966 research outputs found

    Flux decline in ultrafiltration processes

    Get PDF
    When a membrane filtration process such as ultrafiltration is used a flux- and yield-decline can be observed. The causes are i) concentration polarization (i.e. accumulation of retained solutes, reversibly and immediately occurring) and ii) fouling phenomena such as adsorption, pore-blocking and deposition of solidified solutes, a long-term, and more or less irreversible process. The result of both these phenomena are a decreasing driving force for the filtration or an increasing resistance against transport of the permeating solvent during the filtration. The degree of flux decline depends on many variables, both solution and equipment related.\ud \ud Several models have been developed to describe the polarization phenomena, in general they can be subdivided in (A) resistance models, (B) gel-polarization models and (C) osmotic pressure models. A new boundary layer resistance model for unstirred dead-end ultrafiltration is described more in detail. This model can predict fluxes and related phenomena; the simulations agree very well with the experimental data.\ud \ud The flux decline behaviour of binary mixtures of equally and unequally charged proteins (α-lactalbumin, BSA and lysozyme) was studied. In case the mixture consists of oppositely charged proteins a considerable increase of the resistance of the concentrated layer near the membrane interface can be observed, which depends on the mixing ratio of the proteins. When equally charged proteins are filtered the resistance decreases a little, again depending on the mixing ratio.\ud \ud Several methods exist to improve the flux, they can be generally divided into: (1) adapting the operation conditions in the existing equipment, (2) altering the conditions in the solution, (3) using a different or pretreated membrane, (4) taking additional measures to prevent or decrease the flux decline

    Fouling of dairy components on hydrophobic polytetrafluoroethylene (PTFE) membranes for membrane distillation

    Get PDF
    This study investigates fouling of membranes during membrane distillation (MD) of two model dairy feeds — skim milk and whey, as well as their major single components. Every MD experiment was conducted for 20 hat 54 C feed inlet temperature and 5 C permeate inlet temperature using PTFE membranes. Performance was assessed in terms of throughput (flux) and retention efficiency.Skim milk flux was found to be lower but stable overtime compared to whey.The study using single components as well as combinations the reofrevealed that fouling was primarily driven by proteins and calcium, but only in combination.Lactose also played a role to a lesser extent in the protein/membrane interactions, possibly due to preferential hydration,but did not interact with the membrane polymer directly. However lactose was found to deposit once an anchorpoint to the membrane was established by other components. Skim milk showed strong adhesion from its principle proteins, caseins;however salts were needed to form a thick and dense cake layer.Caseins seem to form a layer on the membrane surface that prevents other components from interacting with the membrane polymer.Wheyproteins, on the other hand, deposited to alesse rextent. In general membrane distillation was found to be a process that generates high quality water with retention of all tested components >99% while simultaneously concentrating whey or skim milk

    Flux enhancements in cross-flow microfiltration

    Get PDF
    Two-phase flow microfiltration successfully reduced the fouling problem for several microfiltration processes. Two-phase flow, created by introducing air into the fluid, increased the permeate flux 120%, 45%, and 40% for three different fermented biomass solutions at one hour operating time. For cheese whey microfiltration, the two-phase flow method successfully improved the permeate flux approximately 50% with only 5% air. Without the two-phase flow method, the permeate flux increased 20% when the liquid flow rate was doubled. Intermittent use of air was less effective than continual addition. Operating parameters of two-phase flow microfiltration, such as liquid flow rate and air percentage, were optimized based on permeate flux and energy requirements. The two-phase flow technique saved more energy and processing time than simply increasing the liquid flow rate. An economic analysis was performed to estimate the annual costs for scale-up of a cheese whey microfiltration process

    Ultrafiltration fouling trend simulation of a municipal wastewater treatment plant effluent with model wastewater

