such unfolding rule during code generation (see Def. 5.2.8).

Finally, G will be needed later by some pruning techniques (see Chapter 8).

Definition 5.2.2 (initial, intermediate and final configurations). A configura-

tion is initial when it is of the form 〈A, ∅〉. A configuration is final when it

is of the form 〈∅, H〉. Configurations that are not final are called intermediate

configurations.

As customary in PE, we consider the existence of an arbitrary function, which

we call TakeOne, that given an intermediate configuration 〈S, H〉, decides the

atom A to be specialized at each configuration among those in S, denoted A =

TakeOne(S).

We assume the existence of a function atoms that extracts the generalized

atoms out of the tuples in H.

Definition 5.2.3 (atoms). Let 〈S, H〉 be a configuration s.t.

H = {〈A1, A
′
1, 〈G1i1 , U1j1〉〉, . . . , 〈An, A

′
n, 〈G1in , Unjn〉〉}. Then the set of atoms of

H is defined as atoms(H) = {A′
1, . . . , A

′
n}.

In an abuse of notation, when referring to abstraction operators we simply

write A′ = G(A, H) instead of A′ = G(A, atoms(H)). Finally, given a con-

figuration T = 〈S, H〉, we use τ = CS(T) to denote that A = TakeOne(S),

A′ = G(A, H) and τ = U(P, A′).

Definition 5.2.4 (PCPE-step). Let T = 〈S, H〉 be an intermediate configuration,

and let A = TakeOne(S). Let CS=〈G, U〉 be a specialization strategy. Then a

PCPE-step for T using CS generates a new configuration T ′ = 〈S ′, H ′〉, denoted

T ;CS T ′, s.t.

• S ′ = (S − {A}) ∪ {B ∈ leaves(CS(T)) | ∀ 〈C, , 〉 ∈ H . B 6≈ C}

• H ′ = H ∪ {〈A, A′, 〈G, U〉〉}, with A′ = G(A, H)

where the function leaves collects the atoms in the bodies of resultants(CS(T)).

89

Definition 5.2.5 (resultants). Let P be a program, let A be an atom, let U be

an unfolding rule s.t. U(P, A)=τ .

Then resultants(τ) = {Aθ1 ← R1, . . . , Aθn ← Rn} where ← R1, . . . ,← Rn

are goals chosen from all non-failing leaves of τ , and θi is the substitution asso-

ciated with the derivation from ← A to ← Ri.

Given T ;CS T ′, we say that T ′ is a child of T . PCPE-steps are organized

into PCPE-paths.

Definition 5.2.6 (PCPE-path). A PCPE-path consists of a sequence T0 : T1 :

. . . : Tp of configurations and a sequence CS1 : CS2 : . . . : CSp of specialization

strategies s.t. for i = 1..p, Ti ;CSi+1
Ti+1.

We say that a PCPE-path T0 ;CS1 . . . ;CSp Tp is complete iff T0 is an initial

configuration and Tp is a final configuration. A configuration T ′ is reachable from

a configuration T iff there is a path of the form T ;CS1 . . . ;CSp T ′, p ≥ 0.

PCPE-paths can be organized into PCPE-trees.

Definition 5.2.7 (PCPE-tree). A PCPE-tree is a tree where each node corre-

sponds to a configuration, and which satisfies:

• The root node is an initial configuration.

• Leaves are final configurations.

• There is an arc from node T to node T ′ iff there is a specialization strategy

CS ∈ CS s.t. T ;CS T ′.

From a final configuration we can obtain a PCPE specialized program. As

usual in partial evaluation, during code generation we will rename apart atoms

in order to avoid the independence requirement [44]. We use rename to refer

to a procedure which assigns a fresh predicate name to each atom A′
i ∈ H and

performs appropriate renamings (using the pairs of atoms Ai, A
′
i in the tuples

of H) in the head and body of residual rules so that each program point uses a

correct (and as optimized as possible) version.

Definition 5.2.8 (PCPE specialized program, solution, SP). Let T = 〈∅, H〉 be

a final configuration. Then H is called a solution of PCPE. Also, the PCPE

specialized program PT obtained from T , denoted PT = SP (T), is

PT =
⋃

〈Ai,A′
i,〈Gi,Ui〉〉∈H rename(resultants(Ui(P, A′

i)), H)

90

As already mentioned, PCPE can generate several specialized programs. In

fact, from any intermediate configuration we can reach a set of final configura-

tions, each one corresponding to a possibly different specialized program.

Definition 5.2.9 (solutions). Let T be a configuration. The set of solutions for

T is defined as solutions(T) = {SP (T ′) | T ′ is reachable from T ∧ T ′ is final}.

Depending on the particular implementation of the PCPE algorithm, we could

generate more than one specialized program. In order to choose the best special-

ized program, we can apply an evaluation step which uses a fitness function Fit

to assess how good each specialized program PT is is w.r.t. the original pro-

gram P . The fitness function returns a value in [0 . . .∞), with larger fitness

values indicating better programs. Also, values smaller than one indicate that

the specialized program is worse than the original one.

Definition 5.2.10 (maximal fitness value, mfv). Let T be an intermediate con-

figuration. Let Fit be a fitness function. Then the maximal fitness value of

T w.r.t. Fit, denoted mfvFit(T), is defined as max({Fit(PT1), . . . , F it(PTp)}),
where solutions(T) = {PT1 , . . . , PTp} and max(R) returns the largest value in the

R set.

We can now define a PCPE-path leading to a solution of maximal fitness.

Definition 5.2.11 (PCPE-path of maximal fitness). A complete PCPE path

T0 ;CS1 . . . ;CSp Tp is of maximal fitness w.r.t. a fitness function Fit iff for

i = 0..p, mfvFit(Ti) = mfvFit(T0).

Note that for all pairs of configurations T and T ′, if T ′ is reachable from

T then mfvFit(T) ≥ mfvFit(T
′), for any fitness function Fit. In a path of

maximal fitness, we always perform PCPE-steps which preserve the maximal

fitness value. A specialized program P ′ obtained by PCPE is of maximal fitness

if Fit(P ′) = mfvFit(T0).

In the following two sections we consider two possible implementations of

PCPE. The first algorithm is called PCPEone, is greedy and it obtains only one

specialized program. However, we cannot guarantee that the obtained program

is of maximal fitness. The second one, called PCPEall, traverses the complete

PCPE-tree, and then evaluates all obtained specialized programs in order to

select a program of maximal fitness.

91

5.3 A Greedy PCPE Algorithm

Algorithm 2 One-Solution Poly-Controlled Partial Evaluation Algorithm

(PCPEone)

Input: Program P

Input: A finite set of atoms S

Input: A finite set of specialization strategies CS
Input: Selection function Pick

Output: A partial evaluation for P and S, encoded by Hn

1: i = 0

2: H0 = ∅
3: S0 = S

4: repeat

5: Ai = TakeOne(Si)

6: 〈G,U〉 = Pick(Ai, Hi,CS)

7: A′
i = G(Hi, Ai)

8: τi = U(P, A′
i)

9: Hi+1 = Hi ∪ {〈Ai, A
′
i, 〈G, U〉〉}

10: Si+1 = (Si − {Ai}) ∪ {A ∈ leaves(τi) | ∀ 〈B, , 〉 ∈ Hi+1 . B 6≈ A}
11: i = i + 1

12: until Si = ∅

Algorithm 2, also referred to as PCPEone, shows a one-solution poly-controlled

partial evaluation (PCPE) algorithm. We refer to this algorithm as poly-

controlled because it allows the use of multiple specialization strategies, possibly

applying different strategies for different atoms. We also refer to it as one-solution

since it is greedy, traversing only one complete PCPE-path, thus obtaining only

one solution. We will see in Section 5.4 a search-based PCPE algorithm that

obtains several candidate solutions.

One difference between this algorithm and the greedy PE algorithm seen in

Chapter 3 is that, rather than receiving as input an abstraction operator and an

unfolding rule, it receives a set CS of specialization strategies. The choice of the

specialization strategy to apply during the handling of each atom is performed

92

by the Pick function, which given an atom A, a specialization history H, and

CS, picks up a specialization strategy 〈G,U〉 ∈ CS.

The algorithm produces only one final configuration 〈∅, Hn〉. The output of

the algorithm is Hn, i.e., Hn =PCPEone (P, S, CS, Pick).

We define a function peel in order to be able to compare the configurations of

Algorithm 1 (PE) and Algorithm 2 (PCPEone).

Definition 5.3.1 (peel). Let H = {〈A1, A
′
1, 〈G1i, U1j〉〉, . . . , 〈Ak, A

′
k, 〈Gki′ , Ukj′〉〉}.

Then peel(H) = {〈A1, A
′
1〉, . . . , 〈Ak, A

′
k〉}.

Lemma 5.3.2. Let P be a program, let S be a finite set of atoms, let G be a local

control rule and let U be a global control rule.

Then PE(P, S, G, U) = peel(PCPEone (P, S, {〈G, U〉}, P ick)).

Proof. As noted before, the differences between Algorithm PE and Algorithm PCPEone

are:

1. Algorithm 2 introduces a new function Pick to select a specialization strat-

egy to be applied to a given atom. However, in our case this function is

deterministic and will always select 〈G, U〉.

2. Tuples in the solution obtained by PCPEone are different from those in the

solution obtained by PE. However, by using the peel function we get rid of

the extra information.

Clearly, different choices for the Pick function will result in different spe-

cialized programs. It is important to note that the finer-grained control of

poly-controlled partial evaluation can potentially produce specialized programs

which are hard or even impossible to obtain by using off-the-shelf specialization

strategies. Also, the addition of the Pick function conceptually makes the poly-

controlled partial evaluation algorithm being composed of three levels of control,

the local control, the global control, and the search control, which is determined

by the function Pick. Note that the inclusion of the history as an input argument

to Pick allows to make hopefully more informed decisions.

Depending on the particular choices of control strategies made by the Pick

function, the solution obtained by PCPEone could, in fact, be obtained by using

93

always the same specialization strategy, or using different specialization strategies

for different atoms. In our context, solutions of the first kind are called pure,

while the rest of solutions are called hybrid. Pure solutions can be obtained by

traditional partial evaluation, hybrid solutions cannot. We extend this notion of

purity to configurations.

Definition 5.3.3 (pure and hybrid configurations). Let T = 〈S, H〉 be a con-

figuration. Then T is pure iff ∀〈Ai, A
′
i, CSi〉 ∈ H, ∀〈Aj, A

′
j, CSj〉 ∈ H .

CSi = CSj.

A configuration that is not pure is called a hybrid configuration.

Lemma 5.3.4. Let P be a program and let S be a finite set of atoms. Let CS
be a set of specialization strategies. Let T = 〈∅, H〉 be a pure final configuration

s.t H =PCPEone (P, S, CS, P ick). Then ∃〈G, U〉 ∈ CS s.t. PE (P, S, G, U) =

peel(H).

Proof. Since T = 〈∅, H〉 is a pure configuration, all tuples in H are of the form

〈Ai, A
′
i, 〈G, U〉〉 for a given specialization strategy 〈G, U〉 ∈ CS. Thus Pick is a

deterministic function that always returns a tuple 〈G, U〉. By Lemma 5.3.2, it

follows then that PE(P, S, G, U) = peel(H).

5.4 A Search-based PCPE Algorithm

PCPEone can provide better specializations than those achievable by traditional

partial evaluation algorithms by assigning different specialization strategies to

different atoms. However, the improvements achieved rely on the behavior of

the function Pick. Unfortunately, choosing a good Pick function can be a very

hard task. Another alternative is, instead of deciding a priori the specialization

strategy to apply to each atom, to generate several (or even all) candidate partial

evaluations and then decide a posteriori which specialized program to use. In the

extreme, this can be done by traversing the complete PCPE-tree.

Algorithm 3 shows a search-based algorithm (PCPEall) that generates a set of

final configurations {〈∅, H1〉, . . . , 〈∅, Hn〉}. In other words,

PCPEall (P, S, CS) = {H1, . . . , Hn}.
Obviously, in general we will be interested in selecting only one specialized

program out of all final programs obtained. Clearly, generating all possible can-

94

Algorithm 3 All-solutions Search-based Partial Evaluation Algorithm (PCPEall)

Input: Program P

Input: A finite set of atoms S

Input: A finite set of specialization strategies CS
Output: A finite set of partial evaluations Sols

1: i = 0

2: H0 = ∅
3: S0 = S

4: create(Confs); Confs = push(〈S0, H0〉, Confs)

5: Sols = ∅
6: repeat

7: 〈Si, Hi〉 = pop(Confs)

8: Ai = TakeOne(Si)

9: Candidates = CS
10: repeat

11: Candidates = Candidates− {〈G, U〉}
12: A′

i = G(Hi, Ai)

13: τi = U(P, A′
i)

14: Hi+1 = Hi ∪ {〈Ai, A
′
i, 〈G, U〉〉}

15: Si+1 = (Si − {Ai}) ∪ {A ∈ leaves(τi) | ∀ 〈B, , 〉 ∈ Hi+1 . B 6≈ A}
16: if Si+1=∅ then

17: Sols = Sols ∪ {Hi+1}
18: else

19: push(〈Si+1, Hi+1〉,Confs)

20: end if

21: until Candidates = ∅
22: i = i + 1

23: until empty stack(Confs)

didate specialized programs is more costly than computing just one. However,

selecting the best candidate a posteriori allows to make much more informed

decisions than selecting it a priori, as in Algorithm 2. Another difference with

Algorithm 2 is that Algorithm 3 employs two additional data structures:

95

• Confs, which contains the configurations which are currently being explored.

• Sols, which stores the set of solutions found by the algorithm.

As it is well known, the use of different data structures for Confs provides

different traversals of the PCPE-tree. The actual implementation uses both a

stack (depth-first traversal) and a queue (breadth-first traversal). As we will see

later, sometimes we will want to traverse the PCPE-tree in either way. Note

that Algorithm 3 does not work with single configurations but rather with stacks

(queues) of configurations. The process terminates when the stack (queue) of

configurations to handle is empty, i.e. all final configurations have been reached.

Lemma 5.4.1. Let P be a program and let S be a finite set of atoms. Let CS be

a set of specialization strategies. Then, for any arbitrary Pick function,

PCPEone (P, S, CS, Pick) ∈ PCPEall (P, S, CS).

Proof. In each step of the algorithm PCPEone, for a given configuration T =

〈S, H〉, Pick will select a given tuple CSij ∈ CS, and apply it to a selected atom

A ∈ S. PCPEall, on the other hand, will apply all control strategies in CS for

all configurations. Therefore, CSij must be one of the control strategies PCPEall

will use with T .

Lemma 5.4.2. Let P be a program and let S be a finite set of atoms. Let CS
be a set of specialization strategies. Then ∀Hk ∈ PCPEall (P, S, CS) ∃ a Pick

function s.t. Hk = PCPEone (P, S, CS, Pick).

Proof. Let Hk = {〈A1, A
′
1, 〈G1i, U1j〉〉, . . . , 〈Ak, A

′
k, 〈Gki′ , Ukj′〉〉}.

Then Pick is defined as follows:

Pick(Ap, Hp, CS) =


〈G1i, U1j〉 if p = 1

. . .

〈Gki′ , Ukj′〉 if p = k

Corollary 5.4.3. Let P be a program and let S be a finite set of atoms. Let CS
be a set of specialization strategies. Then ∀Hk ∈ PCPEall (P, S, CS) ⇔ ∃ a Pick

function s.t. Hk = PCPEone (P, S, CS, Pick).

96

{}

{p(X)}

{exp_ac(1),p(X)}

{p(X)}

{q(X)}

{} {}

{}

{}

{q(X)}

{exp_ac(0),p(X)}

{main}

1

2 3

4

5

<h,nl>

<h,l>

<h,l>

<h,l>

<h,l>

<h,l>

<h,l>

<h,nl>

<h,nl>

<h,nl>

<h,nl>
<h,nl>

<h,nl>

<h,l>

Figure 5.1: Complete PCPE-tree for the Motivating Example 5.9

Proof. It follows immediately from Lemma 5.4.1 and Lemma 5.4.2.

Lemma 5.4.4. Let P be a program and let S be a finite set of atoms. Let

CS be a set of specialization strategies. Then ∀〈G, U〉 ∈ CS . PE (P,S,G,U)

∈ peel(PCPEall (P, S, CS))

Proof. By Lemma 5.3.4, PE (P, S, U, G) = peel(PCPEone (P, S, CS, P ick)) for

a deterministic Pick function that always returns 〈G, U〉 ∈ CS. Then, by

Lemma 5.4.1, PCPEone (P, S, CS, Pick) ∈ PCPEall (P, S, CS).

5.5 Searching for All Specializations

Consider again the example in Listing 5.9. Consider also two unfolding rules,

one performing leftmost unfolding only, and the other one performing also non-

97

leftmost unfolding, and one abstraction operator hom emb based on homeomor-

phic embedding (see Chapter 3), s.t.

CS ={〈hom emb, leftmost〉, 〈hom emb, nonleftmost〉}.
By applying PCPEall we get five different specialized programs. In particular, So-

lution1 corresponds to the program in Listing 5.10 and Solution5 to the program

in Listing 5.11. In addition, our algorithm also produces three other candidate

programs which are hybrid in the sense that they use different control rules for

different atoms, and thus cannot be achieved using 〈hom emb, leftmost〉 nor

〈hom emb, nonleftmost〉 only.

The PCPE-tree for this example is shown in Figure 5.1. There, intermediate

configurations are represented by a circle, while final configurations are repre-

sented by a square. As can be seen, the whole search space for the example

consists of 12 configurations, 7 of which are intermediate and 5 are final. The

latter ones correspond to different candidate solutions, as already mentioned.

Each configuration is adorned with the set S of atoms yet to be handled.

Each node can have two children, one per specialization strategy in CS, which

are indicated with arcs. Arcs are labeled either <h,l>, for 〈hom emb, leftmost〉
or <h,nl> for 〈hom emb, nonleftmost〉. The set of nodes already handled is not

shown explicitly in each node, but it is implicitly represented by traversing the

tree from each node upwards up to the root, since an atom is handled in each

node. For example, in the case of Solution3, the history is {〈q(B), q(B), 〈h, nl〉〉,
〈p(A), p(A), 〈h, l〉〉, 〈exp ac(1, A,B,C), exp ac(1, A,B,C), 〈h, nl〉〉, 〈main(A, B, C),

main(A, B, C), 〈h, l〉〉}. Also, some nodes only have one descendant linked by two

arcs to its parent. This indicates that the two specialization strategies considered

produce equivalent configurations, reducing the search space.

Table 5.1 provides a comparison of the different candidate solutions together

with the original program. The first column indicates the program we refer to in

each row. The second column provides an indication of the run-time efficiency of

the different programs. This time has been obtained by running a million times

the query main(8,9,Result) and subtracting the time required by an empty

loop which performs a million iterations. The third column compares the sizes of

the different programs. This size is in number of bytes of the program compiled

into bytecode using Ciao-1.13 and after subtracting the size of an empty program.

Finally, the last two columns compare the run-time and code-size of the different

98

Program Runtime Size Speedup Code Reduc

Original 5890 1606 1.00 1.00

Solution1 3652 1596 1.61 1.01

Solution2 5138 1543 1.15 1.04

Solution3 2931 1379 2.01 1.16

Solution4 3962 1326 1.49 1.21

Solution5 7223 1321 0.82 1.22

Table 5.1: Comparison of Solutions

programs with that of the original program.

As it can be seen, not all programs obtained by partial evaluation are nec-

essarily faster than the original one. In particular, Solution5, the one obtained

using non-leftmost unfolding for all cases is less efficient than the original one.

This is indicated by an speedup lower than 1, which is 0.82 in this case. On the

other hand, the speedup obtained by Solution1 is 1.61, but it is still far from the

fastest program, which is Solution3 with an speedup of 2.01. As regards code

size, in this particular case all solutions achieved are smaller than the original

program, though, as seen in Chapter 4, in some cases partial evaluation can pro-

duce programs which are significantly larger than the original one. The smallest

program is Solution5, with a code reduction of 1.22, but which happens to be the

slowest program of all, including the original one.

If both the speedup and code reduction factors are taken into account, the

most promising programs are probably Solution3 and Solution4, neither of which

are achievable by using one unfolding rule for all atoms. If code size is not a very

pressing issue, then Solution3 is probably the best one, but otherwise Solution4

should be used, since a relative small increase in program size provides significant

time performance improvement. The choice between the two solutions mentioned

will depend on the fitness function used, which can put more emphasis in one

factor or another.

99

5.6 Self-Tuning, Resource-Aware PE

Though Algorithm PCPEall can be used to automatically generate a large number

of candidate specialized programs to choose from, we need some mechanism to

automatically select just one of them since, obviously, the goal of partial evalu-

ation is to obtain a specialized program, not many. There are certainly several

criteria which can be used in order to decide how good a specialized program is.

The framework we propose in this work is resource-aware since it can take the

following criteria into account.

Time efficiency: currently we are measuring speedup w.r.t. the original pro-

gram. In this case, we need a set of test cases which are representative of

the class of run-time queries which will be performed. Another possibility

to be explored is the use of static cost analysis. Cost analysis can aim at

obtaining upper or lower bounds on computational cost or even average

cost.

Size of compiled code: fairly easy to measure. It can be an important factor

if the program will run on devices with limited resources, as is the case

in embedded systems and pervasive computing. Also, even in cases where

code size is not much of an issue, it can happen that different specialized

programs have similar time-efficiency but some of them can be significantly

larger than others.

Memory-consumption: it can be of interest when resources are scarce, simi-

larly to the case of size of compiled code.

Our framework is fully automatic, i.e., there is no need for human intervention

in order to decide which is the best among the candidate specializations. We refer

to this as a self-tuning approach. A fitness function assigns a numeric value in

[0 . . .∞) to each candidate specialization, reflecting how good the corresponding

program is w.r.t. the original program. Larger fitness values indicating better

programs. Also, values smaller than one indicate that the specialized program is

worse than the original one.

The framework is parametric w.r.t. the fitness function so that the method

can be applied with different aims in mind. Sometimes we may be interested

100

in achieving code which is as time-efficient as possible, whereas in other cases

space-efficiency can be a primary aim. It is important to note that this search-

based approach to partial evaluation is also of interest when only run-time is

taken into account. Even in such case there is no specialization strategy alone

which is guaranteed to always produce the most-efficient code for all compilers

and architectures.

The fitness functions implemented in our framework that take into account

the above resource-aware criteria are fully described in Appendix A.

5.7 Correctness of PCPE

The original definition of partial evaluation in Chapter 3 (borrowed from [85])

does not mention an unfolding rule. However, as observed by [44], given an atom

A and a program P , there may be infinitely many different partial evaluations

of A in P . An unfolding rule is then used to obtain only one of them. We

reformulate the definition of partial evaluation using an unfolding rule below.

Definition 5.7.1 (partial evaluation). Let P be a definite program and let A be

an atom. Let U be an unfolding rule. Then the partial evaluation of A in P using

U is defined as resultants(U(P, A)).

If A is a set of atoms, then a partial evaluation of A in P using U is defined

as
⋃

A∈A resultants(U(P, A)).

Our goal is to prove that PCPEall is a correct algorithm for partial evaluation

of a program P w.r.t. some goal Q. The central result proved by Lloyd and

Shepherdson in [85] on the correctness of partial evaluation is Theorem 3.2.6

from Chapter 3. This theorem implies that, given a program P , an unfolding

rule U and some goal Q, a correct algorithm for partial evaluation of P w.r.t. Q

must compute an independent set of atoms A s.t. if P ′ is a partial evaluation of

A in P using U then P ′ ∪ {Q} must be A-closed.

Gallagher [44] observes that it is possible to drop the condition that a partial

evaluation algorithm returns an independent set of atoms A by using a renaming

transformation ρ, which renames every atom in A by giving it a fresh predicate

symbol and keeping its arguments unmodified. The set of atoms to be specialized

thus become independent without introducing any precision loss. Given a pro-

gram P and a set of atoms A s.t. P ′ is a partial evaluation of A in P , a renaming

101

for P ′, denoted ρ(P ′), is obtained by applying a renaming transformation to all

atoms in A and mapping atoms inside the bodies of the residual program clauses

of P ′ (during code generation) to the correct version of the renamed predicate.

As observed in [44], the setA′ = ρ(A) is independent, and thus, when checking

the correctness of a partial evaluation algorithm, we only need to check that

R′ ∪ {Q} is A′-closed, for some goal Q.

In the definitions and lemmas below, we consider the algorithm PCPEall for

poly-controlled partial evaluation which takes a definite program P , a finite set of

atoms S (initial queries), a non-empty finite set CS = {〈G1, U1〉, . . . , 〈Gn, Um〉},
producing non-empty set of solutions {H1, . . . , Hk}, where each solution Hi is a

set of tuples of the form 〈A, A′, 〈G, U〉〉.
The following definitions and lemmas help in proving the correctness of

PCPEall.

As we noted before, in traditional partial evaluation there is an implicit un-

folding rule U . Thus, given a set of atoms A and a program P , we can generate

a partial evaluation of A in P using U . However, since PCPE can handle several

unfolding rules, we need to know which unfolding rule is to be used with each

atom when generating a partial evaluation. The following function extracts sets

of tuples containing such information out of a solution.

Definition 5.7.2 (annotated atoms).

Let Hk be a solution s.t. Hk = {〈A1, A
′
1, 〈G1i1 , U1j1〉〉, . . . , 〈An, A

′
n, 〈Gnin , Unjn〉〉}.

Then the set of annotated atoms of Hk, denoted by annotated atoms(HK), is

defined as annotated atoms(HK) = {〈A′
1, U1j1〉, . . . , 〈A′

n, Unjn〉}.

Now, we can define a poly-controlled partial evaluation in terms of annotated

atoms.

Definition 5.7.3 (poly-controlled partial evaluation). Let P be a definite pro-

gram and let 〈A, U〉 be an annotated atom. Then the poly-controlled partial

evaluation of 〈A, U〉 in P is defined as resultants(U(P, A)).

If H is a finite set of annotated atoms, then a poly-controlled partial evalua-

tion of H in P is
⋃

〈A,U〉∈H resultants(U(P, A)).

As can be seen, in poly-controlled partial evaluation each annotated atom is

unfolded using its respective unfolding rule. We now formalize a procedure for

synthesizing an unfolding rule from a set of annotated atoms.

102

Definition 5.7.4 (combine).

Let P be a definite program. Let H = {〈A1, U1〉, . . . , 〈An, Un〉} be a set of anno-

tated atoms. Then combine(H) builds an unfolding rule ÛH s.t.

ÛH(P, A) =


U1(P, A) if A ≈ A1

. . .

Un(P, A) if A ≈ An

Note that ÛH is a partial function built a posteriori, by considering the set

of annotated atoms of a given solution. This rule is instrumental in proving the

correctness of PCPE. Note also that there exists one specific unfolding rule ÛH

per PCPE solution.

We now prove that the residual program obtained by poly-controlled partial

evaluation could be obtained by traditional partial evaluation using ÛH as an

unfolding rule.

Lemma 5.7.5. Let P be a definite program and let Hk be a solution. Let HHk
=

annotated atoms(Hk). Let ÛH = combine(HHk
). Let A = atoms(Hk). Let P ′

be the partial evaluation of A in P using ÛH. Let P ′′ the poly-controlled partial

evaluation of HHk
in P .

Then P ′ = P ′′.

Proof. Trivially holds by using the function combine as a glue. In other words,

• By definition 5.7.1, P ′ =
⋃

Aki∈A resultants(ÛH(P, Aki)).

• By definition 5.7.3, P ′′ =
⋃

〈Aki,Uki〉∈HHk
resultants(Uki(P, Aki)).

Thus P ′ = P ′′ since ∀〈Aki, Uki〉 ∈ HHk
.ÛH(P, Aki) = Uki(P, Aki) by defini-

tion 5.7.4.

Lemma 5.7.6. Let P be a definite program and let Hk be a solution. Let HHk
=

annotated atoms(Hk). Let A = atoms(Hk). Let P ′′ be the poly-controlled partial

evaluation of HHk
in P .

