
Mobility as a First Class Function

Ditchaphong Phoomikiattisak & Saleem N. Bhatti
School of Computer Science

University of St Andrews, UK

Email: {dp32,saleem}@st-andrews.ac.uk

Abstract—Seamless host mobility has been a desirable feature
for a long time, but was not part of the original design of the In-
ternet architecture or protocols. Current approaches to network-
layer mobility typically require additional network-layer entities
for mobility management, which add complexity to the current
engineering landscape of the Internet. We present a host-based,
end-to-end architecture for host mobility using the Identifier-
Locator Network Protocol (ILNP). ILNP provides mobility support
as a first class function, since mobility management is controlled
and managed by the end-systems, and does not require additional
network-layer entities. We demonstrate an instance of ILNP that
is a superset of IPv6 – called ILNPv6 – that is implemented by
extending the current IPv6 code in the Linux kernel. We make a
direct comparison of performance of ILNPv6 and Mobile IPv6,
showing the improved performance of ILNPv6.

I. INTRODUCTION

As the use of mobile devices and methods of wireless
connectivity continue to increase, seamless mobility becomes
more desirable and important. By seamless mobility, we mean
that a device with packet flows in progress can continue its
flows even if there are changes to: (a) its physical connectivity
(e.g. moves from 3G to WLAN); or (b) its network layer
(domain) connectivity (e.g. it changes from IP network A to
IP network B, which might also occur when changing phys-
ical connectivity). While mobility using the same underlying
technology – horizontal handoff (e.g. WLAN to WLAN) – is
possible (usually through layer 1 or 2 handoff mechanisms),
effective solutions for vertical handoff – across different wire-
less technologies and/or different networks – are still being
developed. The use of vertical handoff holds many significant
challenges. The key issue is managing the change in network-
layer connectivity. Typically, different physical connectivity,
e.g. changes in network interface, also involves changes to IP-
layer connectivity – changes in the topological connectivity
(location) of a device.

A. Contribution and structure of this paper

We describe and evaluate an implementation of a purely
end-to-end approach to mobility, with management of mobile
connectivity at the network layer as a first-class function of
the end-system’s operating system (OS), without requiring
any middleboxes or changes to routing functions. Our mech-
anism is fully backwards compatible with existing APIs. Our
mechanism uses ILNPv6, a superset of IPv6 that implements
an Internet architecture described by the Identifier-Locator
Network Protocol (ILNP). The challenge was to apply the
radical new architectural approach of ILNP whilst making
maximal use of the existing codebase, to allow incremental
deployment on IPv6.

This is the first end-to-end, testbed-based performance
evaluation of MIPv6 with ILNPv6, as a like-for-like compari-
son, with both protocols implemented in-kernel, and the use of
application traffic flows from a widely-used testing application
(iperf), via the standard C sockets API.

We address directly the key challenge stated above –
managing the change in network-layer connectivity. In this
paper, the term handoff always refers to a vertical handoff,
unless specifically stated otherwise.

After outlining the ILNP architecture in Section II, some
related work is described in Section III. Then, we describe
our design and implementation of ILNPv6 in Section IV.
We present our evaluation and results in Section V. After a
discussion of some key issues in Section VI, we conclude in
Section VII.

II. ILNP

The Identifier-Locator Network Protocol (ILNP) [1]–[8] is
an IRTF Experimental protocol. It has a host-based, end-to-end
architecture, is designed to support mobility (amongst other
things), and can be implemented as a superset of IPv6 called
ILNPv6 [4]–[7]. ILNPv6 uses the current IPv6 packet header
format, and so remains backwards compatible with the current
deployed IPv6 routing infrastructure, but end-system stacks
must be updated.

A. Dynamic namebindings for mobility

In support of recurring discussion within the community
over several decades [9]–[14], ILNPv6 deprecates the use of
IP addresses and uses two new distinct namespaces: a Node
Identifier (NID) and a network Locator (L64) [1], along with
dynamic bindings to implement various functionality, including
mobility [2]. The use of the IP address in the network stack
today has semantic overload which is considered harmful [14].
As shown in Table I, instead of using the IP address in various
layers across the protocol stack with different semantics,
ILNPv6 use NID and L64 values. Transport-layer protocols
bind only to a NID value, an identifier for a (logical, virtual or
physical) node, that has no topological semantics. The network
layer uses a L64 value, which is topologically significant, for
routing and forwarding. An [I, L] pair together – an Identifier
Locator Vector (IL-V) – is needed for communication.

In addition (not visible in Table I), there are one-to-many
dynamic bindings between NID and L64 values, as well as
another set of dynamic bindings between physical interfaces
and L64 values. Hence, mobility in ILNP is implemented by
adjusting these dynamic bindings between NID and L64 values,
and between L64 values and interfaces. The L64 values can

WiMob 2015 - 11th IEEE Intl. Conf. Wireless and Mobile Computing, Networking and Communications. Abu Dhabi, UAE. Oct 2015

change as a mobile node moves without impacting end-to-
end state invariance, as the NID value always remains stable.
Mobile nodes can have multiple NID and L64 values and
use multiple interfaces simultaneously, by adjusting dynamic
bindings between them as required.

TABLE I. USE OF NAMES IN IP AND ILNP.

Protocol layer IPv4 and IPv6 ILNP (ILNPv6)

Application FQDN*, IP address FQDN* or app.-specific
Transport IP address Node Identifier (NID)
Network IP address Locator (L64)
(interface) IP address dynamic binding

* FQDN: Fully Qualified Domain Name

Consider a TCP connection at a node X with a correspon-
dent node Y. With IP, the tuple expression (1) shows the use of
the IP address (A) and port numbers (P) throughout the stack.
For example, transport protocol state is bound to an interface
by use of the IP address, A – the transport protocol state
is tightly bound to the interface, so changes to the interface
(vertical handoff) or IP address (movement across network
domains) causes the state to become invalid.

⟨tcp : PX , PY , AX , AY ⟩⟨ip : AX , AY ⟩⟨if : AX⟩ (1)

⟨tcp : PX , PY , IX , IY ⟩⟨ilnp : LX , LY ⟩⟨if : (LX)⟩ (2)

In tuple expression (2), we show the use of Node Identifier
values, I , and Locator values, L, as for ILNP. TCP binds only
to the I values, so changes to the interfaces or locator values
require updates to the dynamic bindings, but does not impact
the end-to-end state for TCP.

B. ILNPv6

While a clean-slate approach to building ILNP was pos-
sible, to aid deployment, we chose to implement ILNP as a
superset of IPv6 – ILNPv6. In order to carry the NID and L64
values between end-systems, the IPv6 packet header is used,
with NID and L64 values being encoded into the IPv6 header
as shown in Figure 1. The NID value uses the same syntax as
an IPv6 interface identifier, but the end-system code is updated
to treat it as a node identifier. The L64 has the same syntax and
semantics as an IPv6 address / routing prefix, and so current
IPv6 routing and forwarding can be used for ILNPv6 packets:
routers see and process ILNPv6 packets as IPv6 packets.

/* IPv6 - RFC4291 + RFC3587 */
| 64 bits | 64 bits |
+-----------------------------+-------------------------+
| IPv6 Unicast Routing Prefix | Interface Identifier |
+-----------------------------+-------------------------+

/* ILNPv6 - RFC6741 */
| 64 bits | 64 bits |
+-----------------------------+-------------------------+
| Locator (L64) | Node Identifier (NID) |
+-----------------------------+-------------------------+

Fig. 1. IPv6 unicast address format and ILNPv6 unicast address format.
The L64 value has the same syntax and semantics as the IPv6 routing prefix.
The NID value has the same syntax as the IPv6 Interface Identifier, but has
different semantics.

