56 research outputs found

    Multihomed mobile network architecture

    Get PDF
    IP mobility ensures network reachability and session continuity while IPv6 networks are on the move. In the Network Mobility (NEMO) model, the potential for NEMO Mobile Routers (MRs) to interconnect and extend Internet connectivity allows the formation Nested NEMO networks. With MANEMO, nested MRs can be efficiently interconnected in a tree-based structure with Internet access being maintained via a designated Gateway. However, this only supports single-homed Internet connectivity. With the span of wireless access technologies and the popularity of multi-interfaced devices, multihoming support in this scenario becomes critical. A Nested Mobile Network with heterogeneous available Internet access options would allow better overall network performance and optimal utilisation of available resources. In this paper, we present the Multihomed Mobile Network Architecture (MMNA), a comprehensive multihomed mobility solution. It provides a multihoming management mechanism for Gateway Discovery and Selection on top of a multihomed mobility model integrating different mobility and multihoming protocols. It enables a complex nested multihomed topology to be established with multiple gateways supporting heterogeneous Internet access. The results demonstrate that the proposed solution achieves better overall throughput, load sharing, and link failure recovery

    Efficient mobility and multihoming support for mountain rescue

    Get PDF
    Introducing an IP-based communication system into the mountain rescue domain would enable carrying out search and rescue missions in an effective way. With efficient mobility and multihoming support, a Mountain Rescue Team would be able to establish more effective and reliable Internet communication. In this paper, we present the Multihomed Mobile Network Architecture (MMNA), a comprehensive multihomed mobility solution for complex nested mobility scenarios. It provides a multihoming management mechanism for gateway discovery and selection, on top of an efficient multihomed mobility model integrating different mobility and multihoming protocols. The design of the MMNA solution is first presented. We then describe how the MMNA was experimentally implemented and evaluated in a testbed setup to examine its effectiveness and feasibility considering a use case example of a mountain rescue scenario. The results highlight the practicality and advantages of deploying the MMNA into such a critical real-world scenario

    Towards an architecture to support complex multihomed mobility scenarios

    Get PDF
    In this paper, we present the Multihomed Mobile Network Architecture (MMNA), a comprehensive multihomed mobility solution for complex nested mobility scenarios. It provides a multihoming management mechanism for gateway discovery and selection, on top of an efficient multihomed mobility model integrating different mobility and multihoming protocols. We describe how the MMNA was experimentally implemented and evaluated in a testbed setup. We first validated the capabilities of the solution in terms of different multihoming features, namely load sharing, link failure recovery, and preference setting. We then examined the effectiveness and feasibility of the MMNA solution considering a use case example of a search and rescue scenario. The results highlight the practicality and advantages of deploying the MMNA solution into realistic scenarios

    Source-specific routing

    Get PDF
    Source-specific routing (not to be confused with source routing) is a routing technique where routing decisions depend on both the source and the destination address of a packet. Source-specific routing solves some difficult problems related to multihoming, notably in edge networks, and is therefore a useful addition to the multihoming toolbox. In this paper, we describe the semantics of source-specific packet forwarding, and describe the design and implementation of a source-specific extension to the Babel routing protocol as well as its implementation - to our knowledge, the first complete implementation of a source-specific dynamic routing protocol, including a disambiguation algorithm that makes our implementation work over widely available networking APIs. We further discuss interoperability between ordinary next-hop and source-specific dynamic routing protocols. Our implementation has seen a moderate amount of deployment, notably as a testbed for the IETF Homenet working group

    Mobility as a first class function

    Get PDF
    Seamless host mobility has been a desirable feature for a long time, but was not part of the original design of the Internet architecture or protocols. Current approaches to network-layer mobility typically require additional network-layer entities for mobility management, which add complexity to the current engineering landscape of the Internet. We present a host-based, end-to-end architecture for host mobility using the Identifier-Locator Network Protocol (ILNP). ILNP provides mobility support as a first class function, since mobility management is controlled and managed by the end-systems, and does not require additional network-layer entities. We demonstrate an instance of ILNP that is a superset of IPv6 – called ILNPv6 – that is implemented by extending the current IPv6 code in the Linux kernel. We make a direct comparison of performance of ILNPv6 and Mobile IPv6, showing the improved performance of ILNPv6.Postprin

    MROM scheme to improve handoff performance in mobile networks

    Get PDF
    Mobile Router (MR) mobility supported by Network Mobility Basic Support Protocol (NEMO BS) is a Mobile IPv6 (MIPv6) extension that supports Host Mobility. Proposed Multihoming and Route Optimization for MANEMO (MROM) scheme is designed to provide Route Optimization (RO) and Multihomed in NEMO architectures. This paper proposes two novel schemes; MANEMO routing scheme and Multihoming-based scheme. These are to provide support for next generation networks. The proposed MROM scheme differs from other schemes for NEMO environment because it considers the requirements of more application flows parameters as packet lost delivery, handoff delay as well as throughput). Another difference is that not only the network infrastructure can begin the functionality of flow routing, but also an Edge Mobile Router (EMR) can do this flow for routing. Moreover, it utilizes the state of the art and presently active access network to perform the separation of each flow in mobile network. Thus, proposed MROM exhibits multihoming features and improves handoff performance by initiating flow-based fast registration process in NEMO environment. A handoff method is proposed with enhanced functionalities of the Local Mobility Anchors (LMA), Mobile Routers (MRs) and signaling messages with a view to achieve continuous connectivity through handoff in NEMO. Both analytical and simulation approaches are used. Analytical evaluation is carried out to analyze packet delivery lost and handoff delay of our proposed scheme. It was also shown that cost of signaling messages and packet delivery are contributing to total handoff cost. At the simulation part, network simulator 3 (NS 3) has been used as the tool to get performance metrics that have been considered like packet delivery ratio, handoff delay, and packet loss. Our proposed scheme (MROM) has been benchmarking to the standard NEMO BS Protocol and P-NEMO. In this paper, we discuss proposed MROM for next generation networks, providing detailed analysis with a numerical model, proposed MROM, by maximizing the handoff performance, has been justified to have better mobility support than the ordinary NEMO BS Protocol and PNEMO. Keywords—MROM, MANEMO, RO, Multihomed, Handoff