    Full text link
    Secondary treatment effluents from Municipal Wastewater Treatment Plants require tertiary treatments to be reused in agriculture. Among tertiary treatment technologies, ultrafiltration has been proven to be a reliable reclamation process. Nevertheless this technique has an important disadvantage: membrane fouling. This phenomenon causes decline in permeate flux with time and increases the operational costs. Due to the fact that secondary effluents from Municipal Wastewater Treatment Plants contain a large amount of different compounds and that there is certain variability in their composition, the use of a simplified model wastewater consisting of only few compounds may help to simulate better the ultrafiltration fouling trend. The main secondary treatment effluent components responsible for fouling membrane during ultrafiltration tests are extracellular polymeric substances. These substances are mainly composed of proteins and polysaccharides, thus they are commonly used to prepare model wastewaters. This work consisted in two parts. Firstly, a model wastewater was selected among different model solutions mimicking secondary treatment effluent. Secondly, ultrafiltration behaviour of the selected model solution was compared with the behaviour of the secondary effluent in the ultrafiltration tests at different cross-flow velocities and transmembrane pressures. The membrane used in the ultrafiltration tests was UFCM5 Norit X-flowÂź hollow-fiber. To prepare model wastewaters, three parameters (proteins and carbohydrates concentrations and chemical oxygen demand) were considered. The model wastewater that represented the best the fouling trend of the secondary treatment effluent had a composition of 15 mg/l of bovine serum albumin and 5.5 mg/l of dextranThe authors wish to gratefully acknowledge the financial support of the Generalitat Valenciana through the project "Ayudas para la realizacion de proyectos I+D para grupos de investigacion emergentes GV/2013."Tora Grau, M.; Soler Cabezas, JL.; Vincent Vela, MC.; Mendoza Roca, JA.; MartĂ­nez Francisco, FJ. (2015). Ultrafiltration fouling trend simulation of a municipal wastewater treatment plant effluent with model wastewater. Desalination and Water Treatment. 1-9. doi:10.1080/19443994.2014.999714S19Qin, J.-J., Oo, M. H., Lee, H., & Kolkman, R. (2004). Dead-end ultrafiltration for pretreatment of RO in reclamation of municipal wastewater effluent. Journal of Membrane Science, 243(1-2), 107-113. doi:10.1016/j.memsci.2004.06.010ArĂ©valo, J., GarralĂłn, G., Plaza, F., Moreno, B., PĂ©rez, J., & GĂłmez, M. Á. (2009). Wastewater reuse after treatment by tertiary ultrafiltration and a membrane bioreactor (MBR): a comparative study. Desalination, 243(1-3), 32-41. doi:10.1016/j.desal.2008.04.013Katsoufidou, K., Yiantsios, S. G., & Karabelas, A. J. (2008). An experimental study of UF membrane fouling by humic acid and sodium alginate solutions: the effect of backwashing on flux recovery. Desalination, 220(1-3), 214-227. doi:10.1016/j.desal.2007.02.038Muthukumaran, S., Nguyen, D. A., & Baskaran, K. (2011). Performance evaluation of different ultrafiltration membranes for the reclamation and reuse of secondary effluent. Desalination, 279(1-3), 383-389. doi:10.1016/j.desal.2011.06.040Henderson, R. K., Subhi, N., Antony, A., Khan, S. J., Murphy, K. R., Leslie, G. L., 
 Le-Clech, P. (2011). Evaluation of effluent organic matter fouling in ultrafiltration treatment using advanced organic characterisation techniques. Journal of Membrane Science, 382(1-2), 50-59. doi:10.1016/j.memsci.2011.07.041Muthukumaran, S., Jegatheesan, J. V., & Baskaran, K. (2013). Comparison of fouling mechanisms in low-pressure membrane (MF/UF) filtration of secondary effluent. Desalination and Water Treatment, 52(4-6), 650-662. doi:10.1080/19443994.2013.826324Yu, C.-H., Fang, L.-C., Lateef, S. K., Wu, C.-H., & Lin, C.-F. (2010). Enzymatic treatment for controlling irreversible membrane fouling in cross-flow humic acid-fed ultrafiltration. Journal of Hazardous Materials, 177(1-3), 1153-1158. doi:10.1016/j.jhazmat.2010.01.022Gao, W., Liang, H., Ma, J., Han, M., Chen, Z., Han, Z., & Li, G. (2011). Membrane fouling control in ultrafiltration technology for drinking water production: A review. Desalination, 272(1-3), 1-8. doi:10.1016/j.desal.2011.01.051Kaya, Y., Barlas, H., & Arayici, S. (2011). Evaluation of fouling mechanisms in the nanofiltration of solutions with high anionic and nonionic surfactant contents using a resistance-in-series model. Journal of Membrane Science, 367(1-2), 45-54. doi:10.1016/j.memsci.2010.10.037Delgado, S., Dı́az, F., Vera, L., Dı́az, R., & Elmaleh, S. (2004). Modelling hollow-fibre ultrafiltration of biologically treated wastewater with and without gas sparging. Journal of Membrane Science, 228(1), 55-63. doi:10.1016/j.memsci.2003.09.011Fan, L., Nguyen, T., Roddick, F. A., & Harris, J. L. (2008). Low-pressure membrane