Then P ′′ is A-closed.

103

Proof. First note that Hk is a PCPE solution, i.e., it is obtained from a final

configuration 〈Sk, Hk〉 s.t. Sk = ∅.
By Lemma 5.7.5, we can build an synthetic unfolding rule ÛH = combine(HHk

),

and obtain a partial evaluation P ′ of A in P using ÛH s.t. P ′ = P ′′, and prove

by contradiction that P ′ is A-closed.

Let us assume that P ′ is notA-closed. Then, ∃Aki ∈ A s.t. resultants(ÛH(P, Aki))

is not A-closed. In other words, pred(Aki) ∈ A ∧ Aki is not an instance of an

atom in A. By the constructive nature of PCPEall, Aki must then belong to Sk.

This is a contradiction since, as we said above, Sk = ∅.

Theorem 5.7.7. Let P be a definite program and let Hk be a solution. Let

HHk
= annotated atoms(Hk). Let A = atoms(Hk) and let A′ = ρ(A). Let P ′ be

a poly-controlled partial evaluation of HHk
in P and let R′ = ρ(P ′).

Then for all goals Q such that R′ ∪ {Q} is A′-closed

• P ∪ {Q} has a SLD-refutation with computed answer θ iff R′ ∪ {Q} has a

SLD-refutation with computed answer θ.

• P ∪{Q} has a finitely-failed SLD-tree iff R′∪{Q} has a finitely-failed SLD-

tree.

Proof. It follows immediately from Lemma 5.7.6, and from Lloyd’s Theorem 3.2.6

(see [85]) recalled in Chapter 3.

5.8 Some Notes on the Termination of PCPE

One question remaining to be answered is whether PCPE is guaranteed to ter-

minate. In other words, given a set CS of specialization strategies, where for

each 〈G, U〉 ∈ CS we know that both G and U guarantee termination, does the

combination of different local control and global control rules put at risk the

termination of the whole algorithm?

Let us consider Algorithm 3. This algorithm has two nested loops, and some

calls to external procedures. Let us analyze first the calls to external procedures.

• We assume that simple procedures (create, pop, push) dealing with data

structures terminate.

104

• The calls to G and U in lines 12 and 13 correspond to the application

of the abstraction and unfolding functions, respectively. It is our initial

assumption that these procedures guarantee termination on their own.

Now we can analyze the termination of each of the loops.

• In order to guarantee the termination of the inner loop (line 21), the set

Candidates must be finite. As can be seen in line 9, this set contains all

specialization strategies in CS, and CS is a finite set.

• In order to guarantee the termination of the outer loop (line 23), we have

to guarantee that the stack Confs becomes empty at some point in the

execution of the algorithm. Note that, besides the initial assignment of

Confs (line 4), configurations are pushed into Confs in line 19. This

occurs every time a new configuration 〈Si, Hi〉 is generated s.t. Si 6= ∅. In

other words, we have to ensure that for all possible configurations, at some

point Si = ∅. An atom A is introduced in Si (line 15) if A is not a variant

of a (previously visited) atom B s.t. 〈B, , 〉 ∈ Hi. Note that atoms to

be added to S are obtained from the leaves of the SLD-tree resulting from

the unfolding of a generalization of the currently selected atom. Since all

global control rules are terminating, this means that they can generalize

a (possibly infinite) set of atoms into a finite one. I.e., at some point all

atoms resulting from unfolding a generalization of a selected atom will be

already in the set of visited atoms, and they will not be added to S, so S

will become empty at some point in time.

In other words, let us assume that there is a combination of local and global

control rules s.t. S never becomes empty, i.e., there is an infinite PCPE-

path T0 ;〈G1i1
,U1i1

〉 T1 ;〈G2i2
,U2i2

〉 If we extract the infinite sequence

G1i1 : G2i2 : . . . of global control rules applied from To, then it is possible

to find at least one infinite subsequence containing the same control rule

Gi. But this contradicts the initial assumption that global control rules

guarantee termination on their own. Thus, there cannot be such an infinite

subsequence, i.e., there cannot be an infinite PCPE-path, so S must become

empty at some point in time.

105

ID Abstraction Unfolding

c1 hom emb one step

c2 hom emb df hom emb as

c3 dynamic one step

c4 dynamic df hom emb as

Table 5.2: Specialization Strategies

5.9 Preliminary Evaluation

In order to perform a preliminary assessment of the benefits and practicality of

search based poly-controlled partial evaluation, we have conducted a series of

experiments using the CiaoPP [106, 55] system.

Although the search-based approach presented in Section 5.4 above is defi-

nitely appealing, it is worth investigating whether it can actually produce better

specializations than traditional partial evaluation (PE) and also whether it pro-

duces too large a number of candidate specialized programs, even for small input

programs. In our evaluation we have compared two extreme cases: PE vs PCPEall.

In our experiments, we have used a set CS ={c1, c2, c3, c4} of specialization

strategies shown in Table 5.2, where the hom emb abstraction operator is based on

homeomorphic embedding [71, 81] and flags atoms as potentially dangerous (and

are thus generalized) when they homeomorphically embed any of the previously

visited atoms. Then, dynamic is the most abstract possible global control rule,

which abstracts away the value of all arguments of the atom and replaces them

with distinct variables. As explained in Chapter 3, the unfolding rule one step is

the simplest possible unfolding strategy which always performs just one unfold-

ing step for any atom. Finally, df hom emb as is an unfolding strategy based on

homeomorphic embedding. We have chosen these particular specialization strat-

egies since, on the one hand, they guarantee termination, and, on the other hand,

they allow us to contrast aggressive and conservative unfolding. In this way, we

expect to obtain more heterogeneous candidate solutions.

When testing PCPEall for the specialization strategies mentioned above, we

have found out that the approach copes with many of the benchmarks by Lam

& Kusalik [69]. However, these benchmarks are of relatively little interest to

our technique, since many of them can be fully unfolded. Thus, in general,

106

Benchmark Compiled size #versions

example pcpe 5504 27

permute 4687 70

nrev 4623 117

qsortapp 5390 40

sublists 5638 58

relative 5909 61

Table 5.3: Size and Number of Versions of Benchmarks

traditional partial evaluation obtains good results, and the solutions provided by

PCPE are pure solutions, achievable by PE. However, in practice, it is often the

case that programs being partially evaluated cannot be fully unfolded since the

static information available is not sufficient to do so. Table 5.3 shows the size

in bytes of the compiled bytecode of each benchmark, as well as the number of

candidate solutions being generated by the PCPE approach. Further details on

these benchmarks can be found in Appendix B. In order to keep the number

of candidate solutions reasonable, in most cases we have provided specialization

queries containing very few static data. As a result, in some of the programs the

speed-up achieved by partially evaluating the program is not very high using any

of the strategies, since little information is known at specialization time. The

specialization queries used in our experiments for each benchmark are shown in

Table 5.4.

As we have mentioned previously, the solutions computed by PCPE are eval-

uated using a fitness function, and the solution of maximal fitness is considered

to be the output of the whole algorithm. In our experiments, we have used the

fitness functions Speedup, Bytecode and Balance:

Speedup compares programs based on their time-efficiency, measuring run-time

speedup w.r.t. the original program.

Bytecode compares programs based on their space-efficiency, measuring re-

duction of size of compiled bytecode w.r.t. the original program.

Balance is a combination of the Speedup and Bytecode fitness functions.

It tries to achieve small and fast programs.

107

Benchmark Specialization query

example pcpe main(A,B,2,D)

nrev rev([, |L],R)

permute permute([1,2,3,4,5,6],L)

qsortapp qsort([, |L],R)

sublists sublists(A,B,C)

relative relative(john,X)

Table 5.4: Specialization Queries Used in our Experiment

Further details on these fitness functions can be found in Appendix A.

5.9.1 Benefits of PCPE

We now try to evaluate whether PCPE can actually produce better results than

traditional PE. Tables 5.5, 5.6, and 5.7 show how PCPE solutions behave when

compared to the solutions obtained by traditional PE, using different fitness func-

tions. In order to be as informative as possible, the best solution obtained by

PCPE has been compared against all specialized programs obtained by PE when

running every specialization strategy.

Each table shows the benchmark being considered, the fitness value obtained

by the solution of poly-controlled partial evaluation, and its composition (columns

c1 through c4, see below), and the fitness value of every solution found by tradi-

tional partial evaluation using the different specialization strategies. Note that all

fitness functions are defined in such a way that the original program has fitness

1, and values greater than one indicate improvements over the original program,

whereas values less than one indicate that the considered program is worse than

the original program (under the corresponding criterion). In the case of the

PCPE solution, columns c1 through c4 describe the percentage of atoms in the

selected best solution whose specialization behaviour can be achieved using the

corresponding specialization strategy. Note that the addition of the values of c1

through c4 for a given program will be 100 or more. The latter can occur because

different controls can result in exactly the same specialization for certain atoms.

A value of a 100 in a given column means that such best solution can be ob-

tained by traditional partial evaluation by using the corresponding specialization

108

Benchmark
Best PCPE Fitness Trad PE

c1 c2 c3 c4 Fit c1 c2 c3 c4

example pcpe 75 50 50 25 1.96 0.91 0.57 1.01 0.49

permute 0 100 0 0 5.26 0.75 5.14 1.01 2.00

nrev 57 57 0 14 1.20 0.51 0.77 0.99 0.91

qsortapp 50 50 83 67 1.06 0.86 0.87 0.99 0.94

sublists 57 43 71 43 1.08 0.97 0.99 0.98 0.88

relative 0 0 0 100 14.08 0.98 14.05 0.98 14.02

Table 5.5: Preliminary Results of PCPE (Speedup).

strategy.

Table 5.5 shows the results achieved when we use Speedup as a fitness func-

tion.

• In general, speedup values in most cases should be greater than 1. However,

since we are providing very little static information to the partial evaluation

algorithms, in the case of nrev, qsortapp, and sublist the speedup achieved

w.r.t. the original program is very small, and in many cases (especially in

traditional partial evaluation) the specialized program is somewhat slower

than the original one.

• Speedups are however evident in the relative and permute benchmarks,

since they can be fully unfolded. In these two cases, and considering only

Speedup as the fitness function, the solution obtained by PCPE is a so-

lution that can be obtained by traditional PE. In the case of permute,

it is achieved by c2, i.e., using hom emb as a global control rule and

df hom emb as as a local control rule. This is indicated by the 100 in

c2 column. We can also observe that the speedup of both the PCPE so-

lution and the solution obtained by traditional PE using such control rules

are pretty much the same and the difference lies only in timing errors during

the experiments, since they correspond to the same program. In the case of

relative, PCPE obtains two (best) solutions, one containing a 100 in column

c2, not shown in this table, and one containing a 100 in column c4. As can

be seen in the table, this speedup value is very similar to the one obtained

109

Benchmark
Best PCPE Fitness Trad PE

c1 c2 c3 c4 Fit c1 c2 c3 c4

example pcpe 75 50 50 25 1.22 0.82 1.15 0.98 0.39

permute 25 50 50 50 1.15 0.37 0.00 0.98 0.80

nrev 20 60 60 80 0.98 0.55 0.29 0.98 0.76

qsortapp 33 67 67 83 0.98 0.78 0.43 0.98 0.66

sublists 100 25 100 25 0.98 0.98 0.52 0.98 0.61

relative 20 60 40 60 1.17 0.66 0.89 0.98 0.13

Table 5.6: Preliminary Results of PCPE (Bytecode).

by traditional PE using such control rules since, again, they correspond to

the same code.

• For this particular fitness function, the rest of benchmarks are the interest-

ing ones, since the solution obtained by PCPE cannot be obtained by PE,

as there is no 100 in any column. In all cases the PCPE solution gets a

better fitness value than any of the solutions provided by traditional PE,

i.e., the obtained specialized program is faster. The PCPE solution in these

cases is between 6% and 95% faster than the corresponding best PE solu-

tion. Note that this result is interesting in itself: PCPE can achieve better

results than any single control rule even in the case where only speedup is

taken into account.

These experiments were performed on a 1.5 GHz PowerPC G4 processor, with

1Gb of RAM, running on a Darwin 8.5 kernel. Times are given in milliseconds

and are computed as the arithmetic mean of five runs.

Table 5.6 compares PCPE and traditional PE using Bytecode as a fitness

function.

• As can be expected from the selected set of benchmarks, the solutions ob-

tained by PE have a fitness value below 1 in most cases, indicating that the

specialized programs are larger than the original one. This usually is due to

the fact that these benchmarks contains just a few predicates, and partial

evaluation creates many new specialized predicates which then cannot be

unfolded very much.

110

Benchmark
Best PCPE Fitness Trad PE

c1 c2 c3 c4 Fit c1 c2 c3 c4

example pcpe 75 50 50 25 1.54 0.87 0.81 0.99 0.44

permute 40 40 40 40 1.30 0.54 0.14 1.01 1.29

nrev 60 60 0 40 1.12 0.52 0.48 0.98 0.82

qsortapp 50 50 83 67 1.00 0.81 0.61 0.99 0.78

sublists 100 25 100 25 1.01 1.00 0.70 0.99 0.73

relative 20 60 40 80 4.05 0.80 3.55 0.98 1.33

Table 5.7: Preliminary Results of PCPE (Balance).

• When programs can be fully unfolded, as is the case of relative and permute,

the use of df hom emb as as a local control rule usually achieves such full

unfolding. In the case of permute, the fitness is almost 0 for c2 since the

final fully unfolded program is much larger than the original one.

• Furthermore, programs produced using c3, i.e., dynamic as a global con-

trol rule and one step as a local control rule, are indeed isomorphic to the

original program. In this case, fitness values are slightly lower than 1 (0.98)

due to predicate renamings, which creates slightly larger predicate names.

• As can be seen in the table, most of the programs obtained by PCPE are not

achievable using PE. The only exception is sublists, where the best PCPE

solution corresponds to the original program. Thus, it seems that PCPE is

able to find a solution that is smaller than any of the solutions found by

PE.

Finally, Table 5.7 shows the results achieved by using Balance as a fitness

function.

• As can be seen, most of PCPE solutions cannot be obtained via traditional

PE, with the exception of the solution for sublists, where the solution of

maximal fitness coincides with not partially evaluating the program, i.e.,

the original program.

• In most cases, PCPE obtains better fitness values than any of the solutions

111

Benchmark

Specialization Time

PE PCPE PCPE

Spec Code Total Spec Code Total /PE

example pcpe 26 43 69 111 304 415 6

permute 1153 744 1897 1271 1242 2513 1

nrev 16 27 44 453 1166 1619 37

qsortapp 22 39 61 153 425 578 10

sublists 22 41 63 206 649 854 14

relative 216 166 382 1038 1187 2225 6

Table 5.8: Cost of PCPE (Specialization Time in msecs.)

obtained by PE, meaning that PCPE outperforms PE in most cases when

both time- and space-efficiency are simultaneously considered.

5.9.2 Cost of PCPE

We now evaluate the cost of performing PCPE when compared to PE. Though

one can argue that, in the case of compile-time specialization, the time required

to specialize a program is not very important, the results presented here provide

some information of the additional compile-time cost of PCPE when compared

to PE. Depending on the situation, the developer may choose to spend more

resources on specializing the program in return for a (hopefully) better specialized

program.

Specialization in both traditional and poly-controlled partial evaluation in-

volves a phase commonly referred to as analysis (corresponding to algorithms

PCPEone and PCPEall described in this chapter), and another phase for code gen-

eration. Table 5.8 shows the times (expressed in milliseconds) spent for both

approaches during these two phases, under columns Spec and Code, respectively.

The last column shows the ratio between PCPE and PE.

• As can be seen, the burden introduced by the PCPE approach is usually

acceptable.

• In many cases this overhead is directly related with the amount of candi-

date solutions generated by the algorithm. Thus, nrev is the benchmark

112

Benchmark

Evaluation Time(Speedup)

PE
PCPE

Spec Eval Total

example pcpe 69 415 11540 11955

permute 1897 2513 19971 22484

nrev 44 1619 66692 68312

qsortapp 61 578 17159 17737

sublists 63 854 77104 77958

relative 382 2225 17007 19232

Table 5.9: Total Cost of PCPE (Speedup) (Time in msecs.)

where the ratio PCPE/PE is bigger, since there are 117 candidate solutions

produced by the algorithm.

• Observe that in those cases that can be fully unfolded, i.e., permute and

relative, specialization time is usually high in both approaches, so the ratio

PCPE/PE is not very high.

• In the rest of benchmarks this ratio ranges between 6 and 14.

However, PCPE involves an additional step of evaluation after code generation

which is not required in PE. In this step, all candidate solutions are evaluated

using the corresponding fitness function, and the solution of maximal fitness

represents the output of the algorithm for the given input queries. Note that

there may exist several solutions of maximal fitness.

When evaluating all candidates, the fitness function used for such purpose

makes an important difference in the time required by such phase. In the case of

Bytecode, we need to compile each candidate solution and compare the sizes

of the compiled code of all of them. Even though this involves disk accesses, the

comparison among solutions can be done pretty quickly, and thus, the increment

in time due to evaluation is acceptable, as shown in Table 5.10. In most cases,

evaluation takes between two and four times the time spent in the previous two

phases.

However, when the fitness function involves measuring time-efficiency, i.e. in

Speedup and Balance, we need to run each specialized program a number of

113

Benchmark

Evaluation Time(Bytecode)

PE
PCPE

Spec Eval Total

example pcpe 69 415 1230 1645

permute 1897 2513 3587 6100

nrev 44 1619 5826 7444

qsortapp 61 578 2332 2909

sublists 63 854 4016 4870

relative 382 2225 5173 7399

Table 5.10: Total Cost of PCPE (Bytecode) (Time in msecs.)

iterations in order to obtain more accurate measurements, thus increasing the

time spent in evaluation (see tables 5.9 and 5.11). In our implementation, we

have a constant K for estimating the desired amount of time we want to evaluate

each candidate. By running the original program for K milliseconds, we estimate

the number of iterations to be run for each of the final candidates. By increasing

or decreasing this constant K, we increase or decrease the time spent by the

evaluation step of our algorithm. In this way, we have a trade-off between the

time spent in this phase, and the accuracy of the obtained solution. For our

experiments, we set this constant to 500 milliseconds. As a result, we spend

roughly about 500 milliseconds evaluating each candidate solution.

5.10 Highlights of PCPE

In this chapter we have introduced a framework for on-line partial evaluation

which allows using different specialization strategies for different atoms, obtaining

results that are not achievable by traditional partial evaluation. The framework is

self-tuning, employing resource-aware fitness functions to select the best solutions

from a resulting set of candidate solutions.

Among the main advantages of PCPE we can mention:

It can obtain better solutions than traditional PE: as we have seen in

Section 5.9, our preliminary experiments have shown that PCPE can pro-

duce hybrid solutions whose fitness value is better than any of the solutions

114

achievable by traditional PE, for a number of different resource-aware fitness

functions.

It is a resource-aware approach: in traditional PE, existing control rules fo-

cus on time-efficiency by trying to reduce the number of resolution steps

which are performed in the residual program. Other factors such as the

size of the compiled specialized program, and the memory required to run

the residual program are most often neglected—some relevant exceptions

being the works in [34],[27]—. In addition to potentially generating larger

programs, it is well known that partial evaluation can slow-down programs

due to lower level issues such as clause indexing, cache sizes, etc. PCPE,

on the other hand, makes use of resource aware fitness functions to choose

the best solution from a set of candidate solutions.

It is not yet another control strategy: the topic of control strategies for

partial evaluation has received considerable attention. As already men-

tioned, finding an optimal control strategy is not trivial, since it always

seems possible to find a counterexample for any heuristic. However, it is

important to note that PCPE is not a control strategy, but a new framework

allowing the co-existence and cooperation of any set of control strategies.

In fact, PCPE will benefit from any further research on control strategies.

It is more user-friendly: existing partial evaluators usually provide several

global and local control rules, as well as many other parameters (global

trees, computation rules, etc.) directly affecting the quality of the obtained

solution. For a novice user, it is extremely hard to find the right combina-

tion of parameters in order to achieve the desired results (reduction of size

of compiled code, reduction of execution time, etc.). Even for an experi-

enced user, it is rather difficult to predict the behavior of partial evaluation,

especially in terms of space-efficiency (size of the residual program). PCPE

allows the user to simultaneously experiment with different combinations

of parameters in order to achieve a specialized program with the desired

characteristics.

It performs online partial evaluation: as opposed to other approaches (e.g.

[27]), PCPE performs online partial evaluation, and thus it is fully auto-

115

Benchmark

Evaluation Time(Balance)

PE
PCPE

Spec Eval Total

example pcpe 69 415 12887 13302

permute 1897 2513 24408 26920

nrev 44 1619 73538 75157

qsortapp 61 578 19886 20463

sublists 63 854 82898 83752

relative 382 2225 22755 24980

Table 5.11: Total Cost of PCPE (Balance) (Time in msecs.)

matic and can use a more powerful set of specialization strategies.

Unfortunately, PCPE is not the panacea, and it has a number of disadvan-

tages. The main drawback of this approach is that, when implemented as a

search-based algorithm, its search space suffers from an inherent exponential

blowup since given a configuration, the number of children configurations that

can be derived from it can be as high as the number of specialization strategies

in the set CS considered. Also, the specialization time of PCPE is higher than

its PE counterpart. In the third part of this thesis we deal with these problems.

5.11 Related Work

As regards related work, the work in [27] is probably the most related one. There,

a self-tuning, resource aware off-line specialization technique is introduced. The

algorithm is based on mutation of annotations for offline partial evaluation. In

contrast, our approach performs on-line partial evaluation, and thus can take

advantage of the great body of work available for on-line partial evaluation of

logic programs. To the best of our knowledge, there are no similar approaches

for on-line partial evaluation.

116

Chapter 6

Heterogeneity of Solutions

In Chapter 5 we have introduced poly-controlled partial evaluation (PCPE). As

we saw, PCPE is a flexible approach for specializing logic programs. Its main

characteristic is that it can use different specialization strategies for different call

patterns.

After getting acquainted for the first time with the basic idea of poly-controlled

partial evaluation, probably two questions come up immediately to our mind:

1. does PCPE provides a wide range of solutions? I.e., since PCPE starts from

an initial configuration T0 and produces a set {H1, . . . , Hn} of candidate

solutions, is this set heterogeneous enough to offer us a wide set of candidate

solutions to choose from?

2. is PCPE feasible in practice? I.e., since there is an exponential blowup of

the search space1, is it possible to perform some pruning in order to deal

with realistic programs without losing the interesting solutions?

In this chapter we address the first question, providing experimental results

to help us justify our allegations. The third part of this thesis is devoted to deal

with the second question.

1This happens when PCPE is implemented using the search-based algorithm PCPEall.

117

6.1 Choosing an Adequate Set of Specialization

Strategies

The question of whether the solutions obtained by PCPE are heterogeneous w.r.t.

their fitness values depends, in a great deal, on the particular choice of speciali-

zation strategies to be used, as well as on the arity of the set CS of specialization

strategies. We can expect that by choosing control rules different enough, the

candidate solutions will be also very different, and viceversa. For example, let

us say we only use det and lookahead as unfolding rules, where both det and

lookahead are purely determinate [44, 42], i.e., they select atoms matching a

single clause head, the difference being that lookahead uses a ”look-ahead” of a

finite number of computation steps to detect further cases of determinacy [44].

Given that both unfolding rules are based on determinate unfolding, and this is

considered a very conservative technique, it is highly probable that this particular

choice of unfolding rules will not contribute to find heterogeneous solutions. This

will we empirically shown in Chapter 7.

A better idea will be then to choose one unfolding rule that is conservative,

and another one that is aggressive. An example of an aggressive local control rule

would be one performing non-leftmost unfolding.

The same reasoning can be done when selecting the global control rules, we

could select one rule that is very precise—while guaranteeing termination—, and

a very imprecise global control rule.

Note that our framework is very flexible in this sense: as we will see in Chap-

ter 11, in the graphical interface of CiaoPP we remove the user of the burden of

selecting adequate control strategies. Instead, the user can select among different

levels of aggressiveness for specialization strategies. However, more experienced

users can still play with all control strategies available in CiaoPP from an expert

interface.

118

Benchmark Input Query

example pcpe main(, ,2,)

permute permute([1,2,3,4,5,6],L)

nrev rev([, , , |L],R)

advisor what to do today(, ,)

relative relative(john,X)

ssuply ssupply(, ,)

transpose transpose([[, , , , , , , ,], ,],)

Table 6.1: Input Queries Used to Specialize Each Benchmark

6.2 Heterogeneity of the Fitness of PCPE Solu-

tions

Once we select an appropriate set of control rules for PCPE, we need to determine

whether the fitness of the solutions we obtain are heterogeneous. With this

purpose, we have run some experiments over a set of benchmarks and different

fitness functions, in order to collect statistical facts such as Standard Deviation

and Diameter, that can help us to determine how different are the obtained

solutions.

In these experiments, we use a set the same set CS of specialization strate-

gies as in the experiments performed in Section 5.9. Also, we use some of the

fitness functions defined in Appendix A and some of the benchmarks described in

Appendix B. The set of benchmarks used in this experiment and the particular

input queries used to specialize each program are shown in Table 6.1.

6.2.1 Heterogeneity of Solutions: Speedup

In Table 6.2 we can observe, for a number of benchmarks, the collected statistics

when using Speedup as a fitness function. Remember that Speedup compares

programs based on their time-efficiency, measuring run-time speedup w.r.t. the

original program. As mentioned before, the number of solutions (shown in column

#Sols) obtained by PCPE is tightly related to several factors, such as the number

and kind of specialization strategies used, as well as the initial input queries used

119

Benchmark #Sols
Fitness

St Dev Diameter
mfv Mean

example pcpe 27 1.56 0.87 0.21 0.99

permute 70 3.84 1.15 0.48 3.15

nrev 255 0.99 0.66 0.15 0.51

advisor 14 2.97 1.31 0.67 1.99

relative 43 26.50 3.45 4.84 25.59

ssuply 31 11.50 1.84 1.82 10.49

transpose 154 2.75 0.87 0.30 2.13

overall 87.4 7.15 1.45 1.21 6.40

Table 6.2: PCPE Statistics over Different Benchmarks (Speedup)

to specialize each program. For this particular experiment, PCPE generated a

mean of 87 candidate solutions per benchmark.

In most cases we can observe that both the maximal fitness value (column

mfv) and the mean fitness are over 1, meaning that a speedup is achieved when

comparing the obtained solutions w.r.t. the original program. In some cases, the

mean speedup is below 1, indicating that many of the solutions are bad and get

a slowdown w.r.t. the original program.

Let us take transpose, for example. In this particular benchmark, we can see

that most of the 154 final solutions are slower than the original program, meaning

that it is easy to specialize this program with different specialization strategies

and obtain a solution that runs slower than the original program. Note however,

that the solution of maximal fitness obtained by PCPE is 2.75 faster than the

original program.

In order to answer our initial question, i.e., whether does PCPE provide a

wide range of solutions, the columns we are interested in looking at are St Dev

and Diameter. St Dev stands for standard deviation, and measures how spread

out the values in a data set are. Diameter measures the difference of fitness

among (any of) the solution(s) of maximal fitness when compared to (any of) the

solution(s) of minimal fitness. Note that many of the solutions found by PCPE

can have the same fitness value. Values closer to 0 in St Dev would indicate

that most solutions have a similar fitness value. However, the mean St Dev is

120

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 50 100 150 200 250 300

solution
0.64

Figure 6.1: PCPE Solutions for nrev (Speedup)

1.21, showing that in general solutions are spread out, i.e., they are different when

compared with one another, even though very little static information is provided

to the PCPE algorithm (as shown in Table 6.1). Regarding the Diameter column,

we can observe that the mean diameter is 6.4, indicating that the solutions of

maximal and minimal fitness are quite far away when considering their fitness

values.

