697 research outputs found

    Data transfer scheduling with advance reservation and provisioning

    Get PDF
    Over the years, scientific applications have become more complex and more data intensive. Although through the use of distributed resources the institutions and organizations gain access to the resources needed for their large-scale applications, complex middleware is required to orchestrate the use of these storage and network resources between collaborating parties, and to manage the end-to-end processing of data. We present a new data scheduling paradigm with advance reservation and provisioning. Our methodology provides a basis for provisioning end-to-end high performance data transfers which require integration between system, storage and network resources, and coordination between reservation managers and data transfer nodes. This allows researchers/users and higher level meta-schedulers to use data placement as a service where they can plan ahead and reserve time and resources for their data movement operations. We present a novel approach for evaluating time-dependent structures with bandwidth guaranteed paths. We present a practical online scheduling model using advance reservation in dynamic network with time constraints. In addition, we report a new polynomial algorithm presenting possible reservation options and alternatives for earliest completion and shortest transfer duration. We enhance the advance network reservation system by extending the underlying mechanism to provide a new service in which users submit their constraints and the system suggests possible reservation requests satisfying users\u27 requirements. We have studied scheduling data transfer operation with resource and time conflicts. We have developed a new scheduling methodology considering resource allocation in client sites and bandwidth allocation on network link connecting resources. Some other major contributions of our study include enhanced reliability, adaptability, and performance optimization of distributed data placement tasks. While designing this new data scheduling architecture, we also developed other important methodologies such as early error detection, failure awareness, job aggregation, and dynamic adaptation of distributed data placement tasks. The adaptive tuning includes dynamically setting data transfer parameters and controlling utilization of available network capacity. Our research aims to provide a middleware to improve the data bottleneck in high performance computing systems

    Dimensionerings- en werkverdelingsalgoritmen voor lambda grids

    Get PDF
    Grids bestaan uit een verzameling reken- en opslagelementen die geografisch verspreid kunnen zijn, maar waarvan men de gezamenlijke capaciteit wenst te benutten. Daartoe dienen deze elementen verbonden te worden met een netwerk. Vermits veel wetenschappelijke applicaties gebruik maken van een Grid, en deze applicaties doorgaans grote hoeveelheden data verwerken, is het noodzakelijk om een netwerk te voorzien dat dergelijke grote datastromen op betrouwbare wijze kan transporteren. Optische transportnetwerken lenen zich hier uitstekend toe. Grids die gebruik maken van dergelijk netwerk noemt men lambda Grids. Deze thesis beschrijft een kader waarin het ontwerp en dimensionering van optische netwerken voor lambda Grids kunnen beschreven worden. Ook wordt besproken hoe werklast kan verdeeld worden op een Grid eens die gedimensioneerd is. Een groot deel van de resultaten werd bekomen door simulatie, waarbij gebruik gemaakt wordt van een eigen Grid simulatiepakket dat precies focust op netwerk- en Gridelementen. Het ontwerp van deze simulator, en de daarbijhorende implementatiekeuzes worden dan ook uitvoerig toegelicht in dit werk

    Survey On Fault Tolerance In Grid Computing

    Full text link

    An optimized resilient advance bandwidth scheduling for media delivery services

    Get PDF
    Part 3: Evaluation and Experimental Study of Rich Network ServicesInternational audienceIn IP-based media delivery services, we often deal with predictable network load and traffic, making it beneficial to use advance reservations even when network failure occurs. In such a network, to offer reliable reservations, fault-tolerance related features should be incorporated in the advance reservation system. In this paper, we propose an optimized protection mechanism in which backup paths are selected in advance to protect the transfers when any failure happens in the network. Using a shared backup path protection, the proposed approach minimizes the backup capacity of the requests while guaranteeing 100% single link failure recovery. We have evaluated the quality and complexity of our proposed solution and the impact of different percentages of backup demands and timeslot sizes have been investigated in depth. The presented approach has been compared to our previously-designed algorithm as a baseline. Our simulation results reveal a noticeable improvement in request acceptance rate, up to 9.2%. Moreover, with fine-grained timeslot sizes and under limited network capacity, the time complexity of the proposed solution is up to 14% lower

    Survey and Analysis of Production Distributed Computing Infrastructures

    Full text link
    This report has two objectives. First, we describe a set of the production distributed infrastructures currently available, so that the reader has a basic understanding of them. This includes explaining why each infrastructure was created and made available and how it has succeeded and failed. The set is not complete, but we believe it is representative. Second, we describe the infrastructures in terms of their use, which is a combination of how they were designed to be used and how users have found ways to use them. Applications are often designed and created with specific infrastructures in mind, with both an appreciation of the existing capabilities provided by those infrastructures and an anticipation of their future capabilities. Here, the infrastructures we discuss were often designed and created with specific applications in mind, or at least specific types of applications. The reader should understand how the interplay between the infrastructure providers and the users leads to such usages, which we call usage modalities. These usage modalities are really abstractions that exist between the infrastructures and the applications; they influence the infrastructures by representing the applications, and they influence the ap- plications by representing the infrastructures

    Quality of service based data-aware scheduling

    Get PDF
    Distributed supercomputers have been widely used for solving complex computational problems and modeling complex phenomena such as black holes, the environment, supply-chain economics, etc. In this work we analyze the use of these distributed supercomputers for time sensitive data-driven applications. We present the scheduling challenges involved in running deadline sensitive applications on shared distributed supercomputers running large parallel jobs and introduce a ``data-aware\u27\u27 scheduling paradigm that overcomes these challenges by making use of Quality of Service classes for running applications on shared resources. We evaluate the new data-aware scheduling paradigm using an event-driven hurricane simulation framework which attempts to run various simulations modeling storm surge, wave height, etc. in a timely fashion to be used by first responders and emergency officials. We further generalize the work and demonstrate with examples how data-aware computing can be used in other applications with similar requirements

    Cloud resource provisioning and bandwidth management in media-centric networks

    Get PDF

    Admission control in Flow-Aware Networking (FAN) architectures under GridFTP traffic

    Full text link
    This is the author’s version of a work that was accepted for publication in Optical Switching and Networking. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Optical Switching and Networking, 6, 9 (2009) DOI: 10.1016/j.osn.2008.05.003Selected papers from First International Symposium on Advanced Networks and Telecommunication Systems, ANTS 2007Computing and networking resources virtualization is the main objective of Grid services. Such a concept is already used in the context of Web-services on the Internet. In the next few years, a large number of applications belonging to various domains (biotechnology, banking, finance, car and aircraft manufacturing, nuclear energy etc.) will also benefit from Grid services. Admission control is a key functionality for Quality of Service (QoS) provision in IP networks, and more specifically for Grid services provision. Service differentiation (DS) is a widely deployed technique on the Internet. It operates at the packet level on a best-effort mode. Flow-Aware Networking (FAN) that operates at the scale of the IP flows relies on implicit flow differentiation through priority fair queuing (PFQ). It may be seen as an alternative to DS. A Grid session may be seen as a succession of parallel TCP/IP flows characterized by data transfers with much larger volume than usual TCP/IP flows. In this paper, we propose an extension of FAN for the Grid environment called Grid over FAN (GoFAN). We compare, by means of computer simulations, the efficiency of Grid over DS (GoDS) and GoFAN. Two variants of GoFAN architectures based on different fair queuing algorithms are considered. As a first step, we provide two short surveys on QoS for Grid environment and on QoS in IP networks respectively
    corecore