filtration of secondary effluent in water reuse: Pre-treatment for fouling reduction. Journal of Membrane Science, 320(1-2), 135-142. doi:10.1016/j.memsci.2008.03.058Xiao, D., Li, W., Chou, S., Wang, R., & Tang, C. Y. (2012). A modeling investigation on optimizing the design of forward osmosis hollow fiber modules. Journal of Membrane Science, 392-393, 76-87. doi:10.1016/j.memsci.2011.12.006Zator, M., Ferrando, M., LĂłpez, F., & GĂŒell, C. (2007). Membrane fouling characterization by confocal microscopy during filtration of BSA/dextran mixtures. Journal of Membrane Science, 301(1-2), 57-66. doi:10.1016/j.memsci.2007.05.038Nataraj, S., SchomĂ€cker, R., Kraume, M., Mishra, I. M., & Drews, A. (2008). Analyses of polysaccharide fouling mechanisms during crossflow membrane filtration. Journal of Membrane Science, 308(1-2), 152-161. doi:10.1016/j.memsci.2007.09.060Nguyen, S. T., & Roddick, F. A. (2011). Chemical cleaning of ultrafiltration membrane fouled by an activated sludge effluent. Desalination and Water Treatment, 34(1-3), 94-99. doi:10.5004/dwt.2011.2790Xiao, K., Wang, X., Huang, X., Waite, T. D., & Wen, X. (2009). Analysis of polysaccharide, protein and humic acid retention by microfiltration membranes using Thomas’ dynamic adsorption model. Journal of Membrane Science, 342(1-2), 22-34. doi:10.1016/j.memsci.2009.06.016Hwang, K.-J., & Chiang, Y.-C. (2014). Comparisons of membrane fouling and separation efficiency in protein/polysaccharide cross-flow microfiltration using membranes with different morphologies. Separation and Purification Technology, 125, 74-82. doi:10.1016/j.seppur.2014.01.041Yamamura, H., Okimoto, K., Kimura, K., & Watanabe, Y. (2014). Hydrophilic fraction of natural organic matter causing irreversible fouling of microfiltration and ultrafiltration membranes. Water Research, 54, 123-136. doi:10.1016/j.watres.2014.01.024Nigam, M. O., Bansal, B., & Chen, X. D. (2008). Fouling and cleaning of whey protein concentrate fouled ultrafiltration membranes. Desalination, 218(1-3), 313-322. doi:10.1016/j.desal.2007.02.027MOUROUZIDISMOUROUZIS, S., & KARABELAS, A. (2006). Whey protein fouling of microfiltration ceramic membranes—Pressure effects. Journal of Membrane Science, 282(1-2), 124-132. doi:10.1016/j.memsci.2006.05.012Carić, M. Đ., Milanović, S. D., Krstić, D. M., & Tekić, M. N. (2000). Fouling of inorganic membranes by adsorption of whey proteins. Journal of Membrane Science, 165(1), 83-88. doi:10.1016/s0376-7388(99)00221-5Tasselli, F., Cassano, A., & Drioli, E. (2007). Ultrafiltration of kiwifruit juice using modified poly(ether ether ketone) hollow fibre membranes. Separation and Purification Technology, 57(1), 94-102. doi:10.1016/j.seppur.2007.03.007Vincent-Vela, M.-C., Álvarez-Blanco, S., Lora-GarcĂ­a, J., & Bergantiños-RodrĂ­guez, E. (2009). Estimation of the gel layer concentration in ultrafiltration: Comparison of different methods. Desalination and Water Treatment, 3(1-3), 157-161. doi:10.5004/dwt.2009.454Valiño, V., San RomĂĄn, M. F., Ibåñez, R., Benito, J. M., Escudero, I., & Ortiz, I. (2014). Accurate determination of key surface properties that determine the efficient separation of bovine milk BSA and LF proteins. Separation and Purification Technology, 135, 145-157. doi:10.1016/j.seppur.2014.07.051Luck, P. J., Vardhanabhuti, B., Yong, Y. H., Laundon, T., Barbano, D. M., & Foegeding, E. A. (2013). Comparison of functional properties of 34% and 80% whey protein and milk serum protein concentrates. Journal of Dairy Science, 96(9), 5522-5531. doi:10.3168/jds.2013-6617Marcos, B., Moresoli, C., Skorepova, J., & Vaughan, B. (2009). CFD modeling of a transient hollow fiber ultrafiltration system for protein concentration. Journal of Membrane Science, 337(1-2), 136-144. doi:10.1016/j.memsci.2009.03.036Chung, T.-S., Qin, J.-J., & Gu, J. (2000). Effect of shear rate within the spinneret on morphology, separation performance and mechanical properties of ultrafiltration polyethersulfone hollow fiber membranes. Chemical Engineering Science, 55(6), 1077-1091. doi:10.1016/s0009-2509(99)00371-1Salahi, A., Mohammadi, T., Rahmat Pour, A., & Rekabdar, F. (2009). Oily wastewater treatment using ultrafiltration. Desalination and Water Treatment, 6(1-3), 289-298. doi:10.5004/dwt.2009.480Janssen, A. N., van Agtmaal, J., van den Broek, W. B. P., de Koning, J., Menkveld, H. W. H., Schrotter, J.-C., 
 van der Graaf, J. H. J. M. (2008). Monitoring of SUR to control and enhance the performance of dead-end ultrafiltration installations treating wwtp effluent. Desalination, 231(1-3), 99-107. doi:10.1016/j.desal.2007.10.024TorĂ -Grau, M., Soler-Cabezas, J. L., Vincent-Vela, M. C., Mendoza-Roca, J. A., & MartĂ­nez-Francisco, F. J. (2014). Comparison of different model solutions to simulate membrane fouling in the ultrafiltration of a secondary effluent from a municipal wastewater treatment plant. Desalination and Water Treatment, 1-7. doi:10.1080/19443994.2014.93986