These claims can be better appreciated when looking at the fitness values

of the different solutions in a graphical way. In Figure 6.1 we can observe, for

benchmark nrev, how the fitness of all solutions are quite distributed across

the mean value. Note that this benchmark is the one with the lowest Standard

Deviation value, and with the highest number of versions obtained. Also, we can

see that many solutions share the same fitness value, and that in some way they

are grouped together, indicating that it should be possible to find ways to collapse

those solutions into one, pruning in this way the search space. Similar conclusions

can be obtained when looking at Figure 6.2, for the permute benchmark.

121

 0.5

 1

 1.5

 2

 2.5

 3

 0 10 20 30 40 50 60 70

solution
1.15

Figure 6.2: PCPE Solutions for permute (Speedup)

6.2.2 Heterogeneity of Solutions: Bytecode

In Table 6.3 we can observe the statistical values collected when running the same

experiment as before, this time for the fitness function Bytecode.

This table contains one extra column, #mfv Sols, denoting the number of

solutions of maximal fitness value. Note that this column does not make any

sense when using fitness function that measure time-efficiency (e.g. Speedup or

Balance), since it is virtually impossible to find two solutions sharing the fitness

value, to the level of milliseconds, due to the noise introduced in time measure-

ments (although graphically, it seems like many solutions have very similar fitness

values, as we saw in Figures 6.1 and 6.2). In the case of fitness functions meas-

uring space-efficiency, it is much easier to find solutions taking the same amount

of bytes in disk or memory. Note that this does not mean that the solutions are

the same, or even equivalent.

Since the number of versions obtained does not depend on the fitness function

used, column #Sols has the same values as in Table 6.2. Note also that in most

benchmarks there are many solutions sharing the same fitness value.

As in the case of Speedup, we can see that in most benchmarks the mean

122

Benchmark #Sols
#mfv

Sols

Fitness
St Dev Diameter

mfv Mean

example pcpe 27 1 1.22 0.82 0.19 0.82

permute 70 6 1.15 0.61 0.27 1.15

nrev 255 3 0.97 0.32 0.15 0.79

advisor 14 1 1.69 1.03 0.34 1.41

relative 61 2 1.17 0.67 0.25 1.04

ssuply 31 1 11.26 1.61 1.79 10.32

transpose 154 5 0.97 0.39 0.19 0.75

overall 87.4 2.71 2.63 0.77 0.45 2.32

Table 6.3: PCPE Statistics over Different Benchmarks (Bytecode)

fitness value obtained is well under 1. This is very usual in the case of the

Bytecode fitness function, since partial evaluation normally focuses on time-

efficiency, and tries to obtain as many specialized versions of a given predicate

as possible (see Chapter 4), many times resulting in an explosion of the size of

the code of the resulting program. Fortunately, for these benchmarks we observe

that the solution of maximal fitness obtained by PCPE achieves a reduction of

the bytecode size w.r.t. the original program.

It is worth to note that the standard deviation is lower than in the case of

the Speedup function. This could mean that the different solutions are more

similar. By looking at Figure 6.3 (for benchmark permute) we can observe that

there are many solutions grouped together sharing the same fitness value. This

could indicate that, in this case, it can be safe to prune the search space, replacing

all solutions in a group by a single one. This is not clear though when looking at

Figure 6.4, for benchmark relative, where we can see very few groups sharing

the same fitness value. We also show the graphics for nrev(Figure 6.6) and

transpose(Figure 6.5) benchmarks, since these are the benchmarks having the

lowest standard deviation values.

123

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10 20 30 40 50 60 70

solution
0.61

Figure 6.3: PCPE Solutions for permute (Bytecode)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10 20 30 40 50 60

solution
0.67

Figure 6.4: PCPE Solutions for relative (Bytecode)

124

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140 160

solution
0.39

Figure 6.5: PCPE Solutions for transpose (Bytecode)

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250

solution
0.34

Figure 6.6: PCPE Solutions for nrev (Bytecode)

125

Benchmark #Sols
Fitness

St Dev Diameter
Best Mean

example pcpd 27 1.47 0.85 0.19 1.00

permute 70 1.21 0.80 0.26 1.09

nrev 255 0.99 0.45 0.12 0.69

advisor 14 2.18 1.10 0.32 1.30

relative 61 5.08 1.28 0.66 4.32

ssuply 31 11.83 1.73 1.88 10.84

transpose 154 1.22 0.53 0.20 0.88

overall 87.4 3.42 0.96 0.51 2.87

Table 6.4: PCPE Statistics over Different Benchmarks (Balance)

6.2.3 Heterogeneity of Solutions: Balance

Finally, in Table 6.4 we can see the values obtained when running the same ex-

periment as above for the Balance fitness function. We also show, in a graph-

ical way, the fitness values of all solutions for benchmarks nrev(Figure 6.7) and

permute(Figure 6.8), since nrev is the benchmark with the lowest standard de-

viation value while permute is the one having the lowest diameter.

By looking at the values in the tables, and also at the figures, it can be deduced

that PCPE is able to obtain several solutions having different fitness values. Most

of these solutions are hybrid, i.e., they are not achievable by traditional partial

evaluation.

6.3 Heterogeneity of PCPE Solutions: High-

lights

After these experiments, we can try to empirically answer our first question posed

early in this chapter: does PCPE provides a wide range of solutions? Based on

these empirical results, we could say yes, PCPE is able to find several solutions,

and their fitness values seem to be heterogeneous when compared to one another.

One could argue that this set of benchmarks is very small to be representative.

But it is also true that this set of benchmarks was probably the worst case for

126

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 50 100 150 200 250 300

solution
0.44

Figure 6.7: PCPE Solutions for nrev (Balance)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10 20 30 40 50 60 70

solution
0.80

Figure 6.8: PCPE Solutions for permute (Balance)

carrying out these experiments, since most of them are small, and the amount of

127

static data provided is scarce, so the expected number and diversity of solutions

found by PCPE is equally low.

This is an encouraging result, since it seems possible to find hybrid solutions

(from among all of the solutions found by PCPE) that could have better fitness

value than any pure solution (that could be found by traditional partial evalua-

tion). We have seen some preliminary results in Chapter 5 where this happened.

But in order to determine if there are many benchmarks and cases where this

scenario happens, we have to make PCPE able to deal with more benchmarks,

and more specific specialization queries, i.e., more static data. In the next part

of this thesis we will describe several techniques for achieving this goal.

128

Part IV

Poly-Controlled Partial

Evaluation In Practice

129

Chapter 7

The Search Space Explosion

Problem

In this chapter we illustrate, by means of examples, one of the main problems of

poly-controlled partial evaluation when implemented as a search-based algorithm

(PCPEall): the growth of the size of its search space.

In order to observe this phenomenon, in this chapter we will consider the

program in Listing 7.1, which implements a näıve reverse algorithm:

Listing 7.1: The rev/2 Example

:- module(_,[rev/2],[assertions]).

:- entry rev([_,_|L],R).

rev ([] ,[]).

rev([H|L],R):-

rev(L,Tmp),

app(Tmp ,[H],R).

app([],L,L).

app([X|Xs],Y,[X|Zs]):-

app(Xs,Y,Zs).

In CiaoPP, the description of initial queries (i.e., the set of atoms of interest

S in Algorithm 2 and Algorithm 3 presented in Chapter 5) is obtained by taking

into account the set of predicates exported by the module, in this case {rev/2},

131

possibly qualified by means of entry declarations. For example, the entry dec-

laration in Listing 7.1 is used to specialize the näıve reverse procedure for lists

containing at least two elements.

In Section 7.1 we informally explain why the search space of PCPE can expe-

rience a (potentially) exponential blowup of its search space, then we introduce

a trivial modification to Algorithm PCPEall in order to reduce the size of the

search space, and show how the search space of nrev, when using some partic-

ular control strategies, is drastically reduced due to this modification. Then, in

Section 7.2 we run an experiment using the example in Listing 7.1 over differ-

ent specialization strategies, to try and determine how the aggressiveness level of

these specialization strategies affects the size of the search space of PCPE.

7.1 The Search Space of PCPE

Given that PCPE takes as input a set CS ={CS1, . . . , CSm} of specialization

strategies, for each configuration T0 we can obtain m children configurations.

The search-based PCPE algorithm (PCPEall) presented in Chapter 5 generates

all children for each configuration, so this represents a potentially exponential

explosion in the size of the search space, and, in principle, it makes the algorithm

impractical for dealing with realistic programs.

7.1.1 Eliminating Equivalent Sibling Configurations

Several optimizations can be done to the base search-based algorithm shown

in Chapter 5, in order to deal with the problem of the growth of the search

space of PCPE. A first obvious optimization is to eliminate equivalent sibling

configurations.

Definition 7.1.1 (sibling configurations). Let Ti and Tj be two configurations.

Then they are called siblings if there is a state T , and specialization strategies

CSi ∈ CS and CSj ∈ CS s.t. T ;CSi
Ti ∧ T ;CSj

Tj.

Definition 7.1.2 (equivalent sibling configurations). Let T = 〈S, H〉 be an in-

termediate configuration and let A = TakeOne(S). Let CS1=〈G1, U1〉 be a spe-

cialization strategy s.t. A′
1 = G1(A, H) and τ1 = U1(P, A′

1). Let CS2=〈G2, U2〉

132

be a specialization strategy s.t. A′
2 = G2(A, H) and τ2 = U2(P, A′

2). Then T1 and

T2 are equivalent sibling configurations iff T ;CS1 T1, T ;CS2 T2, A′
1 ≈ A′

2 and

τ1 ≈ τ2.

This optimization is easy to implement, not very costly to execute, and signifi-

cantly reduces the size of the PCPE-tree. A simple example shows the magnitude

of the reduction of the size of the search space of PCPE obtained by eliminat-

ing equivalent sibling configurations. Let us run PCPE over the nrev benchmark

using a set CS ={〈G1, U1〉, 〈G2, U1〉}, where G1 is based on homeomorphic embed-

ding, G2 abstracts away the value of all its arguments, and U1 is a deterministic

unfolding rule performing only leftmost derivation steps.

If we do not eliminate equivalent sibling configurations, then 28 final solutions

are obtained by PCPE, and the corresponding PCPE-tree is shown in Figure 7.1.

However, when eliminating equivalent sibling configurations, we drastically re-

duce the size of the PCPE-tree, obtaining only 4 final solutions, as shown in

Figure 7.2.

Figure 7.1: Search Space for nrev (With Equivalent Sibling Configurations)

Figure 7.2: Search Space for nrev (Removing Equivalent Sibling Configurations)

133

Code Global Control

G1 hom emb

G2 dynamic

Table 7.1: Codes for Global Control Strategies

Code Local Control

L1 unfolding(det) + comp rule(leftmost) + unf bra fac(1)

L2 unfolding(one step)

L3 unfolding(df hom emb as) + comp rule(local emb) + unf bra fac(1)

L4 unfolding(df hom emb as) + comp rule(local emb) + unf bra fac(0)

Table 7.2: Codes for Local Control Strategies

From this simple example it is clear that this optimization, although very

simple and trivial, it greatly reduces the size of the search space. Moreover, as

we will see later in this chapter, due to this simple optimization, in many cases

the search space will not grow exponentially with the depth of the search tree.

7.2 Control Strategies and the Size of the Search

Space

We now will show how different control strategies affect the size of the search

space of PCPE. For this experiment, we use the global control rules listed in

Table 7.1 and the local control rules listed in Table 7.21. In these tables, we

assign a unique code to each different global and local control rule. Note that in

the case of the local control rule L2, the only relevant parameter is the unfolding

strategy, since neither the value of the computation rule nor that of the branching

factor affects the behaviour of the unfolding strategy.

We will run PCPE over the program nrev, as defined above, using all possible

combinations of the control strategies described in Tables 7.1 and 7.2 s.t. either

|G | > 1 or |U | > 1. We will also use different input queries, assigning a code to

1A local control rule is composed of the unfolding strategy, the computation rule, and the
unfolding branching factor (all of them described in Chapter 3).

134

Code Input query

Q1 rev(L,R)

Q2 rev([|L],R)

Q3 rev([, |L],R)

Q4 rev([, , |L],R)

Q5 rev([, , , |L],R)

Q6 rev([1|L],R)

Q7 rev([1,2|L],R)

Q8 rev([1,2,3|L],R)

Table 7.3: Codes for Input Queries

each of them, as described in Table 7.3.

Table 7.4 shows the number of candidate solutions generated by Algorithm

PCPEall (after eliminating equivalent sibling configurations), for each input query,

and for each specialization strategies. From this table (and for this particular

benchmark) we can extract the following interesting conjectures:

• When G = {G2}, the number of candidate solutions remains static, no

matter how many local control rules are being used, or what input query is

being provided. This is due to the fact that this global control rule abstracts

away all of the static data provided by the input query. Thus, the amount

of information supplied by the input query does not affect the number of

final solutions obtained by PCPE. Note that static data triggers further

unfolding during local control. Thus, the absence of static data makes the

behaviour of the different unfolding strategies very similar.

• When G = {G1}, as the length of the list provided as input query grows,

the number of candidate solutions computed also grows (in general):

– This growing seems to be very slow when we use a set of two local

control rules, and either L1 or L3 are one of them, since L1 and L3

are the most conservative local control rules.

– L4 is the most aggresive local control rule of all four.

– When |U | ≥ 3 the growing curve is more steep.

135

Code Globals Locals Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

CS1 G1 L1 + L2 1 1 2 3 4 1 2 3

CS2 G1 L1 + L3 1 2 2 2 2 2 2 2

CS3 G1 L1 + L4 3 9 9 9 9 15 15 15

CS4 G1 L2 + L3 1 2 3 4 5 2 3 4

CS5 G1 L2 + L4 3 9 21 33 45 15 27 39

CS6 G1 L3 + L4 3 6 6 6 6 6 6 6

CS7 G1 L1 + L2 + L3 1 2 4 6 8 2 4 6

CS8 G1 L1 + L2 + L4 3 9 24 39 54 15 30 45

CS9 G1 L1 + L3 + L4 3 16 16 16 16 26 26 36

CS10 G1 L2 + L3 + L4 3 16 39 62 85 26 49 72

CS11 G1 L1 + L2 + L3 + L4 3 16 42 68 94 26 52 78

CS12 G2 L1 + L2 1 1 1 1 1 1 1 1

CS13 G2 L1 + L3 1 1 1 1 1 1 1 1

CS14 G2 L1 + L4 3 6 6 6 6 6 6 6

CS15 G2 L2 + L3 1 1 1 1 1 1 1 1

CS16 G2 L2 + L4 3 6 6 6 6 6 6 6

CS17 G2 L3 + L4 3 6 6 6 6 6 6 6

CS18 G2 L1 + L2 + L3 1 1 1 1 1 1 1 1

CS19 G2 L1 + L2 + L4 3 6 6 6 6 6 6 6

CS20 G2 L1 + L3 + L4 3 6 6 6 6 6 6 6

CS21 G2 L2 + L3 + L4 3 6 6 6 6 6 6 6

CS22 G2 L1 + L2 + L3 + L4 3 6 6 6 6 6 6 6

CS23 G1 + G2 L1 2 4 4 4 4 6 10 18

CS24 G1 + G2 L2 2 4 6 8 10 6 14 30

CS25 G1 + G2 L3 2 4 4 4 4 6 10 18

CS26 G1 + G2 L4 2 9 9 9 9 17 32 62

CS27 G1 + G2 L1 + L2 2 4 8 12 16 6 22 62

CS28 G1 + G2 L1 + L3 2 6 6 6 6 10 18 34

CS29 G1 + G2 L1 + L4 6 48 48 48 48 129 246 480

CS30 G1 + G2 L2 + L3 2 6 10 14 18 10 30 78

CS31 G1 + G2 L2 + L4 6 48 108 168 228 129 480 1392

CS32 G1 + G2 L3 + L4 6 39 39 39 39 69 126 240

CS33 G1 + G2 L1 + L2 + L3 2 6 12 18 24 10 38 110

CS34 G1 + G2 L1 + L2 + L4 6 48 114 180 246 129 504 -

CS35 G1 + G2 L1 + L3 + L4 6 68 68 68 68 191 370 728

CS36 G1 + G2 L2 + L3 + L4 6 68 156 244 332 191 728 -

CS37 G1 + G2 L1 + L2 + L3 + L4 6 68 162 256 350 191 752 -

Table 7.4: Solutions Generated by PCPE for rev Benchmark

136

– An important observation we can make is that, the more different the

local control rules are, the more candidates we obtain. For example,

L4 and L2 are very different, and as we can see in the row for CS5 the

number of candidates quickly grows. However, L3 and L4 are quite

similar, as they differ only in the branching factor. As a consequence,

in CS6 we can observe that the number of solutions generated by

PCPE remains low. This claim can be observed also in CS30 and

CS31.

• When G = {G1, G2}, and as before, the number of candidate solutions

computed grows if the length of the list provided as input query also grows:

– When |U | = 1 the growing seems to be very slow when no actual

elements are provided in the input query.

– When |U | > 1, and L4 ∈ U , the number of final candidate solutions

quickly grows, although in this case the growing seems to be linear

(w.r.t. the amount of provided static data) too.

– In a few cases we run out of memory, and this is indicated by a − in

the corresponding entry.

• In general, if the elements of the input list are static (as in the case of

Q6, Q7 and Q8), the number of candidates solutions is higher than if these

elements are unknown.

From this experiment we can see that the number of candidate specialized

solutions generated by the poly-controlled partial evaluation algorithm depends

greatly especially on the following factors:

• number and kind of control strategies used,

• aggressivity of the local control rules and

• amount of static data provided in the specialization queries

From this small example, it is clear that, in some cases (e.g. when having a

big number of local and global control rules, or when using aggresive local control

137

rules), in order to be able to cope with realistic Prolog programs, it is mandatory

to reduce the search space. This becomes evident when we take a look at the

number of solutions produced for the different benchmarks of Appendix B, which

is reflected in Table 7.5. As we can see, for many of them PCPE runs out of

memory (indicated by a - in the table). We will present several techniques for

pruning the search space in the upcoming chapters, and we will see how we can

deal with most of these benchmarks.

Benchmark Query Solutions

example pcpe main(A,B,2,D) 27

permute permute([1,2,3,4,5,6],L) 70

nrev rev([, , |L],R) 117

qsort qsort([, , |R],L) -

qsortapp qsort([1,2,3,4,5|L],R) -

sublists sublists([(2,3),(1,2),(3,8)|A],B,C) -

freeof list freeof([, |L],p(p(A))) 794

sumexp sumexp([, |],4,) -

flattress process(1+2+3,4+5+6,7/2, , |A],B) -

mmatrix mmultiply([[, |L],[, ,]|R],B,C) -

datetime add dates([, |A],[[,], |],C) -

advisor what to do today(first of may, ,) 14

relative relative(john, X) 61

ssupply ssupply(, ,) 31

transpose transpose([, , , , , , , ,], ,) 154

rev acc type rev(L,[],R) 30

depth depth(member(X,[a,b,c,m,d,e,m,f,g,m,i,j]),D) -

vanilla db solve atom(a) -

contains contains([a,a,b],X) -

ex depth solve([inboth(X,Y,Z)],0,Depth) -

petri object unsafe(X,s(0),0,0,0) -

match match([a,a,b],String) 505

grammar expression(n,[],String,[]) -

Table 7.5: Solutions Generated by PCPE for Different Benchmarks

138

Chapter 8

Heuristic Pruning

Although search-based PCPE is definitely appealing, its search space grows ex-

ponentially in the number of specialization strategies used. In order to deal with

realistic programs, we need to prune the search space. This pruning can be per-

formed using some heuristics—possibly losing solutions of maximal fitness—, or

we can try to preserve solutions of maximal fitness, for instance, by means of

branch and bound techniques. In this chapter we explore some pruning tech-

niques of the first kind, and present a technique of the second kind in Chapter 9.

8.1 Predicate-Consistency Heuristics

In the algorithm PCPEall, for any configuration T we apply all specialization

strategies in CS to it, obtaining several children configurations. Rather than

trying all possible specialization strategies, herein we propose to consider only

those specialization strategies which are consistent with the choices previously

taken in ancestor configurations.

The first notion of consistency we are going to consider is that we must use the

same control strategy for all atoms which correspond to the same predicate. We

will refer to configurations which satisfy this restriction as predicate-consistent,

and as predicate-inconsistent to those which do not.

Definition 8.1.1 (predicate-consistent configuration). Given a configuration

T = 〈S, H〉, we say that T is predicate-consistent iff ∀ 〈A1, A
′
1, CS1〉, 〈A2, A

′
2, CS2〉 ∈

H, pred(A1) = pred(A2)⇒ CS1 = CS2.

139

Note that this definition can be applied to both intermediate and final con-

figurations. Thus, if a given intermediate configuration Conf is inconsistent, it

will be pruned, i.e., it will not be pushed on Confs . By doing this we are pruning

not only Conf, but also solutions(Conf). This means that early prunings will

achieve significant reductions of the search space.

Note that the predicate-consistent heuristic relies on storing the specialization

strategy CS = 〈G, U〉 applied to each atom in the specialization history H.

Predicate-consistency will often significantly reduce the branching factor since

handling of an atom Ai will become deterministic as soon as we have previously

considered an atom for the same predicate in any configuration which is an an-

cestor of the current one in the search space, i.e., it is compulsory to use for Ai

exactly the same specialization strategy used before. Though this simplification

may look too restrictive at first sight, the intuition behind it is that, though it

is often a good idea to allow using different specialization strategies for differ-

ent predicates, it may be also the case that it is possible to obtain solutions of

maximal fitness where we consistently use the same specialization strategy for all

atoms of the same predicate. In other words, we believe that in the context of a

given program, there may exists a specialization strategy which behaves well for

all atoms which correspond to the same predicate. We thus propose to modify

Algorithm PCPEall such that only consistent configurations are further processed.

8.2 Mode-Consistency Heuristics

A possible improvement over predicate-consistency, in order to increase accuracy,

is to define consistency at the level of modes for a predicate. This means that two

calls to a predicate with similar modes (instantiation level in their arguments)

must use the same specialization strategy, but not if they have different modes.

In this sense, the more precise is the domain of modes, the less restrictive will be

the simplifications made, thus producing a higher number of candidate solutions.

In order to check whether two atoms A and A′ with pred(A) = pred(A′)

have the same modes, we apply to them a function modes that abstracts their

arguments one by one w.r.t. a given abstract domain [26].

Definition 8.2.1 (modes). Given an abstraction function α that abstracts an

atom to an element of an abstract domain D, we define modesα(p(t1, . . . , tn)) as

140

Atom predicate modesαSD
modesαSDL

modesαSD@depth(2)

p(X, a) p/2 p(D, S) p(D, S) p(D, a)

p(a, q(X, b), X) p/3 p(S, D,D) p(S, D,D) p(a, q(D, b), D)

p(a, [], [a, X]) p/3 p(S, S,D) p(S, S, L) p(a, [], [a, D|S])

p(a, q(b, X, r(Y, []))) p/2 p(S, D) p(S, D) p(a, q(b, D, r(D, S)))

Table 8.1: Abstraction of Calls Using Different Domains

p(α(t1), . . . , α(tn)).

Then, we say that two atoms A and A′ have the same modes under α iff

modesα(A) = modesα(A′).

In a way, this is similar to the binding types used in the binding-time analysis

(BTA) of offline partial evaluation [59]. In BTA, each argument of a predicate is

given a binding type that provides some information about the instantiation state

of an argument at specialization time.

The basic binding types in BTA are static, indicating that the argument is

completely known at specialization time, and dynamic, indicating that the argu-

ment is possibly unknown at specialization time. Thus, in the same spirit, we

define the αSD abstraction as follows:

Definition 8.2.2 (αSD abstraction). Given a term t, the αSD abstraction over t

is defined as follows:

αSD(t) =

{
S if vars(t) = ∅
D otherwise

A more precise binding type can be defined by means of regular type declara-

tions, and combined with basic binding types. For example, one can define types

such as list skeletons. We can define the αSDL abstraction as follows:

Definition 8.2.3 (αSDL abstraction). Given a term t, the αSDL abstraction over

t is defined as follows:

αSDL(t) =


S if vars(t) = ∅
L if t is bound to a list skeleton ∧ vars(t) 6= ∅
D otherwise

In addition to the abstractions described above, given an atom A, rather

than applying the abstraction function directly to its arguments we can define

141

levels of depth at which any abstraction can be applied, in the spirit of the

depth-k domains used in abstract interpretation of LP. For instance, given the

atom p(a, q(b, X, r(Y, []))), applying an abstraction α at level 1 would result in

p(a, q(α(b), α(X), α(r(Y, [])))), while applying such an abstraction at level 2 would

produce p(a, q(b, α(X), r(α(Y), α([])))).

In Table 8.1 we can observe some examples of atoms, and how they are ab-

stracted using the abstractions introduced above, including the αSD abstraction

at a depth level of 2 (column αSD@depth(2)).

We now provide a formal definition of consistent configurations w.r.t. the

mode-consistent heuristics.

Definition 8.2.4 (mode-consistent configuration). Let α be an abstraction func-

tion. Then, given a configuration T = 〈S, H〉, we say that T is mode-consistent

iff ∀〈A1, A
′
1, CS1〉, ∀〈A2, A

′
2, CS2〉 ∈ H, (pred(A1) = pred(A2) ∧modesα(A1) =

modesα(A2))⇒ CS1 = CS2.

8.3 An Heuristic-Based PCPE Algorithm

Algorithm 4 shows an Heuristic-based PCPE algorithm (H-PCPE). This algorithm

is based on PCPEall, with a slight modification that applies the heuristics pre-

sented in this chapter: the set Candidates of specialization strategies to be applied

to the selected atom Ai (line 9) is now returned by a (new) function strategies.

This function is depicted in Algorithm 5, and explained in detail below.

Algorithm 5 implements the function strategies, which takes cares of selecting

an appropriate set of specialization strategies to be applied to a selected atom.

The algorithm relies on a function called consistent (line 1), which given an atom

A and a specialization history H, if ∃〈Ai, A
′
i, 〈G, U〉〉 ∈ H s.t. A and Ai are

(predicate|mode) consistent, it returns {〈G, U〉}, otherwise it returns ∅.

8.4 Experimental Results

With the purpose of assessing the effectiveness of H-PCPE w.r.t. PCPEall, we have

performed a series of experiments using several benchmarks from Appendix B.

142

Algorithm 4 Heuristic-Based Poly-Controlled Partial Evaluation Algorithm (H-

PCPE)

Input: Program P

Input: Set of atoms of interest S

Input: Set of specialization strategies CS
Output: Set of partial evaluations Sols

1: i = 0

2: H0 = ∅
3: S0 = S

4: create(Confs); Confs = push(〈S0, H0〉, Confs)

5: Sols = ∅
6: repeat

7: 〈Si, Hi〉 = pop(Confs)

8: Ai = TakeOne(Si)

9: Candidates = strategies(Ai, Hi, CS)

10: repeat

11: Candidates = Candidates− {〈G, U〉}
12: A′

i = G(Hi, Ai)

13: τi = U(P, A′
i)

14: Hi+1 = Hi ∪ {〈Ai, A
′
i, 〈G, U〉〉}

15: Si+1 = (Si − {Ai}) ∪ {A ∈ leaves(τi) | ∀ 〈B, , 〉 ∈ Hi+1 . B 6≈ A}
16: if Si+1=∅ then

17: Sols = Sols ∪ {Hi+1}
18: else

19: push(〈Si+1, Hi+1〉,Confs)

20: end if

21: until Candidates = ∅
22: i = i + 1

23: until empty stack(Confs)

In these experiments, we have used a set CS ={〈G1, U1〉, 〈G1, U2〉, 〈G2, U1〉, 〈G2, U2〉}
of specialization strategies, where G1 = hom emb is an abstraction operator based

on homeomorphic embedding, while G2 = dynamic abstracts away the value of

143

Algorithm 5 Selection of Specialization Strategies to be Applied to a Given

Atom
Input: Atom A

Input: Specialization history H

Input: Set of specialization strategies CS
Output: Set of specialization strategies Cand

1: Strategy = consistent(A, H)

2: if Strategy = {〈G, U〉} then

3: Cand = Strategy

4: else

5: Cand = CS
6: end if

all arguments. Also, U1 = hom emb aggr and U2 = hom emb cons are unfolding

strategies which are both based on homeomorphic embedding for flagging pos-

sible non-termination (see [106] for more details). In both cases, non-leftmost

unfolding is performed only when it is guaranteed to be safe (see [2]). However,

the first one is more aggressive, whereas the second one is more conservative.