C. Mobile hosts with ILNP

For mobility, we consider two phases of communication:

• Rendezvous: For a correspondent node (CN) to initiate
communication with a mobile node (MN), it must
learn the current IL-V for the MN. With this infor-
mation, the CN can then create a packet to send to
the MN. If the MN functions only as a client system
and the CN as a server, then this issue is moot.

• Handoff: When a communication session is in
progress, the session must be transferred across an
administrative or network connectivity boundary in
order to maintain the communication session as the
MN moves.

Rendezvous for ILNPv6 is similar to IPv6: the CN makes a
Domain Name System (DNS) look-up using a Fully Qualified
Domain Name (FQDN), which resolves to appropriate IL-V
values in new DNS resource records for NID and L64 values
[5]. We return to the issue of name resolution later. For now,
we consider handoff only.

Figure 2 shows a simple example of handoff in ILNPv6. An
MN using NID value IM moves from cell 1 using Locator L1

to cell 2 and use of Locator L2. If we assume that a transport
flow is in progress with a CN which uses the IL-V [IC , LC],
then the ILNP transport-layer and network layer state at MN
can be represented by the expression:

⟨tcp : PM , PC , IM , IC⟩⟨ilnp : L1, LC⟩ (3)

based on expression (2). When MN enters the region
overlapping with cell 2, the value of L2 would be available
through IPv6 Router Advertisements – it is simply the IPv6
address prefix required for cell 2. MN receives L2 and now
informs CN of this new value using a Locator Update (LU)
message, synonymous to an IPv6 Binding Update message.
At this point, both MN and CN could just drop the use of
L1, but ILNPv6 permits a NID value to be bound to one or
more L64 values. So, it is possible for CN and MN to perform
a network-layer soft handoff to minimise packet loss. This is
advantageous when soft handoff is not supported by the sub-
network technology across the handoff region, e.g. between
different WLAN cells, or in vertical handoff between different
technologies, such as from 3G to a WLAN cell.

Notice that in ILNPv6, mobility forms a duality with
multihoming. In Figure 2, if the duration of the cell overlap
permits, then MN and CN could continue to use both cells
simultaneously: for example, if cell 1 was 3G and completely
covered the same area as cell 2 which was a WLAN cell.
This feature can be implemented by the MN to provide a
multihoming resilience capability, either for existing transport
protocols like TCP, or to enable new multipath transport pro-
tocols without the complex overhead of dealing with multiple
IP addresses, as is currently the case with multipath TCP (MP-
TCP) [15]. In the overlap region, the MN expression for our
transport flow would now be:

⟨tcp : PM , PC , IM , IC⟩⟨ilnp : L1|L2, LC⟩ (4)

Fig. 2. An example of an ILNPv6 mobile node (MN) performing a network-
layer soft handoff. (1) The MN starts in cell 1 using [IM , L1] through access
router 1 (AR1). A remote correspondent node (CN) uses [IC , LC] for a packet
flow that is in progress. (2) The MN enters the overlap between cell 1 and
cell 2 and initiates handoff, e.g. because it sees IPv6 Router Advertisements
from AR2 advertising prefix L2. MN sends a Locator Update (LU) message
to CN to inform CN that it is moving to Locator L2. Until MN completely
moves out of cell 1, it can continue to use L1 also. (3) MN can drop the use
of L1 as it moves wholly into cell 2.

We see that the transport layer tuple is not effected during soft
handoff or multihoming: end-to-end state is preserved.

ILNPv6 also provides another type of handoff called hard
handoff. For this handoff model, an MN always has only one
L64 value. So, when entering a new network – (2) in Figure
2 – it obtains a new L64 value, L2, and discards the previous
L64 value, L1. The hard handoff is simple because an MN
always has binding to only one L64 value and uses only one
link. However, packet loss could occur for the in-flight packets
sent from the CN using the stale L64 value. In contrast, packet
loss during soft handoff is minimised. This is because the MN
maintains bindings with both L64 values (L1 and L2) when it
stays in the overlap region between the two networks, i.e. it is
multihomed during handoff.

D. Rendezvous

With rendezvous, in ILNPv6, we are concerned with dis-
covering the current Locator value(s) for the MN. If we wish to
leverage existing deployments, then the Domain Name System
(DNS) provides a suitable mechanism for rendezvous, as it
does now. For ILNPv6, new DNS records have been defined
for NID and L64 values – NID and L64 resource records [5]
– which are returned for a FQDN query.

An MN has two other requirements: (i) it needs to update
the L64 value held in its L64 DNS record; and (ii) as the MN
could move at any time, the L64 record needs a low cache
time. We discuss the second issue in Section VI-C, but the
first issue is easily resolved: current Secure DNS Dynamic
Update [16] is widely available in host system software today
(e.g. in Microsoft Windows, and in Linux), as well as having
support in server software, and experiments have shown that
updates as frequent as once per second are easily possible with
existing infrastructure [17].

E. Name and Address Resolution

When the DNS is used for storing L64 values in L64
records (or if any other system is used for storing L64 values),
those values will need to have low cache times to prevent
stale L64 values at CNs. In the case of DNS, traditionally, it

has been considered that cache times – time-to-live (TTL) –
for DNS records should be kept relatively high, for example,
several thousands of seconds. However, today, DNS entries for
end systems can have very low values (e.g. a few seconds for
DNS load balancing mechanisms), and our experiments on the
operational DNS service for the School of Computer Science
at St Andrews show that zero caching of DNS A records is
entirely feasible without any disruption to network operations
or any significant increase in load on DNS servers [18].

However, in the edge-site, this zero caching must also be
applied to address resolution – mapping from an IL-V pair
to a MAC/hardware address. For example, if an MN moves
across a local subnet, its L64 value will change also, and so
address resolution tables must use zero caching. Again, in
the local area, we take the position that this is a low and
acceptable cost, though of course the actual impact is likely to
be application-specific. However, for backwards compatibility
with IPv6, there are no changes required to the IPv6 Neighbour
Discovery (ND) protocol – the 128-bit IL-V for ILNPv6 is
mapped to a MAC address, just as a 128-bit IPv6 address is
mapped to a MAC address.

III. RELATED WORK

We present here a selection of mobility solutions, focussing
on architectural concepts for those proposals that have been
reviewed by the IETF or the IRTF, i.e. those that are considered
to be deployable at scale. A more comprehensive list of
mobility solutions can be found in RFC6301 [19].

A. Network-based Mobility Solutions

Mobility management in this type of solution is usually
achieved by the use of proxies or middleboxes. These can often
improve backwards compatibility because they ‘hide’ mobility
from non-mobile (legacy) nodes. However, the addition of
such network entities adds complexity to the current network
landscape. Such entities have a set of general disadvantages:
they offer sub-optimal packet routes for data transfer; they
could become single points of failure; they could become
performance bottlenecks; and they could offer an additional
point for security attacks on the mobility mechanism. Some-
times, tunnelling is also used for communication between those
entities, increasing packet overhead and potentially impacting
the MTU size that is available to the application.