    Evaluation of fouling resistances during the ultrafiltration of whey model solutions

    Full text link
    [EN] In the last decades, the ultrafiltration of whey has grown in importance as a "green" technique. However, since fouling is an important drawback, researchers focused on its prediction by mathematical models. In this work, three ultrafiltration membranes of different molecular weight cut-offs and materials were used to ultrafilter whey model solutions of different protein concentrations. As a novelty, a resistance-in-series model that accounts for the time evolution of the fouling resistances was considered. The results demonstrated that the higher the protein and salt concentrations in the feed solutions were, the greater the fouling degree was. The resistance-in-series model was accurately fitted to the experimental data for each membrane and feed solution used. The results showed that the resistance due to adsorption dominated the first minutes of operation, while the membrane characteristics (surface roughness and hydrophilicity/hydrophobicity) played an important role in the growth of the cake layer. (C) 2017 Elsevier Ltd. All rights reserved.The authors of this work wish to gratefully acknowledge the financial support provided by the Spanish Ministry of Science and Innovation through its project CTM2010-20186.CorbatĂłn BĂĄguena, MJ.; Alvarez Blanco, S.; Vincent Vela, MC. (2018). Evaluation of fouling resistances during the ultrafiltration of whey model solutions. Journal of Cleaner Production. 172:358-367. https://doi.org/10.1016/j.jclepro.2017.10.149S35836717

    Accurate determination of key surface properties that determine the efficient separation of bovine milk BSA and LF proteins

    Get PDF
    The aim of this work is to accurately measure fundamental surface properties, i.e., zeta potential, isoelectric point and protein size that determine the optimal separation conditions of Bovine serum albumin and lactoferrin, two high added value food proteins whose similarity in weight makes their separation a scientific and technical challenge. The systematic study of these proteins’ surface properties was performed under different conditions: (i) 3.0 < pH < 10.0, (ii) electrolyte type: KCl, NaCl and CaCl2 and concentration (0.01–0.1 M KCl) and (iii) protein concentration in the range of 0.04–4.0 g L-1 for BSA and 0.01–1.0 g L-1 for LF with the objective of establishing the optimal separation conditions. Finally, the comparison of the experimental and theoretically calculated values revealed significant deviations under specific conditions, highlighting the simplicity of the theoretical assumptions and leading to the conclusion that the use of experimental surface properties is still needed for the correct design of food protein separation processes.Financial support from the Projects CTQ2011-25262, CTM2011- 23912 and CTQ2012- 31639 (Ministerio de Economía y Competitividad-MINECO/SPAIN and Fondo Europeo de Desarrollo Regional-FEDER) is gratefully acknowledged

    Modeling ultrafiltration and filtration phenomena applied in chemical pulping processes