More precisely, they differ in two ways:

1. the first one uses the binding-insensitive computation rule, whereas the

second uses the safe computation rule of CiaoPP. The former is more ag-

gressive, but it is only guaranteed to be correct in programs which are well

typed. The second is correct for all programs.

2. more importantly, the second one only performs non-leftmost unfolding

steps which are determinate, i.e., the selected atom must unify at most with

one program rule. Note that this is important since it is well known that

performing non-determinate non-leftmost unfolding can sometimes speedup

the program but it often slowdowns the program. Thus, conservative rules

tend not to perform this kind of unfolding steps.

144

Benchmark

PCPE

Best PE
PCPEall

H-PCPE

Predicate Mode

datetime 1.93 1.94 1.89 1.31

nrev - 3.65 3.71 1.98

qsortapp - 2.30 2.59 1.77

contains 4.16 4.16 4.21 3.15

grammar 8.41 8.42 8.43 4.71

groundunify simple - 3.02 - 2.95

liftsolve app 1.17 1.16 1.19 1.17

match 1.59 1.58 1.58 1.09

transpose 2.46 2.46 2.45 2.46

Geom Mean 2.60 2.60 2.60 1.98

Table 8.2: Fitness for H-PCPE and Traditional PE

8.4.1 Benefits of Heuristic-Based PCPE

Table 8.2 compares the quality of the residual programs obtained by PCPE using

the different heuristics presented in this chapter.

As a measure of the quality of programs we have used the fitness function

Balance (see Appendix A). We believe that this fitness function is particularly

interesting since it is resource-aware: both time-efficiency and size of the residual

programs are taken into account. Thus, it is a useful fitness function in the context

of pervasive and embedded systems, where it is important that the program does

not exceed the storage capabilities of the device.

Since the fitness function Balance takes into account run-times of the resid-

ual programs, and there is always some noise associated to time measurement,

times are taken as the arithmetic mean of ten consecutive runs. Nevertheless,

when using Balance, is difficult to determine whether the selected solution is

of maximal fitness or not, since fitness cannot be computed with full accuracy.

In order to make a fair comparison of PCPE w.r.t. traditional PE, we have

run PE over all benchmarks with all four specialization strategies discussed above,

looking for the specialization strategy which achieves the best overall fitness. For

these particular benchmarks the best specialization strategy was 〈G1, U2〉. Thus,

145

Benchmark

PCPE

Best PE
PCPEall

H-PCPE

Predicate Mode

datetime 21.2 3.6 5.0 21

nrev - 2.2 10.1 14

qsortapp - 3.3 10.6 32

contains 8.3 3.4 8.3 11

grammar 11.8 9.7 11.8 6

groundunify simple - 420.8 - 4

liftsolve app 223.7 31.7 178.3 3

match 9.2 3.8 3.8 5

transpose 4.5 3.5 4.5 2

Geom Mean 16.37 6.07 10.69 5.89

Table 8.3: Normalized Size of Search Space w.r.t PE

we compare H-PCPE algorithm against PE using this particular specialization

strategy.

In all tables in this chapter, the column PCPEall represents the search-based

PCPE from Chapter 5, where no pruning is performed. The two following

columns, under the H-PCPE label, show the results of using heuristic pruning.

The column Predicate presents the case where the predicate-consistency heuris-

tics is used, and column Mode shows the results when the modesαSD
heuristics is

used.

In order to have a global view of the values in the different columns, in all

tables we have included a row Geom Mean with the geometric mean of (part of)

the values in the corresponding column. Since some columns do not have values

for some benchmarks (because the corresponding algorithm has run out of mem-

ory), and in order to make comparisons meaningful, we compute the geometric

mean only over those benchmarks which all algorithms can handle without prob-

lems, i.e., nrev, qsortapp, and groundunify simple are not considered in this

calculation. It should be noted that the specialization queries used in our runs

contain a good amount of static information, thus causing PCPEall to run out

of memory (indicated by a − in the table) for the programs mentioned above.

146

Benchmark PCPEall

H-PCPE

Predicate Mode

datetime 105 6 12

nrev - 4 24

qsortapp - 6 18

contains 12 4 12

grammar 16 12 16

groundunify simple - 85 -

liftsolve app 49 5 33

match 11 4 4

transpose 3 2 3

Geom Mean 17.87 4.75 9.85

Table 8.4: Number of Evaluations Performed

Fortunately, by using the heuristic-based pruning techniques presented in this

chapter, H-PCPE has finished in most cases.

Several important conclusions can be drawn from Table 8.2. We can see that

PCPE outperforms PE in most cases, achieving a mean fitness value of about

2.60 (vs 1.98 achieved by PE). The ratio PCPE/PE is around 1.31, which indi-

cates that PCPE obtains residual programs which are about 31% better under

the fitness function Balance than those achieved by traditional PE for this par-

ticular set of benchmarks. However, there are some cases where PCPE does not

improve the results of PE because the program of maximal fitness is pure rather

than hybrid. This happens, for example, in transpose and liftsolve app.

Also, it can be seen that H-PCPE provides results whose fitness values are

identical in most cases to the fitness obtained by PCPEall. Although this could

indicate that no pruning of the solution of maximal fitness is being done by H-

PCPE, we cannot draw such conclusion since in many cases PCPEall does not

finish, and thus, we have no reference of the solution of maximal fitness that

could be obtained.

147

Benchmark

PCPE

Best PE
PCPEall

H-PCPE

Predicate Mode

datetime 1466 472 511 371

nrev - 166 329 150

qsortapp - 227 583 116

contains 532 326 417 267

grammar 626 458 553 290

groundunify simple - 4275 - 121

liftsolve app 5924 418 1802 145

match 207 107 121 99

transpose 278 282 279 259

Geom Mean 741.71 310.10 439.14 218.41

Table 8.5: Analysis Times of H-PCPE (fitness = Balance)

8.4.2 Search Space of Heuristic-Based PCPE

The next question we address is whether the pruning techniques proposed can

actually reduce the search space to levels which are comparable to those of tradi-

tional PE. Table 8.3 shows the ratios of the number of configurations generated

by the different PCPE algorithms versus those generated by traditional PE. As

can be seen, predicate-consistent H-PCPE achieves a significant reduction of the

search space. It requires to explore, on average (only) 6.07 times the amount of

configurations generated by PE, rather than 16.37 in the case of PCPEall. Re-

garding mode-consistent H-PCPE, it can be seen that it generates around twice

as many configurations as predicate-consistent H-PCPE, and it even runs out of

memory for groundunify simple. This, together with the fact that the max-

imal fitness value found using this heuristic are quite close to those obtained

using predicate-consistent H-PCPE, allows concluding that predicate-consistent

H-PCPE is preferable in practice.

Another important difference between PCPE and PE is that, since the former

allows computing several candidate residual programs, we need to evaluate them

in order to choose which one is the best of them. Table 8.4 shows the number

148

Benchmark

PCPE

Best PE
PCPEall

H-PCPE

Preds Modes

datetime 11972 654 1273 143

nrev - 115 1025 58

qsortapp - 672 2503 180

contains 710 209 72 0 82

grammar 1491 1094 1508 59

groundunify simple - 14456 - 13

liftsolve app 4152 330 2665 30

match 266 93 108 32

transpose 55 34 53 15

Geom Mean 957.39 232.04 525.64 42.43

Table 8.6: Code Generation Times of H-PCPE (fitness = Balance)

of configurations which need to be evaluated, i.e., the number of times we need

to compute or approximate fitness values. Since evaluations take place at the

end of the algorithm, i.e., once all solutions have been generated, the number of

evaluations coincides with the number of solutions generated by PCPE.

The results shown in the table indicate that H-PCPE requires an acceptable

number of evaluations. For instance, predicate-consistent H-PCPE requires 4

times less evaluations than PCPEall. We consider that these results are indeed

quite promising and show that the search space and the number of evaluations

required by PCPE are manageable, when the proposed pruning techniques are

applied.

8.4.3 Time Cost of Heuristic-Based PCPE

Tables 8.5 to 8.8 show the time required by PCPE. All figures are in milliseconds.

These experiments have been run using Ciao 1.13 over a 2.6 Linux kernel, on an

Intel Pentium IV 3.4GHz processor, with 512Mb of RAM.

PCPE can be thought of as having three sequential phases, :

1. analysis, i.e., where the complete PCPE-tree is generated and explored,

149

Benchmark PCPEall

H-PCPE

Predicate Modes

datetime 39704 2906 5016

nrev - 1419 5135

qsortapp - 2611 6404

contains 3218 1516 3200

grammar 4753 3670 4620

groundunify simple - 45329 -

liftsolve app 20305 2445 13427

match 4202 1802 1777

transpose 1296 1035 1322

Geom Mean 6375.71 2047.86 3643.59

Table 8.7: Evaluation Times of H-PCPE (fitness = Balance)

2. code generation, i.e., where code is generated for all final configurations,

3. evaluation, i.e., where all specialized programs are assessed by using the

corresponding fitness function.

Thus, in Table 8.5 we show the time spent in the analysis phase by both PCPE

and PE, while in Table 8.6 we show the times spent in code generation by these

approaches. When considering analysis and code generation times combined, H-

PCPE performs around 4 times slower than PE, which is a rather reasonable cost.

However, when compared to PE, PCPE requires an additional phase of evaluation

in order to select the best candidate. The time required for evaluating candidates

can vary a great deal from some fitness functions to others. In particular, if the

fitness function measures time-efficiency, then in order to obtain accurate results

several runs have to be performed. This can make PCPE much slower than PE,

since the later does not perform this evaluation step.

This is the case with the fitness function used in these experiments. When

evaluation time is taken into account, PCPE is an order or magnitude slower

than PE. However, in many situations it can be argued that the cost of partial

evaluation is not crucial since it takes place at compile-time. In fact, we believe

that there can be a good number of cases where it is actually worthwhile to

150

Benchmark

PCPE

Best PE
PCPEall

H-PCPE

Predicate Mode

datetime 53142 4032 6800 514

nrev - 1700 6489 208

qsortapp - 3510 9491 296

contains 4460 2051 4337 349

grammar 6870 5222 6681 349

groundunify simple - 64060 - 134

liftsolve app 30382 3193 17894 175

match 4675 2002 2006 131

transpose 1629 1351 1654 274

Geom Mean 8498.84 2683.08 4764.77 267.37

Table 8.8: Total Specialization Times of H-PCPE (fitness = Balance)

have the possibility of using a more powerful, though more expensive (but also

completely automatic) framework for optimizing relevant code. This includes

code which is going to be executed very often or code which has to be executed on

devices with limited computing capabilities, as is the case in embedded systems.

151

152

Chapter 9

Branch and Bound Pruning

The main advantages of the heuristic-based pruning techniques shown in Chap-

ter 8 are twofold: they are simple to implement, and they drastically reduce the

search space of PCPE, thus reducing the specialization time and memory require-

ments and making H-PCPE able to cope with many more programs than PCPEall.

On the other hand, it is well known that heuristics can perform well for some

cases and not so well for others. In the case of the heuristics just presented, this

could mean that, in particular situations, solutions of maximal fitness may be

lost. In this chapter we explore a different pruning technique based on branch

and bound [70] (BnB), which guarantees the preservation of a solution of max-

imal fitness. Ideally, the new pruning technique should be applicable either in

isolation or combined with the heuristic pruning already presented.

9.1 A Branch and Bound-Based Pruning

The basic idea of branch and bound-based pruning of the search space of PCPE is

to store the fitness value of the best solution found so far, and prune away those

configurations which are guaranteed not to improve the (temporary) solution

of maximal fitness. We call this algorithm BnB-PCPE. Given an intermediate

configuration T and a fitness function Fit, our aim is to be able to find an

estimated fitness function EFFit that is an upper bound of the maximal fitness

value of such configuration, i.e., EFFit(T) ≥ mfvFit(T). Then, if EFFit(T) is

smaller than the actual fitness value of the best solution found so far, we can

safely prune T away.

153

In order to implement BnB-PCPE we need:

• to devise a mechanism for computing an upper bound EFFit of the maximal

fitness value of any intermediate configuration.

• to traverse the PCPE-tree in a depth-first fashion, since this facilitates the

finding of new final configurations, and its comparison with the current

best fitness value. This will result in a more effective pruning, since newer

best fitness values will make more probable to prune away non-promising

branches. This traversal allow us to rapidly find a specialized solution

(which will be pure, since Algorithm 3 always chooses control strategies in

a fixed order), which automatically will become the best solution found so

far. In addition, and as the search continues, further final configurations will

be found which will possibly increase the fitness value of the best solution

found so far.

• to decide how often we should evaluate candidates and try to prune. Clearly,

if we evaluate often we will be able to prune more. However, evaluating

introduces a non negligible cost. Thus, evaluating too often can make BnB-

PCPE even slower than PCPEall. As a result, in our implementation we do

not evaluate every configuration. Instead, the implementation is parametric

w.r.t. a depth-level. Those configurations which appear at a depth which is

a multiple of the depth-level are evaluated. All others are not.

This pruning technique can be combined with the predicate- and mode-

consistency heuristics presented in Chapter 8. In this case, we will obtain a

solution with a fitness value which is guaranteed to be maximal among those

final configurations which are consistent w.r.t. the abstraction used.

9.2 Estimating Fitness Values

As already mentioned, we need to obtain upper bounds on the maximal fitness

values of intermediate configurations. The way we do it is tightly coupled to the

fitness function being used. Remember that we assume that the fitness func-

tion returns values in the interval [0,∞) and that larger values are preferable to

154

smaller values. In our framework, we use different resource-aware fitness func-

tions, described in Appendix A. In order to obtain the upper bounds over the

different fitness functions, we will use the original program Porig being specialized,

and an empty program Pempty containing no body.

9.2.1 Estimated Bytecode (Memory) Fitness Function

In the case of Bytecode —or for any fitness function that takes the size of

the resulting program as one factor (e.g. Memory)—, for any intermediate

configuration T=〈S, H〉 we can use the size of the resultants in the atoms in

H in order to compute an upper bound of its maximal fitness value. In other

words, we simply compile 〈S, H〉, i.e., we obtain an incomplete program out of the

atoms contained in the set of already handled atoms H, and take the size of its

bytecode in order to compute its estimated fitness value. We assume the existence

of a function Sizeb that returns the bytecode size (in disk) of a program P . Also,

remember that the function SP (T), defined in Chapter 5, takes a configuration

T and computes its residual code (see Def. 5.2.8).

Definition 9.2.1 (estimated bytecode fitness function, EFbytecode). Let T be an

intermediate configuration. Then the estimated bytecode fitness of T is defined

as

EFbytecode(T) =
Sizeb(Porig)−Sizeb(Pempty)

Sizeb(SP (T))−Sizeb(Pempty)

The estimated memory fitness function is defined likewise, i.e., EFmemory(T)

= EFbytecode(T).

Theorem 9.2.2. Let T be an intermediate configuration. let FC be a final con-

figuration reachable from T . Then, EFbytecode(T) ≥ Fitbytecode(SP (FC)).

Proof. By definition of the SP procedure, given two final configurations FC1 =

〈∅, H1〉 and FC2 = 〈∅, H2〉, if H1 ⊆ H2 then Sizeb(SP (FC1)) ≤ Sizeb(SP (FC2)).

Given an intermediate configuration T = 〈S, H〉, for any final configuration

FC = 〈∅, H ′〉 s.t. FC is reachable from T , it holds that H ⊆ H ′ since each PCPE-

step always adds elements to H and never deletes elements from it. Therefore,

Sizeb(SP (T)) ≤ Sizeb(SP (FC)). It follows then

EFbytecode(T) =
Sizeb(Porig)−Sizeb(Pempty)

Sizeb(SP (T))−Sizeb(Pempty)
≥ Sizeb(Porig)−Sizeb(Pempty)

Sizeb(SP (FC)−Sizeb(Pempty)
= Fitbytecode(SP (FC)).

155

Thus, the estimated fitness value EFbytecode(T) is guaranteed to be an upper

bound on mfvbytecode(T). In other words, if the size of the compiled incomplete

program resulting from the current configuration T is already larger than the size

of the current best solution, then we can safely prune away the current node and

all of its descendants, since it will be impossible to obtain a program containing

the already visited atoms which is smaller than the best solution found so far.

9.2.2 Estimated Speedup Fitness Function

In the case of Speedup, or for any fitness function that takes execution time of the

residual program into consideration, we need to find an estimated speedup fitness

function EFspeedup s.t. for any intermediate configuration T , EFspeedup(T) is an

upper bound over its maximal fitness value, i.e., EFspeedup(T) ≥ mfvspeedup(T).

In principle, and similarly to the case of Bytecode, we could think of generating

a program PT out of an intermediate configuration T = 〈S, H〉, and running PT to

have an estimation of its execution time, and then compute its estimated speedup

value. This poses a problem, since the partial evaluation algorithm is not devised

in such a way that a consistent program can be obtained for any set of atoms. If

such set of atoms is not closed [85], then the union of the partial evaluations for

the atoms in the set atoms(H) does not correspond to a self-contained program.

The solution we propose in this case is, given an intermediate configuration

〈S, H〉, to close it by using the original predicate definitions (from the program

P being specialized) for all atoms in S, since we do not have a specialized version

for them yet. This allows running the incomplete program.

Definition 9.2.3 (close). Let P be a program, let T = 〈S, H〉 be an intermediate

configuration, let PH = SP (T), and let P|S ∈ P be a set of clauses s.t. (∀Hi ←
B1 . . . Bn ∈ P|S ∃Aj ∈ S . Hi ≈ Aj) ∧ (∀Aj ∈ S ∃Hi ← B1 . . . Bn ∈ P|S . Aj ≈
Hi). Then close(T) = PT = PH ∪ P|S.

Unfortunately, given an intermediate configuration T , and a final configura-

tion FC reachable from T , there is no relationship between Time(close(T)) and

Time(SP (FC)).

To cope with this problem, we can make use of a profiler (see e.g. [32]) which

allows defining cost centers. In our particular environment, we can take advantage

of the profiler included in Ciao [90]. The profiler splits the total execution time

156

iH

iH

iH main:−

q:−

r:−

s:−

t:−

p:−

centers

cost

Figure 9.1: Profiling an Intermediate Configuration (Speedup)

among the different predicates in the program. When a cost center is defined, it

accumulates the execution time of all computations started from such predicate.

Thus, given a intermediate configuration T = 〈S, H〉, we close it obtaining a

program PT , and then we define cost centers for all predicates in P|S plus a cost

center for the main entry (exported predicate) of the program (see Figure 9.1).

Note that such exported atom must belong to H since it is the first atom handled

by Algorithm PCPEall. This way, when running the residual program, the time

reported by the profiler for the main call of PT will not include the time actually

required for atoms which are not in Hi (represented by Hi in Figure 9.1). In

other words, the profiler will split the time spent in predicates of PH and P|S, e.g,

Time(PT) = Time(PH) + Time(P|S). Then, we take Time(PH) as the estimated

execution time of an intermediate configuration. Now we can defined an estimated

speedup fitness function.

Definition 9.2.4 (estimated speedup fitness function, EFspeedup). Let T be an

intermediate configuration. Let PT = close(T). Let Time(PT) be the execution

time of PT returned by a profiler s.t. Time(PT) = Time(PH)+Time(P|S). Then,

the estimated speedup fitness of T is defined as

EFspeedup(T) =
Time(Porig)

Time(PH)
.

Theorem 9.2.5. Let T be an intermediate configuration. Let FC be a final con-

157

figuration s.t. FC is reachable from T . Then EFspeedup(T) ≥ Fitspeedup(SP (FC)).

Proof. Given T = 〈S, H〉 and FC = 〈∅, H ′〉 s.t. FC is reachable from T , it holds

that H ⊆ H ′ since each PCPE-step always adds elements to H and never deletes

elements from it. Therefore, Time(PH) ≤ Time(SP (FC)), since we consider

only the time spent in a subset of the predicates of the final program SP (FC).

It follows then

EFspeedup(T) =
Time(Porig)

Time(PH)
≥ Time(Porig)

Time(SP (FC))
= Fitspeedup(SP (FC)).

Thus, the execution time reported by the profiler for the main entry is, modulo

timing noise, a lower bound of the execution time of any candidate solution

reachable from the current configuration since we are using 0 as an estimate

for the execution of all atoms in Si. Therefore, if EFspeedup is higher than the

best time already found, again there is no point in further expanding the current

configuration, and we can safely prune the corresponding branch.

9.2.3 Estimated Balance and Bounded Size Fitness Func-

tions

If we consider the Balance fitness function, we can simply estimate the upper

bounds of Speedup and Bytecode as above, and apply the balance function to

obtain an approximated fitness value which, as we need, is guaranteed to be an

upper bound of the fitness value reachable from the current state.

Definition 9.2.6 (estimated balance fitness function). Let T be an intermediate

configuration. Let EFspeedup(T) be the estimated speedup fitness value of T and let

EFreduction(T) be the estimated reduction fitness value of T . Then, the estimated

balance fitness of T is defined as

EFbalance(T)=EFspeedup(T)× EFreduction(T)

In the case of the Bounded Size fitness function, we can simply take

an intermediate configuration T , compute its estimated bytecode fitness value

EFbytecode(T), and if this value is already higher than the bound of the size of the

residual program, then we can prune this configuration away, otherwise we com-

pute its estimated speedup fitness value EFspeedup(T), and if this value is higher

than the fitness value of the best solution found so far, then we can also prune T

away.

158

Algorithm 6 BnB-Based PCPE Algorithm (BnB-PCPE)

Input: Program P

Input: Set of atoms of interest S

Input: Set of specialization strategies CS
Output: A partial evaluation Sol

1: i = 0

2: H0 = ∅
3: S0 = S

4: create(Confs); Confs = push(〈S0, H0〉, Confs)

5: Sol = ε

6: Fit = φ

7: repeat

8: 〈Si, Hi〉 = pop(Confs)

9: Ai = Select(Si)

10: Candidates = CS
11: repeat

12: Candidates = Candidates− {〈G, U〉}
13: A′

i = G(Hi, Ai)

14: τi = U(P, A′
i)

15: Hi+1 = Hi ∪ {〈Ai, A
′
i, 〈G, U〉〉}

16: Si+1 = (Si − {Ai}) ∪ {A ∈ leaves(τi) | ∀ 〈B, , 〉 ∈ Hi+1 . B 6≈ A}
17: if Si+1=∅ then

18: 〈Sol, F it〉 = best solution(〈Sol, F it〉, Hi+1)

19: else

20: prune(i,Fit,〈Si+1, Hi+1〉,Confs)

21: end if

22: until Candidates = ∅
23: i = i + 1

24: until empty stack(Confs)

159

Algorithm 7 Selecting the (Temporary) Best Solution

Input: The evaluated current best solution 〈Sol, SolF it〉
Input: A newly found solution H

Output: The evaluated new best solution 〈B, Bfit〉

1: Hfit = evaluate(H)

2: if Sol = ε then

3: 〈B, Bfit〉 = 〈H, Hfit〉
4: else if HFit > SolF it then

5: 〈B, Bfit〉 = 〈H, Hfit〉
6: else

7: 〈B, Bfit〉 = 〈Sol, SolF it〉
8: end if

9.3 A Branch and Bound-Based PCPE Algo-

rithm

Algorithm 6 shows a branch and bound-based PCPE algorithm (BnB-PCPE),

based on the search-based PCPE algorithm PCPEall. The main changes w.r.t.

PCPEall are:

• Algorithm 6 returns only one solution Sol.

• In line 18, best solution takes care of evaluating the just found solution, and

comparing it with the current best one (see Algorithm 7). Note that we

always keep track of the current best fitness value Fit found so far.

• In line 20, pruning takes place through the procedure prune (see Algo-

rithm 8).

Algorithm 7 evaluates a newly found solution, and compares it with the cur-

rent best solution. The first solution found automatically becomes the best cur-

rent solution. In order to determine that no solutions have been found so far we

use the special symbol ε in line 5 of Algorithm 6. We also initialize the current

best fitness Fit to a void value φ. In the actual implementation, there are several

ways to represent this symbol. A possible way to do it is to represent Sol as a

160

Algorithm 8 Branch and Bound Pruning Procedure

Input: A depth level Depth

Input: A fitness value Fit

Input: An intermediate configuration 〈S, H〉
Input: A set of configurations Confs

Output: The evaluated new best solution 〈B, BFit〉

1: if (Depth % D) = 0 then

2: UBound = evaluate(〈S, H〉)
3: if UBound > Fit then

4: push(〈S, H〉,Confs)

5: end if

6: end if

singleton, i.e., a set with a single element. An empty set would mean that no

solution has been found so far.

Finally, Algorithm 8 takes care of pruning intermediate configurations. This

pruning is performed every D levels of depth, so this procedure immediately

returns (and no pruning is performed) if the current depth Depth is not a multiple

of D. In this algorithm, % is the modulo operation, i.e., the remainder after a

numerical division. Note that we evaluate the current intermediate configuration

〈S, H〉 by means of the function evaluate, whose implementation depends on the

current fitness function, as explained in Section 9.2. 〈S, H〉 is pushed on Confs ,

i.e., is not pruned, only if the upper bound UBound of its fitness value is higher

than the current best fitness value. Otherwise is not pushed on Confs , i.e., such

configuration will not be further explored.

Although functions best solution and prune are quite simple and could be in-

lined in Algorithm 6, we represent them separately for the sake of readability.

Also, in order to combine this branch and bound-based pruning with the heuris-

tic pruning defined in Chapter 8, we can simply assign to the set of strategies

Candidates in line 10 the output of the function strategies defined in algorithm 5

of Chapter 8, i.e., line 10 would look like

Candidates =strategies(Ai, Hi, CS)

The algorithm combining both pruning strategies is called HB-PCPE.

161

Benchmark

PCPE

Best PEBnB-

PCPE

HB-PCPE

Predicate Mode

datetime 1.89 1.89 1.90 1.31

nrev 3.65 3.64 3.66 1.98

qsortapp 3.73 2.26 2.58 1.77

contains 4.17 4.17 4.16 3.15

grammar 8.42 8.44 8.44 4.71

groundunify simple 2.96 2.95 2.97 2.95

liftsolve app 1.18 1.17 1.17 1.17

match 1.61 1.61 1.60 1.09

transpose 2.44 2.44 2.46 2.46

Geom Mean 2.85 2.74 2.69 2.05

Table 9.1: Fitness of BnB-based PCPE and Traditional PE

9.4 Experimental Results

With the purpose of assessing the effectiveness of the pruning achieved by these

branch and bound techniques, we compare BnB-PCPE and HB-PCPE against

traditional PE through a series of experiments using the same set of bench-

marks and specialization strategies used in the experiments of Chapter 8, i.e.,

CS ={〈G1, U1〉, 〈G1, U2〉, 〈G2, U1〉, 〈G2, U2〉}, where G1 = hom emb is an ab-

straction operator based on homeomorphic embedding, while G2 = dynamic

abstracts away the value of all arguments. Also, U1 = hom emb aggr and

U2 = hom emb cons are unfolding strategies which are both based on homeo-

morphic embedding s.t. U1 is more aggressive, whereas U2 is more conservative.

The different PCPE algorithms are compared against PE using the combination

of control strategies which achieves the best overall fitness. For these particular

benchmarks the best combination is 〈G1, U2〉.
As a measure of the quality of programs we have used again the fitness function

Balance, given that this is a resource-aware fitness function. Since Balance

takes into account run-times of the residual programs, and there is always some

noise associated to time measurement, times are taken as the arithmetic mean of

ten consecutive runs.

