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Abstract

Working memory is a key executive function for flying an aircraft. This function is particularly

critical when pilots have to recall series of air traffic control instructions. However, working

memory limitations may jeopardize flight safety. Since the functional near-infrared spectros-

copy (fNIRS) method seems promising for assessing working memory load, our objective is

to implement an on-line fNIRS-based inference system that integrates two complementary

estimators. The first estimator is a real-time state estimation MACD-based algorithm dedi-

cated to identifying the pilot’s instantaneous mental state (not-on-task vs. on-task). It does

not require a calibration process to perform its estimation. The second estimator is an on-

line SVM-based classifier that is able to discriminate task difficulty (low working memory

load vs. high working memory load). These two estimators were tested with 19 pilots who

were placed in a realistic flight simulator and were asked to recall air traffic control instruc-

tions. We found that the estimated pilot’s mental state matched significantly better than

chance with the pilot’s real state (62% global accuracy, 58% specificity, and 72% sensitivi-

ty). The second estimator, dedicated to assessing single trial working memory loads, led to

80% classification accuracy, 72% specificity, and 89% sensitivity. These two estimators es-

tablish reusable blocks for further fNIRS-based passive brain computer

interface development.

Introduction

Piloting is a complex activity that takes place in a rapidly changing and uncertain environment.

Working memory (WM) is a key executive function for handling the flight, maintaining an up-

to-date situation awareness, adapting the flight plan [1, 2] and interacting with ground control

[3]. This latter activity, following air traffic control (ATC) instructions, is known to particularly

solicit WM as it requires memorization of critical flight information (e.g. heading, altitude,

speed) and the input of these parameters into the flight deck. However, humanWM is funda-

mentally limited [4, 5]. Many studies have revealed that several factors such as message length

[6, 7] and complexity [8, 9] affect the pilot’s memory capacity necessary for following ATC in-

structions, as well as their ability to execute commands. One has to consider that the erroneous



execution of the ATC clearances may considerably jeopardize flight safety [10], thus prompting

the need for enhanced pilot-system interaction.

A promising way to mitigate these human limitations is to consider the implementation of

an adaptive system such as a “passive” brain-computer interface (BCI) [11]. “Passive” BCIs are

not meant to directly control a device (e.g. a mouse) via brain activity but to support “implicit

interaction”. Research on “passive” BCIs provides interesting insight as they aim to infer the

human operator’s cognitive state and then adapt the nature of the interactions to overcome

cognitive bottlenecks [12, 13] such as WM limitations.

Defining a brain imaging technique to estimate WM load level in an operational context

could be considered as the first step required for the development of such an inference system.

Functional near-infrared spectroscopy (fNIRS) is an optical brain imaging method that mea-

sures cortical hemodynamic response. fNIRS provides good spatial localization compared to

EEG, on the order of 1cm2, and can be easily integrated with EEG/ERPs [14–16]. Moreover,

fNIRS has shown to be correlated with functional magnetic resonance imaging (fMRI) studies

[17]. This device is suited for both laboratory and field experiments in flight simulators [18, 19]

and has been successfully used to detect WM solicitation [20–24]. Despite these numerous ad-

vantages, this technique has been less explored than EEG by the BCI community [11] mainly

because slow hemodynamic response prevents real-time interaction with an apparatus [25].

However, fNIRS has been proven to be a suitable technique for BCI purposes [26–30] although

most of the demonstrations were achieved in an off-line manner (e.g. [31–34]; for a literature

review see [35, 36]). Some on-line BCI have been implemented [25, 37–43] and the processing

of fNIRS data in real-time to provide good classification accuracy remains a challenge (e.g. [35,

44]).

Indeed, the on-line extraction of relevant features from the raw fNIRS signal is still a critical

issue [45] and new techniques need to be developed to reduce noise and to improve the usabili-

ty of the data [46, 47]. Several studies [48, 49] have revealed that the Moving Average Conver-

gence Divergence (MACD) filter is a promising processing technique. Relying on the principle

of the Exponential Moving Average (EMA) filter, the MACD filter performs efficient fNIRS

signal detrending and eliminates the low-frequency drifts and high-frequency physiological

and measurement noise from the raw fNIRS signal. It also compares favorably to classical filter-

ing techniques, especially in terms of filter order, and it allows stimulus onset detection without

requiring the use of machine learning techniques [50].

