14,255 research outputs found

    Modelling of a dynamic multiphase flash: the positive flash. Application to the calculation of ternary diagrams

    Get PDF
    A general and polyvalent model for the dynamic simulation of a vapor, liquid, liquid-liquid, vapor-liquid or vapor-liquid-liquid stage is proposed. This model is based on the -method introduced as a minimization problem by Han & Rangaiah (1998) for steady-state simulation. They suggested modifying the mole fraction summation such that the same set of governing equations becomes valid for all phase regions. Thanks to judicious additional switch equations, the -formulation is extended to dynamic simulation and the minimization problem is transformed into a set of differential algebraic equations (DAE). Validation of the model consists in testing its capacity to overcome phase number changes and to be able to solve several problems with the same set of equations: calculation of heterogeneous residue curves, azeotropic points and distillation boundaries in ternary diagrams

    Molecular modeling for physical property prediction

    Get PDF
    Multiscale modeling is becoming the standard approach for process study in a broader framework that promotes computer aided integrated product and process design. In addition to usual purity requirements, end products must meet new constraints in terms of environmental impact, safety of goods and people, specific properties. This chapter adresses the use of molecular modeling tools for the prediction of physical property usefull for chemical engineering practice

    Multiscale Computations on Neural Networks: From the Individual Neuron Interactions to the Macroscopic-Level Analysis

    Full text link
    We show how the Equation-Free approach for multi-scale computations can be exploited to systematically study the dynamics of neural interactions on a random regular connected graph under a pairwise representation perspective. Using an individual-based microscopic simulator as a black box coarse-grained timestepper and with the aid of simulated annealing we compute the coarse-grained equilibrium bifurcation diagram and analyze the stability of the stationary states sidestepping the necessity of obtaining explicit closures at the macroscopic level. We also exploit the scheme to perform a rare-events analysis by estimating an effective Fokker-Planck describing the evolving probability density function of the corresponding coarse-grained observables

    Dynamic modelling of a fractionation process for a liquid mixture using supercritical carbon dioxide

    Get PDF
    This work presents a simple dynamic modelling of a process of separation of a quaternary mixture using supercritical CO2. Thermodynamic description is accomplished using efficient available models (SRK equation of state with MHV2 mixing rules). An approximate approach was compared to the rigorous resolution of the system of algebro-differential equations, and was shown to enable a correct description of the dynamic behaviour. The modelling was compared to experiments performed on a small pilot composed of one 200-ml contactor and a cascade of three cyclonic separators. Good results were obtained for the contactor, although they were not very satisfactory for the description of the fractionation in the cyclonic separators. Even if discrepancies between experimental and calculated results may probably originate from the experimental procedure, the hydrodynamic description of the separators here is likely to be oversimplified. The cyclonic separator cannot be regarded as a simple theoretical stage (TSM), and we have proposed an alternate description (EPSM), that, although more suitable, still needs to be improved

    MolMod – an open access database of force fields for molecular simulations of fluids

    Get PDF
    The MolMod database is presented, which is openly accessible at http://molmod.boltzmann-zuse.de and contains intermolecular force fields for over 150 pure fluids at present. It was developed and is maintained by the Boltzmann-Zuse Society for Computational Molecular Engineering (BZS). The set of molecular models in the MolMod database provides a coherent framework for molecular simulations of fluids. The molecular models in the MolMod database consist of Lennard-Jones interaction sites, point charges, and point dipoles and quadrupoles, which can be equivalently represented by multiple point charges. The force fields can be exported as input files for the simulation programmes ms2 and ls1 mardyn, GROMACS, and LAMMPS. To characterise the semantics associated with the numerical database content, a force field nomenclature is introduced that can also be used in other contexts in materials modelling at the atomistic and mesoscopic levels. The models of the pure substances that are included in the database were generally optimised such as to yield good representations of experimental data of the vapour–liquid equilibrium with a focus on the vapour pressure and the saturated liquid density. In many cases, the models also yield good predictions of caloric, transport, and interfacial properties of the pure fluids. For all models, references to the original works in which they were developed are provided. The models can be used straightforwardly for predictions of properties of fluid mixtures using established combination rules. Input errors are a major source of errors in simulations. The MolMod database contributes to reducing such errors.BMBF, 01IH16008E, Verbundprojekt: TaLPas - Task-basierte Lastverteilung und Auto-Tuning in der PartikelsimulationEC/H2020/694807/EU/Enrichment of Components at Interfaces and Mass Transfer in Fluid Separation Technologies/ENRICOEC/H2020/760907/EU/Virtual Materials Market Place (VIMMP)/VIMM

    A primer on noise-induced transitions in applied dynamical systems

    Full text link
    Noise plays a fundamental role in a wide variety of physical and biological dynamical systems. It can arise from an external forcing or due to random dynamics internal to the system. It is well established that even weak noise can result in large behavioral changes such as transitions between or escapes from quasi-stable states. These transitions can correspond to critical events such as failures or extinctions that make them essential phenomena to understand and quantify, despite the fact that their occurrence is rare. This article will provide an overview of the theory underlying the dynamics of rare events for stochastic models along with some example applications
    corecore