162

Benchmark

PCPE

Best PEBnB-

PCPE

HB-PCPE

Predicate Mode

datetime 16.1 3.0 4.4 21

nrev 7.7 2.1 4.9 14

qsortapp 8.4 2.5 4.9 32

contains 4.4 2.4 4.1 11

grammar 5.0 4.3 4.8 6

groundunify simple 4.0 4.0 4.0 4

liftsolve app 4.3 2.7 4.3 3

match 4.0 2.6 2.6 5

transpose 2.5 2.5 2.5 2

Geom Mean 5.40 2.82 3.95 7.49

Table 9.2: Normalized Size of Search Space

In all tables shown in this chapter, the column BnB-PCPE shows the results

for the PCPE algorithm with branch and bound-based pruning. The next two

columns, under HB-PCPE , show the cases where BnB is combined with two

heuristics:

• column Predicate presents the case where the predicate-consistency heuris-

tics is used, and

• column Mode shows the results where the modes-consistency heuristics is

employed, using the abstraction modesαSD
.

In all our experiments we have set the parameter depth-level to 3. This means

that those configurations which appear at depths 3, 6, 9... are evaluated and

pruned if possible, but not those which are at depth levels not multiples of 3. We

have empirically determined that 3 is an appropriate value for this parameter.

In order to have a global view of the values in the different columns, in all

tables we have included a row Geom Mean with the geometric mean of the values

in the corresponding column.

It should be noted that the specialization queries used in our runs contain

a good amount of static information, and as we have seen in Chapter 7, this

163

Benchmark
BnB-PCPE HB-PCPE

Predicate Mode

datetime 149 18 31

nrev 52 7 25

qsortapp 111 18 50

contains 16 7 15

grammar 12 10 12

groundunify simple 6 6 6

liftsolve app 5 3 5

match 7 4 4

transpose 2 2 2

Geom Mean 16.02 6.57 10.59

Table 9.3: Number of Evaluations Performed

generates a large amount of intermediate configurations. Nevertheless, by using

the branch-and-bound pruning, PCPE has always been able to finish.

9.4.1 Benefits of BPCPE

Table 9.1 shows the fitness values obtained by all approaches. We can see that

PCPE outperforms PE in most cases, achieving a mean fitness value of about

2.76 (vs 2.05 achieved by PE). The ratio PCPE/PE is around 1.34, which indi-

cates that PCPE obtains residual programs which are about 34% better under

the fitness function Balance than those achieved by traditional PE for this par-

ticular set of benchmarks. However, there are some cases where PCPE does not

improve the results of PE because the program of maximal fitness is pure rather

than hybrid. This happens, for example, in transpose and liftsolve app.

Also, it can be seen that when heuristic pruning is applied, it provides results

whose fitness values are identical in most cases to the fitness obtained without

pruning. An exception is qsortapp, where the fitness obtained by BnB-PCPE

(3.73) is considerably larger than that obtained by Predicate-consistent HB-PCPE

(2.26). In turn, this fitness is lower than that obtained by Modes-consistent HB-

PCPE (2.58), which is the only case where the additional accuracy inherent to

the mode-consistency heuristic seems to be of interest. Note that we could not

164

Benchmark

PCPE

Best PEBnB-

PCPE

HB-PCPE

Predicate Mode

datetime 3084 1306 1407 371

nrev 1022 674 847 150

qsortapp 2289 799 1195 116

contains 1092 880 966 267

grammar 1354 1288 1280 290

groundunify simple 819 789 778 121

liftsolve app 793 726 750 145

match 670 614 625 99

transpose 822 808 810 259

Geom Mean 1160.43 847.91 929.95 182.53

Table 9.4: Analysis Times (fitness = Balance)

make this appreciation in Chapter 8, as PCPEall did run out of memory for this

benchmark. Another interesting observation is that BnB-based PCPE allows

handling all considered benchmarks. This is because BnB reduces the search

space significantly, thus avoiding out of memory problems.

9.4.2 Search Space of BnB-based PCPE

Table 9.2 shows the ratios of the number of configurations generated by the Bnb-

based PCPE algorithms w.r.t. those generated by traditional PE. We can see

that BnB-PCPE allows reducing the search space significantly. On average, we

(only) need to explore 5.40 times as many configurations as in traditional PE.

Fortunately, the reduction of the search space achievable by BnB gets along

quite well with the reduction achieved by the heuristics presented in Chapter 8. In

fact, the best result in terms of search space is the combination of BnB+predicate-

consistency, where on average it is only needed to explore less than three times

(2.82) as many states as PE.

As we showed in Algorithm 6, when using branch and bound pruning, only

one solution is obtained, and thus, there is no need for a post-evaluation step (as

165

Benchmark

PCPE

Best PEBnB-

PCPE

HB-PCPE

Predicate Mode

datetime 100928 11298 18032 143

nrev 17351 2148 8542 58

qsortapp 71189 9543 34624 180

contains 5822 2117 5543 82

grammar 6117 5423 6092 59

groundunify simple 2585 2691 2694 13

liftsolve app 2249 1239 2246 30

match 2185 1239 1260 32

transpose 504 507 498 15

Geom Mean 6732.68 2607.32 4449.60 48.00

Table 9.5: Code Generation and Evaluation Times (fitness = Balance)

done in PCPEall). However, in Table 9.3 we show the number of evaluations that

are actually performed during the analysis phase of the BnB-PCPE algorithm,

sometimes on final configurations, sometimes on incomplete configurations in

order to prune them.

Again, the results shown in the table indicate that BnB-based PCPE requires

an acceptable number of evaluations. One important point is that the number

of evaluations performed when using BnB can sometimes be larger than when

it is not. This is because in the case of BnB, also intermediate configurations

can be evaluated. If little pruning is achieved, then more evaluations are needed.

However, this will often be compensated by pruning, which reduces the number

of configurations to be explored and of final solutions to be evaluated. All in all,

we believe that the results shown in Table 9.2 and 9.3 are indeed quite promising

and show that the search space and the number of evaluations required by PCPE

are manageable, when the proposed pruning techniques are applied.

166

Benchmark

PCPE

Best PEBnB-

PCPE

HB-PCPE

Predicate Mode

datetime 104012 12604 19439 514

nrev 18373 2822 9389 208

qsortapp 73479 10342 35819 296

contains 6914 2997 6509 349

grammar 7471 6711 7372 349

groundunify simple 3404 3480 3472 134

liftsolve app 3042 1965 2996 175

match 2855 1853 1885 131

transpose 1326 1315 1308 274

Geom Mean 8695.90 3266.22 4362.44 267.37

Table 9.6: Total Specialization Times (fitness = Balance)

9.4.3 Time Cost of BnB-based PCPE

In the BnB-based PCPE algorithm, the analysis, code generation, and evaluation

phases are no longer sequential, but they are interleaved. In order to show the

time spent in each of them, we discriminate the time spent in evaluating both

intermediate and final configurations during analysis, and show this information

in Table 9.5. Note that code generation is also included in this table since it is

required to generate code prior to evaluating a configuration. Traditional PE, on

the other hand, lacks of an evaluation phase, but still requires some code gener-

ation, so the corresponding time is shown on the rightmost column of Table 9.5.

The rest of analysis time is shown in Table 9.4.

When considering analysis times, especially in the case of HB-PCPE, PCPE

performs a bit over 4 times slower than PE. However, in order to perform pruning,

several intermediate configurations must be evaluated, and this time is indicated

in Table 9.5. The total specialization times are shown in Table 9.6. As can be

seen, BnB-based PCPE is an order of magnitude slower than traditional PE.

However, given that achieves specialized programs of much better quality, we

believe that this time is no obstacle to use PCPE, especially when looking for

resource-aware specialized programs.

167

168

Chapter 10

An Oracle-Based Poly-Controlled

Partial Evaluation Approach

As seen in Chapter 7, when poly-controlled partial evaluation is implemented as

a search-based algorithm, there is a large growth of the search space. This growth

depends on factors such as the aggressiveness of the local control rules used, the

number of specialization strategies chosen, and the amount of static data provided

to the partial evaluation algorithm. In this chapter we investigate the possibility

of using an oracle who decides which is the most promising specialization strategy

for each call pattern based on the specialization results for such call patterns using

the different strategies. All other branches in the tree are pruned away.

For example, let us take the motivating example of Section 5.1.1, defined

in Listing 5.9. In Figure 10.1 we show its PCPE-tree. In this case, the best

specialized program according to the fitness function Balance is obtained from

the final configuration S3. Thus, the oracle should be able to tell us: in T1,

after specializing using the two specialization strategies, the most promising state

between T2 and S5 is T2. Then, between T3 and T4, the latter is preferable. Then,

T6 is preferable to S4. Finally, from T6 we can only reach S3.

The benefits of building such an oracle are twofold, since a single specialized

program would be computed. First, we do not spend time generating multiple

specialized programs. Second, as in the case of PE, we do not need an evaluation

phase, which can be very costly. However, this approach can only be useful in

practice if the oracle makes good decisions, since some of the specialized programs

obtained by PCPE outperform PE, but others produce bad results.

169

T2

T1

T3 T4

T5 T6

T7

S4

S1

S2 3S

S5

nll

nl

l

Q=3.7

{p(X)}

{}

{q(X)}
{p(X)}

l

{q(X)}

{exp_ac(0),p(X)}

Q=−6.2

l nl

Q=−8.9 Q=−23.4

nl

l nl

nl
l

nl

o=<7,0,5,4.0,0>

{}

{}

{}

{}

l

o=<13,4,15,8.0,0>

Fit=1.00 (0.82x1.22)

Fit=1.80 (1.49x1.21)

Fit=2.33 (2.01x1.16)

Fit=1.63 (1.61x1.01)

Fit=1.20 (1.15x1.04)

o=<3,2,0,1.3,8>

o=<1,2,0,0.6,6> o=<3,2,0,0.4,0>

Q=−10.7
o=<1,0,0,1.0,6>

Q=−9.4

{main}

{exp_ac(1),p(X)}

Figure 10.1: PCPE tree for program 5.9

We introduced an empirical oracle whose parameters are approximated from

a set of training data. Such data is gathered from a set of calibrating examples

and converted into a constraint logic program. Our experimental results show

that specialization based on our empirical oracle introduces a constant overhead

factor w.r.t. PE, while obtaining significantly better specialized programs.

10.1 Oracle-Based PCPE

The central idea behind Oracle-based PCPE (O-PCPE) is to traverse only one

complete PCPE-path of a PCPE-tree. Note that, by doing so, we cannot always

guarantee that we are traversing a PCPE-path of maximal fitness, since we need

to compute all solutions to be sure we are making perfect decisions. For this,

170

given a configuration and a set of specialization strategies CS, we generate all of

its children using each specialization strategy in CS, and choose the most promis-

ing child according to some oracle that uses information from the specialization

process of each child.

Ideally, O-PCPE should always traverse PCPE-paths of maximal fitness. In

practice, this depends on how appropriate the oracle function is w.r.t. the fitness

function considered.

Definition 10.1.1 (oracle). Let P be a program. Let T be a configuration. Let

CS ∈ CS be a specialization strategy s.t. CS(T) = τ . An oracle is a function

which receives as input T , τ and P and returns a number Q ∈ IQ. This is denoted

Q= oracle(T, τ, P).

A perfect oracle always obtains a solution of maximal fitness value.

Definition 10.1.2 (perfect oracle). Given a fitness function F , an oracle func-

tion oracle is perfect w.r.t. F if for any configuration T ,

(T ;CSi
Ti ∧ T ;CSj

Tj) ∧
(oracle(T, CSi(T), P) ≥ oracle(T, CSj(T), P))⇒

mfvF (Ti) ≥ mfvF (Tj)

Finding a perfect oracle function will in general be impossible since the in-

formation available to the oracle is not quite enough in order to make perfect

decisions. However, as our experimental results show, good results can be ob-

tained without a perfect oracle function.

Since the oracle can rank two children with the same value, we impose an

order on the generated children of a given configuration, by using a sequence of

specialization strategies instead of a set. We can then use this order to break any

possible tie.

We define now a function mpchild, which chooses a most promising child out

of a sequence of children configurations. In case of a tie, mpchild selects the first

configuration in the sequence having the highest Q value.

Definition 10.1.3 (mpchild). Let T be a configuration. Let CS =CS1 : . . . : CSm

be a sequence of specialization strategies. Let T = T1 : . . . : Tm with T ;CSi
Ti

be the children of T . Let T ′ = Ti1 : . . . : Tin be the maximal sub-sequence of T s.t.

171

∀Tij ∈ T ′ oracle (T, CSij(T), P) = Q and ∀Tk ∈ T oracle (T, CSk(T), P) ≤ Q.

Then Ti1 is the most promising child of T , denoted Ti1 = mpchild(T).

In O-PCPE, steps are deterministic: only the most promising child is ex-

panded.

Definition 10.1.4 (O-PCPE-step). Let T be a configuration. Then an O-PCPE-

step for T generates a new configuration T ′ s.t. T ′ = mpchild(T).

O-PCPE receives as input a program P , a set A of atoms describing the initial

call patterns, a sequence CS of specialization strategies, and a selection function

TakeOne. It starts by building an initial configuration 〈A, ∅〉, and then performs

a series of O-PCPE-steps until a final configuration T = 〈∅, H〉 is reached, i.e.,

it traverses a complete PCPE-path, therefore generating only one specialized

program P ′ = SP (T).

10.2 An Empirical Oracle using a Linear Model

We now propose an oracle model which makes the problem of empirically deter-

mining an oracle function tractable. Furthermore, using this model, we obtain

oracle functions which can be executed efficiently. This is important since during

the specialization process the oracle is applied many times.

We propose to decompose the oracle function into two parts. The first one

corresponds to computing the numerical value of a vector of observables, which

should capture the relevant information about the specialization process. For this

we use an auxiliary function quantify, which takes as input a configuration T , an

SLD tree τ , and a program P and extracts the numeric value corresponding to

each observable, denoted o = quantify(T, τ, P). The second part corresponds to

the oracle function proper, which returns a numerical value as a function of the

values of the observables.

10.2.1 Useful Observables for Resource-Aware Specializa-

tion

Since the oracle function will make its decisions based on the values of the ob-

servables, the practical success of O-PCPE has as prerequisite determining the

172

right set of observables for the considered fitness function. Those aspects of the

specialization process which have a lot of impact on the quality of a specialized

program should be considered. Otherwise, the oracle will not be able to make

good decisions. In our case, as an example of a resource-aware specialization

policy, we consider the fitness function Balance, which takes into account both

the time and space efficiency of the specialized program PT w.r.t. the original

program P . Thus, the observables considered should somehow take these two

factors into account.

Fig. 10.1 shows, next to each final configuration, the fitness value of the spe-

cialized program obtained from it, and also shows, in parentheses, the speedup

and reduction values. In all our experiments we consider the following observ-

ables, where the first three ones are mostly related to time efficiency, and the last

two to space efficiency:

D: The number of derivation steps that have been performed during unfolding

and thus no longer need to be performed at runtime.

E: The number of evaluation steps that have been performed during unfolding.

This indicates the number of calls to builtins and library predicates which

have been evaluated [106] at specialization-time.

N: The number of atoms whose computation is replicated in several clauses as

a result of non-deterministic non-leftmost unfolding. It is well-known that

non-leftmost unfolding can increase the amount of computation required,

by replicating the computation of atoms to the left of the selected one.

C: An estimation of the growth of the residual code, computed as a factor

between the size (using a variation of the term size metrics [33]) of the

specialized code for the selected atom A and the size of the original definition

of the predicate pred(A).

S: An estimation of the code size for the atoms added to S as a result of the

last O-PCPE-step. Since no specialized code is available for these atoms,

we use their original definition in P as an estimate of their size.

In most existing specialization strategies, which are focused on time efficiency,

observables C and S are not explicitly handled and most heuristics aim at maxi-

mizing D and E while keeping N with the value zero. Observable S is an example

173

of information which is just partial when applying the oracle: in order to obtain

a covered program, the code for the new atoms in S may in turn need including

code for other atoms not yet covered. Perfect information can only be determined

by actually expanding the PCPE-tree and observing it a posteriori.

Example 10.2.1. Given the tree in Fig. 10.1, the value of the observables

〈D, E, N, C, S〉 which correspond to T1 ;〈h,l〉 T2 is 〈3, 2, 0, 1.3, 8〉. This is be-

cause 3 derivation steps have been performed during unfolding of main(A,B,C)

with the l rule (leftmost), and 2 calls to builtins have been evaluated. In this case,

as well as in all configurations obtained by applying l, the value of N is 0, since

l only performs leftmost derivation steps. The growth of the residual code w.r.t.

the original definition of main/3 is 1.3, and the estimation of the size of the code

associated to the atoms exp ac(1) and p(X) added to S is 8. Furthermore, in

the case of T1 ;h,nl S5, the vector is 〈13, 4, 15, 8.0, 0〉 because nl has performed 13

derivation steps and 4 evaluation steps. However, it replicates 15 atoms by doing

non-deterministic non-leftmost unfolding. The growth of the residual code w.r.t.

the original definition of main/3 is 8.0 and S = 0 since no new atoms appear in

the resultants.

Measuring the Size of Terms

Various measurements can be used to determine the “size” of the terms appearing

in the head and body of a given clause. We have implemented two measurements

for terms, namely term count and term size.

Definition 10.2.2 (term count). Let t be a term. Then term count(t) = 1

As can be seen, term count simply assigns 1 to any term, without considering

its internal structure. A more precise measurement is term size, adapted from

[33].

Definition 10.2.3 (term size). Let t be a term. Then

term size(t) =

{
1 if var(t)

1 +
∑n

i=1 term size(ti) if t = f(t1, . . . , tn), n ≥ 0

Now we can define the size of a clause.

174

Definition 10.2.4 (size of a clause). Let C = H ← B1 . . . Bn be a clause. Then

its size under a measurement m is defined as

sizem(C) = sizem(H) +
n∑

i=1

sizem(Bi)

10.2.2 A Linear Model for the Oracle

In order to simplify our oracle model as much as possible, we will restrict ourselves

to linear oracle functions.

Definition 10.2.5 (linear oracle function). Let o = 〈o1, . . . , on〉 be an observable

vector. A linear oracle function oracle receives o as input and returns a numeric

value Q ∈ IQ which is defined as

Q = oracle(o) =
∑

i∈{1,...,n}

ki × oi

where k = 〈k1, . . . , kn〉 is a vector of oracle constants, ki ∈ IQ.

To obtain a vector of oracle constants to be used with a given fitness function F ,

we build complete PCPE-trees, compute the mfvF of all nodes, and then use this

information as training data. For this, O-constraints are generated.

Definition 10.2.6 (O-constraint). Let F be a fitness function and T a configu-

ration. Let T1 and T2 be two children of T s.t. T ;CS1 T1 and T ;CS2 T2. Let

o1 = quantify(T, CS1(T), P) and o2 = quantify(T, CS2(T), P).

Then the O-constraint for the pair (T1, T2) is oracle(o1) R oracle(o2), where

mfvF (T1) R mfvF (T2), R ∈ {<, =, >}.

Given a PCPE-tree Tree, we use C(Tree) to denote the set of O-constraints

which can be obtained from Tree. The cardinality of C(Tree) is usually quite large:

for each intermediate node T in Tree with p children we can build
(

p
2

)
constraints

for T . Thus, for a realistic tree Tree it is not possible to find a vector of oracle

constants which allow satisfying all constraints in C(Tree) simultaneously. There

are several reasons for this. First, we have restricted ourselves to linear functions.

It could be the case that there exists a non-linear oracle function which satisfies

all constraints. However, the advantage of linear functions is that there exist

175

tools capable of handling them, whereas inferring non-linear functions is a rather

complicated task. Second, as already mentioned, a perfect oracle function does

not exist in general, since it has to make decisions based on partial information,

i.e., without expanding the complete tree below the current node.

We can formulate the process of finding a vector of oracle constants as a

Maximum Constraint Satisfaction Problem (Max CSP) [23]. I.e., though the

set of O-constraints is unsatisfiable, the goal then is to find a vector of oracle

constants that maximizes the number of satisfied constraints in C(Tree).

Unfortunately, the cardinality of C(Tree) is large in general, and finding an

optimal solution to this Max CSP problem is quite costly. A simpler model

results from collecting only (some of) the O-constraints occurring in a PCPE-

path of maximal fitness.

Definition 10.2.7 (step-constraint). Let T be a configuration. Let CS = CS1 :

. . . : CSm. Let T1 : . . . : Tm be the children of T with T ;CSi
Ti. Let Ti =

mpchild(T). Then a step-constraint for T is

∧
j=1..m∧j 6=i

oracle(oi) ≥ oracle(oj)

Example 10.2.8. In the PCPE tree of Fig. 10.1, we have labeled some arcs with a

vector o = 〈D, E, N, C, S〉 containing the actual values the function quantify would

return, and with the value Q computed for each vector o by using the empirical

linear oracle function oracle we have obtained in our experiments.

As can be seen in the figure, the PCPE-path traversed by O-PCPE would be

T1 ;〈h,l〉 T2 ;〈h,nl〉 T4 ;〈h,l〉 T6 ; S3, which coincides with the solution of

maximal fitness value S3, since −8.9 ≥ −23.4, 3.7 ≥ −6.2, and −9.4 ≥ −10.7.

Also, an example of O-constraint generated for the pair (T2, S5), using the

simplified linear model defined above, would be:

3×D+2×E +0×N +1.3×C +8×S ≥ 13×D+4×E +15×N +8×C +0×S,

since mfvF (T2) ≥ mfvF (S5), F= Balance. This is also a step-constraint for T1.

By collecting only those step-constraints in a PCPE-path of maximal fitness

we have an instance of a Max CSP that is more tractable than the original

model that considered all O-constraints in a complete PCPE-tree.

176

In order to calibrate the oracle constants, we have used as calibration bench-

marks those used in Chapters 8 and 9. The reason for this is that they are a rep-

resentative set of PCPE examples for which it is possible to compute the complete

PCPE tree. Basically, for each benchmark we collect a set Cj of step-constraints.

Then, we enumerate all possible subsets C ′ji ⊆ Cj and input each C ′ji to a Con-

straint Logic Programming solver1, larger subsets first, until we find a maximal

satisfiable subset C ′ji for each benchmark and its solution kj = 〈kj1, . . . , kjn〉.
After collecting a set {k1, . . . , kp} of oracle constants, one for each of the cal-

ibration benchmarks, we normalize the value of each vector kj by forcing the

absolute value of the first constant kj1 (in our case corresponding to the observ-

able D) to be 1 (written |kj1| = 1). This is done by multiplying all constants

kj1, . . . , kjn in each vector by 1/|kj1|. Note that this is a correct transformation

since by multiplying a vector by a constant greater than zero, all constraints

which were satisfied are again satisfied. Finally, the calibrated oracle constants

result from computing the arithmetic mean over each normalized constant kji.

10.3 An Oracle-Based PCPE Algorithm

Algorithm 9 shows an oracle-based poly-controlled partial evaluation algo-

rithm (O-PCPE). In each iteration of the algorithm, an atom Ai is selected from

Si (line 3). Then, we apply all specialization strategies to Ai (lines 8 and 9).

This builds a SLD-tree τ for A′
i, a generalization of Ai as determined by G, using

the unfolding rule U . The atoms in the residual code for A′
i, are collected by the

function leaves (line 11). Those atoms in leaves(τ) which are not a variant of

an atom handled in previous iterations of the algorithm are added to the set of

atoms to be considered (S).

After building a child 〈S, H〉 (lines 10 and 11), the oracle evaluates it based on

the values of a set of implementation-dependant observables, and a fitness function

F , assigning a quality value Q to it (line 12).

All (evaluated) children configurations are stored in a set Confs , together with

their quality value Q. Then, the most promising child is extracted by the function

best, while the rest of configurations are discarded.

1We have used the clpq solver available in Ciao [17].

177

Algorithm 9 Oracle-based PCPE algorithm O-PCPE
Input: Program P

Input: A function oracle

Input: Set of atoms of interest S

Input: Sequence of specialization strategies CS
Output: A partial evaluation for P and S, encoded by Hi

1: i = 0, H0 = ∅, S0 = S

2: repeat

3: Ai = TakeOne(Si)

4: Confs = ∅
5: Strategies = CS
6: repeat

7: Strategies = Strategies− {〈 G, U〉}
8: A′

i = G(Hi, Ai)

9: τ = U(P, A′
i)

10: H = Hi ∪ {〈Ai, A
′
i, 〈G, U〉〉}

11: S = (Si − {Ai}) ∪ {B ∈ leaves(τ) | ∀ 〈A, , 〉 ∈ H . B 6≈ A}
12: Q = oracle (〈S, H〉, τ)

13: Confs = Confs ∪{(〈S, H〉, QF)}
14: until Strategies = ∅
15: 〈Si+1, Hi+1〉 = best(Confs)

16: i = i + 1

17: until Si = ∅

10.4 Experimental Results

We have run a series of experiments in order to both evaluate the quality of the

specialized programs obtained by means of O-PCPE and to compare the cost of

this approach w.r.t. other specialization techniques.

We have used four specialization strategies, i.e., CS =CS1 : CS2 : CS3 : CS4

with

CS1 = 〈hom emb, df hom emb as〉,
CS2 = 〈hom emb, det〉,

178

Benchmark LOC Size PE (CS1) HB-PCPE O-PCPE

contains 36 5549 2.76 3.63 3.76

datetime 282 17689 1.17 2.17 2.15

grammar 81 11831 8.10 15.21 15.38

liftsolve 97 7111 1.11 1.24 1.11

match 24 4781 0.54 0.95 0.98

nrev 25 4623 0.62 1.06 1.03

qsortapp 39 5390 0.55 1.04 1.06

transpose 33 5005 2.75 2.79 2.75

Geom Mean 55.93 6863.38 1.40 2.14 2.12

Table 10.1: Quality of Specialized Programs (Calibration Benchmarks)

CS3 = 〈dynamic, df hom emb as〉, and

CS4 = 〈dynamic, det〉.
More details on these abstraction operators and unfolding rules are found in

Chapter 3.

The first phase of the experiments involves obtaining an empirical oracle func-

tion. For this, we have used the same benchmarks as in Chapters 8 and 9 and

have executed HB-PCPE over them using the set CS mentioned above. During

the second phase, we have used a set of benchmark programs not included in the

set of calibrating benchmarks, since we are interested in knowing whether our

oracle function obtains good results for arbitrary programs.

10.4.1 Using our Model within the Calibration Set

Table 10.1 compares the quality of the specialized programs obtained when spe-

cializing the calibration benchmarks using different specialization approaches. In

order to compare specializations, we use the fitness value of the (best) solution

found by each approach using the fitness function Balance.

Three different approaches to specialization have been considered. The first

one is traditional partial evaluation (column PE (CS1)). In order to make the

comparison as fair as possible, we have run PE using all specialization strate-

gies in CS over the calibration benchmarks, and chosen the one having the best

179

overall fitness value. In this case, the winning specialization strategy was CS1.

The second approach considered is the optimized search-based PCPE (HB-PCPE)

presented in Chapter 9, which performs pruning of the search space based on a

combination of heuristics and branch and bound techniques (column HB-PCPE

). The third approach is the Oracle-based PCPE (O-PCPE) introduced in this

chapter (column O-PCPE). For each benchmark, we show the number of lines of

code (column LOC) and the size of the compiled bytecode (column Size).

As can be seen in Table 10.1, the overall fitness value of the solutions found

by HB-PCPE (2.14) is around 53% better than that of traditional PE (1.40) for

the best specialization strategy. This is mostly due to the fact that, as already

mentioned, PE has been devised with time efficiency in mind, and can sometimes

result in a code explosion. This is usually acceptable if only time-efficiency is

considered (although sometimes can slow down programs due to cache miss ef-

fects), but it is harmful for resource-aware program specialization. Regarding

O-PCPE, we can see that it obtains an overall fitness value (2.12) which is almost

as good as the one obtained by HB-PCPE. It should be noted that balance takes

time measurements into account, which may introduce some noise in the fitness

values. This causes that, for some benchmarks (e.g. contains and grammar), O-

PCPE seems to obtain higher fitness values than the ones obtained by HB-PCPE.