Another issue of deriving cognitive activity from the fNIRS signal is related to the selection

of the most appropriate features used to discriminate different individuals’ states. Many met-

rics have been proposed, such as the change in oxyhemoglobin or deoxyhemoglobin concentra-

tions, the difference/sum/ratio of oxyhemoglobin and deoxyhemoglobin amplitudes, time-to-

peak, and so forth, but there is still a lack of consensus (for a review of metrics see [51]). In any

case, accounting for inter-individual variability is challenging as long as hemodynamics latency

and recording sites may differ across participants [52, 53]. To that end, Tai and Chau [54] have

proposed to adopt a machine learning approach that considers both spatial (i.e. recording

sites) and temporal features (i.e. time windows). In their paper, the authors processed 208 can-

didate features such as the mean, kurtosis, skewness, variance, zero crossings, percentages of

total energy, and root mean squared of the oxygenated and deoxygenated hemoglobin concen-

trations for each site through different time windows. This approach provide excellent accuracy

off-line, as well as a method for decoding single on-line trials [43].

The aim of this study was to design an on-line fNIRS-based inference system dedicated to:

1. estimating the pilot’s state (performing or not performing a WM task);

2. assessing the WM load level.



To this end, we designed a simplified but plausible pilot-ATC interaction task, using prerecord-

ed messages. The implementation of this inference system was challenging as our participants

were placed in an immersive flight simulator (i.e. user interfaces, panoramic external “view”)

that induces additional cognitive activity (i.e. flight trajectory monitoring), as well as motion

artifacts (i.e. programming autopilot device) therefore adding noise to the fNIRS signal.

To meet these goals, we measured changes in the oxygenation of the prefrontal cortex in-

cluding the dorsolateral prefrontal cortex (DLPFC) which is known to be involved in WM [18,

22]. Real-time pilot’s state estimation was performed using MACD as proposed in economic

market analysis [55] and did not require machine learning techniques. We implemented an

on-line single trial classifier [43, 54] to discriminate lowWM load achieved trials versus high

WM load achieved trials.

Methods

1 Participants

Nineteen visual flight rules (VFR) pilots (6 women; mean group age: 27.4 ± 6.4; mean flight

hours 145 ±45) completed the experiment. Pilots had normal or corrected-to-normal vision,

normal hearing, and no psychiatric disorders. They all had medical clearance to fly. After pro-

viding written informed consent, they were instructed to complete task training. Typical total

duration of a subject’s session (informed consent approval, practice task, and real task) was

about two hours. This work was approved by the Inserm Committee of Ethics Evaluation

(Comité d’Evaluation Ethique de l’Inserm—CEEI/IRB00003888).

2 Equipment

2.1 fNIRS Equipment. During each experiment, we recorded hemodynamics of the pre-

frontal cortex using the functional near-infrared spectrometer fNIR100 (Biopac1) equipped

with 16 channels (Fig. 1). On this continuous-wave system, the optode separation was about 25

mm and two wavelengths were used, 730 nm and 850 nm.

Each channel of the device records hemodynamics at a frequency of 2Hz in term of oxygen-

ation level variations in comparison to a baseline. Changes in the concentrations of oxygenated

(Δ[HbO2]) and deoxygenated hemoglobin (Δ[hHb]) can be calculated from changes in detected

light intensity using the modified Beer-Lambert Law [56].

Cognitive Optical Brain Imaging (COBI) Studio1 software [57, 58] was used to collect data.

The data stream was available on-line from a TCP/IP interface. Before recording, signals for

Fig 1. fNIR1001 headband and associated channels numbering.Only the four closest detectors to an
emitter constituted channels. The emitter-detector distance is 25 mm. Channels are represented in red with
their associated number. The original image comes from the fNIRSOFT1manual and has been
slightlty modified.



each channel was carefully checked for saturation with COBI Studio which provides signal

quality visual representation.

COBI studio was also used to check signal quality and to adjust consequently the headband

on the participant’s forehead. Channels 8 and 10, located above the nasal sinus were systemati-

cally removed because of saturation [59].

2.2 Flight Simulator. We used the ISAE (Institut Supérieur de l’Aéronautique et de

l’Espace—French Aeronautical University in Toulouse, France) flight simulator to conduct the

experiment in an ecological situation. It simulates a twin-engine aircraft flight model and the

user interface is composed of a Primary Flight Display (PFD), a Navigation Display, and an

upper Electronic Central Aircraft Monitoring Display page. The pilot has a Flight Control Unit

(FCU) to interact with the autopilot (Fig. 2).

