696 research outputs found

    State space c-reductions for concurrent systems in rewriting logic

    Get PDF
    We present c-reductions, a state space reduction technique. The rough idea is to exploit some equivalence relation on states (possibly capturing system regularities) that preserves behavioral properties, and explore the induced quotient system. This is done by means of a canonizer function, which maps each state into a (non necessarily unique) canonical representative of its equivalence class. The approach exploits the expressiveness of rewriting logic and its realization in Maude to enjoy several advantages over similar approaches: exibility and simplicity in the definition of the reductions (supporting not only traditional symmetry reductions, but also name reuse and name abstraction); reasoning support for checking and proving correctness of the reductions; and automatization of the reduction infrastructure via Maude's meta-programming features. The approach has been validated over a set of representative case studies, exhibiting comparable results with respect to other tools

    Mechanising syntax with binders in Coq

    Get PDF
    Mechanising binders in general-purpose proof assistants such as Coq is cumbersome and difficult. Yet binders, substitutions, and instantiation of terms with substitutions are a critical ingredient of many programming languages. Any practicable mechanisation of the meta-theory of the latter hence requires a lean formalisation of the former. We investigate the topic from three angles: First, we realise formal systems with binders based on both pure and scoped de Bruijn algebras together with basic syntactic rewriting lemmas and automation. We automate this process in a compiler called Autosubst; our final tool supports many-sorted, variadic, and modular syntax. Second, we justify our choice of realisation and mechanise a proof of convergence of the sigma calculus, a calculus of explicit substitutions that is complete for equality of the de Bruijn algebra corresponding to the lambda calculus. Third, to demonstrate the practical usefulness of our approach, we provide concise, transparent, and accessible mechanised proofs for a variety of case studies refined to de Bruijn substitutions.Die Mechanisierung von Bindern in universellen Beweisassistenten wie Coq ist arbeitsaufwƤndig und schwierig. Binder, Substitutionen und die Instantiierung von Substitutionen sind jedoch kritischer Bestandteil vieler Programmiersprachen. Deshalb setzt eine praktikable Mechanisierung der Metatheorie von Programmiersprachen eine elegante Formalisierung von Bindern voraus. Wir nƤhern uns dem Thema aus drei Richtungen an: Zuerst realisieren wir formale Systeme mit Bindern mit Hilfe von reinen und indizierten de Bruijn Algebren, zusammen mit grundlegenden syntaktischen Gleichungen und Automatisierung. Wir automatisieren diesen Prozess in einem Kompilierer namens Autosubst. Unser finaler Kompilierer unterstĆ¼tzt Sortenlogik, variadische Syntax und modulare Syntax. Zweitens rechtfertigen wir unsere ReprƤsentation und mechanisieren einen Beweis der Konvergenz des SP-KalkĆ¼ls, einem KalkĆ¼l expliziter Substitutionen der bezĆ¼glich der Gleichheit der puren de Bruijn Algebra des -KalkĆ¼ls vollstƤndig ist. Drittens entwickeln wir kurze, transparente und leicht zugƤngliche mechanisierte Beweise fĆ¼r diverse Fallstudien, die wir an de Bruijn Substitutionen angepasst haben. Wir weisen so die praktische Anwendbarkeit unseres Ansatzes nach

    Ten virtues of structured graphs

    Get PDF
    This paper extends the invited talk by the first author about the virtues of structured graphs. The motivation behind the talk and this paper relies on our experience on the development of ADR, a formal approach for the design of styleconformant, reconfigurable software systems. ADR is based on hierarchical graphs with interfaces and it has been conceived in the attempt of reconciling software architectures and process calculi by means of graphical methods. We have tried to write an ADR agnostic paper where we raise some drawbacks of flat, unstructured graphs for the design and analysis of software systems and we argue that hierarchical, structured graphs can alleviate such drawbacks

    Towards a complete transformational toolkit for compilers

    Get PDF
    PIM is an equational logic designed to function as a ``transformational toolkit'' for compilers and other programming tools that analyze and manipulate imperative languages.It has been applied to such problems as program slicing, symbolic evaluation, conditional constant propagation, and dependence analysis.PIM consists of the untyped lambda calculus extended with an algebraic data type that characterizes the behavior of lazy stores and generalized conditionals.A graph form of PIM terms is by design closely related to several intermediate representations commonly used in optimizing compilers. In this paper, we show that PIM's core algebraic component, PIMt_t, possesses a complete equational axiomatization (under the assumption of certain reasonable restrictions on term formation). This has the practical consequence of guaranteeing that every semantics-preserving transformation on a program representable in PIMt_t can be derived by application of PIMt_t rules. We systematically derive the complete PIMt_t logic as the culmination of a sequence of increasingly powerful equational systems starting from a straightforward ``interpreter'' for closed PIMt_t terms. This work is an intermediate step in a larger program to develop a set of well-founded tools for manipulation of imperative programs by compilers and other systems that perform program analysis

    A complete transformational toolkit for compilers

    Get PDF
    In an earlier paper, one of the present authors presented a preliminary account of an equational logic called PIM. PIM is intended to function as a 'transformational toolkit' to be used by compilers and analysis tools for imperative languages, and has been applied to such problems as program slicing, symbolic evaluation, conditional constant propagation, and dependence analysis. PIM consists of the untyped lambda calculus extended with an algebraic rewriting system that characterizes the behavior of lazy stores and generalized conditionals. A major question left open in the earlier paper was whether there existed a complete equational axiomatization of PIM's semantics. In this paper, we answer this question in the affirmative for PIM's core algebraic component, PIMt, under the assumption of certain reasonable restrictions on term formation. We systematically derive the complete PIM logic as the culmination of a sequence of increasingly powerful equational systems starting from a straightforward 'interpreter' for closed PIM terms
    • ā€¦
    corecore