IETF Mobile IPv4 (MIPv4) [20] uses a Home Agent
(HA) and a Foreign Agent (FA) to map between a Home
Address (functionally, a node identifier) and Care-of-Address
(functionally, a node locator). Mobile IPv6 (MIPv6) [21]
eliminates the use of the FA and requires only the HA. MIPv4
uses tunnelling between HA and FA, while MIPv6 introduces
a Route Optimisation mechanism to eliminate tunnelling. Nev-
ertheless, MIPv4 and MIPv6 have the problem of high packet
loss during handoff, and high handoff delay.

Hierarchical Mobile IPv6 (HMIPv6) [22] introduces a Mo-
bility Anchor Point (MAP) to work with the HA in managing
local mobility. Handoff delay could be reduced, but yet another
entity is now part of the mobility solution, with additional
signalling to/from the MAP.

Fast Handover for Mobile IPv6 (FMIPv6) [23] (based
on MIPv6) uses a HA as a proxy. Additional tunnelling is

used between the Previous Access Router (PAR) and the
New Access Router (NAR) to forward packets arriving at the
previous location to minimise gratuitous packet loss during
handoff [24]. There is additional complexity and overhead due
to the extra signalling required to allow use of NAR and PAR.

Proxy Mobile IPv6 (PMIPv6) [25] is a completely network-
based solution: it hides the mobility process from mobile
nodes. Additional proxies are required: a Mobile Access
Gateway (MAG) and Local Mobility Anchor (LMA). Traffic
between MAG and LMA is also tunnelled.

The Locator Identifier Separation Protocol (LISP) [26] as
well as its extensions for mobility support, LISP mobile node
(LISP-MN) [27] and LISP-ROAM [28], use a proxy – mapping
system – to map IP addresses into different schemas: Endpoint
Identifier (EID) and Routing Locator (RLOC). Tunnelling is
also used between LISP routing nodes. LISP-based solutions
are ‘map-encap’ solutions, so end-to-end state integrity is
not maintained, and the IP address carried in the packet has
different semantics across the end-to-end path.

B. Host-based Mobility Solutions

Host-based solutions usually do not require any additional
network entities. Mobility management is handled by end
hosts. Therefore, the end-system protocol stack requires up-
dates. However, we consider that deployment of such updates
could be easily managed – similar to network-based software
updates widely-used for operating systems today.

Level 3 Multihoming Shim Protocol for IPv6 (SHIM6) [29]
adds a ‘shim’ layer between the network and the transport
layer to separate identifier and locator from a single IP address.
SHIM6 is designed for multihoming support. Mobility support
is possible, but has the problem of high handoff latency [30].

The Host Identity Protocol (HIP) [31], [32], which was
recently updated to HIPv2 [33], uses public and private key
pairs to manage the identifier (i.e public key) and locator (i.e.
IP address) of a mobile node. Although DNS may be used for
session initiation, a Rendezvous Server (RVS) – an additional
entity – is recommended to be deployed. Also, as public keys
are required, a public key infrastructure is recommended for
use with HIP.

C. Transport Layer Solutions

All solutions mentioned above operate at the network
layer. There are also proposals for transport layer solutions.
However, such solutions, of course, are limited to the choice of
transport layer protocol, while, in principle, network layer solu-
tions are applicable to any transport protocol. Moreover, most
transport layer solutions typically manipulate IP addresses,
which means the fundamental problem of semantic overload
of the IP address remains. Additionally, some security issues
remain unresolved.

The Stream Control Transmission Protocol (SCTP) [34]
allows a host to set up multiple paths – with multiple source
and destination address combinations – between a source
and a destination host. SCTP is designed for multihoming
support. Single host mobility (one-side mobile host) can be
achieved by dynamically adding and deleting addresses of
active SCTP associations [35]. To support two-side mobile

hosts, a Cooperation Server (SC) – a new network entity –
is required [36]. SCTP has some security issues, which are
summarised in RFC5062 [37].

Multipath TCP (MP-TCP) [15], [38] extends TCP and
allows a main TCP session to have bindings to different
addresses i.e. multiple sub-flows. Like SCTP, MP-TCP is
designed for multihoming support. Mobility using MP-TCP
could be achieved by dynamically adding and removing sub-
flows when a host enters and exits a network [39]. MP-TCP
is backwards compatible with classic TCP. However, security
issues remain [40] and a new a cross-path interference attack
has been identified [41].

D. Previous work on ILNP

The initial ideas of host mobility using ILNP can be found
in [2], [42], [43], and assessment of its feasibility using an
overlay emulation can be found in [44]. The overlay emulation
was used for initial evaluation of handoff performance under
a range of emulated scenarios. The architectural description
and protocol engineering considerations for ILNP are given in
RFC6740 [3] and RFC6741 [4], respectively.

The first ILNP mobility prototype in Linux is described in
[45], which presented a simplistic evaluation using a custom
designed UDP application running on a wired network to
demonstrate satisfactory overall protocol behaviour. No wire-
less experiments were conducted, and the test application was
custom built.

In this paper, we use an updated codebase with a more
complete implementation of ILNPv6, and present new results:

• we provide results from a Linux kernel codebase that
allows use of ILNPv6 via the normal socket(2) API
with getaddrinfo(3): this is demonstrated by using an
unmodified, existing UDP application, iperf, which is
widely used for performance testing;

• our evaluation is based on a comprehensive set of
testbed experiments with wireless connectivity (5GHz
IEEE 802.11 WLAN), providing for a more realistic
evaluation in a mobile / wireless domain;

• we provide a direct performance comparison, on the
same testbed, with the Linux kernel implementation of
Mobile IPv6 (MIPv6): experiments compare ILNPv6
hard handoff and soft handoff with MIPv6 and route
optimisation enabled and disabled.

IV. ILNPV6 IN LINUX

ILNP is a radical departure from the current Internet
architecture as it deprecates the use of IP addresses. However,
judicious engineering allows an evolutionary approach to en-
able incremental deployment. An overview of our first ILNPv6
prototype can be found in [45]. Due to space limitations, we
have not provided the full details of the kernel design and
implementation of our prototype. We present here a brief
description. Our implementation is based on Ubuntu 12.04
with Linux kernel version 3.9.0. We describe how (i) NID and
L64 values replaced IPv6 addresses; (ii) OS name resolution
was changed; and (iii) the changes compared to our previous
prototype, plus the new results specifically for this paper.

A. Encoding NID and L64 values

As shown in Figure 1, L64 and NID values are encoded
into the IPv6 address space [4]. The top 64 bits, L64, have
the same syntax and semantics as an IPv6 routing prefix. The
value is obtained from an IPv6 Router Advertisement (RA).
The lower 64 bits, NID , has the same syntax as the IPv6
Interface Identifier, but different semantics. The NID represents
a whole node, not a specific interface of the node. The NID
value can be constructed in exactly the same way for ILNPv6
as it is for IPv6. For convenience, the NID value in this
implementation was derived from the MAC address of the first
active interface, but other methods, such as cryptographically
generated addresses (CGA) [46] or privacy extensions for IPv6
addresses [47] could be used also.

B. Name resolution

For session initiation, ILNP can use DNS [3], [5] just
like IPv6 and MIPv6. However, in this implementation, our
focus was to study the OS handoff performance, so we used a
modified version of /etc/hosts and getaddrinfo() (in libc)
for name resolution. An ILNPv6 hostname with NID and L64
values has an entry in /etc/hosts with the format:

L64|preference,NID hostname

Then, getaddrinfo() extracts NID , L64 and preference
values (the latter is currently unused), and passes them to the
kernel via the Netlink Socket, to be stored in the IL-V cache,
a new data structure in the kernel. To maintain backwards
compatibility with the sockets API, the getaddrinfo()
caller will receive an IPv6 ‘lookalike’ address which is built
from NID and L64 values (see Figure 1). So, well-behaved
legacy applications (those that use the socket descriptor only,
and do not use address bits for application state) will work
with ILNPv6 as they would with IPv6.