3 Protocol

3.1 Task Description. Similar to true flying circumstances, pilots heard ATC messages

(pre-recorded for this experiment) and were asked to dial the corresponding flight parameters

in the autoflight system using the four knobs (i.e. speed, heading, altitude, and vertical speed)

of the FCU. The ATC messages were delivered at 78 dB through a Sennheiser1 headset. Two

levels of difficulty were defined based on the flight parameters that the participant had to set

during the experiment:

• LowWM load: only one major digit per trial was used to set each flight parameter (e.g: 15 for

“speed 150, heading 150, altitude 1500, vertical speed +1500”).

• High WM load: each flight parameter value was different from the previous one and com-

posed of different digits to increase the complexity (e.g: “speed 164, heading 235, altitude

8700, vertical speed -1600”).

The task consisted of 20 repetitions of each difficulty for a total of 40 trials. The task difficul-

ty order was randomly distributed with two constraints:

• the first 20 trials contained 10 trials of high difficulty, and 10 trials of low difficulty (which is

necessary for machine learning purposes, see 3.3);

• the difficulty cannot be the same for more than two successive trials.

Fig 2. Pilot’s interaction with the FCU. The participants controlled the flight simulator from the pilot’s seat. The red rectangle corresponds to the FCU used
to set the autopilot with four control knobs, according to ATC clearances (speed, heading, altitude, and vertical speed selection).



Each ATC message started with the airplane call sign (i.e. “Supaero 32”), immediately fol-

lowed by a sequence of flight parameters and ended with the message “over”. Pilots were in-

structed to set the parameters only after they heard the “over”message (Fig. 3). Thereafter,

pilots had to dial the parameters on the autopilot interface during a 18 s response window. A

practice session was conducted prior to the experiment runs to familiarize them with the exper-

iment protocol and the interface.

3.2 Experimental Components’ Architecture. We implemented a WM load estimator

that integrated different components (Fig. 4):

• a simulated ATC which broadcasts a list of chosen messages to the pilot;

• the ISAE flight simulator which allows a pilot to be in an ecological flight condition (cf. sec-

tion 2.2);

• a fNIR100 sensor which measures the prefrontal oxygenation on 16 channels (cf. section

2.1);

• a MACD filter for artifact removal (cf. section 4.1);

• a synchronization module that also formats filtered data for the classification process: filtered

fNIRS output must be synchronized with the pilot’s state, according to the instant of the ar-

rival of that incoming message and according to the pilot’s response window;

• a state estimator (cf. section 4.2) which evaluates pilot’s instantaneous current state in real-

time, which can be not-on-task or on-task. The pilot is considered on-task during ATC mes-

sage reception, and not-on-task in the other periods.

• a classifier (cf. section 4.3) which evaluates in real-time whether the last ATC instruction was

a high WM load trial or a lowWM load trial.

Task monitoring, data acquisition and computation were conducted on the same computer

(core i5-3210M, 2.50GHz, 4GB RAM).

3.3 Experimental Time Course. For machine learning purposes (cf. section 4.3), the ex-

periment was split into three successive phases (Fig. 5):

• Phase D—data gathering phase: 20 instructions with two levels of difficulty were successively

presented to the pilot in a random order. During phase D, the correctness of the pilot’s re-

sponse was also checked for further pilot performance analysis. Entered FCU parameters

were available through the ISAE flight simulator software. The fNIRS’s data were processed

Fig 3. ATC span task trial design.



and recorded for each trial’s response window. The levels of difficulty of the message were

also recorded.

• Phase L—classifier training phase: the classifier training process was activated, based on the

data gathered during phase D. This phase was not perceived by the pilot (cf. section 3.2) and

allowed further classification actions. At the end of this phase, the pilot’s classifier—the pi-

lot’s specific classification model, correctly trained—was available for classification requests.

• Phase T—classifier testing phase: 20 instructions with random levels of difficulty (high WM

load or low WM load) were successively presented. The aim of the classification process was

to discriminate the difficulty of the trial, as soon as possible (cf. section 3.2). After each re-

sponse window of trials, the classifier returned WM load estimation of the trial.

The transition from phase D to phase T was transparent to the participants.

