
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Towards a complete transformational toolkit for compilers

J.A. Bergstra, T.B. Dinesh, J. Field and J. Heering

Computer Science/Department of Software Technology

CS-R9646 1996

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301637663?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Report CS-R9646
ISSN 0169-118X

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Towards a Complete Transformational Toolkit for

Compilers

J� A� Bergstra

University of Amsterdam and Utrecht University

T� B� Dinesh

CWI

J� Field

IBM T� J� Watson Research Center

J� Heering

CWI

Abstract

Pim is an equational logic designed to function as a �transformational toolkit� for
compilers and other programming tools that analyze and manipulate imperative
languages� It has been applied to such problems as program slicing� symbolic eval�
uation� conditional constant propagation� and dependence analysis� Pim consists of
the untyped lambda calculus extended with an algebraic data type that character�
izes the behavior of lazy stores and generalized conditionals� A graph form of Pim
terms is by design closely related to several intermediate representations commonly
used in optimizing compilers�

In this paper� we show that Pim�s core algebraic component� Pimt� possesses
a complete equational axiomatization �under the assumption of certain reasonable
restrictions on term formation	� This has the practical consequence of guaranteeing
that every semantics�preserving transformation on a program representable in Pimt

can be derived by application of Pimt rules� We systematically derive the complete
Pimt logic as the culmination of a sequence of increasingly powerful equational
systems starting from a straightforward �interpreter� for closed Pimt terms�

This work is an intermediate step in a larger program to develop a set of well�

Authors� addresses
 J� A� Bergstra� Vakgroep Programmatuur� University of
Amsterdam� Kruislaan ��
� ���� SJ Amsterdam� The Netherlands� email

janb�wins�uva�nl� T� B� Dinesh and J� Heering� Department of Software Tech�
nology� CWI� Kruislaan ��
� ���� SJ Amsterdam� The Netherlands� email

fT�B�Dinesh� Jan�Heeringg�cwi�nl� J� Field� IBM T� J� Watson Research Center�
P�O� Box ���� Yorktown Heights� NY ������ USA� email
 j�eld�watson�ibm�com�

� � Bergstra� Dinesh� Field� Heering

founded tools for manipulation of imperative programs by compilers and other
systems that perform program analysis�

CR Subject Classi�cation ������
 D�
�� �Programming Languages�� Proces�
sors �code generation� compilers� optimization� F�
�� �Logics and Meanings of
Programs�� Semantics of Programming Languages�algebraic approaches to se�
mantics
Keywords 	 Phrases
 imperative language� program transformation� partial eval�

uation� ��completeness� term rewriting� Knuth�Bendix completion
Notes
 This research was supported in part by the European Communities under

ESPRIT Basic Research Action ���� �CONCUR II	 and ESPRIT LTR Project
����� �SAGA	� and by the Netherlands Organization for Scienti�c Research �NWO	
under the Generic Tools for Program Analysis and Optimization project�

This is an extensively revised version of Technical Report RC ��
��� IBM T�
J� Watson Research Center� Yorktown Heights� and Technical Report CS�R�����
Centrum voor Wiskunde en Informatica �CWI	� Amsterdam �January ����	� To
appear in ACM Transactions on Programming Languages and Systems�

An abridged version of this paper has appeared in H� R� Nielson �ed�	� Program�
ming Languages and Systems �ESOP
��	� vol� ���� of Lecture Notes in Computer
Science� Springer�Verlag� ����� pp� �������

�� Introduction

��� Overview

Many intermediate representations �IRs	 have been proposed as the basis for al�
gorithms used in optimizing compilers for imperative languages� Typically� such
IRs are intended to distill a source program down to certain essential semantic
components� either to provide a framework for program transformations� to serve
as a starting point for analysis algorithms� or to render some program property
self�evident from the IR�s structure� In studying the body of work that describes
or exploits such IRs� it is often di�cult to clearly di�erentiate the role of the IR
from the role of the algorithm that uses it� to contrast the expressive or analytic
capabilities of one IR with another� or to understand the relationship between a
program�s semantics and the IR manipulations that �implicitly	 reason about it�

This paper is an e�ort to contribute to a better understanding of these issues by
presenting a formal account of properties of an equational logic called Pim �Field
������ Pim consists of a term language and an associated set of equations which
together are designed to function as a �transformational toolkit� for compilers
and other programming tools that analyze and manipulate Algol�class imperative
languages� Pim is a combination of the untyped lambda calculus and an algebraic
data type� Pimt� that characterizes the behavior of lazy stores �Cartwright and
Felleisen ����� and generalized conditionals� Pimt is parameterized in such a way
that a variety of base data types �e�g�� integers� booleans� pairs� lists� streams	 and
�memory models� �e�g�� byte addressed or �symbolically� addressed by variable
name	 may be accommodated in a manner that is orthogonal to the remainder
of Pim� Lambda terms are used to model procedural constructs and loops� but
are not needed to model other types of control �ow� Extended with appropriate

Towards a Complete Transformational Toolkit for Compilers � �

memory models and operations on base types� we believe that the constructs of
Pim are su�cient to model the principal dynamic semantic elements of Algol�class
languages�
Pim is intended to represent a family of related IRs� each a class of graph repre�

sentations of Pim terms that is useful for a di�erent application� Several members
of this family are by design closely related to existing IRs� particular those based
on the Program Dependence Graph �PDG	 or Static Single Assignment �SSA	 form
�Ferrante et al� ����� Cytron et al� ����� Ballance et al� ����� Yang et al� ����� Weise
et al� ����� Click ������ Our long�term goal is to show that a large class of pro�
gram analysis algorithms can be recast into a combination of semantics�preserving
transformations and abstract interpretations on Pim graphs�

As a �rst step toward that goal� we restrict our attention in this paper to studying
the formal properties of various equational systems for Pimt� Our principal result
is exhibiting a complete equational axiomatization of Pimt�s semantics� under the
assumption of certain reasonable restrictions on term formation� Formally� we
show that there exists an ��complete equational axiomatization of Pimt�s �nal
algebra semantics� We systematically derive the complete logic for Pimt as the
culmination of a sequence of increasingly powerful equational systems starting from
a straightforward �interpreter� for Pimt� We also derive several con�uent and
terminating rewriting systems by orienting instances of rules from the equational
systems� Such systems can be used not only as partial decision procedures for Pimt�
but also as algorithms for building various classes of IRs based on di�erent Pimt

normal forms�
Obtaining a positive answer to the completeness question� albeit restricted to

the �rst�order core of Pim� gives us some con�dence that our transformational
toolkit has an adequate supply of tools� In �Field ������ it was shown that many
aspects of the construction and manipulation of compiler intermediate representa�
tions could be expressed by partially evaluating Pim graphs using rewriting rules
formed from oriented instances of Pim equations� Until now� however� we could not
be certain that all the equations required to manipulate Pimt terms were present
�with or without restrictions on term formation	� Obtaining a complete equational
axiomatization for Pimt is also an important prerequisite to designing a decision
procedure�

We are aware of three other completeness results for logics for imperative lan�
guages� all of which� like our result� are restricted to �rst�order subsystems
 Hoare
et al� ������ present �implicitly	 a completeness result for an equational logic that
Pim resembles in some respects� However� their language cannot represent abstract
�i�e�� unknown	 stores or addresses� a property we feel is important for represent�
ing transformations and analyses commonly required in optimizing compilers� For
example� computations on addresses are needed for representing pointer manipu�
lations� abstract stores are needed� e�g�� to reason about calls to procedures whose
e�ect on the store is unknown� Mason and Talcott ������ show that their logic for
reasoning about equivalence in a Lisp�like language is complete� Unlike Pim� their
logic is a sequent calculus� In addition� their logic axiomatizes a strict store seman�
tics whose properties di�er from Pim�s lazy store� Finally� Selke �����b� sketches a
completeness result similar to that of Mason and Talcott for a sequent calculus for
reasoning about PDGs� As with the language of Hoare et al�� the only unknowns
about which Selke�s system can reason are base values�

� � Bergstra� Dinesh� Field� Heering

��� Organization

The remainder of this paper proceeds as follows
 In Section �� we discuss Pim�s
relation to other work� In Section
� we introduce the system Pim