To minimize this effect, fitness values in all tables result from averaging several

runs of the generated solutions. This table indicates that O-PCPE behaves al-

most perfectly when specializing the calibration benchmarks. It is important to

note that the aim of the empirical oracle function is not to be a perfect oracle

function within the calibration benchmarks, but rather to behave well for arbi-

trary programs. In fact, it would be relatively simple to build an oracle which

can reproduce PCPE-paths of maximal fitness for the calibration benchmarks, by

simply memoizing PCPE-paths of maximal fitness previously selected. Instead,

we build a general oracle function which is applicable to any program.

In addition to evaluating the benefits of O-PCPE, it is also important to evalu-

ate the cost of PCPE, since this is the main drawback of the previous approaches

to PCPE. In order to compare the cost of the different approaches to program

specialization considered, Table 10.2 shows, for each approach, the number of

configurations generated for each benchmark, and in the case of O-PCPE, some

additional data. The row Overall shows the geometric mean computed over the

180

Benchmark PE (CS1) HB-PCPE
O-PCPE

Confs Path Ties

datetime 21 75 16 6 0

nrev 14 56 8 4 0

qsortapp 32 142 12 4 0

contains 11 1515 27 10 0

grammar 6 1550 41 14 1

liftsolve app 3 1188 70 30 0

match 5 49 8 4 0

transpose 2 21 9 4 0

Overall 8.1 190.2 17.2 7.4 1.43%

Table 10.2: Number of Configurations and Details on Specialization (Calibration

Benchmarks)

different benchmarks. As can be seen, the number of configurations generated

by HB-PCPE (190.2) is over 23 times larger than the number of configurations

generated by traditional PE (8.1) even when all the techniques for pruning the

search space of PCPE presented in Chapters 8 and 9 are applied. In fact, this is

the main problem the search-based PCPE approach must cope with, since it not

only affects time performance, but also the number of configurations is so large

that in many cases HB-PCPE runs out of memory.

In contrast, the number of configurations generated by O-PCPE is bounded by

the length of the PCPE path chosen by the oracle multiplied by the cardinality

of CS (in our case, four). However, it is important to note that, as can be seen in

the table, at least in our experiments, the number of configurations generated by

O-PCPE (17.2), as shown in column Confs under O-PCPE , is slightly more than

twice as many (instead of four times as many) configurations as traditional PE

(8.1). There are several reasons for this. One is that the best solution under the

Balance fitness function tends to have fewer predicates in the residual code,

which implies that the path traversed is shorter. This can be observed in the

column Path, which indicates the length of the PCPE-path which overall is

smaller (7.4) than that of PE (8.1). Another reason for this is that, for efficiency,

abstraction functions are applied first in the implementation, and then we unfold

181

Benchmark
PE (CS1) HB-PCPE O-PCPE

Tot Spec Code Eval Tot Tot

datetime 436 352 723 1518 2594 378

nrev 183 143 193 770 1106 129

qsortapp 341 293 1131 2084 3508 152

contains 258 4418 13360 12893 30671 272

grammar 205 5030 77762 67339 150131 327

liftsolve app 190 3476 7742 21227 32445 357

match 136 159 253 1146 1558 110

transpose 130 139 73 543 755 129

Geom Mean 216.7 631.4 1482.7 3595.6 6038.7 206.7

Table 10.3: Total Specialization Time in msecs. (Calibration Benchmarks)

those generalized atoms which are different. This means that if after abstracting

we obtain two identical generalized atoms, only two children configurations will

be generated, instead of four.

Another aspect which we consider important to evaluate in our experiments,

is the number of times the oracle returns the same value for two children. This

is shown in the column Ties. If this number were too high, it would probably

indicate that the set of observables chosen does not convey enough information,

and the possibility of choosing the wrong path would increase. Fortunately, for

the calibration benchmarks this happens only in 1.43% of the total number of

decisions taken.

Finally, Table 10.3 shows the total specialization times (in msecs) of the dif-

ferent approaches. In the case of HB-PCPE, the total time is split in the different

phases of the specialization: time spent doing partial evaluation (Spec), time

spent in code generation (Code), and time spent evaluating all generated solu-

tions in order to choose the best one (Eval). All experiments have been run using

Ciao 1.13 over a 2.6 Linux kernel, on a Pentium IV 3.4GHz CPU, with 512Mb

of RAM. As noted in Chapter 9, if we only consider the time spent doing par-

tial evaluation and code generation, then HB-PCPE takes an order of magnitude

more time than traditional PE. The evaluation step required by HB-PCPE is the

most costly step, and its cost depends on the particular fitness function being

182

Benchmark

PE (CS1) O-PCPE

Spec Code Tot Spec Code Tot

datetime 270 166 436 277 101 378

nrev 118 65 183 118 11 129

qsortapp 141 200 341 134 18 152

contains 169 90 258 182 90 272

grammar 140 65 205 233 94 327

liftsolve app 160 30 190 304 53 357

match 98 38 136 98 12 110

transpose 112 18 130 113 16 129

Geom Mean 144.2 63.5 216.7 167.6 33.8 206.7

Table 10.4: Specialization Time in msecs. (Calibration Benchmarks)

used. If time performance is being measured, then the generated solutions must

be run several times with some sample queries in order to take significant time

measurements.

Fortunately, O-PCPE is a greedy approach generating only one solution, and

thus, the evaluation step is no longer needed. In Table 10.4 we show the total

specialization times (in msecs) of PE and O-PCPE, split into time spent doing

partial evaluation (Spec), and time spent in code generation (Code). We can

see that the partial evaluation phase takes a bit longer than in the case of tra-

ditional PE (167.6 msecs. vs 144.2 msecs.), but on the other hand, the code

generation phase takes less time since usually, as already discussed, PCPE paths

traversed by O-PCPE are shorter than those traversed by traditional PE when

using specialization strategy CS1. Thus, the total time required by O-PCPE is

competitive, in fact slightly smaller (206.7 vs 216.7), with the time required by

PE when using CS1.

10.4.2 Using our Model for Other Programs

Table 10.5 shows the benchmarks used in the second phase of our experiments.

Some of these programs are actual libraries from existing Prolog systems, and

most of them contain several hundred lines of source code, as shown in column

183

Benchmark LOC Size

analysis 343 39985

boyer 407 36619

browse 119 12579

credit 264 16932

exponential peano 34 5639

groundunify simple 78 10164

prolog read 396 28300

qplan 397 37512

vanilla db 110 13395

Mean 238.67 22347.22

Table 10.5: Benchmarks for experiments

LOC. In this table, column Size shows the size of the compiled bytecode of each

benchmark.

Table 10.6 compares the quality of the specializations obtained in terms of

the fitness value (using Balance) of the (best) solution found by each approach.

In order to be as fair as possible, this time we compare both PCPE approaches

(HB-PCPE and O-PCPE) using CS against traditional PE using all specialization

strategies in CS.

For each benchmark, we specify in bold the fitness value of the winning special-

ization strategy using PE. These values are not very high in several benchmarks.

This is mainly because not much static data is available for such benchmarks. By

looking at this table it seems that, at least for the Balance fitness function, there

is no single specialization strategy which allows consistently obtaining good re-

sults. For instance, if we look at CS1, which was the winning strategy for the cal-

ibration benchmarks, we see that in some cases it produces specialized programs

that are considerably better than the original program—groundunify simple

(5.76) and vanilla db (32.21)—while in most cases it obtains specialized pro-

grams that are worse than the original program (fitness values below 1).

An interesting case is analysis. The original program has 343 lines of code,

the program obtained by CS1 has over 38000 lines of code, and its compiled

bytecode is over 5Gb. This is because df hom emb as is an aggressive unfolding

184

Benchmark
PE HB-

PCPE

O-

PCPECS1 CS2 CS3 CS4

analysis 0.0001 0.69 0.02 1.03 - 1.19

boyer 0.33 0.52 0.59 0.99 1.04 1.01

browse 0.78 1.76 2.21 2.55 2.65 2.57

credit 1.64 1.39 0.72 1.37 - 1.81

exponential peano 0.55 0.86 0.57 0.96 0.95 0.86

groundunify simple 5.76 4.63 0.27 1.01 - 6.04

prolog read 0.08 0.10 0.94 0.96 - 5.09

qplan 0.84 0.84 1.02 1.04 - 0.99

vanilla db 32.21 1.09 32.39 1.02 36.61 32.50

Geom Mean 0.40 0.88 0.77 1.15 - 2.56

Table 10.6: Quality of Specialized Programs

rule and it tries to unfold as much as possible, in this case resulting in code

explosion, which is harmful in resource-aware program specialization. Indeed,

the fitness value for this benchmark is so low that the geometric mean computed

over all benchmarks but analysis is 1.14 (vs 0.40).

By looking at the overall results (row Geom Mean), it seems that the best

specialization strategy for dealing with these benchmarks is CS4. However, this is

a quite conservative specialization strategy, generating a PE specialized program

that is similar to the original program, without benefitting from the static infor-

mation provided to the specializer. Thus, for many of the benchmarks, fitness

results using CS4 are close to 1, as observed in the table, with the exceptions of

browse and credit.

On the other hand, HB-PCPE runs out of memory for several benchmarks,

indicated with “−” in the table. As a result, we do not compute its geometric

mean.

Finally, O-PCPE performs well in most cases, finding specialized programs

that are, in average, 2.56 times better than the original one, as indicated in the

Geom Mean row, and consistently similar or slightly better than the program

obtained by the best PE, with a couple of exceptions:

• In the case of exponential peano, the specialized program is worse than

185

Benchmark PE CS1 PE CS4

O-PCPE

Confs Path Ties

analysis 334 54 227 77 2

boyer 83 32 44 15 7

browse 15 11 14 6 0

credit 28 25 82 32 3

exponential peano 8 7 18 8 0

groundunify simple 8 13 59 22 0

prolog read 184 48 212 54 6

qplan 53 51 161 49 3

vanilla db 7 4 19 10 0

Overall 33.9 19.6 58.4 21.6 7.69 %

Table 10.7: Number of Configurations and Details on Specialization

that achieved using CS4. This is an indication that for this benchmark, our

empirical oracle function has not made perfect decisions.

• The other exception is prolog read, where the program obtained by O-

PCPE is considerably better than any of the four programs obtained by PE,

which in all cases have a fitness below 1.

The later is an indication that O-PCPE allows obtaining hybrid solutions which

are not achievable using any of the specialization strategies in isolation, and which

outperform the solutions of PE. Note also, that if we decide to use PE with

several specialization strategies, we would again need to introduce an evaluation

step much in the same way as in HB-PCPE and which is not needed in O-PCPE.

Finally, it is worth mentioning that O-PCPE outperforms PE using any of the

four specialization strategies in isolation by a factor of 2.22 or higher.

Regarding the cost of O-PCPE, Table 10.7 shows the number of configurations

generated by PE and O-PCPE for each benchmark, and in the case of O-PCPE,

some additional data. We no longer include HB-PCPE, since as already seen in

Table 10.6, it runs out of memory in several of the benchmarks and it is an alter-

native only when the quality of the specialized program is of much importance,

and the PCPE tree has a moderate size.

186

Benchmark
PE CS1 PE CS4 O-PCPE

Tot Tot Spec Ora Code Tot

analysis 38219 721 13612 1254 339 13951

boyer 11374 14748 11037 25 203 11240

browse 658 915 623 4 50 673

credit 399 429 492 26 161 653

exponential peano 139 181 110 2 23 133

groundunify simple 158 238 208 10 52 260

prolog read 2728 711 1839 438 616 2455

qplan 811 1228 642 81 447 1089

vanilla db 12246 227 15675 7 3714 19389

Geom Mean 1597.5 690.0 1391.8 28.5 206.3 1708.5

Table 10.8: Specialization Time

The row Overall shows the geometric mean computed over the different

benchmarks, except for the column Ties, which is discussed below. In order

not to complicate the presentation too much, the comparison is against PE using

CS1 and CS4 only, denoted PECS1 and PECS4 respectively, since the former is

the most aggressive specialization strategy (and the winning strategy in the cal-

ibration bencharks), while the latter is the most conservative one (and also the

one obtaining the best fitness values in Table 10.6).

It can be seen in the table that the number of configurations generated by O-

PCPE (58.4), as shown in column Confs under O-PCPE, is slightly less than twice

as many configurations as PECS1 (33.9), and three times as many configurations

as PECS4 (19.6). Regarding the lenght of the PCPE-path (column Path) we can

see that the overall of O-PCPE is smaller (21.6) than that of PECS1 (33.9) and

quite similar to that of PECS4 (19.6). Column Ties shows the number of times

the oracle returns the same value for two children. For these benchmarks, this

happens only 7.69% of the total number of decisions taken.

Finally, Table 10.8 shows the total specialization times (in msecs) of both PE

(using CS1 and CS4) and O-PCPE. In the case of O-PCPE, total specialization

time (in columns Tot) is split into time spent doing partial evaluation (column

Spec), time spent during code generation (column Code), and the time spent by

187

the oracle when selecting the most promising child configuration (column Ora).

We can see that the total specialization time of O-PCPE (1708.5) is quite

similar to that of PECS1 (1597.5), and 2.47 times higher than that of PECS4

(690.0). These times are consistent with the number of configurations which

need to be generated in the different approaches, plus the cost of code generation.

An important point to mention is that the cost of PCPE represents a constant

overhead factor w.r.t. PE. Such factor is directly proportional to the cardinality

of CS. For aggressive strategies, such as CS1, the cost of PCPE is quite close to

that of PE.

Also, we can see that the time spent by the oracle (28.5) is negligible when

compared to the total specialization time (1708.5).

188

Part V

Poly-Controlled Partial

Evaluation: Implementation

189

Chapter 11

Guidelines for the Use of PCPE

11.1 Integration of Poly-Controlled Partial Eval-

uation into CiaoPP

All of the work described in this thesis has been implemented in the program

development system Ciao [17], and integrated into CiaoPP [20, 55, 19], the pre-

processor of Ciao.

Ciao is a multi-paradigm programming system, allowing programming in

logic, constraint, and functional styles (as well as a particular form of object-

oriented programming). At the heart of Ciao is an efficient logic programming-

based kernel language. This allows the use of the very large body of approxima-

tion domains, inference techniques, and tools for abstract interpretation-based

semantic analysis which have been developed to a powerful and mature level in

this area (see, e.g., [91, 22, 45, 18, 29, 54, 55] and their references). These tech-

niques and systems can approximate at compile-time, always safely, and with a

significant degree of precision, a wide range of properties which is much richer

than, for example, traditional types. This includes data structure shape (includ-

ing pointer sharing), independence, storage reuse, bounds on data structure sizes

and other operational variable instantiation properties, as well as procedure-level

properties such as determinacy, termination, non-failure, and bounds on resource

consumption (time or space cost).

CiaoPP is a standalone preprocessor to the standard clause-level compiler.

It performs source-to-source transformations. The input to CiaoPP are logic

191

programs (optionally with assertions and syntactic extensions). The output are

error/warning messages plus the transformed logic program, with:

• Results of analysis (as assertions).

• Results of static checking of assertions.

• Assertion run-time checking code.

• Optimizations (specialization, parallelization, etc.)

By design, CiaoPP is a generic tool that can be easily customized to differ-

ent programming systems and dialects and allows the integration of additional

analyses in a simple way.

11.2 A Poly-Controlled Partial Evaluation Ses-

sion Example

A CiaoPP session consists in the preprocessing of a file. The session is governed

by a menu, where the user can choose the kind of preprocessing to be done to a

file from among several analyses and program transformations available.

Clicking on the icon in the buffer containing the file to be preprocessed,

displays the initial menu, which will look (depending on the options available in

the current CiaoPP version) something like the “Preprocessor Option Browser”

shown in Figure 11.1.

Except for the first and last lines, which refer to loading or saving a menu

configuration (a predetermined set of selected values for the different menu op-

tions), each line corresponds to an option the user can select, each having several

possible values.

The preprocessing available in CiaoPP is located under the Select Action

Group dropdown menu. The user can select either

• analysis (analyze) or

• assertion checking (check assertions) or

192

Figure 11.1: Starting Menu for Browsing CiaoPP Options.

• certificate checking (check certificate) or

• program optimization (optimize).

The relevant options for the selected action group are then shown, together

with the relevant flags.

In order to perform poly-controlled partial evaluation of the current Ciao

program, optimize should be chosen as an action group from the initial menu.

CiaoPP provides several kinds of program optimizations, as shown in Fig-

ure 11.2:

• traditional partial evaluation (spec),

• parallelization (parallelize),

193

Figure 11.2: Optimization Menu.

• slicing (slice), and

• poly-controlled partial evaluation (poly spec).

In the next section we explore the different options available in CiaoPP for

performing poly-controlled partial evaluation.

11.3 Available Options for Poly-Controlled Par-

tial Evaluation

CiaoPP provides two kinds of menu levels for users, a näıve one and an expert

one.

194

Figure 11.3: NaÏve Mode for Poly-Controlled Partial Evaluation.

11.3.1 Options for Näıve Users

As shown in Figure 11.3, in order to apply poly-controlled partial evaluation to a

given program using the näıve menu, the user needs to specify only three options:

fitness function: it allows to specialize a program focusing on

speedup: time-efficiency.

memory: memory usage.

bytecode: disk usage.

195

balance: both time-efficiency and space-efficiency.

bounded size: both time-efficiency and space-efficiency.

As described in Appendix A, when time-efficiency or memory usage is to be

measured, then the user needs to also specify a non-empty set of runtime

queries, which can be added in the source file by using the pcpe rtquery/1

directive provided in CiaoPP by the package of the same name.

strategy: it selects the algorithm of poly-controlled partial evaluation to be used:

all sols: the original search-based PCPE algorithm (PCPEall) presented in

Chapter 5. By default, the predicate-consistency heuristic pruning is

performed in this case, in order to try to ensure termination while still

achieving good results.

oracle: the oracle-based PCPE algorithm presented in Chapter 10 (O-

PCPE) is available through this option. As described in such chapter,

this algorithm is very efficient, although finding the solution of max-

imal fitness is not guaranteed. However, it will find in general good

solutions, and it is an excellent choice for resource aware program spe-

cialization.

aggressivity: it selects the set of control strategies to be used by the poly-

controlled partial evaluator. This is one of the most user-friendly options

available for näıve users, since the system automatically decides the combi-

nation of global and local control rules to be used based on the aggressivity

level chosen by the user. Expert users can still play with any combination

of control strategies (including newly added or custom ones) from the top

level, as we will see in Section 11.4.

conservative: selects a set of conservative control rules, e.g. containing

deterministic unfolding strategies. The main advantage is that the

specialization process will terminate in general.

normal: is an intermediate level, with non-leftmost unfolding strategies

but with a unfolding branching level set to 1.

196

aggressive: uses aggressive rules, e.g. non-leftmost unfolding with unlim-

ited unfolding branching level. It is the most aggressive and sometimes

it will get the best results, but depending on the strategy being used, it

could run out of memory. It is better if used with some of the pruning

techniques.

11.3.2 Options for Expert Users

Besides the options available for näıve users, poly-controlled partial evaluation

can be further tweaked using some options available in expert mode, as shown in

Figure 11.4.

In this mode, the user can control the behaviour of poly-controlled partial

evaluation through the use of the following options:

Select Pruning: it allows to perform pruning as explained in Chapters 8 and 9.

This option is only visible when all sols has been selected as the PCPE

algorithm to be used. The available pruning options are the following:

none: the PCPEall algorithm from Chapter 5 is applied (no pruning).

heuristic: the heuristic-based PCPE algorithm (H-PCPE) from Chapter 8

is applied. The heuristic to be applied is selected through the Heuristic

option (see below).

bnb: applies the branch and bound-based PCPE algorithm (BnB-PCPE)

from Chapter 9. The depth at which pruning is performed is selected

through the Depth of Pruning option (see below).

both: The HB-PCPE algorithm is applied when selecting this option.

Select Heuristic: it allows to perform heuristic pruning, and it is available only

if all sols is the chosen strategy, and either heuristic or both are the se-

lected pruning techniques to be applied to the search-based PCPE algo-

rithm. Among the possible options under this menu we can find:

pred: the predicate-consistency heuristic described in Chapter 8 is to be ap-

plied over the search space of the search-based poly-controlled partial

evaluation algorithm.

197

Figure 11.4: Expert Mode for Poly-Controlled Partial Evaluation.

modes: the mode-consistency heuristic described in Chapter 8 is to be ap-

plied over the search space of the search-based poly-controlled partial

evaluation algorithm by selecting this option. In this case, the differ-

ent domains of modes can be selected with the option Select Modes

Domain (see below).

Select Modes Domain: this option is available only if the selected strategy is

all sols, either heuristic or both are the selected pruning techniques, and the

heuristic is set to modes. In this case, the following domains (as described

in Chapter 8) are available to the specializer:

198

sd: arguments of a call to a predicate are abstracted to one of two values in

the domain {s, d}, where s stands for static, and d stands for dynamic.

sdl: the sd domain is extended by taking into account list skeletons.

sd depth2: we use the sd domain, applied to a level of depth 2.

Select Depth Limit: this option is available only if the selected strategy is

all sols and either bnb or both are the selected pruning techniques to be

applied to the search-based PCPE algorithm, and sets the depth in the tree

at which pruning will take place. For instance, if set to 3, every 3 levels

pruning will be performed. This value must be greater than 0. If this is not

the case, then the specializer will set it to 3 by default.

Perform Argument Filtering: it determines whether redundant arguments in

specialized predicates can be removed (see for example [41, 9, 44]). This

can result in smaller programs.

Perform Post Minimization: it selects whether to perform a post minimiza-

tion step, as described in Chapter 4. This can be especially useful when

focusing on space-efficiency, in order to obtain smaller programs. The dif-

ferent options for this menu entry are described in the same chapter.

Select Verbosity in Output Files: poly-controlled partial evaluation can pro-

vide useful information (specially for debugging) in the form of comments

on the output file. The amount of information provided is governed by this

option:

none: no extra information is provided in the residual program.

medium: the percentage of each control strategy used to obtain all atoms

in the global control is provided for each generated residual program.

This allows to determine if such solution is obtainable by traditional

partial evaluation.

high: in this mode, the following information is provided as comments in

the output file:

• the percentage of each control strategy used to obtain all atoms

in the global control.

199

• all atoms in the global control.

• a .dot file representing the explored PCPE-tree. This file can

be inputted to the dot program [63] in order to generate a .ps

representation of the PCPE-tree (or any other format supported

by the dot program). This is useful to understand the behaviour

of poly-controlled partial evaluation, and how pruning techniques

work over this search space. Most PCPE-tree representations in

this thesis have been generated with this option.

• a .dat file containing the fitness values of all candidate solutions

found by poly-controlled partial evaluation. This file can be in-

putted to gnuplot [129] in order to have a representation of the

distribution of fitness values. Examples of these representations

generated by this framework have been used in Chapter 6.

After setting all flags, the user just need to click on the icon and poly-

controlled partial evaluation takes place. When PCPE finishes it will automati-

cally load the best solution in the second buffer, as shown in Figure 11.5.

11.4 A Session Example for Expert Users

As we have mentioned before, existing partial evaluators usually offer a wide set

of parameters to choose from, most of them affecting the quality of the residual

program obtained.

In our implementation of the poly-controlled partial evaluator, besides pro-

viding a graphical menu with very few options, intended for the näıve user, and

with some more extra options for the advanced user, we also provide the possi-

bility of setting low-level flags modifying the behaviour of poly-controlled partial

evaluation.

11.4.1 A PCPE Session in the Top Level of Ciao

In this section we show an example session for expert users, explaining the avail-

able flags and the effects on the achieved specialization that is controlled by these

flags.

200

Figure 11.5: Residual Program Obtained by Poly-Controlled Partial Evaluation.

In order to start a CiaoPP session, the top level of Ciao should be started by

typing ciao in a shell, or M-x ciao from Emacs. From the top level of Ciao, we

can load CiaoPP by issuing:

:- use_module(ciaopp(ciaopp)).

Once we have loaded CiaoPP, we can set the corresponding flags by using

the CiaoPP predicate set pp flag/1. We list the currently available flags below.

The only mandatory flag that needs to be set is the fixpoint flag, which controls

the fixpoint algorithm to be used during analysis. In order to use poly-controlled

partial evaluation, you should set this flag to poly spec:

:- set_pp_flag(fixpoint , poly_spec).

201

After setting the corresponding flags, we can load the module to be analyzed

by using the CiaoPP predicate module/1:

:- module(foo).

where foo.pl is in the current directory. Otherwise we should use an absolute

path. Now we can analyze this module using the CiaoPP predicate analyze/1.

:- analyze(pd).

After the analysis is completed, all solutions found by PCPE are asserted.

Code can be generated for all of them, and the evaluation step takes place by

calling the CiaoPP predicate transform/1.

:- transform(codegen_poly).

In the top-level a message will inform of which generated solution is the best

one.

11.4.2 Available Flags for Controlling PCPE from the Top

Level

The following flags are available from the top level, and they allow to drive the

behaviour of poly-controlled partial evaluation:

poly global control Determines the set of abstraction functions to be used dur-

ing poly-controlled global control. This flag is set to a list of global control

rules, where the valid values are taken from the possible values of the flag

global control: hom emb, hom emb num, dyn, id and inst (see [20] for

further information on these values).

For example, in order to use {hom emb, dynamic} as a set global control

rules the following CiaoPP predicate call should be issued:

:- set_pp_flag(poly_global_control ,[hom_emb , dyn]).

poly local control Determines the set of unfolding strategies to be used dur-

ing poly-controlled global control. This flag is set to a list of local control

rules, where a local control rule is a list containing the unfolding strat-

egy (local control), the computation rule (comp rule) and the unfolding

branching factor (unf bra fac) (the last two are optional).

202

local control: is the actual unfolding strategy. It can take any of

the following values: orig, inst, det, det la, depth, all sol,

hom emb, hom emb anc, hom emb as, df tree hom emb, df hom emb,

df hom emb as (see [20] for further information on these values).

comp rule: determines the computation rule to be used. It can take any of

the following values: leftmost,safe jb,bind ins jb,no sideff jb,

jump builtin, eval builtin, local emb. See [20] for further infor-

mation on these values.

unf bra fac is a non-negative integer determining the unfolding branching

factor to be used during unfolding.

For example, in order to set the local control rules to a set containing an

aggressive and a conservative control rules, the following CiaoPP predicate

call can be issued:

:- set_pp_flag(poly_lobal_control ,

[[local_control(det),

comp_rule(leftmost),

unf_bra_fac (1)],

[local_control(df_hom_emb_as),

comp_rule(bind_ins_jb),

unf_bra_fac (0)]]).

poly fitness: specifies the fitness function to be used by the poly-controlled

partial evaluator. The possible values are speedup, bytecode, memory,

balance, bounded size, as described in Appendix A. The default value

is bytecode.

pcpe bounded size: determines the maximum size of the residual pro-

gram. It can be expressed in bytes, with a suffix (e.g. 5890, 10K, 2M),

or as a factor of the size of the original program (e.g. 1.5x).

poly strategy: determines the kind of PCPE algorithm to be used. The possible

choices are

203

all sols: corresponds to the search-based PCPE algorithm described in

Chapter 5. The pruning to be performed on this algorithm is de-

termined by the poly pruning flag (see below).

oracle: corresponds to the oracle-based algorithm described in Chapter 10.

poly pruning: determines the kind of pruning to be performed to the PCPEall

algorithm. The possible choices are

none: no pruning is performed.

heuristic: applies one of the heuristics explained in Chapter 8. The type

of heuristic to be applied is set by the polyvar pcpe flag.

bnb: applies the branch and bound pruning described in Chapter 9.

both: applies a combination of the branch and bound and the heuristics

pruning techniques.

polyvar pcpe: Controls the polyvariance of poly-controlled partial evaluation.