C. Identifying ILNPv6 packets

Essentially, the main IPv6 code-path within the Linux
kernel has been augmented to process ILNPv6 packets. So,
the modified code-path can support both IPv6 and ILNPv6
in parallel, treating ILNPv6 as a superset of IPv6. This is
beneficial for backwards compatibility with IPv6, as well as
for allowing a realistic path for incremental deployment.

To detect ILNPv6 packets for outgoing flows, the desti-
nation IP address is checked against the IL-V cache. If the
address is in the cache, ILNPv6 is used for communication
instead of IPv6. The socket is marked as an ILNPv6 socket
using a new flag in the socket data structure, (struct sock).
To allow differentiation between IPv6 packets and ILNPv6
packets, and also to provide off-path protection for packets, a
nonce value is added to every ILNPv6 packet before sending,
using a Nonce Destination Option (NDO) (ICMPv6 type 139)
[7]. For each incoming packet, an ILNPv6 packet is detected if
it carries a nonce value. Please refer to [45] for further details
of additional mechanism for sending and receiving ILNPv6
packets.

D. Transparent support for the socket(2) API

The previous ILNP prototype [45] had support for UDP
applications using only sendto(2) and recvfrom(2). In

this updated codebase, UDP applications also can now use
the connect(2), read(2) and write(2) calls, allowing
any existing IPv6 applications, such as iperf to operate over
ILNPv6. We modified the Linux UDP lookup function to
use only NID for the udptable lookup. The udptable lists all
current UDP sessions of the host and is used by the kernel
to track which port and application incoming packets should
be forwarded to. So, any change of L64 value does not affect
the table lookup because only NID is now used. This means
legacy (non-ILNPv6) application binaries can use ILNPv6 (no
re-coding or recompilation required).

V. EVALUATION

We examined handoff performance by comparing Mobile
IPv6, both with route optimisation (RO) enabled and disabled,
and with ILNP using hard handoff and soft handoff. We
considered the impact on UDP flows.

Note that HIP (see Section III-B), is considered out of
scope for this evaluation due to two important constraints:

1) HIP uses public keys. HIP uses public keys in order
to create host identities. This means that a public
key infrastructure should be in place to generate
host identities, and so HIP is best suited to those
applications that have stringent requirements for the
use of cryptographically verifiable identities at the
network layer – this is not a general requirement for
all applications, and is not used in MIPv6 or ILNPv6.

2) Applications need to be modified to use HIP. The use
of the host identity in HIP requires that applications
that use the current standard C sockets API have to
be modified to operate over HIP [48]. This is not the
case for either MIPv6 or ILNPv6.

These two constraints prevent a straight-forward comparison
of performance with HIP for typical applications.

A. Experiment Configuration

Our testbed was configured as in Figure 3. R1, R2, R3, CN
and MN were each separate, physical hosts. The following
connections were wired Ethernet 1Gbps connections: CN to
R1, R1 to R2, and R2 to R3. The MN used 5GHz 802.11ac
WLAN links. We used netem 1 to add extra delay of 100ms in
each direction between R1 and R2 and between R1 and R3 for
emulating WAN access. We created 4 MN handoff scenarios
as follows:

1) LAN to LAN (netem disabled)
2) LAN to WAN (netem enabled between R1 and R3)
3) WAN to LAN (netem enabled between R1 and R2)
4) WAN to WAN (netem enabled both between R1 and

R2 and between R1 and R3)

The routers R2 and R3 were separate hosts using an
unmodified Linux OS running hostapd 2 and radvd 3 to act
as IPv6 access points announcing IPv6 address prefixes for
the site networks L2 and L3. To allow the mobile host to pick

1http://www.linuxfoundation.org/collaborate/workgroups/ network-
ing/netem/

2http://wireless.kernel.org/en/users/Documentation/hostapd
3http://www.litech.org/radvd/

R1 CN

site
network L3

R3

site
network L2

R2 (HA)

R Router
MN Mobile Node
CN Correspondent Node
HA Home Agent

MN

MN

MN Emulated
WAN Delay

Emulated
WAN Delay

Fig. 3. The topology for the experiment. The CN connects to R1 via 1Gbps
ethernet. The MN initially connects to R2(HA) using WLAN – the dashed /
blue circles depict the radio cell scenario being emulated. The green / dashed
arrows identify movements of MN to site network L3 generating a handoff.

up new prefixes quickly once it enters a new network, we
configured radvd to generate RAs every 1s-2s. The MN had
two WLAN interfaces – one was configured to connect to R2,
the other for connection to R3.

Note that only the end-hosts MN and CN used our modified
Linux kernel supporting ILNPv6. Routers R1, R2 and R3
used standard Linux installations, with netem configured to
implement the clouds marked ‘Emulated WAN Delay’ in Figure
3. Both CN and MN were also configured to support MIPv6
using umip4, to allow a direct comparison between MIPv6 and
ILNPv6 on the same infrastructure.

We used iperf 5 to generate bi-directional UDP flows at two
different mean bit rates as simple packet-level representations
of the following application flows: i) 64 kbps (for Skype Voice
over IP (VoIP) traffic based on [49]); and ii) 2350 kbps (for
Netflix High Definition (HD) video traffic based on [50]). We
used packet sizes of 300 bytes for VoIP traffic [51], and 1300
byte packets for HD video traffic. Each flow lasted 30 seconds
and was repeated 10 times for each combination of the two
flows, and for MIPv6 (with and without RO enabled), as well
as for ILNPv6 hard handoff and ILNPv6 soft handoff. tcpdump
was used to capture packets at the MN for analysis. In Figure
3, the MN started in the site network L2, which was the Home
Network for MIPv6. The bi-directional iperf flows were sent
between the CN and the MN. As each flow was in progress,
the MN started to enter the site network L3 at t=5s into the
flow, it moves out of the site network L2 at t=20s i.e. the MN
stayed in the overlap area for 15s. The movement was emulated
using ifconfig to bring the WLAN interfaces up and down. We
repeated the test for 4 handoff scenarios listed above: LAN to
LAN, LAN to WAN, WAN to LAN, and WAN to WAN.

B. Results

We focus on the handoff performance of ILNPv6 and
MIPv6, using the following metrics which show the behaviour
of the MN during a handoff period.

1) Throughput: The throughput during the handoff pe-
riod was measured at the MN. Values close to the
offered load are better.

2) Packet Loss: The packet loss during the handoff
period is measured at the MN. Lower values are
better, zero is ideal.

4http://umip.org/
5https://iperf.fr/

3) Handoff Delay: The time that the MN needs to com-
plete the handoff process. Lower values are better,
the minimum time will be one round trip time (RTT)
between MN and CN.

The throughput and packet loss were measured from time
t=20s to t=25s of each flow for the MIPv6 cases, and from
t=11s to t=16s for the ILNPv6 cases. These durations are
selected to cover the handoff period of every test scenario. The
handoff in MIPv6 and ILNPv6 happens at different times. In
MIPv6, it is triggered when the MN moves out of the previous
network completely [21, Sec. 11.5]. This is a link layer trigger
e.g. the previous link is down or is no longer reachable. For
ILNPv6, it is a network layer trigger i.e. handoff after seeing
a router advertisement (RA) from the new network. In this
experiment, however, the MN did not handoff immediately
after seeing the new RA. There is a delay of 2s because
we need to wait for the Duplicate Address Detection (DAD)
process to be completed, so the new address (new L64) can be
used. Therefore, in this experiment the MN performed handoff
around the t=21s to t=23s, for MIPv6 and around t=13s to
t=15s, for ILNPv6.