Fig 4. Illustration of the fNIRS based inference system. Pre-recorded ATCmessages were sent to the pilot (1). The pilot’s prefrontal activity was
measured with a fNIRS device (2). Output measures (3) were MACD-filtered and synchronized with the temporal design of the trial (4). During the entire
session, the MACD-based state estimator detected whether the pilot’s state was not-on-task or on-task (5). When all of the required data were available for
the trial, a request was sent to the pilot’s classifier to assess theWM load of the trial (6).



4 Data Analysis

4.1 MACD Filter. Raw fNIRS data were real-time filtered using a MACD filter, commonly

used in economic market analysis [55]. This filter, based on the difference between a short-

term EMA and a long-term EMA, implements a second order band-pass filtering to eliminate

low-frequency (< 0.02Hz) and high-frequency (> 0.33Hz) components from the raw fNIRS

signal [48]. This low order filter has a quasi linear phase in its bandwith and is particularly suit-

ed for real-time applications. For the experiment, we proceeded to an on-line filtering of Δ

[HbO2] and Δ[hHb] on 14 of the 16 channels (Channels 8 and 10 were excluded due to several

artifact acquisition issues), as described in Equation 1, where N represents the number of time

points defining the EMA window:

y ¼ EMANðxÞ , yn ¼
2

N þ 1
xn þ

N & 1

N þ 1
yn&1

MACDNshort ;Nlong
ðxÞ ¼ EMANshort

ðxÞ & EMANlong
ðxÞ

ð1Þ

We chose a 6 s short-term EMA (Nshort = 12) and a 13 s long-term EMA (Nlong = 26), ac-

cording to previous work [50] for MACD filtering, to get the desired bandwidth.

4.2 MACD-based State Estimation. We performed MACD analysis to estimate the par-

ticipant’s instantaneous mental state, on-task versus not-on-task, in real-time. In economic

market analysis, Appel [55] states that a sustainable increase in the signal can be predicted

when the MACD line crosses the signal from below. On the contrary, a sustainable decrease in

the signal can be predicted when the MACD line crosses the signal line from above. This meth-

od can help estimate task-onsets and task-offsets based on the fNIRS signal [50]. We computed

in real-time a state estimation chronogram by associating the moments when the MACD line

crossed the signal line from below with stimuli onsets. To do this, we averaged MACD-filtered

fNIRS data over the 14 channels. A signal line was computed using a 5 s EMA (N = 10) of this

data, as described in Equation 2:

SignalðxÞ ¼ EMA
10
ðMACDðxÞÞ ð2Þ

Fig 5. The experiment was split into three successive phases.Data gathering (phase D) and classifier
testing (phase T) consisted of 20 ATC instructions each. The pilot’s classifier was trained between these two
phases (phase L). The time scale of the figure is illustrative.



Similarly, we defined task-offsets when the MACD line crossed the signal line from above

(for an example, see Fig. 6). We then compared each time point of the state estimation chrono-

gram to the actual task-onsets chronogram in order to estimate the accuracy of this method.

We labeled the state estimation at time t as:

• Correct Estimation, if the estimated state and the actual task state matched;

• False Positive, if the state was estimated as on-task, and actual state was not-on-task;

• False Negative, if the state was estimated as not-on-task, and actual state was on-task;

4.3 Single Trial SVM-based WM Load Estimation. The classification’s goal was to dis-

criminate on-line whether the last trial was a high WM load trial or a low WM load trial. For

each pilot, we used the first 20 trials to train the pilot’s classifier (phase D and L, see section

3.3). From trial 21 to 40, we used the pilot’s classifier to discriminate trial difficulty, without

any further training. An accuracy score of the pilot’s classifier was provided at the end of the

experimental session.

Δ[HbO2] and Δ[hHb] signals were segmented into trials, in real-time, according to the task

synchronization module (cf. section 3.2). Trial data were filtered and all the features described

below were computed as soon as the fNIRS data were available.

We used a sliding-window on the trial data set to take into account the pilot’s personal he-

modynamic response characteristics [52, 53]. A sliding-window was defined by:

• an offset (first time value of the sliding-window);

• a time interval (length of the sliding-window).

Fourteen prefrontal areas (all channels, except 8 and 10) corresponding to the channels

with sufficient signal reliability were monitored (in terms ofHbO2 and hHb concentrations, rel-

ative to a baseline) with our fNIRS system (cf. section 2.1).

Fig 6. Example of real-time state estimation (performed on pilot 16). The upper graph shows MACD-filtered fNIRS signal and the signal line computed
from the latter (dashed line). The two lower graphs show the participant’s state estimated from crossovers between MACD and signal lines and the operator’s
actual state, respectively.