The possible values are

off: no control of polyvariance is performed.

pred: the predicate-consistent pruning technique described in Chapter 8 is

applied to the base algorithm.

modes: the mode-consistent pruning technique described in Chapter 8

is applied to the base algorithm. The domain used is set by the

poly modes flag, which takes one of the following values: sd, sdl,

sd depth2.

poly depth lim: is a non-negative integer value N. This number means that

every N levels of depth in the search space tree, branch and bound pruning

will be performed. If N=0 then no pruning is performed.

output info: this flag can be set to either none, medium, or high, and deter-

mines the amount of information to be written as comments in the residual

files.

inter opt arg filt: when set to on, redundant arguments in predicates are fil-

tered away.

204

min crit: determines whether a post-minimization step will be performed for

all found solutions. It can take any of the following values: none, equal,

codemsg, nobindings, bindings, residual, as described in Chapter 4.

All of these flags can be set by using the CiaoPP predicate set pp flag/1, in

the following manner:

:- set_pp_flag(flag , value).

205

206

Chapter 12

Conclusions

The main motivation of this thesis has been to devise a resource-aware par-

tial evaluation framework. Research and implementation of partial evaluation

schemes have mainly focused on improving the time efficiency of programs, leav-

ing factors such as size of the specialized program out of the picture.

Among the most relevant conclusions that can be drawn from this thesis we

can mention:

• We have introduced the first partial evaluation framework that can pro-

duce specialized (hybrid) programs applying different control strategies to

different call patterns (atoms). This scheme is called poly-controlled partial

evaluation (PCPE). We have performed several experiments showing that,

in many situations, these hybrid programs perform better (according to a

given fitness function) than pure programs (as obtained by using traditional

partial evaluation), especially when specialization is resource-aware. The

main advantages offered by poly-controlled partial evaluation are:

It is a resource-aware approach.

Poly-controlled partial evaluation is one of very few approaches to

resource-aware program specialization. Our framework uses fitness

functions which consider factors such as memory consumption, disk

usage, execution time of the specialized program, as well as a com-

bination on some of these factors, in order to evaluate the quality of

residual programs.

207

It obtains better solutions than traditional partial evaluation.

Experiments show that in many situations hybrid solutions obtained

by poly-controlled partial evaluation are of higher quality than those

obtained by traditional partial evaluation. The difference of quality is

more evident when considering resource-aware fitness functions, since

partial evaluation usually focuses on obtaining faster programs, with-

out considering other factors such as the existing resources. Besides,

since these solutions are hybrid, i.e., they use different control rules

for different atoms, they cannot be obtained with traditional partial

evaluation schemes.

It allows using any new control strategies.

Our framework has been designed with extensibility in mind, and thus,

new control strategies resulting from further research can be added to

the framework without effort, and combined with existing ones. In

fact, in our implementation, PCPE and PE share a common library of

(global and local) control rules, and thus, both approaches can imme-

diately use any newly added rule.

It is integrated in CiaoPP.

The framework has been successfully integrated into CiaoPP. A graph-

ical menu helps näıve users to specialize programs without having to

specify a considerable number of parameters. Several decisions are

taken automatically for the user. Experienced users can still tweak

parameters, add new control rules, and try different combinations of

control rules, in order to obtain the maximum benefit out of the PCPE

framework.

• We have presented an algorithm for implementing PCPE which gathers all

solutions that are obtainable by applying the different specialization strat-

egies to the considered atoms, and then selects the best of all solutions by

means of a fitness function. We call this algorithm the search-based PCPE

(PCPEall). Its main advantage is that it obtains solutions of maximal fit-

ness. Its main drawback is that it suffers from an inherent explosion of its

search space. In this thesis, we have presented several schemes for prun-

208

ing the search space of search-based the poly-controlled partial evaluation

algorithm.

– An efficient pruning scheme is based on heuristics, where, as we have

seen in our experiments, the solution of maximal fitness is preserved

most of the times. This pruning works by considering only those

configurations that are consistent with previously processed ones and

pruning away the rest. We have described and implemented several

abstraction domains for consistency checking, which have different de-

grees of precision. The search-based PCPE using this heuristic is called

H-PCPE.

– We have presented a pruning scheme based on branch and bound

(BnB), which, although is more complex to implement, it guarantees

finding a solution of maximal fitness. Also, the particular implemen-

tation described in this work allows to quickly find solutions, setting

in this way good quality upper bounds, and helping in performing a

more effective pruning. The search-based PCPE using this heuristic is

called BnB-PCPE.

– Heuristic-based and branch and bound-based pruning techniques can

be effectively combined, achieving the highest pruning in terms of size

of the resulting search space, and where the obtained solution is of

maximal fitness and consistent with the abstraction used. The search-

based PCPE using this combination of heuristics is called PB-PCPE.

• We have presented also an Oracle-based PCPE algorithm (O-PCPE), which

depends on an oracle that decides which specialization strategy is better

suited for a given atom. This algorithm traverses only one PCPE-path,

finding only one specialized program. Thus, it introduces a constant, rather

than exponential, overhead factor to the complexity of standard PE. At least

in our experiments, O-PCPE obtains specialized programs which are signif-

icantly better than those generated by standard PE, especially when con-

sidering resource-aware fitness functions. This approach also allows playing

with a larger number of control strategies.

209

• As explained above, in this thesis several PCPE algorithms have been imple-

mented: PCPEall, H-PCPE, BnB-PCPE, PB-PCPE, and O-PCPE. We believe

that PCPEall is too expensive to be used in practice with realistic programs.

However, O-PCPE is a replacement for traditional PE when doing resource-

aware specialization. As shown in Chapter 10, this approach obtains spe-

cialized programs of much better quality than traditional PE while having

a similar cost, both in terms of memory consumed and specialization time.

PB-PCPE is better than H-PCPE, and BnB-PCPE, and should be used only

if quality of the specialized program is crucial.

• A minimization phase has been defined for abstract multiple specialization,

traditional partial evaluation and poly-controlled partial evaluation. The

main advantages provided by the approach described in this thesis are:

It handles programs with external predicates.

We have tackled in an accurate way the case in which programs contain

external predicates, i.e., predicates whose code is not defined in the pro-

gram being specialized, and thus it is not available to the specializer.

This is the first work in which any external predicates is considered,

even those having impure features. This is a rather important contri-

bution, since most Prolog programs in the real world contain external

predicates, i.e., techniques aimed at pure Prolog programs can deal

only with toy problems. Our extension allows dealing with any Prolog

program.

It can collapse non-equivalent versions.

We have proposed an additional generalization of the notion of equiv-

alence which introduces the possibility of collapsing versions which

are not strictly equivalent. This is achieved by residualizing certain

computations for external predicates which would otherwise be per-

formed at specialization time. This allows automatically trading time

for space and we believe it may open the door to very interesting ap-

plications of partial evaluation and can be of interest in the context

of embedded and pervasive systems, where computing resources and

storage are often limited.

210

It considerably reduces the size of residual programs.

We have shown some experiments where a considerable reduction of

specialized programs is achieved, both in terms of number of predicate

versions and of bytecode size.

211

212

Appendix A

Fitness Functions

Poly-controlled partial evaluation is a resource-aware approach. It can generate

several candidate program specializations, which are compared using a fitness

function that assigns a numeric value to each of these candidate specializations,

reflecting how good the corresponding program is.

The framework is parametric w.r.t. the fitness function so that the special-

ization can be performed with different aims in mind. Sometimes we may be

interested in achieving code which is as time-efficient as possible, whereas in

other cases space-efficiency can be a primary aim.

Given a residual program Pspec obtained by partially evaluating an input pro-

gram Porig with regard to some set of atoms A, the PCPE framework assess Pspec

by using one of the following different resource-aware fitness functions, some of

them in the spirit of those in [27].

In all cases we assume that the fitness function returns values in the interval

[0,∞).

A.1 Fitness Function Speedup

The fitness function Speedup compares programs based on their time-efficiency,

measuring run-time speedup w.r.t. the original program. It is computed as

speedup(Pspec) =
Time(Porig)

Time(Pspec)

213

where Time(Pspec) is the execution time taken by the specialized program Pspec

to run a set of run-time queries, and Time(Porig) is the time taken by the original

program Porig to perform the same task.

In this case, the user needs to provide a set of run-time queries with which to

time the execution of the program. Thus, such queries should be representative

of the real executions of the program.

We have implemented a package in CiaoPP called pcpe rtquery. This package

provides a directive called pcpe rtquery/1, which takes as an argument a run-

time query, i.e., a call to a predicate defined in the given module with some

partially instantiated arguments.

The user can specify several runtime queries using several directives, as in the

example in Listing A.1.

A.2 Fitness Function Bytecode

The fitness function Bytecode compares programs based on their space-

efficiency, measuring reduction of size of compiled bytecode w.r.t. the original

program. It is computed as

bytecode(Pspec) =
Size(Porig)− Size(Pempty)

Size(Pspec)− Size(Pempty)
,

where Size(Pspec) is the size of the compiled bytecode of the specialized program

Pspec, Size(Porig) is the size of the compiled bytecode of the original program

Porig, and Size(Pempty) is the size of the compiled bytecode of an empty program.

A.3 Fitness Function Memory

The fitness function Memory compares programs based on their space-efficiency,

measuring reduction of the space taken in memory w.r.t. the original program.

It is computed as

memory(Pspec) =
Size(Porig)

Size(Pspec)
,

where Size(Pspec) is an estimation of the memory consumption of the specialized

program Pspec, and Size(Porig) is an estimation of the memory consumption of

214

the original program Porig.

In order to provide an accurate estimation of the memory usage of the

specialized program, the user has to provide a runtime query by means of a

pcpe rtquery/1 directive, as in the case of Speedup. Then, during evaluation,

a snapshot of the current memory is measured

• before loading the specialized program, and

• after loading the specialized program and running the runtime query (or

queries).

The difference between these two measurements gives an estimation of the

amount of memory taken by the specialized program.

A.4 Fitness Function Bounded Size

The fitness function Bounded Size imposes a maximum size over the bytecode

of the residual program. PCPE selects the fastest solution out of those residual

programs compliant with this restriction. In our framework, the maximum size

Max of the obtained solution can be specified

• as an absolute number, in bytes or

• as a factor of the size of the original program, that gets translated to an

absolute number of bytes.

The Bounded Size fitness function is defined as

bounded size(Pspec, Max) =

{
0 if Size(Pspec) > Max

speedup(Pspec) otherwise

where Size(Pspec) is the size of the compiled bytecode of the specialized program

Pspec. If this size is greater than the maximum size allowed, then we assign 0

as fitness value of the specialized program, otherwise we assign to it the value

resulting from applying the Speedup fitness function to such a program.

Note that this fitness function is quite useful in pervasive computing. For

instance, you could have a device with a hard constraint on the size of the program

215

to be loaded. This fitness function allows to select the fastest specialized program

being compliant with such a restriction. Note also that is trivial to extend this

function to measure the maximum memory that can be taken by the residual

program, instead of its bytecode size.

A.5 Fitness Function Balance

The fitness function Balance is a combination of the Speedup and Bytecode

fitness functions. It is defined as

balance(P) = speedup(P)× bytecode(P),

and thus it takes into account both the size and the efficiency of the candidate

programs. As it stands, it gives equal importance to both factors. It is easy to

obtain variations of this formula which assign different weights to them, as best

suited to each situation.

Listing A.1: Specifying Runtime Queries in the rev/2 Example

:- module(_,[rev/2],[assertions , pcpe_rtquery]).

:- entry rev([_,_|L],R).

:- pcpe_rtquery(rev[1,2,3,6]).

:- pcpe_rtquery(rev[a,b,c|T]).

rev ([] ,[]).

rev([H|L],R):-

rev(L,Tmp),

app(Tmp ,[H],R).

app([],L,L).

app([X|Xs],Y,[X|Zs]):-

app(Xs,Y,Zs).

Example A.5.1. In this small example shown in Listing A.1, we can see the

näıve reverse program, which is being specialized for lists containing at least two

216

elements, as determined by the entry/1 directive contained in the assertions

package. If we are running poly-controlled partial evaluation for specializing this

program focusing on time-efficiency, or if memory consumption is our more valu-

able resource, then we need to provide one or more runtime queries using the

pcpe rtquery/1 directive defined in CiaoPP in the package of the same name.

In this particular example, we provide two representative list for testing the speed

of specialized programs obtained by PCPE. The first call uses a closed list of 4

elements, while the second call uses an open list of a least 3 elements.

217

218

Appendix B

Benchmark Programs

Many of the benchmark programs that have been used throughout the thesis to

test the poly-controlled partial evaluation framework have been borrowed from

Michael Leuschel’s Dozen of Problems of Partial Deduction (DPPD) library [79],

since they cover a wide range of different application areas, including pattern

matching, databases, expert systems, meta-interpreters, etc. The DPPD library

includes some benchmarks adapted from Lam and Kusalik’s set of problems,

which first appeared in [69]. The rest of benchmarks are taken from different

sources, such as [84, 80], the internet, and different Prolog libraries.

All benchmarks have been adapted to use the CiaoPP assertion language [107]

in order to provide precise descriptions of the initial call patterns, and also in order

to provide the runtime queries for those fitness functions which require to make

runs of the specialized programs.

The size of the compiled code in Ciao is given in parentheses.

advisor (7595 bytes) A very simple expert system, containing no builtins nor

negations, and which can be fully unfolded, by Horváth [58].

analysis (39985 bytes) A semantic analyzer for simple Spanish sentences. When

using traditional partial evaluation with aggressive control rules, the gen-

erated program can be quite big for the given specialization queries.

applast (4803 bytes) This is a benchmark by Michael Leuschel which contains

no builtins nor negations, and that appends an element at the end of a list.

219

This benchmarks has been used to show the benefits of conjunctive partial

deduction [30, 72]. More details can be found in [75].

boyer (36619 bytes) A Boyer-Moore theorem prover written by Evan Tick after

the Lisp version by R. P. Gabriel. It contains several extra-logical features,

such as cuts.

browse (12579 bytes) This is a program from the Gabriel benchmarks that

browses a database, by Tep Dobry and Herve Touati. It includes several

builtins, cuts, etc.

contains (5549 bytes) This Lam & Kusalik benchmark [69] is a highly non-

deterministic and inefficient pattern matcher. This benchmark program

uses the (\==)/2 builtin.

credit (16932 bytes) A credit evaluation system, by Pedro Lopez Garćıa. The

main predicate answers a request by a given client for a credit. It includes

several builtins and calls to external predicates.

datetime (17689 bytes) The datetime benchmark implements a library contain-

ing predicates that perform logical arithmetic on dates and times. The

distinction is most noticeable when dealing with months, which have vary-

ing numbers of days. The arithmetic is pure date arithmetic, in the sense

that is it adds calendar months, so Feb 15th plus one month yields Mar

15th. Adding years over leap years winds up on same days as well. Dates

are correctly fixed for the corner cases, so an intermediate result of Feb 30th

will become Mar 2nd in a non leap year and Mar 1st in leap year.

depth (5702 bytes) A simple non-ground meta-interpreter which keeps track of

the maximum length of refutations, by Lam & Kusalik [69]. It has to be

specialized for a simple, fully unfoldable object program. It uses neither

negations nor builtins.

doubleapp (4516 bytes) Naive implementation for a predicate that appends

three lists, written using two calls to the ordinary append/3 predicate.

This program is inefficient because an intermediate variable is constructed

by the first call to append and then traversed again by the second call to

220

append. It also tests whether deforestation [124] can be done. For further

details, see Chapters 10 and 11 of [80].

example pcpe (5504 bytes) Example used to show the benefits and the need of

poly-controlled partial evaluation [110]. The code is shown in Listing 5.9

at Chapter 5. It contains builtins and cannot be fully unfolded.

ex depth (6107 bytes) A (more difficult) variant of depth, using a different

simple non-ground metainterpreter keeping track of the maximum length

of refutations, with an object program which cannot be fully unfolded. It

uses neither negations nor builtins.

exponential peano (5639 bytes) A program calculating the exponential of a

given number using Peano’s arithmetic.

flip (4614 bytes) Simple deforestation example by Wadler [123] in which a tree

structure is flipped twice (thus returning back to the original tree), and

whose goal is to obtain a program which just copies the tree.

flattrees (4721 bytes) This benchmark takes a list of arithmetic expression trees,

and flattens each expression tree to a list containing only the operands

or the original expression. This benchmark contains the builtin for term

construction or decomposition (=..)/2.

freeoff (4994 bytes) This benchmark implements a predicate checking that a

given expression does not occur anywhere in another expression. If the

second expression contains an unbound variable, the predicate must fail,

since the first expression might occur there.

grammar (11381 bytes) A Lam & Kusalik [69] benchmark implementing a DCG

(Definite Clause Grammar) parser which has to be specialized for a par-

ticular grammar. When transformed into ordinary clauses the builtin =/2

appears.

groundunify simple (10368 bytes) A ground unification algorithm calculating

explicit substitutions which uses builtins and negation. Adapted from [31].

More details can be found in [73].

221

liftsolve app (7111 bytes) A meta-interpreter for the ground representation

(adapted from a “non-executable” but specializable one by John Gal-

lagher [40], similar to the InstanceDemo by Hill and Gallagher [56]) which

lifts the program to the non-ground representation for resolution. The goal

is to specialize this meta-interpreter for append as the object program.

Some details about this meta-interpreter can also be found in [82].

match (4781 bytes) A semi-näıve pattern matcher by Lam & Kusalik [69], whose

goal is to obtain a Knuth-Morris-Pratt pattern matcher by specialization

for the pattern “aab”. This benchmark program uses the (\==)/2 builtin.

match append (4538 bytes) A very näıve string matcher, written with 2 ap-

pends. This benchmark contains no builtin’s nor negations. A similar

matcher has been used in [103, 102].

mmatrix (5261 bytes) This program implements the multiplication of matrices.

It uses several arithmetic builtins.

nrev (4623 bytes) The näıve reverse algorithm used in Chapter 7 to illustrate

the explosion of the search space of poly-controlled partial evaluation. It

does not contain builtins nor negations. With the specialization query used,

this benchmark cannot be fully unfolded.

permute (4687 bytes) A program which computes all possible permutations of

the elements of the input list. An important feature of this program is that

its results, when fully unfolded, are much larger than the original program.

The specialization query used is a fully-instantiated, closed list, and thus it

can be fully unfolded.

petri meta (5625 bytes) A metainterpreter for Petri nets with the net of the

petri-object benchmark at the object level. The goal is to prove that for

the Petri net at hand (and for any number of processes) there is no trace

that leads to an unsafe state with more than 1 process in its critical section.

petri object (4787 bytes) A reified version of the petri-meta benchmark. The

goal is to prove that for the Petri net at hand (and for any number of

processes) there is no trace that leads to an unsafe state with more than 1

process in its critical section.

222

prolog read (28300 bytes) The original prolog parser by D.H.D. Warren and

Richard O’Keefe. It reads Prolog terms in Dec-10 syntax. Modified by

Alan Mycroft to regularise the functor modes, to make it both easier to

understand, and also to fix some bugs concerning the curious interaction of

cut with the state of parameter instantiation.

qplan (37512 bytes) Designed by D.H.D. Warren. It supplies the control infor-

mation (i.e., sequencing and cuts) needed for efficient execution of a query.

qsort (5170 bytes) The classical quicksort algorithm, which includes arithmetic

builtins. The specialization query used is an open list with a few elements

instantiated, thus it cannot be fully unfolded.

qsortapp (5390 bytes) A näıve quicksort algorithm implemented using append.

It contains arithmetic builtins. With the specialization query used it cannot

be fully unfolded.

relative (5909 bytes) A Lam & Kusalik [69] benchmark consisting of a family

database. It contains neither builtins nor negations. With the specialization

query considered it can be fully unfolded.

remove (4929 bytes) Sophisticated deforestation example, by Jesper Jorgensen.

This benchmark program uses the (\==)/2 builtin, and it cannot be fully

unfolded.

rev acc type (4575 bytes) This benchmark is difficult in the sense that it causes

the generation of an infinite number of characteristic trees in a quite natural

manner. Indeed, the program is simply the well-known reverse with accu-

mulating parameter program to which a type check on the accumulator has

been added. In that way the growth of the accumulator causes a growth

of the type checking computation, and thus a growth of the characteristic

tree describing that computation. Further details can be found in [74].

rotateprune (5692 bytes) A more sophisticated deforestation example by [105].

The program rotates and prunes a binary tree, and the goal is to deforest

the intermediate tree used between the two operations. This benchmark

contains no builtins nor negations. Further details can be found in [46].

223

ssuply (9213 bytes) Another simple expert system, with simple builtins, by [69].

It can be fully unfolded.

sublists (5638 bytes) A predicate taking a list of pairs of numbers as the first

argument, and an arbitrary list as a second argument. Every pair of num-

bers of the first list denotes the beginning and end of a sublist of the second

argument. Sublists are returned in the third argument of the predicate.

This benchmark contains builtins. For the specialization query considered

it cannot be fully unfolded.

sumexp (4918 bytes) A program which applies the exponential function to all

elements of a given list, and then returns the sum of all new elements in the

list. It cannot be fully unfolded, and it makes use of arithmetic builtins.

transpose (5005 bytes) A program transposing matrices of any dimension, using

uses neither negation nor builtins, by [69]. Also in [40].

vanilla db (13446 bytes) A vanilla meta-interpreter, with a contrived object

program invented by Bart Demoen, and borrowed from [27].

224

Appendix C

Program Slicing in CiaoPP

As mentioned in Chapter 1, another resource-aware program specialization tech-

nique is program slicing. Program slicing, originally introduced by Weiser

[127, 128] in the context of imperative programming, is a general method for

extracting the program sentences that potentially affect (or are affected by) some

criterion (e.g., a program point, a variable, a procedure, etc), usually referred to

as a slicing criterion. Program slices are often computed from a program depen-

dence graph [39, 68] that makes explicit both the data and control dependences

for each operation in a program. Program dependences can be traversed back-

wards and forwards—from the slicing criterion—giving rise to so-called backward

and forward slices, respectively. Additionally, slices can be dynamic or static,

depending on whether a concrete program’s input is provided or not.

Program slicing was first proposed as a debugging technique to allow a better

understanding of the portion of code which revealed an error. Since then, it

has been successfully applied to a wide variety of software engineering tasks, like

program understanding, debugging, testing, differencing, specialization, merging,

etc. More detailed information on slicing for imperative programs can be found

in the surveys of Harman and Hierons [53] and Tip [120]. Although it is not so

popular in the declarative programming community, several slicing techniques for

declarative programs have also been developed during the last decade (see, e.g.,

[47, 76, 77, 96, 111, 116, 119, 122, 99, 96]).

225

C.1 Program Slicing for Specializing Logic Pro-

grams

In [111], a specialization method for strict first-order functional programs based

on static slicing was presented. Basically, given a program P and a projection

function π, [111] extracts a program that behaves like π(P) (roughly, by symbol-

ically pushing π backwards through the body of P).

Then, [122] introduced a novel approach to forward slicing of lazy functional

logic programs, exploiting the similarities between slicing and partial evaluation

to compute forward slices by a slight modification of an existing partial evaluation

scheme [3]. This work was adapted to the logic programming paradigm and

extended in [77].

In [77], a slicing criterion is simply a goal. A forward slice then contains

a subset of the original program with those clauses that are reachable from the

slicing criterion. Similar to [116], this notion of “subset” is formalized in terms

of an abstraction relation, in order to allow arguments to be removed or replaced

by a special term. The algorithm proposed in [77] relies on applying partial

evaluation to a given program P and a goal G, and using characteristic trees

(described in Chapter 4) to record the clauses used in every unfolding operation

performed. Finally, in the code generation phase, all used clauses are collected

from the characteristic trees, and their original definitions are used to build the

slice. In general, slices will contain redundant arguments that are not relevant

for the execution of the slicing criterion. These computed slices can be further

refined by redundant argument filtering transformations [101].

Based on these ideas, we have implemented a slicer in the program develop-

ment system Ciao [17], and integrated it into CiaoPP [20, 55, 19], the preprocessor

of Ciao.

C.2 A Slicing Session in CiaoPP

As seen in Chapter 11, a CiaoPP session consists in the preprocessing of a file. The

session is governed by a menu, where the user can choose the kind of preprocessing

to be done to a file from among several analyses and program transformations

available.

226

Figure C.1: Starting Menu for Browsing CiaoPP Options.

Clicking on the icon in the buffer containing the file to be preprocessed,

displays the initial menu, which will look (depending on the options available in

the current CiaoPP version) something like the “Preprocessor Option Browser”

shown in Figure C.1.

Except for the first and last lines, which refer to loading or saving a menu

configuration (a predetermined set of selected values for the different menu op-

tions), each line corresponds to an option the user can select, each having several

possible values.

The preprocessing available in CiaoPP is located under the Select Action

Group dropdown menu. The user can select either

• analysis (analyze) or

227

Figure C.2: Optimization Menu.

• assertion checking (check assertions) or

• certificate checking (check certificate) or

• program optimization (optimize).

The relevant options for the selected action group are then shown, together

with the relevant flags.

In order to obtain a slice of the current Ciao program, optimize should be

chosen as an action group from the initial menu.

CiaoPP provides several kinds of program optimizations, as shown in Fig-

ure C.2:

228

Figure C.3: Slice of the Original Program

• traditional partial evaluation (spec),

• parallelization (parallelize),

• slicing (slice), and

• poly-controlled partial evaluation (poly spec).

By selecting slice in this menu, and clicking on the icon we will obtain

the corresponding slice, which will be automatically loaded in the second buffer,

as shown in Figure C.3.

In CiaoPP, and similarly to the case of partial evaluation described in Chap-

ter 7, the description of initial queries (i.e., the slicing criterion) is obtained by

229

taking into account the set of predicates exported by the module, in this case

{slice/1}, possibly qualified by means of entry declarations.

230

Bibliography

[1] E. Albert, M. Hanus, and G. Vidal. A Practical Partial Evaluation Scheme

for Multi-Paradigm Declarative Languages. Journal of Functional and Logic

Programming, 2002(1), 2002.

[2] E. Albert, G. Puebla, and J. Gallagher. Non-Leftmost Unfolding in Partial

Evaluation of Logic Programs with Impure Predicates. In Proceedings of

the 15th International Symposium on Logic-based Program Synthesis and

Transformation (LOPSTR’05), number 3901 in Lecture Notes in Computer

Science. Springer-Verlag, April 2006.

[3] E. Albert and G. Vidal. The Narrowing-Driven Approach to Functional

Logic Program Specialization. New Generation Computing, 20(1):3–26,

2002.

[4] M. Alpuente, M. Falaschi, and G. Vidal. Narrowing-driven Partial Evalu-

ation of Functional Logic Programs. In H.R. Nielson, editor, Proceedings

of the European Symposium on Programming (ESOP’96), volume 1058 of

Lecture Notes in Computer Science, pages 45–61. Springer-Verlag, Berlin,

1996.

[5] Lars Ole Andersen. Partial Evaluation of C and Automatic Compiler Gen-

eration. In U. Kastens and P. Pfahler, editors, Proceedings of Compiler

Construction. 4th International Conference, volume 641 of Lecture Notes

in Computer Science, pages 251–257, Paderborn, Germany, 1992. Springer-

Verlag.

[6] Lars Ole Andersen. Program Analysis and Specialization for the C Pro-

gramming Language. PhD thesis, DIKU, University of Copenhagen, May

1994.

231

[7] K.R. Apt. Introduction to Logic Programming. In J. van Leeuwen, edi-

tor, Handbook of Theoretical Computer Science, volume B: Formal Model

and Semantics, pages 495–574. Elsevier, Amsterdam and The MIT Press,

Cambridge, 1990.

[8] K.R. Apt and R. Bol. Logic Programming and Negation: A Survey. Journal

of Logic Programming, 19&20, 1994.

[9] K. Benkerimi and P.M. Hill. Supporting Transformation for the Partial

Evaluation of Logic Programs. In Journal of Logic and Computation, vol-

ume 3(5), pages 469–486, October 1993.