The throughput of the flow, measured for a 5 second span
across the handoff period, is shown in Figure 4. A similar
trend is found in both VoIP traffic and HD Video traffic. The
results for ILNPv6, especially with soft handoff, showed close
to ideal throughput (equal to the offered load). A small drop-
off in throughput was observed when hard handoff was used.
For MIPv6, the throughput was substantially reduced because
the MN could not receive any packets during handoff – see
Figure 6 for an example of the data flow progress during the
handoff period. There was a small improvement of throughput
for MIPv6 when RO was enabled, but only if the home network
was a WAN link (i.e. when handing off from a WAN): sending
data directly from CN to MN was better than traversing the
HA, which resided on a path with a longer delay.

Figure 5 summarises packet loss during a 5 second span
across the handoff period. The results were similar for both
VoIP traffic and HD Video traffic. ILNPv6 with soft handoff
again outperformed MIPv6: zero packet loss was observed for
ILNPv6. A small loss was found when ILNPv6 hard handoff
was used. MIPv6 suffers from greater packet loss because,
again, the MN cannot receive any packets during the handoff.
Also, again, when handing off from the WAN, use of RO
reduced slightly the overall packet loss during handoff, as
packets do not traverse the HA.

Figure 6 gives an example of the flow dynamics during
the 5 second span across the handoff period. When MIPv6
was in use, there was an interruption of the flow, which was
the duration of the Binding Update to the HA. When RO
was used, we saw a peak of received data when the RO
process was completed, because some packets directly sent
from the CN arrive at the same time as the delayed packets
that have been relayed by the HA. For ILNPv6 hard handoff, a
small interruption was observed, which was the duration of the
LU/LU-ACK handshake. However, there was no interruption
for ILNPv6 with soft handoff.

The observed handoff delay is shown in Figure 7 and
Figure 8. This was observed network layer handoff delay,
measured as the handoff signalling for MIPv6 (BU/BU- ACK)

 0

 50

 100

 150

 200

LANtoLAN LANtoWAN WANtoLAN WANtoWAN

T
h
ro

u
g
h
p
u
t

(K
b
p
s)

Test Scenario

The mean throughput measured 5 second across the handoff period

MIPv6 without RO
MIPv6 with RO

ILNP hard handoff

ILNP soft handoff
Offered load

(a) VoIP traffic.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

LANtoLAN LANtoWAN WANtoLAN WANtoWAN

T
h
ro

u
g
h
p
u
t

(K
b
p
s)

Test Scenario

The mean throughput measured 5 second across the handoff period

MIPv6 without RO
MIPv6 with RO

ILNP hard handoff

ILNP soft handoff
Offered load

(b) HD Video traffic.

Fig. 4. Throughput for 5 second across the handoff period for our UDP emulated traffic flows. (Higher values are better, up to the offered load. Error-bars are
small so might not be visible.)

 10

 20

 30

 40

 50

 60

LANtoLAN LANtoWAN WANtoLAN WANtoWAN

P
ac

k
et

 L
o

ss
 (

%
)

Test Scenario

The mean packet loss measured 5 second across the handoff period

MIPv6 without RO
MIPv6 with RO

ILNP hard handoff
ILNP soft handoff

(a) VoIP traffic.

 10

 20

 30

 40

 50

 60

LANtoLAN LANtoWAN WANtoLAN WANtoWAN

P
ac

k
et

 L
o

ss
 (

%
)

Test Scenario

The mean packet loss measured 5 second across the handoff period

MIPv6 without RO
MIPv6 with RO

ILNP hard handoff
ILNP soft handoff

(b) HD Video traffic.

Fig. 5. Packet loss for 5 second across the handoff period for our UDP emulated traffic flows. ILNP soft handoff has zero loss hence it not visible in the bar
charts. (Lower values are better: ideal is zero loss. Error-bars are small so might not be visible.)

 0

 10000

 20000

 30000

 40000

 50000

 60000

20 21 22 23 24 25

D
at

a
(b

y
te

s)

Elasped time (sec)

The number of bytes received during the HD Video flow
 using MIPv6 without RO

(a) MIPv6 withput RO.

 0

 10000

 20000

 30000

 40000

 50000

 60000

20 21 22 23 24 25

D
at

a
(b

y
te

s)

Elasped time (sec)

The number of bytes received during the HD Video flow
 using MIPv6 with RO

(b) MIPv6 with RO.

 0

 10000

 20000

 30000

 40000

 50000

 60000

11 12 13 14 15 16

D
at

a
(b

y
te

s)

Elasped time (sec)

The number of bytes received during the HD Video flow
 using ILNPv6 with hard handoff

(c) ILNP hard handoff.

 0

 10000

 20000

 30000

 40000

 50000

 60000

11 12 13 14 15 16

D
at

a
(b

y
te

s)

Elasped time (sec)

The number of bytes received during the HD Video flow
 using ILNPv6 with soft handoff

(d) ILNP soft handoff.

Fig. 6. Example graphs showing number of bytes received at the MN during the 5 second across the handoff period for HD Video traffic, WAN to WAN
handoff. (A flat, stable line at the value 30000, without discontinuities, is ideal.)

and ILNPv6 (LU/LU-ACK). Other signalling delays such
as wireless association, Neighbour Discovery, and Duplicate
Address Detection (DAD) were excluded for clarity. Again,
ILNPv6 provided better performance than MIPv6 in terms of
shorter handoff delay. The LU/LU-ACK handshake in ILNPv6
usually takes ∼1 RTT between MN and CN, as it is purely
end-to-end. Hence, delay is a few ms, when handing off to the
LAN, and is ∼200ms when handing off to the WAN, because
ILNPv6 sends the LU and receives the LU-ACK via the new
link. For MIPv6 without RO, the BU/BU-ACK handshake
takes around 1s plus 1 RTT to the HA. The extra 1s is due to
BU processing and tunnel creation at the HA before the BU-
ACK is sent to the MN. When RO is enabled the handoff

delay is higher because there are additional processes: the
return routability test and the binding update to the CN. These
processes take longer over the WAN path.

VI. DISCUSSION

We make comparisons with Mobile IP, where appropriate.
For Sections VI-D and VI-E below, full security and privacy
implications are a complex issue: a detailed discussion and
analyses is left for further study.

A. Multi-homed hosts

Multihoming is closely related to mobility: both functions
require special treatment of location with respect to an end-

 0

 500

 1000

 1500

 2000

 2500

MIPv6
 without

 RO

MIPv6
 with RO

ILNPv6
 hard

ILNPv6
 soft

D
el

ay
 [

m
s]

Handoff delay from LAN to LAN
 for HD-video emulated flow

(a) LAN to LAN handoff.

 0

 500

 1000

 1500

 2000

 2500

MIPv6
 without

 RO

MIPv6
 with RO

ILNPv6
 hard

ILNPv6
 soft

D
el

ay
 [

m
s]

Handoff delay from LAN to WAN
 for HD-video emulated flow

(b) LAN to WAN handoff.