From the Δ[HbO2] and Δ[hHb] signals, four time-domain features were calculated. For the

sake of simplicity, Δ[HbO2]t and Δ[hHb]t correspond to relative concentration of HbO2 and

hHb respectively during trial t, filtered with the MACD filter (cf. section 4.1), averaged during

a specified time period.

We defined $A
D½HbO2 (t

(resp. $A
D½hHb(t

), the mean amplitude response of the considered sliding-

window of Δ[HbO2]t (resp. Δ[hHb]t), on trial t, as the mean value within a specified time win-

dow of the trial, reported to a 2 s average pre-trial onset value, to take into account potential

drift on fNIRS signal.

We used the following as features:

• mean Δ[HbO2]t and mean Δ[hHb]t on each voxel during the sliding-window of trial t;

• $AD½HbO2(t
and $AD½hHb(

t
on each voxel during the sliding-window of trial t;

• Δ[HbO2]t and Δ[hHb]t kurtosis (“peakedness” of the probability distribution) on each voxel

during the sliding-window of trial t;

• Δ[HbO2]t and Δ[hHb]t skewness (asymmetry of the probability distribution) on each voxel

during the sliding-window of trial t;

Sliding-window parameters were chosen according to previous findings concerning ex-

pected hemodynamic response [52, 53] and best classifiers features characteristics defined by

Tail et. al [54]. Therefore, we defined sliding-window length according to three values (5s, 10s,

15s), and to seven different offsets (10s, 11s, 12s, 13s, 14s, 15s, 16s). These variations provided

168 predictors (3×7 sliding-windows, 8 features) for each channel. Then, on each trial, 2352

predictors were provided. Two classes had to be discriminated, high WM load trials and low

WM load trials. As our number of features was large compared to the training sample, we used

a linear Support Vector Machine (SVM) [60]. The principle of the SVM is to find the separat-

ing hyperplane that maximizes the distance between the hyperplane and the closest training

points in each class. To avoid over-fitting, we chose to customize the SVM regularization pa-

rameter for each pilot’s classifier. In a linear SVM, the regularization parameter C controls the

trade-off between errors of the SVM on training data and margin maximization. During the

training process of each participant, the parameter C is incrementally changed over a large

range of values (from 10−5 to 10). For each value, a cross validation step was performed and the

parameter with the highest performance was chosen. The classifier was trained using a cross-

validation (5-fold, 10-time) on the first 20 trials with the caret R packages [61]. The classifier

training (phase L) was performed as soon as the data of the first 20 trials were available.

4.4 Behavioral and Offline fNIRS Data. We performed classical off-line behavioral analy-

sis to ensure that we correctly manipulated WM load (i.e. increased error rates in high WM

load condition) and that the participants’ performance was identical across the two blocks (i.e.

identical error rate during the first 20 trials and the last 20 trials). A two-way Analysis of Vari-

ance (ANOVA) was carried out on the correct response rate between subject factors Phase

(Learning vs. Test) and Position (Speed vs. Heading vs. Altitude vs. Vertical speed). An off-line

analysis on the neurophysiological data to verify the consistency of prefrontal activation with

existing neuroimaging literature was performed. To do so, we computed the frontal [HbO2]

and [hHb] peak response (peak value within 30s post-trial onset minus 2s average pre-trial

onset) for each trial and each pilot using the MACD-filtered data. We then performed a three-

way ANOVA using within subject factors Oxygenation (HbO2 vs. hHb), WM Load (High vs.

Low) and Voxels (1 vs. 2. . . vs. 16), excluding voxels 8 and 10 due to several acquisition artifact

issues. Tukey’s HSD post-hoc tests were used to evaluate all behavioral and hemodynamic

interaction effects.



Results

1 Behavioral and Physiological Results

The participants committed a mean of 13.2 errors (SD = 4.7) during the entire experiment, all

occurring during the high load trials. All the subjects completed the lowWM load trials cor-

rectly. There was no significant effect of the phase (learning or testing) on the number of

committed errors.