�
t � which axiom�

atizes the operational behavior of Pim�s �rst�order core� Pim
�
t has the property

that orienting its equations from left to right yields an interpreter for closed pro�
grams producing observable �base� values as results� We also discuss the behavior
of Pimt�s functions using examples written in a simple programming language� and
focus particularly on describing Pim�s lazy store semantics� Section � presents sev�
eral detailed examples of equivalence reasoning in Pim� and gives an overview of
the relative power of various equation systems we develop in the sequel� In Sec�
tion �� we brie�y discuss the higher order system derived from embedding Pimt in a
lambda calculus� While the higher order system is not the focus of this paper� this
section gives a feel for the use of Pim in representing real programming languages�
Section � discusses the relationship between ��complete equational systems and
partial evaluation� In Section �� we present some basic de�nitions and illustrate
the process by which we develop a complete logic using an example involving a
stack data type� Next� in Section �� we develop an enrichment of Pim�

t called Pim�
t

that characterizes Pimt�s �nal algebra semantics� i�e�� one that equates terms that
behave the same in all contexts that generate observable values� Such a semantics is
natural for developing semantics�preserving transformations on program fragments�
In Section �� we produce our main result
 an ��complete axiomatization of Pim�

t �
Pim

�
t � As before� Pim�

t is obtained simply by enriching Pim
�
t with additional

equations� The resulting system equates all open Pimt programs that behave the
same under every substitution for their free variables� and thus yields the complete
transformational toolkit we seek� In Section ��� we show how rewriting systems
formed by orienting subsystems of Pim�

t can be used to prove program equivalences
and produce normal forms with various interesting structural properties� We then
develop several rewriting systems based on Pim�

t and prove that they are con�uent
and terminating� Finally� Section �� covers possible extensions and open problems�

�� Pim in Perspective

There has been considerable previous work on calculi and logics of program equiv�
alence� In addition� the program analysis literature contains numerous accounts
of intermediate representations and algorithms intended to accommodate e�cient
and accurate analysis of imperative programs� Drawing to a considerable extent on
ideas from both areas� Pim was designed to bridge the gap between the latter area�s
practical aims and the former�s logical rigor� In this section� we review previous
work and its relation to Pim�

A graph form of Pim is by design closely related to intermediate representations
used in optimizing compilers� such as the PDG �Ferrante� Ottenstein� and Warren
������ SSA form �Cytron et al� ������ GSA form �Ballance� MacCabe� and Otten�
stein ������ the PRG �Yang� Horwitz� and Reps ������ the VDG �Weise et al� ������
and the representation of Click ������� Pim was inspired in particular by the work
of Cartwright and Felleisen ������� who give a foundational account of PDG con�
struction in a denotational �i�e�� model�theoretic	 setting� Our goal is to provide
an operational realization of an extended version of Cartwright and Felleisen�s se�

Towards a Complete Transformational Toolkit for Compilers � �

mantics� one that can be used not only for reasoning about equivalences� but also
for carrying out partial evaluation and implementing certain classes of program
analysis��

Selke �����a�� and Ramalingam and Reps ������ �the latter building on earlier
work of Horwitz et al� ������	 provide semantics for variants of PDGs� Selke�s
operational semantics combines graph rewriting� and propagation of assigned values
through graph edges� Ramalingam and Reps give a mathematical semantics for
PRGs in terms of mutually recursive equations on streams of values� Both of these
view a PDG as a program in itself� which is then evaluated via the semantics� By
contrast� Pim can be used both to derive various PDG�like IRs �by transforming
a fairly conventional store�based translation of the program	� and to evaluate the
resulting IR�

For structured programs� most of the non�trivial steps required to translate a
program to the Pim analogue of one of the IRs mentioned above can be carried
out as source�to�source transformations in Pim itself� once an initial Pim graph has
been constructed from the program using a simple syntax�directed translation� For
example� when constructing the Pim equivalent of GSA form �Ballance� MacCabe�
and Ottenstein ������ various equational transformations on Pim graphs correspond
to computation of reaching de�nitions� building of data and control dependence
edges� placement of so�called � nodes� and determination of �gating� predicates�

For unstructured programs� the Pim analogue of a traditional IR may be con�
structed either by �rst restructuring the program �e�g�� using a method such as that
of Ammarguellat ������	� or by using a continuation�passing transformation �e�g��
one similar to that used by Weise et al� ������	 in which unstructured transfers
of control such as gotos or breaks are treated as function calls� The translation
process is then completed by application of the same transformations used for struc�
tured programs� We prefer the restructuring approach to the continuation�passing
transformation� since it obviates the need to use higher�order �interprocedural�
methods when analyzing �rst�order programs�

There has been considerable work on calculi for modeling imperative features
in applicative languages �Felleisen and Friedman ����� Felleisen and Hieb �����
Swarup� Reddy� and Ireland ����� Odersky� Rabin� and Hudak ���
�� While the
details of each of these approaches di�er considerably� their imperative features
are inextricably bound with their applicative constructs� Felleisen and Friedman
������� Felleisen and Hieb ������� and Swarup et al� ������ use lambda terms and
��reduction to sequence assignments� Odersky et al� ����
� use lambda terms in a
�monadic� style to perform computations on dereferenced mutable variables� By
contrast� Pim does not rely on the use of lambda expressions or monads to sequence
assignments� This permits the use of stronger axioms for reasoning about store�
speci�c sequencing� and makes it possible to study the properties of the imperative
features of the language completely independently from the functional ones�
Pim is an equational logic� rather than� e�g�� a sequent calculus such as that

�In this paper� we do not actually use Cartwright and Felleisen�s denotational model in our
completeness result� preferring instead a �nal algebra model that makes a more direct link between
a language�s operational semantics and its logic of program equivalence�
�Selke�s semantics uses an ad�hoc graph rewriting formalism� rather than term graph rewriting
�Barendregt et al� �	
���

� � Bergstra� Dinesh� Field� Heering

of Mason and Talcott ������ or Selke �����a� ����b�� the latter system of which�
like Pim� was based on the work of Cartwright and Felleisen ������� While se�
quent calculi are natural for carrying out proofs of program equivalence �especially
those performed by hand	� equational logics have the useful property that every
intermediate state of a proof is itself a program� Equational logics are also particu�
larly amenable to mechanical implementation� using such techniques as term graph
rewriting �Barendregt et al� ������ Knuth�Bendix completion� and �equational	 uni�
�cation or narrowing� The latter two properties make it possible to use Pim not
only to prove equivalences� but also to model the �standard� operational semantics
of a language �using a terminating and con�uent rewriting system on ground terms	
or to serve as a �semantics of partial evaluation� �by augmenting the operational
semantics by oriented instances of the full logic	�

Yang� Horwitz� and Reps ������ present an algorithm that uses structural prop�
erties of the PRG IR to determine equivalence among parts of two variants of the
same program which are to be combined by a program integration tool� However�
even for the restricted class of programs that can be modeled by Pimt� not all valid
equivalences among programs represented by PRGs can be proved by structural
equivalence�

The logics of Hoare et al� ������ �which Pim resembles most closely in many
respects	 and Boehm ������ manipulate languages that are syntactically similar to
�real� programming languages� in the sense that operations that a�ect the store
�i�e�� side�e�ects	 are intermixed in the term structure with pure operations on
values� By contrast� Pim contains an explicitly threaded store whose operations
are distinguished syntactically from operations on values� While this separation of
concerns renders Pim wholely unsuitable as a programming language� we believe
that this characteristic makes it easier to represent languages in which expressions
with and without side e�ects are intermixed in complicated ways �e�g�� C	� This
also means that it is usually straightforward to extend Pim with new operations
and axioms on base values� or change the �memory model� used to represent ad�
dresses� since we need have no concern about how these operations are interrelated�
Finally� Pim di�ers from Hoare et al� ������ and Boehm ������ in allowing for com�
puted addresses �which arise from pointers and arrays	� and providing operations
on stores �e�g�� store concatenation	� the latter of which� while not present in most
real programming languages� are extremely useful for modeling various natural
transformations on IRs�

For further details on the correspondence between Pim and traditional IR�s�
see �Field ������ For an example of a practical application of Pim� see �Field�
Ramalingam� and Tip ������ which describes a novel algorithm for program slicing �

�� How Pim Works

��� �C

Consider the program fragments P��P� depicted in Fig� �� They are written in a
C language subset that we will call �C� whose complete syntax is given in Fig� ��
of Appendix A� �C has standard C syntax and semantics� with the following
exceptions