 0

 500

 1000

 1500

 2000

 2500

MIPv6
 without RO

MIPv6
 with RO

ILNPv6
 hard

ILNPv6
 soft

D
el

ay
 [

m
s]

Handoff delay from WAN to LAN for HD-video emulated flow

(c) WAN to LAN handoff.

 0

 500

 1000

 1500

 2000

 2500

MIPv6
 without

 RO

MIPv6
 with RO

ILNPv6
 hard

ILNPv6
 soft

D
el

ay
 [

m
s]

Handoff delay from WAN to WAN
 for HD-video emulated flow

(d) WAN to WAN handoff.

Fig. 7. Handoff delay for our HD Video emulated traffic flows. ILNP handoff is ∼1 RTT. (Lower values are better: 1 RTT is ideal. Error-bars are small so
not be visible.)

s

 0

 500

 1000

 1500

 2000

 2500

MIPv6
 without

 RO

MIPv6
 with RO

ILNPv6
 hard

ILNPv6
 soft

D
el

ay
 [

m
s]

Handoff delay from LAN to LAN
 for VoIP emulated flow

(a) LAN to LAN handoff.

 0

 500

 1000

 1500

 2000

 2500

MIPv6
 without

 RO

MIPv6
 with RO

ILNPv6
 hard

ILNPv6
 soft

D
el

ay
 [

m
s]

Handoff delay from LAN to WAN
 for VoIP emulated flow

(b) LAN to WAN handoff.

 0

 500

 1000

 1500

 2000

 2500

MIPv6
 without

 RO

MIPv6
 with RO

ILNPv6
 hard

ILNPv6
 soft

D
el

ay
 [

m
s]

Handoff delay from WAN to LAN
 for VoIP emulated flow

(c) WAN to LAN handoff.

 0

 500

 1000

 1500

 2000

 2500

MIPv6
 without

 RO

MIPv6
 with RO

ILNPv6
 hard

ILNPv6
 soft

D
el

ay
 [

m
s]

Handoff delay from WAN to WAN
 for VoIP emulated flow

(d) WAN to WAN handoff.

Fig. 8. Handoff delay for our VoIP emulated traffic flows. ILNP handoff is ∼1 RTT. (Lower values are better: 1 RTT is ideal. Error-bars are small so not be
visible.)

host (or a site) that is multihomed. MIP requires additional
mechanisms to achieve multihoming [52], [53]. In ILNP,
multihoming and mobility form a duality [1], [2], [54], so
mobile hosts can also be multihomed.

Indeed, if we consider the soft handoff scenario in Figure 2,
we see that the MN is multihomed during handoff, as the NID
can be bound to more than one L64 simultaneously. Hence,
it is possible that a mobile host connects to different wireless
technology, say, both WiFi and 3G simultaneously. This could
enable functions such as WiFi offloading, for example, using
3G for signalling and small data packets, and using WiFi for
bandwidth-consuming data. It could also help to manage QoS
differences in the transition between networks when vertical
handoff is used. However, a multihomed mobile host with
ILNPv6 is a subject for further study.

B. Backwards compatibility with IPv6

An IPv6 router will treat ILNPv6 packets as if they were
IPv6 packets. Our evaluation shows that unmodified Linux
IPv6 routers can be used for routing and forwarding ILNPv6
packets from/to ILNPv6 hosts. Therefore, we believe that
ILNPv6 could be deployed in the current IPv6 backbone
without requiring any changes or upgrades to IPv6 routers.

To enable backwards compatibility with IPv6 hosts, e.g.
when an ILNPv6 host communicates with an IPv6 host, the
IL-V cache is used to verify if the destination supports ILNPv6
or not (see Section IV-C). However, a falsely detected ILNP
host could be flagged with the use of the nonce value [7].
When a non-ILNP host receives a packet with a nonce value,
a ‘Parameter Problem’ ICMP packet is returned to the sender
as part of normal IPv6 host operation. Hence, the sender is
notified if the destination host does not support ILNPv6. A
new communication session would then be re-established with
classic IPv6 [4].

C. Name resolution using DNS

In this implementation, we use /etc/hosts for name
resolution. In a real deployment, DNS would be used. New
DNS Resource Records for NID and L64 values have been
defined [5] and are implemented in widely-used DNS soft-
ware: ISC BIND/named from v9.9.36, and NSD/Unbound from
v3.2.157.

Since the L64 value of the MN would be updated in the
DNS when the node moves, DNS records that hold L64 values
need to have a very low DNS time-to-live (TTL), or else
cached L64 values would become stale. Our previous empirical
evaluation shows that values of TTL as low as zero for IPv4
A records have no significant impact on DNS load [18], so
use of low DNS TTL for the L64 records on mobile ILNP
hosts would have little impact on DNS load. Both BIND and
Unbound also support DNS security for secure dynamic DNS
updates of L64 resource records.

D. Security considerations

DNS security is used for secure update of L64 value to the
DNS, as mentioned before. For MIPv6, IPsec is required for
a secure Binding Update to the HA [21, Sec. 15.3]. For other
general operations, ILNPv6 is as secure as IPv6.

SSL/TLS and other mechanisms that work over TCP should
work, unless they make use of the network layer address bits,
i.e. if higher level protocols use FQDNs, they should work
without requiring any changes.

For ILNPv6, for providing lightweight protection against
modification and forged packets, we introduce the use of a
Nonce Destination Option (NDO), a new IPv6 end-to-end

6https://kb.isc.org/article/AA-00970/81/BIND-9.9.3-P1-Extended-Support-
Version-Release-Notes.html

7http://www.nlnetlabs.nl/svn/nsd/branches/NSD 3 2/doc/ ChangeLog

extension header [7]. This carries an unpredictable, crypto-
graphically random value to initiate a session. It is then used
subsequently as required. The nonce value is sufficient to
protect against off-path attacks: any attacker without an on-
path monitoring capability will not be able to see and use the
Nonce value. The NDO should be used, as default, at the very
least on packets that carry control messages, for example to
provide off-path protection of Locator Update messages.

Where the threat regime is such that the NDO is not
considered sufficient protection, ILNPv6 is compatible with
IPsec [55] with one change: IPsec Security Associations (SAs)
are bound to NID values and not 128-bit addresses as they
are in IPv6 [2]. Note that while this change is architecturally
significant, it is a relatively small engineering change. So, as
long as the NID values do not change, the IPsec SA remains
valid. Of course, the other features of IPsec – Authentication
Header (AH) and Encapsulating Security Payload (ESP) – are
also usable with ILNPv6.

Some applications may require assurances of identity of the
source at the packet level, for example, to provide per-packet
authentication. IPsec can be used for this purpose. However, if
required, NID values for ILNPv6 nodes can also be generated
as used for Cryptographically Generated Addresses (CGAs)
for IPv6 [46].

ILNP also has the capability to protect whole network sites:
various scenarios are possible [8], including site resilience
[56], [57], traffic engineering [58], mobile site networks [59],
heterogeneous edge networks [60], and virtual machine mo-
bility across local and wide-area network paths [57].

E. Privacy considerations

The NID value is essential as the end-to-end invariant for
transport protocol session state, and might also be used by
application protocols, though we encourage use of an FQDN
or application-specific namespace with ILNPv6. ILNP allows
multiple NID values to be used by a node simultaneously, as
long as any transport session uses the same NID value during
its lifetime, to maintain end-to-end session state invariance. So,
in support of identity privacy, NID values could be ephemeral
values, generated as required [4, Sec. 2 & 11] [8, Sec. 8].
For example, a client system could generate ‘random’ NID
values for use for different transport layer sessions (using IPv6
Duplicate Address Detection to check for collisions in the NID
/L64 that is created).