The ANOVA over the fNIRS data revealed a main effect of the oxygenation (F(1, 18) = 95.2;

p< 0.001; partial η2 = 0.90) with higher [HbO2] than [hHb] and a main effect of the load (F(1,

18) = 7.3; p< 0.05; partial η2 = 0.29) corresponding to higher peak response within the high

load condition. In addition, a significant interaction effect between load and oxygenation was

found (F(1, 18) = 28.7; p< 0.001; partial η2 = 0.61) showing that the load effect was only pres-

ent for [HbO2] (p< 0.001). Finally, a second order interaction effect revealed that the load ef-

fect was not homogeneous across voxels (F(13, 221) = 2.87; p< 0.001; partial η2 = 0.14). Post-

hoc tests revealed a maximum load effect within the right DLPFC (i.e, voxel 15; see Fig. 7 for il-

lustration) for[HbO2].

2 MACD-based State Estimation Results

2.1 Accuracy. The real-time estimated state was compared to the actual state of the subject

during the experiment (not-on-task or on-task). The results show that the estimation matched

61.74% of the time (SD = 4.27%), which was significantly better than chance (F(1, 18) = 145.52;

p< 0.01) (Fig. 6). We obtained a 58.24% mean specificity (SD = 3.80%), and a 71.88% mean

sensitivity(SD = 9.34%).

2.2 Latencies. The required time for data filtering (maximum per sample< 0.4ms) is neg-

ligible regarding fNIRS time resolution (2Hz). Hence, pilot’s state estimation (not-on-task or

on-task) is available in real-time.

2.3 Off-line Analysis. The results of estimated onsets and offsets latencies compared to

stimuli onsets and offsets are summarized in Fig. 8. On average, the onset of state estimation

significantly occurred 1.97s before the actual state onset (SE = 0.34s). The estimated offset oc-

curred 2.43s after the stimulus offset (SE = 0.52s).

The difficulty of the current trial had no effect on the onset estimation latency (p = 0.15).

Concerning the offset estimation latency, the offset estimations occurred significantly later for

Fig 7. Activationmaps according to the level of difficulty.Units are in μmol.l−1. Both high and low load conditions elicit bilateral DLPFC activities. The
high load minus low load subtraction map (High—Low) shows significantly greater activation of the right DLPFC. Activations shown 14 s post-stimulus onset.
p< 0.001. fNIRSOFT1 software (www.biopac.com/fNIR-Software-Professional-Edition) was used to produce this figure.



high load trials (Mean = 3.62s; SE = 0.66s) than for lowWM load ones (Mean = 1.17s;

SE = 0.59s) (F(1, 18) = 12.3; p< 0.01).

3 Single trial SVM-basedWM Load Estimation Results

3.1 Accuracy. During the testing phase, a mean of 80.8% (SD = 10.6%) of the trials were

accurately classified (discriminated into on-line lowWM load trials and high WM load trials).

We obtained a 72.11% mean specificity (SD = 19.89%), and a 89.47% mean sensitivity

(SD = 15.72%). Individual classifiers’ accuracies are shown in Fig. 9.

3.2 Latencies. After phase D was completed, the classifier training script was run concur-

rently with the 21st trial achievement. This process took a maximum of 42.15s. In the worst

case, it can delay the 21st trial WM load estimation result.

During classifier’s training (phase T), a request to the classifier and its associated response

took a maximum of 770ms. This request can be sent as soon as the trial’s filtered data set is

available. In fact, due to the machine learning design (cf. section 4.3), all the trial data set re-

quired for a request to the pilot’s classifier is constrained by the maximum sliding-window off-

set (16s) and the maximum sliding-window length of 15s (Fig. 10). Therefore, the trial data set

is theoretically available 2s after the pilot’s response window. The required time for data filter-

ing and formatting is negligible regarding fNIRS time resolution (2Hz), even for a full trial data

set (maximum< 24ms of computing time on a complet trial data set). However, the classifier’s

process takes 770ms in the worst case to return an estimated WM load for the trial. The pilot’s

estimated WM load is then available less than 3.3s after his response windows.