    Get PDF
    This thesis is based on seven publications dealing with separation processes applied in the manufacturing of chemical pulp. The first part discusses the correlation of mass transfer phenomena in the ultrafiltration of spent cooking liquor. The second part focuses on the fiber mat formation that takes place in pulp washers and thickeners. The main interest throughout the thesis is to develop useful and scientifically justified methods for correlating mass transfer and filtration mechanisms in order to interpret the phenomena taking place in the studied unit operations. The methods presented can be used in the designing and dimensioning of industrial-scale equipment and systems. Two types of basic mass transfer models, the film model and a more complete approach utilizing an integral solution for two-dimensional diffusion, have been introduced for the calculation of the macrosolute concentration at the surface of the ultrafiltration membrane. A pilot-scale test rig was used to measure ultrafiltration of spent cooking liquor. Mass transfer correlations to estimate the permeate flux have been developed based on both models to be used for plant design calculations. The modeling studies indicated that the integral solution method gave a physically more realistic behavior for the macrosolute concentration at the membrane wall than the widely used film model. It was further shown that dynamic programming may be effectively used to optimize a multistage industrial-scale ultrafiltration-diafiltration process. This method required a shorter calculation time and resulted in slightly better optimal conditions than the direct search algorithm. The studies on mat formation during pulp washing showed that the washing tester is a useful tool to obtain the required information for the washer. A calculation procedure has been developed to obtain design parameters for the dimensioning of industrial pulp washers. The suggested theory was based on Darcy's law under the conditions of constant pressure filtration of incompressible beds and reasonable accuracy was obtained for purposes of washer design. A more accurate approach for the modeling of the mat formation stage was formulated on the fundamental filtration theory of compressible fiber beds. Two such methods were discussed. In the more general model of mat formation, the equation of continuity during filtration was also taken into account. This model was then used for evaluating the effect of various operational parameters on drum washer performance. This model was also able to predict earlier generated experimental test data rather well. A new method for considering the additional filtration resistance due to suspended gases (e.g. air) was also suggested.reviewe

    Wastewater Treatment in the Diary Industry from Classical Treatment to Promising Technologies: An Overview

    Get PDF
    Water pollution caused by population growth and human activities is a critical problem exacerbated by limited freshwater resources and increasing water demands. Various sectors contribute to water pollution, with the dairy industry being a significant contributor due to the high concentrations of harmful contaminants in dairy wastewater. Traditional treatment methods have been employed, but they have limitations in terms of effectiveness, cost, and environmental impact. In recent years, membrane separation technology (MST) has emerged as a promising alternative for treating dairy wastewater. Membrane processes offer efficient separation, concentration, and purification of dairy wastewater, with benefits such as reduced process steps, minimal impact on product quality, operational flexibility, and lower energy consumption. However, membrane fouling and concentration polarization present major challenges associated with this technique. Therefore, strategies have been implemented to mitigate these phenomena, including pre-treatment prior to MST, coagulation, and adsorption. Recently, 3D printing technology has gained prominence as one of the latest and most notable advancements for addressing these issues. This comprehensive review examines the drawbacks and benefits of conventional methods employed in dairy wastewater treatment and explores the utilization of membrane technology as an alternative to these approaches. Additionally, the latest technologies implemented to mitigate or alleviate the limitations of membrane technology are discussed

    Modeling of lactic acid rejection from lactose in acidified cheese whey by nanofiltration

    Get PDF
    The continuously increasing demand of lactic acid opens a window for the integration of membrane technology in the dairy industry, improving the sustainability by avoiding the use of large amounts of chemicals and waste generation. Lactic acid recovery from fermentation broth without precipitation has been studied by numerous processes. In this work, a commercial membrane with high lactose rejection and a moderate lactic acid rejection, enabling a permselectivity up to 40%, is sought to perform the simultaneous removal of lactic acid and lactose separation from the acidified sweet whey from mozzarella cheese production in a single stage. The AFC30 membrane of the thin film composite nanofiltration (NF) type was selected because of its high negative charge, low isoelectric point, and divalent ion rejection, as well as a lactose rejection higher than 98% and a lactic acid rejection lower than 37%, at pH 3.5, to minimize the need of additional separation steps. The experimental lactic acid rejection was evaluated at varying feed concentration, pressure, temperature, and flow rate. As the dissociation degree of lactic acid is negligible in industrially simulated conditions, the performance of this NF membrane was validated by the irreversible thermodynamic Kedem-Katchalsky and Spiegler-Kedem models, with the best prediction in the latter case, with the parameter values: Lp = 3.24 ± 0.87 L × m-2 × h-1 × bar-1 and = 15.06 ± 3.17 L × m-2 × h-1, and d = 0.45 ± 0.03. The results obtained in this work open the way for the up-scaling of membrane technology on the valorization of dairy effluents by simplifying the operation process and the model prediction and the choice of the membrane.Science and Innovation (Madrid, Spain; MCIN/AEI/10.13039/501100011033) and European Union “NextGenerationEU”/PRTR” under projects CTM2017-87850-R and EIN2020-112319 is gratefully acknowledged
    • 

    corecore