In support of privacy, ILNPv6 can leverage another existing
IPv6 recommendation for generating anonymous, ephemeral
NID values as required [47]. A node can generate a new NID
value shortly before initiating communication. Normally, such
requirements may be for client systems accessing services, and
one use may be to prevent tracking of users through the default
NID value that is derived as for IPv6. However, if a mobile
node expects incoming connections, then the distribution of
the new identity would be by application-specific means. If
DNS was used, and re-writing values of L64 records was not
appropriate, the TXT record [61] could be used, again in an
application-specific manner, in conjunction with Secure DNS
Dynamic Update.

VII. CONCLUSION AND FUTURE WORK

We have shown that handoff management for IP mobile
nodes can be implemented as a purely end-to-end function
in the Linux OS kernel. Our implementation – ILNPv6 – is
implemented as a superset of IPv6, so although a radically
different naming architecture is used – based on identifiers
and locators – it is still possible to operate over existing IPv6
infrastructure. ILNPv6 could be integrated into existing OS
bases and deployed incrementally. We have shown that an
ILNPv6-modified Linux kernel can support IPv6 binaries.

Our performance evaluation shows that ILNPv6, especially
with soft handoff, provides excellent handoff performance in
terms of throughput, packet loss and handoff delay with respect
to UDP flows. Unlike MIPv6, there is minimal disruption
during handoff (zero packet loss was observed for ILNPv6 soft
handoff in our experiments). ILNPv6’s end-to-end architecture
means that additional entities, such as home agents, are not
required, neither are tunnels.

For the future, we plan to examine the performance of
TCP flows over ILNPv6, as well as explore multihomed
mobile scenarios. We also wish to explore the possibilities
of exploiting DNS, especially for mobility of whole networks,
for which ILNP also provides support.

REFERENCES

[1] R. Atkinson, S. Bhatti, and S. Hailes, “Evolving the Internet Architec-
ture Through Naming,” IEEE JSAC, vol. 28, no. 8, pp. 1319–1325, Oct
2010.

[2] ——, “ILNP: Mobility, Multi-homing, Localised Addressing and Secu-
rity Through Naming,” Telecomm. Systems, vol. 42, no. 3, pp. 273–291,
Dec 2009.

[3] R. Atkinson and S. N. Bhatti, “Identifier-Locator Network Protocol
(ILNP) Architectural Description,” IRTF, RFC 6740 (E), Nov 2012.
[Online]. Available: http://tools.ietf.org/html/rfc6740

[4] ——, “Identifier-Locator Network Protocol (ILNP) Engineering
Considerations,” IRTF, RFC 6741 (E), Nov 2012. [Online]. Available:
http://tools.ietf.org/html/rfc6741

[5] R. Atkinson, S. N. Bhatti, and S. Rose, “DNS Resource Records for
the Identifier-Locator Network Protocol (ILNP),” IRTF, RFC 6742 (E),
Nov 2012. [Online]. Available: http://tools.ietf.org/html/rfc6742

[6] R. Atkinson and S. N. Bhatti, “ICMP Locator Update Message for
the Identifier-Locator Network Protocol for IPv6 (ILNPv6),” IRTF,
RFC 6743 (E), Nov 2012. [Online]. Available: http://tools.ietf.org/
html/rfc6743

[7] ——, “IPv6 Nonce Destination Option for the Identifier-Locator
Network Protocol for IPv6 (ILNPv6),” IRTF, RFC 6744 (E), Nov
2012. [Online]. Available: http://tools.ietf.org/html/rfc6744

[8] ——, “Optional Advanced Deployment Scenarios for the Identifier-
Locator Network Protocol (ILNP),” IRTF, RFC 6748 (E), Nov 2012.
[Online]. Available: http://tools.ietf.org/html/rfc6748

[9] C. Bennett, S. Edge, and A. Hinchley, “Issues in the Interconnection of
Datagram Networks,” Internet Experiment Note (IEN) 1, Jul 1977.

[10] J. Saltzer, “On the Naming and Binding of Network Destinations,” RFC
1498 (I), Aug 1993.

[11] B. Carpenter, “Architectural Principles of the Internet,” Internet Archi-
tecture Board, RFC 1958 (I), Jun 1996.

[12] B. Carpenter, J. Crowcroft, and Y. Rekther, “IPv4 Address Behaviour
Today,” Internet Architecture Board, RFC 2101 (I), Feb 1997.

[13] D. Meyer and L. Zhang and K. Fall , “Report from the IAB Workshop
on Routing and Addressing,” IAB, RFC 4984 (I), Sep 2007.

[14] B. E. Carpenter, “IP Addresses Considered Harmful,” SIGCOMM
CCR, vol. 44, no. 2, pp. 65–69, Apr 2014. [Online]. Available:
http://doi.acm.org/10.1145/2602204.2602215

[15] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, “TCP Extensions
for Multipath Operation with Multiple Addresses,” IETF, RFC 6824
(E), Jan 2013.

[16] B. Wellington, “Secure Domain Name System (DNS) Dynamic Up-
date,” IETF, RFC 3007 (PS), Nov 2000.

[17] A. Pappas, S. Hailes, and R. Giaffreda, “Mobile Host Location Tracking
Through DNS,” in LCS2002: 2002 IEEE London Communications
Symposium, Sep 2007.

[18] S. N. Bhatti and R. Atkinson, “Reducing DNS Caching,” in GI2011 –
14th IEEE Global Internet Symp., Apr 2011.

[19] Z. Zhu, R. Wakikawa, and L. Zhang, “A Survey of Mobility Support
in the Internet,” IETF, RFC 6301 (I), Jul 2011.

[20] C. Perkins (Ed), “IP Mobility Support for IPv4, Revised,” IETF, RFC
5944 (PS), Nov 2010.

[21] C. Perkins, D. Johnson, and J. Arkko, “Mobility Support in IPv6,” IETF,
RFC 6275 (PS), Jul 2011.

[22] H. Soliman, C. Castelluccia, K. ElMalki, and L. Bellier, “Hierarchical
Mobile IPv6 (HMIPv6) Mobility Management,” IETF, RFC 5380 (PS),
Oct 2008.

[23] R. Koodli (Ed), “Mobile IPv6 Fast Handovers,” IETF, RFC 5568 (PS),
July 2009.

[24] E. Ivov and T. Noel, “An experimental performance evaluation of the
IETF FMIPv6 protocol over IEEE 802.11 WLANs,” in IEEE WCNC
2006, vol. 1, Apr 2006, pp. 568–574.

[25] S. Gundavelli, K. Leung, V. Devarapalli, K. Chowdhury, and B. Patil,
“Proxy Mobile IPv6,” IETF, RFC 5213 (PS), Aug 2008.

[26] D. Farinacci, V. Fuller, D. Meyer, and D. Lewis, “The Locator/ID
Separation Protocol (LISP),” IETF, RFC 6830 (E), Jan 2013.

[27] A. Rodriguez Natal, L. Jakab, M. Portoles, V. Ermagan, P. Natarajan,
F. Maino, D. Meyer, and A. Cabellos Aparicio, “LISP-MN: Mobile Net-
working Through LISP,” Wireless Personal Communications, vol. 70,
no. 1, pp. 253–266, 2013.