Discussion

The objective of this study was to implement on-line tools to infer pilots’ cognitive activity

[62]. We focused on the monitoring of WM as this executive function is highly solicited when

operating aircraft [1, 2]. The design of such an inference system was challenging as, until now,

only three studies involving on-line fNIRS-based state inference systems in an ecological con-

text [39–41] have been conducted. However, these studies did not include realistic simulators

but simplified PC-based simulations. In order to test our inference system, an experimental

protocol was designed, during which the pilots had to interact with ATC instructions of two

levels of difficulty. The behavioral results confirmed that these levels were contrasted, as

Fig 8. Off-line estimated onset and offset latencies compared to the stimuli onset, in lowWM load and
highWM load conditions. Average for 20 trials per difficulty, on 19 pilots’ results. ***: p<0.001.



participants performed less well during the higher difficulty level. This result is coherent with

Taylor et al. [9] which has shown that pilots’WM decline when four different instructions

have to be stored and recalled. The neurophysiological results also confirmed that the task diffi-

culty statistically modulated oxygenation level in the prefrontal cortex (PFC). Moreover, the to-

pographic maps (Fig. 7) revealed particular activations of the right and left dorsolateral PFC

(DLPFC; BA 9 and 46) that are seen as mediating monitoring, i.e., executive control in the Bad-

deley’s model of WM [63]. Indeed, these results, in accordance with previous findings [20–24],

confirmed that fNIRS is a suitable device for monitoring WM load level.

Fig 10. Trial timeline and computing latencies. The upper timeline shows ATC span task trial events duration (see Fig. 3). Bottom timeline illustrates
duration constraints to get pilot’s estimatedWM load: classifier’s response is available in the worst case less than 3.3s after pilot’s response window.

Fig 9. Machine learning result: WM Load level estimation accuracy for each participant.



1 MACD-based State Estimation

One novelty of this study was the use of a MACD filter as a systematic state estimator to detect

the pilot’s state (doing or not doing a WM task) [50]. The results were promising as the

MACD-based state estimation matched 62% of time with the real duration of on-task and not-

on-task activity, i.e. receiving (memorizing) or not the ATC instruction (Fig. 6), with a good

true positive rate (72%). The differences observed were explainable by the presence of 42%

false positive rate, when the pilot’s state was estimated as on-task and the stimulus’s state was

not-on-task. Our off-line analysis revealed that, on average, the on-task estimated periods

started before and ended after the stimulation periods (Fig. 8). Furthermore, the delay between

stimulus onset and state estimation offset was significantly higher during the high WM load

trials than during the lowWM load ones, suggesting a potential different way of dissociating

workload levels. According to our definitions of the real and the estimated states, it is of a great

importance to consider that the estimated pilot’s WM load could not perfectly fit to the real

state as ATC messages are physical stimuli and pilot’s state is the ATC brain-related activity

that necessarly extends beyond physical stimuli. To this extent, the latencies observed could be

imputable to the anticipation of stimuli onset due to task rhythmicity and the maintenance in

WM of ATC instructions, two functions that have neural substrates in the PFC [64]. Altogeth-

er, these results are consistent with previous studies proving the potential of fNIRS for idle

mode detection [26, 47]. In fact, fNIRS offers an insight into the brain’s reaction to stimuli, giv-

ing information on perceived workload that would not be available through behavioral mea-

sures (e.g. stimulation periods). The results also confirmed that MACD is an effective method

for real-time task onsets detection [50], requiring no a priori information on task onsets, few

computational resources, and no calibration. This result is key for ecological tasks, when onsets

timing are unknown. For example, in realistic situations when events happen randomly, the in-

formation concerning task onsets could be retrieved using such a system. This method would

provide a simple and systematic way to trigger classification algorithms for workload level as-

sessment, in addition to a not-on-task/on-taskmode detection.

2 Single Trial SVM-basedWMLoad Estimation

Along with the state estimation, we used machine learning techniques to discriminate low WM

load versus high WM load trials. The mean classification accuracy reached up to 80.8% success-

ful discrimination between low and high WM load trials with good mean specificity (89.5%)

and sensitivity (72.1%). Moreover, the mean accuracy for 16 out of 19 participants was equal or

superior to 70%, defined as a sufficient rate for BCI [54, 65]. Only one participant’s WM load

level estimation had a lower-than-chance classification. In fact, these results compare well to

the rare on-line studies such as the ones conducted by Naseer et al. [38] (14 participants:

82.14% accuracy), Girouard et al. [39] (9 participants: 83.5% accuracy), and Schudlo et al. [43]

(10 participants: 77.4% accuracy). However one has to consider that two of these studies in-

volved controlled “rest versus task” paradigm [38, 39], a two-class problem that leads to better

classification results than a “lowWM load versus high WM load” one. Indeed, these results

demonstrated the efficiency of considering both spatial and temporal features as proposed by

Tai et. al and Schudlo et. al [43, 54], that allowed the monitoring of WM load level in

ecological situations.