[10] Andrew Berlin and Daniel Weise. Compiling Scientific Code Using Partial

Evaluation. IEEE Computer, 23(12):25–37, 1990.

[11] R. Bol. Loop Checking in Partial Deduction. Journal of Logic Programming,

16(1&2):25–46, 1993.

[12] Anders Bondorf. A Self-Applicable Partial Evaluator for Term Rewriting

Systems. In J. Dı́az and F. Orejas, editors, Proceedings of the International

Joint Conference on Theory and Practice of Software Development (TAP-

SOFT’89), volume 352 of Lecture Notes in Computer Science, pages 81–95,

Barcelona, Spain, 1989. Springer-Verlag.

[13] Anders Bondorf. Automatic Autoprojection of Higher Order Recursive

Equations. Science of Computer Programming, 17(1-3):3–34, 1991.

[14] Antony F. Bowers and Corin A. Gurr. Towards Fast and Declarative Meta-

Programming. In K. R. Apt and F. Turini, editors, Meta-logics and Logic

Programming, pages 137–166. MIT Press, 1995.

[15] M. Bruynooghe. A Practical Framework for the Abstract Interpretation of

Logic Programs. Journal of Logic Programming, 10:91–124, 1991.

[16] M. Bruynooghe, D. De Schreye, and B. Martens. A General Criterion

for Avoiding Infinite Unfolding during Partial Deduction. New Generation

Computing, 1(11):47–79, 1992.

232

[17] F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López-Garćıa, and

G. Puebla. The Ciao Prolog System. Reference Manual. The Ciao System

Documentation Series–TR CLIP3/97.1, School of Computer Science, Tech-

nical University of Madrid (UPM), August 1997. System and on-line version

of the manual available at http://clip.dia.fi.upm.es/Software/Ciao/.

[18] F. Bueno, D. Cabeza, M. Hermenegildo, and G. Puebla. Global Analysis

of Standard Prolog Programs. In Proceedings of the European Symposium

on Programming (ESOP’96), number 1058 in Lecture Notes in Computer

Science, pages 108–124, Sweden, April 1996. Springer-Verlag.

[19] F. Bueno, P. López-Garćıa, G. Puebla, and M. Hermenegildo. A Tutorial

on Program Development and Optimization using the Ciao Preprocessor.

Technical Report CLIP2/06, School of Computer Science, Technical Univer-

sity of Madrid (UPM), 28660 Boadilla del Monte, Madrid, Spain, January

2006.

[20] F. Bueno, P. López-Garćıa, G. Puebla, and M. Hermenegildo. The Ciao

Prolog Preprocessor. Technical Report CLIP1/06, School of Computer Sci-

ence, Technical University of Madrid (UPM), 28660 Boadilla del Monte,

Madrid, Spain, January 2006.

[21] B. Le Charlier, S. Rossi, and P. Van Hentenryck. Sequence Based Ab-

stract Interpretation of Prolog. Theory and Practice of Logic Programming,

2(1):25–84, 2002.

[22] B. Le Charlier and P. Van Hentenryck. Experimental Evaluation of a

Generic Abstract Interpretation Algorithm for Prolog. ACM Transactions

on Programming Languages and Systems, 16(1):35–101, 1994.

[23] D. Cohen, M. Cooper, P. Jeavons, and A. Krokhin. Identifying Efficiently

Solvable Cases of Max CSP. Proceedings of the 21st Symposium on Theoret-

ical Aspects of Computer Science (STACS’04) pages 152–163, Le Corum,

Montpellier, France, 2004.

[24] A. Colmerauer. Opening the Prolog-III Universe. In BYTE Magazine,

August 1987.

233

[25] Charles Consel. A Tour of Schism: a Partial Evaluation System for Higher-

Order Applicative Languages. In Proceedings of the Symposium on Partial

Evaluation and Semantics-Based Program Manipulation (PEPM’93), pages

145–154, Copenhagen, Denmark, 1993. ACM Press.

[26] P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model

for Static Analysis of Programs by Construction or Approximation of Fix-

points. In Fourth ACM Symposium on Principles of Programming Lan-

guages, pages 238–252, 1977.

[27] Stephen-John Craig and Michael Leuschel. Self-Tuning Resource Aware

Specialisation for Prolog. In Proceedings of the 7th ACM SIGPLAN Inter-

national Conference on Principles and Practice of Declarative Programming

(PPDP’05), pages 23–34, New York, NY, USA, 2005. ACM Press.

[28] O. Danvy, N. Hentze, and K. Malmkjær. Resource-Bounded Partial Eval-

uation. ACM Computing Surveys, 28(2):244–247, June 1996.

[29] M. Garćıa de la Banda, M. Hermenegildo, M. Bruynooghe, V. Dumortier,

G. Janssens, and W. Simoens. Global Analysis of Constraint Logic

Programs. ACM Transactions on Programming Languages and Systems,

18(5):564–615, September 1996.

[30] D. De Schreye, R. Glück, J. Jørgensen, M. Leuschel, B. Martens, and M.H.

Sørensen. Conjunctive Partial Deduction: Foundations, Control, Algori-

htms, and Experiments. Journal of Logic Programming, 41(2&3):231–277,

1999.

[31] D. A. de Waal and J.P. Gallagher. Specialisation of a Unification Algo-

rithm. In T.P. Clement and K.-K. Lau, editors, Proceedings of the 1st

International Symposium on Logic-based Program Synthesis and Transfor-

mation (LOPSTR’91), pages 205–220, Manchester, UK, 1991.

[32] Saumya K. Debray. Profiling prolog programs. Software Practice and Ex-

perience, 18(9):821–839, 1983.

234

[33] S. K. Debray and N. W. Lin. Cost analysis of logic programs. ACM Trans-

actions on Programming Languages and Systems, 15(5):826–875, November

1993.

[34] Saumya K. Debray. Resource-Bounded Partial Evaluation. In Proceed-

ings of the ACM Sigplan Symposium on Partial Evaluation and Semantics-

Based Program Manipulation (PEPM’97), pages 179–192. Amsterdam, The

Netherlands, 1997. ACM Press.

[35] P. Deransart, A. Ed-Dbali, and L. Cervoni. Prolog: The Standard. Springer-

Verlag, 1996.

[36] N. Dershowitz and J.P. Jouannaud. Rewrite Systems In J. van Leeuwen,

editor, Handbook of Theoretical Computer Science, Vol. B, pages 243–320.

Elsevier, MIT Press, 1990.

[37] N. Dershowitz and J.P. Jouannaud. Rewrite Systems In J. van Leeuwen,

editor, Handbook of Theoretical Computer Science, Vol. B, pages 243–320.

Elsevier, MIT Press, 1990.

[38] Andrei P. Ershov. Mixed Computation: Potential applications and Prob-

lems for Study. Theoretical Computer Science, 18:41–67, 1982.

[39] J. Ferrante, K.J. Ottenstein, and J.D. Warren. The Program Dependence

Graph and Its Use in Optimization. ACM Transactions on Programming

Languages and Systems, 9(3):319–349, 1987.

[40] J. Gallagher. A System for Specialising Logic Programs. Technical Report

TR-91-32, University of Bristol, November 1991.

[41] J. Gallagher and M. Bruynooghe. Some Low-Level Transformations for

Logic Programs. In M. Bruynooghe, editor, Meta90 Workshop on Meta

Programming in Logic, pages 229–244, 1990.

[42] J. Gallagher and M. Bruynooghe. The Derivation of an Algorithm for Pro-

gram Specialisation. New Generation Computing, 9(1991):305–333, 1991.

235

[43] J. Gallagher and L. Lafave. Regular Approximation of Computation Paths

in Logic and Functional Languages. In O. Danvy, R. Glück, and P. Thie-

mann, editors, Partial Evaluation, volume 1110, pages 115 – 136. Springer

Verlag Lecture Notes in Computer Science, 1996.

[44] J.P. Gallagher. Tutorial on Specialisation of Logic Programs. In Proceed-

ings of the ACM Sigplan Symposium on Partial Evaluation and Semantics-

Based Program Manipulation (PEPM’93), pages 88–98.Copenhagen, Den-

mark, 1993. ACM Press.

[45] J.P. Gallagher and D.A. de Waal. Fast and Precise Regular Approxima-

tions of Logic Programs. In Pascal Van Hentenryck, editor, Proceedings of

the 11th International Conference on Logic Programming (ICLP’94), pages

599–613. MIT Press, 1994.

[46] R. Glück, J. Jorgensen, B. Martens, and M.H. Sorensen. Controlling Con-

junctive Partial Deduction of Definite Logic Programs. Technical Report

CW 226, Departement Computerwetenschappen, K.U. Leuven, Belgium,

May 1996.

[47] V. Gouranton. Deriving Analysers by Folding/Unfolding of Natural Seman-

tics and a Case Study: Slicing. In Proceedings of the International Static

Analysis Symposium (SAS’98), pages 115–133, 1998.

[48] C. A. Gurr. A Self-Applicable Partial Evaluator for the Logic Programming

Language Gödel. PhD thesis, Department of Computer Science, University

of Bristol, January 1994.

[49] C. A. Gurr. Specialising the Ground Representation in the Logic Program-

ming Language Gödel. In Y. Deville, editor, Logic Program Synthesis and

Transformation. Proceedings of the 3rd International Symposium on Logic-

based Program Synthesis and Transformation (LOPSTR’93), Workshops in

Computing, pages 124–140, Louvain-La-Neuve, Belgium, 1994. Springer-

Verlag.

[50] Michael Hanus. The Integration of Functions into Logic Programming:

From Theory to Practice. Journal of Logic Programming, 19&20:583–628,

1994.

236

[51] Michael Hanus. A Unified Computation Model for Functional and Logic

Programming. In Proceedings of the ACM Symposium on Principles of

Programming Languages (POPL’97), pages 80–93. ACM, 1997.

[52] Michael Hanus. Curry: An Integrated Functional Logic Language. Avail-

able at:

http://www.informatik.uni-kiel.de/~curry/, 2000.

[53] M. Harman and R.M. Hierons. An Overview of Program Slicing. Software

Focus, 2(3):85–92, 2001.

[54] M. Hermenegildo, F. Bueno, G. Puebla, and P. López-Garćıa. Program

Analysis, Debugging and Optimization Using the Ciao System Preproces-

sor. In Proceedings of the International Conference on Logic Programming

(ICLP’99), pages 52–66, Cambridge, MA, November 1999. MIT Press.

[55] Manuel V. Hermenegildo, Germán Puebla, Francisco Bueno, and Pedro

López-Garćıa. Integrated Program Debugging, Verification, and Optimiza-

tion Using Abstract Interpretation (and The Ciao System Preprocessor).

Science of Computer Programming, 58(1–2):115–140, October 2005.

[56] Patricia Hill and John Gallagher. Meta-Programming in Logic Program-

ming. In Handbook of Logic in Artificial Intelligence and Logic Program-

ming, Vol. 5. Oxford Science Publications, Oxford University Press.

[57] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Lan-

guages and Computation. Addison-Wesley, 1979.

[58] T. Horváth. Experiments in Partial Deduction. Master’s thesis, Departe-

ment Computerwetenschappen, K.U. Leuven, Belgium, 1993.

[59] N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Auto-

matic Program Generation. Prentice Hall, New York, 1993.

[60] Neil D. Jones. Special Issue on Partial Evaluation. Journal of Functional

Programming, 3(3):251–387, 1993.

[61] Neil D. Jones. An Introduction to Partial Evaluation. ACM Computing

Surveys, Vol. 28(No. 3), September 1996.

237

[62] J. Komorowski. An Introduction to Partial Deduction. In A. Pettorossi,

editor, Meta92 Workshop on Meta Programming in Logic, Lecture Notes in

Computer Science 649, pages 49–69. Springer-Verlag, 1992.

[63] Eleftherios Koutsofios and Stephen C. North Drawing graphs with dot.

AT&T Bell Laboratories, October 1993. Revised version available at

http://www.graphviz.org/Documentation/dotguide.pdf.

[64] R. Kowalski and D. Kuehner. Linear Resolution with Selection Function.

Artificial Intelligence, 2:227–260, 1971.

[65] R. A. Kowalski. Predicate Logic as a Programming Language. In Jack

L. Rosenfeld, editor,Proceedings of the Sixth IFIP Congress (Information

Processing 74), pages 569–574, North-Holland, 1974.

[66] R. A. Kowalski. Logic as a computer language. In Proceedings Infotec State

of the Art Conference, Software Development: Management, June 1980.

[67] J.B. Kruskal. Well-Quasi-Ordering, the Tree Theorem, and Vazsonyi’s Con-

jecture. Transactions of the American Mathematical Society, 95:210–225,

1960.

[68] D.J. Kuck, R.H. Kuhn, D.A. Padua, B. Leasure, and M. Wolfe. Dependence

Graphs and Compiler Optimization. In Proceedings of ACM Symposium on

Principles of Programming Languages (POPL’81), pages 207–218. ACM

Press, 1981.

[69] J. Lam and Kusalik A. A Comparative Analysis of Partial Deductors for

Pure Prolog. Technical report, Department of Computational Science, Uni-

versity of Saskatchewan, Canada, May 1991. Revised April 1991.

[70] A.H. Land and A.G. Doig. An Automatic Method for Solving Discrete

Programming Problems. Econometrica, 28:497–520, 1960.

[71] M. Leuschel and M. Bruynooghe. Logic Program Specialisation Through

Partial Deduction: Control Issues. Theory and Practice of Logic Program-

ming, 2(4 & 5):461–515, July & September 2002.

238

[72] M. Leuschel and S. Gruner. Abstract Conjunctive Partial Deduction Using

Regular Types and its Application to Model Checking. In Proceedings of

the 11th International Symposium on Logic-based Program Synthesis and

Transformation (LOPSTR’01), number 2372 in Lecture Notes in Computer

Science. Springer, 2001.

[73] M. Leuschel and B. Martens. Partial Deduction of the Ground Represen-

tation and its Application to Integrity Checking. In John Lloyd, editor,

Proceedings of ILPS’95, the International Logic Programming Symposium,

Portland, USA, December 1995. MIT Press. Extended version as Technical

Report CW 210, K.U. Leuven.

[74] M. Leuschel and B. Martens. Global Control for Partial Deduction Through

Characteristic Atoms and Global Trees. In Olivier Danvy, Robert Glück,

and Peter Thiemann, editors, Proceedings of the 1996 Dagstuhl Seminar on

Partial Evaluation, Lecture Notes in Computer Science 1110, pages 263–

283, Schloß Dagstuhl, 1996.

[75] M. Leuschel and De Schreye. Logic Program Specialisation: How to be

More Specific. In Proceedings of the International Symposium on Program-

ming Languages, Implementations, Logics and Programs (PLILP’96), Lec-

ture Notes in Computer Science 1140, pages 137–151, 1996.

[76] M. Leuschel and M.H. Sørensen. Redundant Argument Filtering of Logic

Programs. In Proceedings of the 6th International Symposium on Logic-

based Program Synthesis and Transformation (LOPSTR’96), pages 83–103.

Lecture Notes in Computer Science 1207 83–103, 1996.

[77] M. Leuschel and G. Vidal. Forward Slicing by Conjunctive Partial Deduc-

tion and Argument Filtering. In Proceedings of the European Symposium on

Programming (ESOP’05), Lecture Notes in Computer Science 3444, pages

61–76. Springer-Verlag, Berlin, 2005.

[78] Michael Leuschel. Ecological Partial Deduction: Preserving Characteristic

Trees Without Constraints. In Maurizio Proietti, editor, Proceedings of

the 5th International Symposium on Logic-based Program Synthesis and

239

Transformation (LOPSTR’95), Lecture Notes in Computer Science 1048,

pages 1–16, Utrecht, The Netherlands, September 1995. Springer-Verlag.

[79] Michael Leuschel. The ECCE Partial Deduction System

and the DPPD Library of Benchmarks. Obtainable via

http://www.ecs.soton.ac.uk/~mal, 1996-2002.

[80] Michael Leuschel. Advanced Techniques for Logic Program Specialisation.

PhD thesis, K.U. Leuven, May 1997.

[81] Michael Leuschel. On the Power of Homeomorphic Embedding for Online

Termination. In Giorgio Levi, editor, Proceedings of the International Static

Analysis Symposium (SAS’98), Lecture Notes in Computer Science 1503,

pages 230–245, Pisa, Italy, September 1998. Springer-Verlag.

[82] Michael Leuschel and Danny De Schreye. Towards Creating Specialised In-

tegrity Checks Through Partial Evaluation of Meta-Interpreters. In Proceed-

ings of the ACM Sigplan Symposium on Partial Evaluation and Semantics-

Based Program Manipulation (PEPM’95), pages 253–263, La Jolla, Cali-

fornia, June 1995. ACM Press.

[83] Michael Leuschel and Danny De Schreye. Constrained Partial Deduction

and the Preservation of Characteristic Trees. New Generation Computing,

16:283–342, 1998.

[84] Michael Leuschel, Bern Martens, and Danny De Schreye. Controlling

Generalisation and Polyvariance in Partial Deduction of Normal Logic

Programs. ACM Transactions on Programming Languages and Systems,

20(1):208–258, January 1998.

[85] J. W. Lloyd and J. C. Shepherdson. Partial Evaluation in Logic Program-

ming. The Journal of Logic Programming, 11:217–242, 1991.

[86] J.W. Lloyd. Foundations of Logic Programming. Springer, second, extended

edition, 1987.

[87] F. López-Fraguas and J. Sánchez-Hernández. TOY: A Multiparadigm

Declarative System. In P. Narendran and M. Rusinowitch, editors, Pro-

ceedings of the 10th International Conference on Rewriting Techniques and

240

Applications (RTA’99), pages 244–247. Springer Lecture Notes in Computer

Science 1631, 1999.

[88] B. Martens and D. De Schreye. Automatic Finite Unfolding Using Well-

Founded Measures. Journal of Logic Programming, 28(2):89–146, 1996.

Abridged and revised version of Technical Report CW180, Departement

Computerwetenschappen, K.U.Leuven, October 1993.

[89] John McCarthy, M. L. Minsky, N. Rochester, and C. E. Shannon. A Pro-

posal for the Dartmouth Summer Research Project on Artificial Intelligence.

Report, manuscript, MITAI, Cambridge, MA, August 1955.

[90] E. Mera. Development of a prolog profiler. Technical Report

CLIP13/2004.1, Technical University of Madrid, School of Computer Sci-

ence, UPM, September 2004.

[91] K. Muthukumar and M. Hermenegildo. Compile-time Derivation of Variable

Dependency Using Abstract Interpretation. Journal of Logic Programming,

13(2/3):315–347, July 1992.

[92] Claudio Ochoa and Germán Puebla. A Study on the Practicality of Poly-

Controlled Partial Evaluation. In Proceedings of the 15th Workshop on

Functional and (Constraint) Logic Programming(WFLP 2006), pages 123–

136. Madrid, Spain, November 2006.

[93] Claudio Ochoa and Germán Puebla. Poly-Controlled Partial Evaluation in

Practice. In Proceedings of the ACM Symposium on Partial Evaluation and

Program Manipulation (PEPM’07), pages 164–173. Nice, France, January

2007. ACM Press.

[94] C. Ochoa, G. Puebla, and M. Hermenegildo. Removing Superfluous Ver-

sions in Polyvariant Specialization of Prolog Programs. In Proceedings of

the 15th International Symposium on Logic-based Program Synthesis and

Transformation (LOPSTR’05), pages 80–97, number 3901 in Lecture Notes

in Computer Science. London, UK, April 2006. Springer-Verlag.

241

[95] C. Ochoa, J. Silva, and G. Vidal. A Lightweight Approach to Program Spe-

cialization. In Proceedings of the IV Jornadas de Programación y Lenguajes

(PROLE’04), pages 41–54. Málaga, Spain, 2004.

[96] C. Ochoa, J. Silva, and G. Vidal. Dynamic Slicing Based on Redex Trails. In

Proceedings of the ACM SIGPLAN 2004 Symposium on Partial Evaluation

and Program Manipulation (PEPM’04), pages 123–134. Verona, Italy, 2004.

ACM Press.

[97] C. Ochoa, J. Silva, and G. Vidal. Program Specialization Based on Dynamic

Slicing. In Proceedings of Workshop on Software Analysis and Development

for Pervasive Systems (SONDA’04), pages 20–31. Verona, Italy, 2004.

[98] Claudio Ochoa and Germán Puebla. A Study on the Practicality of Poly-

Controlled Partial Evaluation. In Proceedings of the 15th Workshop on

Functional and (Constraint) Logic Programming (WFLP’06), Electronic

Notes in Theoretical Computer Science. Elsevier, 2007. To appear.

[99] C. Ochoa, J. Silva, and G. Vidal. Lightweight Program Specialization via

Dynamic Slicing. In Proceedings of the Workshop on Curry and Functional

Logic Programming (WCFLP 2005), pages 1–7. ACM Press, 2005.

[100] C. Ochoa, J. Silva, and G. Vidal. A Slicing Tool for Lazy Functional Logic

Programs. In Proceedings of the 10th European Conference on Logics in

Artificial Intelligence (JELIA’06), pages 498–501. Springer Lecture Notes

in Computer Science 4160, 2006.

[101] Alberto Pettorossi and Maurizio Proietti. Transformation of Logic Pro-

grams: Foundations and Techniques. Journal of Logic Programming,

19/20:261–320, 1994.

[102] Alberto Pettorossi, Maurizio Proietti, and Sophie Renault. Enhancing Par-

tial Deduction by Unfold/Fold Rules. In John Gallagher, editor, Proceedings

of the 6th International Symposium on Logic-based Program Synthesis and

Transformation (LOPSTR’96), Lecture Notes in Computer Science 1207,

pages 146–168, Stockholm, Sweden, August 1996. Springer-Verlag.

242

[103] Alberto Pettorossi, Maurizio Proietti, and Sophie Renault. Reducing Non-

determinism While Specializing Logic Programs. In Neil D. Jones, editor,

Proceedings of ACM Symposium on Principles of Programming Languages

(POPL’97), pages 414–427, Paris, France, January 1997.

[104] Steven Prestwich. The PADDY Partial Deduction System. Technical Re-

port ECRC-92-6, ECRC, Munich, Germany, 1992.

[105] Maurizio Proietti and Alberto Pettorossi. Unfolding — Definition — Fold-

ing, in this Order, for Avoiding Unnecessary Variables in Logic Programs.

In J. Maluszyński and M. Wirsing, editors, Proceedings of the Interna-

tional Symposium on Programming Languages, Implementations, Logics

and Programs (PLILP’91), pages 347–g358, Passau, Germany, August

1991. Springer-Verlag, Lecture Notes in Computer Science 528.

[106] G. Puebla, E. Albert, and M. Hermenegildo. Efficient Local Unfolding

with Ancestor Stacks for Full Prolog. In Proceedings of the 14th Interna-

tional Symposium on Logic-based Program Synthesis and Transformation

(LOPSTR’04), number 3573 in Lecture Notes in Computer Science, pages

149–165. Springer-Verlag, 2005.

[107] G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language

for Constraint Logic Programs. In P. Deransart, M. Hermenegildo, and

J. Maluszynski, editors, Analysis and Visualization Tools for Constraint

Programming, number 1870 in Lecture Notes in Computer Science, pages

23–61. Springer-Verlag, September 2000.

[108] G. Puebla and M. Hermenegildo. Implementation of Multiple Specialization

in Logic Programs. In Proceedings ACM SIGPLAN Symposium on Partial

Evaluation and Semantics Based Program Manipulation (PEPM’95), pages

77–87. ACM Press, June 1995.

[109] G. Puebla and M. Hermenegildo. Abstract Multiple Specialization and

its Application to Program Parallelization. Journal of Logic Programming.

Special Issue on Synthesis, Transformation and Analysis of Logic Programs,

41(2&3):279–316, November 1999.

243

[110] Germán Puebla and Claudio Ochoa. Poly-Controlled Partial Evaluation. In

Proceedings of the 8th ACM-SIGPLAN International Symposium on Prin-

ciples and Practice of Declarative Programming (PPDP’06). ACM Press,

July 2006.

[111] T. Reps and T. Turnidge. Program Specialization via Program Slicing. In

O. Danvy, R. Glück, and P. Thiemann, editors, Partial Evaluation. Dagstuhl

Castle, Germany, February 1996, pages 409–429. Springer Lecture Notes in

Computer Science 1110, 1996.

[112] J. A. Robinson. A Machine Oriented Logic Based on the Resolution Prin-

ciple. Journal of the ACM, 12(23):23–41, January 1965.

[113] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Pren-

tice Hall, Englewood Cliffs, New Jersey, 1995.

[114] D. Sahlin. The Mixtus Approach to the Automatic Evaluation of Full

Prolog. In Proceedings of the North American Conference on Logic Pro-

gramming, pages 377–398. MIT Press, October 1990.

[115] D. Sahlin. Mixtus: An Automatic Partial Evaluator for Full Prolog. New

Generation Computing, 12(1):7–51, 1993.

[116] S. Schoenig and M. Ducasse. A Backward Slicing Algorithm for Prolog.

In Proceedings of the International Static Analysis Symposium (SAS’96),

pages 317–331. Springer Lecture Notes in Computer Science 1145, 1996.

[117] M.H. Sørensen and R. Glück. An Algorithm of Generalization in Positive

Supercompilation. In Proceedings of the International Logic Programming

Symposium (ILPS’95), pages 465–479. The MIT Press, 1995.

[118] L. Sterling and E. Shapiro The Art of Prolog. MIT Press, 1986.

[119] G. Szilagyi, T. Gyimothy, and J. Maluszynski. Static and Dynamic Slicing

of Constraint Logic Programs. Journal Automated Software Engineering,

9(1):41–65, 2002.

[120] Frank Tip. A Survey of Program Slicing Techniques. Journal of Program-

ming Languages, 3:121–189, 1995.

244

[121] Raf Venken and Bart Demoen. A Partial Evaluation System for Prolog:

Theoretical and Practical Considerations. New Generation Computing, 6(2

& 3):279–290, 1988.

[122] Germán Vidal. Forward Slicing of Multi-Paradigm Declarative Programs

Based on Partial Evaluation. In Proceedings of the 12th International Sym-

posium on Logic-based Program Synthesis and Transformation (LOPSTR

2002), pages 219–237. Springer Lecture Notes in Computer Science 2664,

2003.

[123] Philip Wadler. Deforestation: Transforming Programs to Eliminate Trees.

In H. Ganzinger, editor, Proceedings of European Symposium on Program-

ming (ESOP’88), volume 300 of Lecture Notes in Computer Science, pages

344–358, Nancy, France, 1988. Springer-Verlag.

[124] P.L. Wadler. Deforestation: Transforming Programs to Eliminate Interme-

diate Trees. Theoretical Computer Science, 73:231–248, 1990.

[125] D.H.D. Warren. Higher-Order Extensions to Prolog: Are They Needed?

In J.E. Hayes, Donald Michie, and Y-H. Pao, editors, Machine Intelligence

10, pages 441–454. Ellis Horwood Ltd., Chicester, England, 1982.

[126] Daniel Weise, Roland Conybeare, Erik Ruf, and Scott Seligman. Auto-

matic online partial evaluation. In J. Hughes, editor, Functional Program-

ming Languages and Computer Architecture. Proceedings, volume 523 of

Lecture Notes in Computer Science, pages 165–191, Harvard University,

1991. Springer-Verlag.

[127] M.D. Weiser. Program Slices: Formal, Psychological, and Practical Inves-

tigations of an Automatic Program Abstraction Method. PhD thesis, The

University of Michigan, 1979.

[128] M.D. Weiser. Program Slicing. IEEE Transactions on Software Engineer-

ing, 10(4):352–357, 1984.

[129] Thomas Williams and Colin Kelley gnuplot - An Interactive Plotting Pro-

gram. Available at http://www.gnuplot.info/docs/gnuplot.html

245

[130] W. Winsborough. Multiple Specialization Using Minimal-Function Graph

Semantics. Journal of Logic Programming, 13(2 and 3):259–290, July 1992.

246