[28] A. Galvani, A. Rodriguez-Natal, A. Cabellos-Aparicio, and F. Risso,
“LISP-ROAM: Network-based Host Mobility with LISP,” in MobiArch
2014, 2014, pp. 19–24. [Online]. Available: http://doi.acm.org/10.1145/
2645892.2645898

[29] E. Nordmark and M. Bagnulo, “Shim6: Level 3 Multihoming Shim
Protocol for IPv6,” IETF, RFC 5533 (PS), Jun 2009.

[30] A. Dhraief and N. Montavont, “Toward Mobility and Multihoming
Unification - The SHIM6 Protocol: A Case Study,” in IEEE WCNC
2008 - Wireless Comms. and Networking Conf., March 2008, pp. 2840–
2845.

[31] R. Moskowitz, P. Nikander, P. Jokela, and T. Henderson, “Host Identity
Protocol,” IETF, RFC 5201 (E), Apr 2008.

[32] P. Nikander, T. Henderson (Ed), C. Vogt, and J. Arkko, “End-host
mobility and multihoming with the host identity protocol,” IETF, RFC
5206 (E), Apr 2008.

[33] R. Moskowitz, T. Heer, P. Jokela, and T. Henderson, “Host Identity
Protocol Version 2 (HIPv2),” IETF, RFC 7401 (PS), April 2015.

[34] R. Stewart, “Stream Control Transmission Protocol,” IETF, RFC 4960
(PS), Sep 2007.

[35] R. Stewart, Q. Xie, M. Tuexen, S. Maruyama, and M. Kozuka, “Stream
Control Transmission Protocol (SCTP) Dynamic Address Reconfigura-
tion,” IETF, RFC 5061 (PS), Sep 2007.

[36] A. Ezzouhairi, A. Quintero, and S. Pierre, “A New SCTP mobility
scheme supporting vertical handover,” in WiMob 2006 - IEEE Intl. Conf.
Wireless and Mobile Computing, Networking and Comms., June 2006,
pp. 205–211.

[37] R. Stewart, M. Tuexen, and G. Camarillo, “Security Attacks Found
Against the Stream Control Transmission Protocol (SCTP) and Current
Countermeasures,” IETF, RFC 5062 (I), Sep 2007.

[38] A. Ford, C. Raiciu, M. Handley, S. Barre, and J. Iyengar, “Architectural
Guidelines for Multipath TCP Development,” IETF, RFC 6182 (I), Mar
2011.

[39] C. Raiciu, D. Niculescu, M. Bagnulo, and M. J. Handley, “Opportunistic
Mobility with Multipath TCP,” in ACM MobiArch 2011. ACM, 2011,
pp. 7–12.

[40] M. Bagnulo, “Threat Analysis for TCP Extensions for Multipath Oper-
ation with Multiple Addresses,” IETF, RFC 6181 (I), Mar 2011.

[41] M. Z. Shafiq, F. Le, M. Srivatsa, and A. X. Liu, “Cross-path Inference
Attacks on Multipath TCP,” in HotNets XII - 12th ACM Wkshp. Hot
Topics in Networks. ACM, 2013, pp. 15:1–15:7.

[42] R. Atkinson, S. Bhatti, and S. Hailes, “A Proposal for Unifying Mobility
with Multi-Homing, NAT, and Security,” in MobiWAC’07 – 5th ACM
Intl. Wkshp. on Mobility Mgmt. and W’less Access, Oct 2007.

[43] R. Atkinson, S. N. Bhatti, and S. Hailes, “Mobility as an
Integrated Service Through the Use of Naming,” in MobiArch
2007 - 2nd ACM/IEEE Intl. Workshop on Mobility in the Evolving
Internet Architecture, Aug 2007, pp. 1:1–1:6, http://goo.gl/lkhok.
[Online]. Available: http://saleem.host.cs.st-andrews.ac.uk/publications/
2007/mobiarch2007/mobiarch2007-abh2007.pdf

[44] D. Phoomikiattisak and S. N. Bhatti, “Network Layer Soft Handoff for
IP Mobility,” in PM2WH2N 2013 - 8th ACM Wrkshp. Perf. Monitoring
and Measurement of Heterogeneous Wireless and Wired Networks, Nov
2013, pp. 13–20.

[45] ——, “IP-layer Soft Handoff Implementation in ILNP,” in MobiArch
2014, 2014, pp. 1–6. [Online]. Available: http://doi.acm.org/10.1145/
2645892.2645895

[46] T. Aura, “Cryptographically Generated Addresses (CGA),” IETF, RFC
3972 (PS), Mar 2005.

[47] T. Narten, R. Draves, and S. Krishnan, “Privacy Extensions for Stateless
Address Autoconfiguration in IPv6,” IETF, RFC 4941 (DS), Sep 2007.

[48] M. Komu and T. Henderson, “Basic Socket Interface Extensions for the
Host Identity Protocol (HIP),” IETF, RFC 6317 (E), Jul 2011.

[49] D. Bonfiglio, M. Mellia, M. Meo, D. Rossi, and P. Tofanelli, “Revealing
Skype traffic: when randomness plays with you,” in SIGCOMM 2007,
2007, pp. 37–48.

[50] V. Adhikari, Y. Guo, F. Hao, M. Varvello, V. Hilt, M. Steiner, and Z.-L.
Zhang, “Unreeling NetFlix: Understanding and improving multi-CDN
movie delivery,” in IEEE INFOCOM 2012, March 2012, pp. 1620–
1628.

[51] K. Chen, C. Huang, and C. Huang, P.and Lei, “Quantifying Skype user
satisfaction,” in SIGCOMM 2006, 2006, pp. 399–410.

[52] K. Nagami, S. Uda, N. Ogashiwa, H. Esaki, R. Wakikawa, and
H. Ohnishi, “Multihoming for Small-Scale Fixed Networks Using
Mobile IP and Network Mobility (NEMO),” IETF, RFC 4908 (E), Jun
2007.

[53] C. Ng, T. Ernst, E. Paik, and M. Bagnulo, “Analysis of Multihoming
in Network Mobility Support,” IETF, RFC 4980 (I), Oct 2007.

[54] B. Simpson and S. N. Bhatti, “An Identifier-Locator Approach to
Host Multihoming,” in AINA 2014 - IEEE 28th Intl. Conf. Advanced
Information Networking and Applications, May 2014.

[55] S. Kent and S. Keo, “Security Architecture for the Internet Protocol,”
IETF, RFC 4301 (PS), Dec 2005.

[56] R. Atkinson, S. Bhatti, and S. Hailes, “Harmonised Resilience, Security
and Mobility Capability for IP,” in IEEE MILCOM 2008, Nov 2008.

[57] S. Bhatti and R. Atkinson, “Secure & Agile Wide Area Virtual Machine
Mobility,” in IEEE MILCOM 2011, Oct 2012.

[58] R. Atkinson and S. Bhatti, “Site-Controlled Secure Multi-homing and
Traffic Engineering for IP,” in IEEE MILCOM 2009, Oct 2009.

[59] D. Rehunathan, R. Atkinson, and S. Bhatti, “Enabling Mobile Networks
Through Secure Naming,” in IEEE MILCOM 2009, Oct 2009.

[60] S. Bhatti, R. Atkinson, and J. Klemets, “Integrating Challenged Net-
works,” in IEEE MILCOM 2011, Nov 2011.

[61] R. Rosenbaum, “Using the Domain Name System To Store Arbitrary
String Attributes,” IETF, RFC 1464 (E), May 1993.