Another key issue when assessing the performance of an on-line inference system is related

to the delay of single trial classification. Here, the automatic classification of WM load level oc-

curred in the worst case less than 21.3s after the end of the ATC instruction (ATC instructions

last 11s and estimated WM load of the trial is available less than 32.3s from the beginning of

the trial), a comparable result with other on-line fNIRS-based BCI latency (for a review of on-



line fNIRS-based BCI latency, please refer to Strait et. al [35]). Such a delayed inference was

not an issue in our experimental situation as pilots had 18s to program the autopilot according

to the ATC clearances. As a matter of fact, the diagnosis of the WM performance (high WM

load or low WM load) occurred at maximum 3.3s after the end of the participants’ task

(Fig. 10). Although the loop was not completely closed in our study, this signal could be used

to automatically give a feedback, for example to ATC. Such a feedback could allow ATC to

check that the instruction has been understood, or to repeat the instruction to the pilots when

high WM load conditions are detected, with an acceptable 3.3smaximum latency.

3 Limitation of this Study and Perspective

These results offer promising perspectives towards the design of a fNIRS-based “passive” BCI

for pilots. However, its use in real operational cockpit still remains a challenge as safety is criti-

cal in aeronautics.

First, we used a simplified pilot/ATC task for an easy implementation of our inference sys-

tem. Since ATC was simulated, it prevented mutual pilot—controller verification as in a real

operational situation. Despite this ecological limitation, we believe that our approach was rele-

vant and could address several issues in aviation such as pilots training, pilot selection, or the

monitoring of pilots’WM ability that is highly sollicited when interacting with ATC [18]. In

the future, pilots will use data-link technology that presents ATC messages as text to limit

pilot-ATC communications. Data-link changes the nature of pilot-ATC interactions and sever-

al studies have shown that it may negatively impact pilots’WM performance especially when

data-link interferes with other concurrent tasks [6, 8]. Our next challenge is to test our real-

time inference system in a multitasking context (i.e. ATC messages and failures management)

and to dynamicaly adapt the interaction depending on pilots’ spare capacity.

A second issue in the use of a BCI in aviation is related to its reliability. A lack of BCI reli-

ability could trigger spurious assistance and thus impair global pilots’ performance. Indeed, a

mean classification rate of 80.8% and a 3.3s delayed diagnosis of WM load level cannot guaran-

tee that the interaction is adapted in a timely and accurate manner. Therefore, a first step to re-

fine this approach is to integrate complementary measurements such as EEG [66, 67] or

physiological sensors [68] that have been shown to significantly enhance classification perfor-

mance when combined with fNIRS. A second step is to benchmark other machine learning

techniques such as Hidden Markov Models [69] or neuro-fuzzy inference systems [70] that are

well suited for the processing of physiological data [71]. Furthermore, once our classifier was

trained (i.e. phase L), it remained static. Reinforcement learning [72] should be considered for

gathering more samples and for updating our classifier with on-going trials. Such an approach

would allow more robustness with potential optodes position drifting issues across long ses-

sions and would permit to take into account participants’ neurophysiological evolutions across

time (e.g. fatigue, circadian rhythm [73]). Another way of improvement could be to use more

than one classifier method at the same time [74, 75], as shown in practice by Tai et. al [54].

Moreover, this approach would allow for better classification of naturalistic ATC stimuli that

are not at the extremes of a high vs a lowWM load continuum. Another perspective is to ex-

plore techniques to speed up response detection on fNIRS signal such as the ones proposed by

Cui et. al [49] that can drastically reduce latency in detecting change in a mental state.

Finally, lingering issues remain regarding the implementation of a BCI in the cockpit. Air-

craft accelerations (i.e. “G-forces”) may impact blood flow or creates headband motion artifacts

[76]. Controlled experiments have to be conducted in real flight with the use of accelerometers

to assess their effects on blood flow before the implementation of such systems in operational

conditions. The usability of the BCI is another key factor in the acceptance of this technology.



No pilot would accept a lengthy calibration process to train the classifier before each flight de-

parture. From a scientific point of view, this problem addresses inter-session consistency that is

the analysis of the consistency of spatial and temporal features of cerebral oxygenation while

performing a similar task across time. Some authors have investigated promising tracks and

have shown that it is possible to define a trade-off between accuracy and calibration time [77].

The re-use of data collected during previous sessions [78] and the identification of potential

users profile could help in dealing with this critical issue.
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