19 research outputs found

    Anger-based BCI Using fNIRS Neurofeedback

    Get PDF
    Functional near-infrared spectroscopy (fNIRS) holds increasing potential for Brain-Computer Interfaces (BCI) due to its portability, ease of application, robustness to movement artifacts, and relatively low cost. The use of fNIRS to support the development of affective BCI has received comparatively less attention, despite the role played by the prefrontal cortex in affective control, and the appropriateness of fNIRS to measure prefrontal activity. We present an active, fNIRS-based neurofeedback (NF) interface, which uses differential changes in oxygenation between the left and right sides of the dorsolateral prefrontal cortex to operationalize BCI input. The system is activated by users generating a state of anger, which has been previously linked to increased left prefrontal asymmetry. We have incorporated this NF interface into an experimental platform adapted from a virtual 3D narrative, in which users can express anger at a virtual character perceived as evil, causing the character to disappear progressively. Eleven subjects used the system and were able to successfully perform NF despite minimal training. Extensive analysis confirms that success was associated with the intent to express anger. This has positive implications for the design of affective BCI based on prefrontal asymmetry

    Measuring cognitive load and cognition: metrics for technology-enhanced learning

    Get PDF
    This critical and reflective literature review examines international research published over the last decade to summarise the different kinds of measures that have been used to explore cognitive load and critiques the strengths and limitations of those focussed on the development of direct empirical approaches. Over the last 40 years, cognitive load theory has become established as one of the most successful and influential theoretical explanations of cognitive processing during learning. Despite this success, attempts to obtain direct objective measures of the theory's central theoretical construct – cognitive load – have proved elusive. This obstacle represents the most significant outstanding challenge for successfully embedding the theoretical and experimental work on cognitive load in empirical data from authentic learning situations. Progress to date on the theoretical and practical approaches to cognitive load are discussed along with the influences of individual differences on cognitive load in order to assess the prospects for the development and application of direct empirical measures of cognitive load especially in technology-rich contexts

    Real-Time State Estimation in a Flight Simulator Using fNIRS

    Get PDF
    Working memory is a key executive function for flying an aircraft. This function is particularly critical when pilots have to recall series of air traffic control instructions. However, working memory limitations may jeopardize flight safety. Since the functional near-infrared spectroscopy (fNIRS) method seems promising for assessing working memory load, our objective is to implement an on-line fNIRS-based inference system that integrates two complementary estimators. The first estimator is a real-time state estimation MACD-based algorithm dedicated to identifying the pilot’s instantaneous mental state (not-on-task vs. on-task). It does not require a calibration process to perform its estimation. The second estimator is an on-line SVM-based classifier that is able to discriminate task difficulty (low working memory load vs. high working memory load). These two estimators were tested with 19 pilots who were placed in a realistic flight simulator and were asked to recall air traffic control instructions. We found that the estimated pilot’s mental state matched significantly better than chance with the pilot’s real state (62% global accuracy, 58% specificity, and 72% sensitivity). The second estimator, dedicated to assessing single trial working memory loads, led to 80% classification accuracy, 72% specificity, and 89% sensitivity. These two estimators establish reusable blocks for further fNIRS-based passive brain computer interface development

    Measuring Cognitive Conflict in Virtual Reality with Feedback-Related Negativity

    Full text link
    As virtual reality (VR) emerges as a mainstream platform, designers have started to experiment new interaction techniques to enhance the user experience. This is a challenging task because designers not only strive to provide designs with good performance but also carefully ensure not to disrupt users' immersive experience. There is a dire need for a new evaluation tool that extends beyond traditional quantitative measurements to assist designers in the design process. We propose an EEG-based experiment framework that evaluates interaction techniques in VR by measuring intentionally elicited cognitive conflict. Through the analysis of the feedback-related negativity (FRN) as well as other quantitative measurements, this framework allows designers to evaluate the effect of the variables of interest. We studied the framework by applying it to the fundamental task of 3D object selection using direct 3D input, i.e. tracked hand in VR. The cognitive conflict is intentionally elicited by manipulating the selection radius of the target object. Our first behavior experiment validated the framework in line with the findings of conflict-induced behavior adjustments like those reported in other classical psychology experiment paradigms. Our second EEG-based experiment examines the effect of the appearance of virtual hands. We found that the amplitude of FRN correlates with the level of realism of the virtual hands, which concurs with the Uncanny Valley theory

    Brain-based target expansion

    Full text link

    What we can and cannot (yet) do with functional near infrared spectroscopy

    Get PDF
    Functional near infrared spectroscopy (NIRS) is a relatively new technique complimentary to EEG for the development of brain-computer interfaces (BCIs). NIRS-based systems for detecting various cognitive and affective states such as mental and emotional stress have already been demonstrated in a range of adaptive human–computer interaction (HCI) applications. However, before NIRS-BCIs can be used reliably in realistic HCI settings, substantial challenges oncerning signal processing and modeling must be addressed. Although many of those challenges have been identified previously, the solutions to overcome them remain scant. In this paper, we first review what can be currently done with NIRS, specifically, NIRS-based approaches to measuring cognitive and affective user states as well as demonstrations of passive NIRS-BCIs. We then discuss some of the primary challenges these systems would face if deployed in more realistic settings, including detection latencies and motion artifacts. Lastly, we investigate the effects of some of these challenges on signal reliability via a quantitative comparison of three NIRS models. The hope is that this paper will actively engage researchers to acilitate the advancement of NIRS as a more robust and useful tool to the BCI community

    Adaptivity as a key feature of mobile maps in the digital era

    Get PDF
    Mobile maps are an important tool for mastering modern digital life. In this paper, we outline our perspective on the challenges and opportunities associated with designing adaptive mobile maps that are useful, usable, and accessible to a wide range of users in different contexts. If we claim for adaptive mobile maps to be successful, we need to expand our understanding of map use context, including the physical and digital spaces, user behavior, and individual differences. We identify key challenges, such as the scarcity of knowledge about mobile map use behavior, the need for effective adaptation methods and strategies, user acceptance of adaptive maps, and issues related to control, privacy, trust, and transparency. We finally suggest research opportunities, such as studying mobile map usage, employing AI-based adaptation methods, leveraging the power of visual communication through maps, and ensuring user acceptance through user control and privacy

    Measuring Mental Workload Variations in Office Work Tasks using fNIRS

    Get PDF
    The motivation behind using physiological measures to estimate cognitive activity is typically to build technology that can help people to understand themselves and their work, or indeed for systems to do so and adapt. While functional Near Infrared Spectroscopy (fNIRS) has been shown to reliably reflect manipulations of mental workload in different work tasks, we still need to establish whether fNIRS can differentiate variety within common office-like tasks in order to broaden our understanding of the factors involved in tracking them in real working conditions. 20 healthy participants (8 females, 12 males), whose work included office-like tasks, took part in a user study that investigated a) the sensitivity of fNIRS for measuring mental workload variations in representations of everyday reading and writing tasks, and b) how representations of natural interruptions are reflected in the data. Results supported fNIRS measuring PFC activation in differentiating between workload levels for reading tasks but not writing tasks in terms of increased oxygenated haemoglobin (O2Hb) and decreased deoxygenated haemoglobin (HHb), for harder conditions compared to easier conditions. There was considerable support for fNIRS in detecting changes in workload levels due to interruptions. Variations in workload levels during the interruptions could be understood in relation to spare capacity models. These findings may guide future work into sustained monitoring of cognitive activity in real-world settings
    corecore