    Cooperative resource pooling in multihomed mobile networks

    Get PDF
    The ubiquity of multihoming amongst mobile devices presents a unique opportunity for users to co-operate, sharing their available Internet connectivity, forming multihomed mobile networks on demand. This model provides users with vast potential to increase the quality of service they receive. Despite this, such mobile networks are typically underutilized and overly restrictive, as additional Internet connectivity options are predominantly ignored and selected gateways are both immutable and incapable of meeting the demand of the mobile network. This presents a number of research challenges, as users look to maximize their quality of experience, while balancing both the financial cost and power consumption associated with utilizing a diverse set of heterogeneous Internet connectivity options. In this thesis we present a novel architecture for mobile networks, the contribution of which is threefold. Firstly, we ensure the available Internet connectivity is appropriately advertised, building a routing overlay which allows mobile devices to access any available network resource. Secondly, we leverage the benefits of multipath communications, providing the mobile device with increased throughput, additional resilience and seamless mobility. Finally, we provide a multihomed framework, enabling policy driven network resource management and path selection on a per application basis. Policy driven resource management provides a rich and descriptive approach, allowing the context of the network and the device to be taken into account when making routing decisions at the edge of the Internet. The aim of this framework, is to provide an efficient and flexible approach to the allocation of applications to the optimal network resource, no matter where it resides in a mobile network. Furthermore, we investigate the benefits of path selection, facilitating the policy framework to choose the optimal network resource for specific applications. Through our evaluation, we prove that our approach to advertising Internet connectivity in a mobile network is both efficient and capable of increasing the utilization of the available network capacity. We then demonstrate that our policy driven approach to resource management and path selection can further improve the user’s quality of experience, by tailoring network resource usage to meet their specific needs

    Programmable overlays via OpenOverlayRouter

    Get PDF
    Among the different options to instantiate overlays, the Locator/ID Separation Protocol (LISP) [7] has gained significant traction among industry and academia [5], [6], [8]–[11], [14], [15]. Interestingly, LISP offers a standard, inter-domain, and dynamic overlay that enables low capital expenditure (CAPEX) innovation at the network layer [8]. LISP follows a map-and-encap approach where overlay identifiers are mapped to underlay locators. Overlay traffic is encapsulated into locator-based packets and routed through the underlay. LISP leverages a public database to store overlay-to-underlay mappings and on a pull mechanism to retrieve those mappings on demand from the data plane. Therefore, LISP effectively decouples the control and data planes, since control plane policies are pushed to the database rather than to the data plane. Forwarding elements reflect control policies on the data plane by pulling them from the database. In that sense, LISP can be used as an SDN southbound protocol to enable programmable overlay networks [5].Peer ReviewedPostprint (published version

    Improving Pan-African research and education networks through traffic engineering: A LISP/SDN approach

    Get PDF
    The UbuntuNet Alliance, a consortium of National Research and Education Networks (NRENs) runs an exclusive data network for education and research in east and southern Africa. Despite a high degree of route redundancy in the Alliance's topology, a large portion of Internet traffic between the NRENs is circuitously routed through Europe. This thesis proposes a performance-based strategy for dynamic ranking of inter-NREN paths to reduce latencies. The thesis makes two contributions: firstly, mapping Africa's inter-NREN topology and quantifying the extent and impact of circuitous routing; and, secondly, a dynamic traffic engineering scheme based on Software Defined Networking (SDN), Locator/Identifier Separation Protocol (LISP) and Reinforcement Learning. To quantify the extent and impact of circuitous routing among Africa's NRENs, active topology discovery was conducted. Traceroute results showed that up to 75% of traffic from African sources to African NRENs went through inter-continental routes and experienced much higher latencies than that of traffic routed within Africa. An efficient mechanism for topology discovery was implemented by incorporating prior knowledge of overlapping paths to minimize redundancy during measurements. Evaluation of the network probing mechanism showed a 47% reduction in packets required to complete measurements. An interactive geospatial topology visualization tool was designed to evaluate how NREN stakeholders could identify routes between NRENs. Usability evaluation showed that users were able to identify routes with an accuracy level of 68%. NRENs are faced with at least three problems to optimize traffic engineering, namely: how to discover alternate end-to-end paths; how to measure and monitor performance of different paths; and how to reconfigure alternate end-to-end paths. This work designed and evaluated a traffic engineering mechanism for dynamic discovery and configuration of alternate inter-NREN paths using SDN, LISP and Reinforcement Learning. A LISP/SDN based traffic engineering mechanism was designed to enable NRENs to dynamically rank alternate gateways. Emulation-based evaluation of the mechanism showed that dynamic path ranking was able to achieve 20% lower latencies compared to the default static path selection. SDN and Reinforcement Learning were used to enable dynamic packet forwarding in a multipath environment, through hop-by-hop ranking of alternate links based on latency and available bandwidth. The solution achieved minimum latencies with significant increases in aggregate throughput compared to static single path packet forwarding. Overall, this thesis provides evidence that integration of LISP, SDN and Reinforcement Learning, as well as ranking and dynamic configuration of paths could help Africa's NRENs to minimise latencies and to achieve better throughputs
    corecore