Towards a Complete Transformational Toolkit for Compilers � �

�� int x�y�p�

const int �X� �P� ��

f p � �P�

x � �X�

y � p�

x � p�

if �p	

x � y�

g

�� int x�y�p� ��

f p �
�

x � ��

y � p�

x � p�

if �p	

x � y�

g
P� P�

�� int x�y�p�

const int �P� ��

f p � �P�

y � p�

x � p�

if �p	

x � y�

g

�� int x�y�p� ��

f p �
�

y � p�

x � p�

if �p	

x � y�

g

�� int x�y�p�

const int �P� ��

f p � �P�

y � �P�

x � �P�

g

P� P� P�

Figure �� Some simple �C programs�

�Meta�variables � such as �P or �X� are used to represent unknown values� Such a
variable may be thought of as a simple form of program input �where each occur�
rence of a meta�variable represents the same input value	 or as an �immutable	
formal parameter of a function�

�All data in �C are assumed to be integers or pointers �to integer variables or to
other pointers	�

�It is assumed that no address arithmetic is used��

To make �C examples such as those in Fig� � easier to follow� we will add type
�declarations� within comment delimiters for the variables and meta�variables used
therein� however� these declarations are not part of the syntax of �C� We will use
�const� in the declarations of meta�variables to emphasize that their values are
immutable�

��� Pim Terms and Graphs

A directed term graph �Barendregt et al� ����� form of the Pim representation
of P�� SP� � is depicted in Fig� �� SP� is generated by a simple syntax�directed

�Although Pim admits arbitrary computation on addresses in general� the completeness results in
this paper assume that addresses are not themselves
results� of programs�

� � Bergstra� Dinesh� Field� Heering

))paddr(@(!

))@ addr(p(!

))addr(y@(!

P1
S()

)(V1

S1)(meta(P)

(M1)

intEq(

[

{ addr([

[

{ addr(

{ addr(

y)

x)

x)

] }

] }

] }

()S

(M)3

3

()S

(M)
4

4

()S

M()
5

6

)(S6

(

{ addr() }x meta(X

(M)

)(S

2

2

,(@ !addr(p 0))))

[)]

{ addr(p) }[]

Figure �
 SP�
 The Pim representation of program P�� Null stores and subscripts
on store composition operators are omitted for clarity�

translation� details of which are given in Appendix A� We will discuss SP� in detail
in Section
���

A term graph may be viewed as a conventional tree�structured term by travers�
ing it from its root and replacing all shared subgraphs by separate copies of their
term representations� Cycles are also admissible in term graphs� and correspond to
in�nite terms �Kennaway� Klop� Sleep� and de Vries ������ Such cycles arise natu�
rally in conjunction with loops and recursive functions� Shared Pim subgraphs are
constructed systematically as a consequence of the translation process� In addition�
when term rewriting is extended in a natural way to term graphs �Barendregt et al�
������ subgraph sharing can be created as a side�e�ect of the rewriting process�

The properties of the equational systems we consider in this paper are completely
independent of whether a Pim term is represented by a tree or a graph� However�
when used in implementations� graphs are preferred since the graph representation
of a program is invariably much more compact than the tree representation �con�
sider� e�g�� the size of the tree form of graph SP� in Fig� �	� It is also frequently
easier to discern the correspondence between related �C constructs and Pim struc�
tures when graphs are used in examples� this correspondence will be emphasized
by depicting parent nodes in Pim terms below their children� The �upside down�

Towards a Complete Transformational Toolkit for Compilers � 	

graph orientation also makes the similarity between Pim graphs and traditional IRs
more apparent�

��� Pimt� Core Pim

In this paper� we focus on the �rst�order core subsystem of Pim� denoted by Pimt�
The full version of Pim discussed in �Field ����� and slightly revised in �Field�
Ramalingam� and Tip ����� augments Pimt with lambda expressions� an induction
rule� and certain additional higher�order merge distribution rules that in the more
general form given in �Field� Ramalingam� and Tip ����� propagate conditional
�contexts� inside expressions computing base values or addresses� Pim�s higher�
order constructs allow loops and procedures to be modeled in a straightforward
way� we will brie�y review these applications in Section �� In addition� �Field�
Ramalingam� and Tip ����� show how specialized instances of Pim�s induction rule
can be used to facilitate loop�related transformations required to compute various
kinds of program slices �

Without the higher�order extensions� Pimt is not Turing�complete� However�
we believe that the constructs in Pimt alone are su�cient to model the principal
control� and data��ow aspects of loop� and function�free programs in Algol�class
languages� As we shall see� these constructs have a non�trivial equational axiomati�
zation� Understanding their properties is a prerequisite to studying the properties
of higher�order variants�

The signature� of Pimt terms is given in Fig�
� we will describe the intended
interpretation of each of the function symbols in the signature in Section
��� The
sort structure of terms restricts the form of addresses and predicates in such a
way that neither may be the result of an arbitrary Pim computation� Although
our completeness result depends on this restriction� the equations in the complete
equational system Pim

�
t remain valid even when the term formation restrictions

are dropped�� This means� e�g�� that we can still use our system to reason about
situations in which addresses or predicates are generated by arbitrary computations
�or situations in which the values of such expressions are entirely unknown	� even
though there may be additional valid equations �arising as a consequence of the
structure of those computations	 that we will not necessarily be able to prove�

Fig� � depicts the equations	 of the system Pim
�
t � Pim

�
t is intended to function as

an operational semantics for Pimt� in the sense that when its equations are oriented
from left to right� they form a rewriting system that is con�uent on ground terms
of sort V � the sort of observable �base� values� Pim�

t also serves to de�ne the initial
algebra semantics for Pimt�
Pim can be viewed as a parameterized data type with formal sorts V and A�

�This signature di�ers slightly from the corresponding signature in �Field �		��� the di�erences
principally relate to a simpli�cation in the structure of merge expressions�
�If address or predicate expressions may contain nonterminating computations� there are a number
of semantic issues beyond the scope of this paper that must be addressed� In brief� we take the
position �usually adopted implicitly by optimizing compilers� that equations remain valid as long
as they equate terms that behave the same in the absence of nontermination�
�The gaps in the equation numbers used for Pim�t � as well as those occurring in other systems
discussed in the sequel� are present to ensure compatibility with the equation numbers used in
�Field �		���

� � Bergstra� Dinesh� Field� Heering

sorts
S �store structures	
M �merge structures	
A �addresses	
B �booleans	
V �base values	

functions
fA ��Mg � S �store cell	
B �s S � S �guarded store	
S �s S � S �store composition	
�s � S �null store	

S � A � M �store dereference	
�V � � M �merge cell	

B �mM � M �guarded merge	
M �m M � M �merge composition	

�m � M �null merge	

��� ��� � � � � A �address constants	

T�F � B �boolean constants	
A � A � B �address comparison	
�B � B �boolean negation	
B � B � B �boolean conjunction	
B 	 B � B �boolean disjunction	

M� � V �merge selection	
c�� c�� � � � � V �base value constants	

 � V �unknown base value	

variables
s� s�� s�� � � � � S

m�m��m�� � � � � M
l� l�� l�� � � � � S
l� l�� l�� � � � � M
a� a�� a�� � � � � A
p� p�� p�� � � � � B
v� v�� v�� � � � � V

Figure

 Signature of Pimt terms� The notation was borrowed from the ASF!SDF
speci�cation language �van Deursen� Heering� and Klint ������ The �rst function
entry fA �� Mg � S can be read �i	 as a regular function declaration StoreCell

A
M � S� with some �abstract� function name StoreCell and sorts A� M� S�
or �ii	 as a reverse BNF rule fA �� Mg "

 S with nonterminals A� M� S and
terminals f� ��� g� Similarly for the other entries�

Towards a Complete Transformational Toolkit for Compilers �

�� �� l " l �L�	
l �� �� " l �L�	

l� �� �l� �� l�	 " �l� �� l�	 �� l� �L
	
T �� l " l �L�	
F �� l " �� �L�	

fa� �� mg � a� " �a� � a�	 �m m �S�	
fa �� �mg " �s �S�	

�s � a " �m �S
	
�s� �s s�	 � a " �s� � a	 �m �s� � a	 �S�	

��i � �i	 " T �i � �	 �A�	
��i � �j	 " F �i �" j	 �A�	

�m �m �v�	� " v �M�	
�v�� " v �M
	
�m� " �M�	

�T " F �B�	
�F " T �B�	

T � p " p �B
	
F � p " F �B�	
T 	 p " T �B�	
F 	 p " p �B�	

Figure �
 Equations of Pim�
t � The equations labeled �Ln	 are generic to merge or

store structures� i�e�� in each case #	� should be interpreted as one of either s or m�
Equations �A�	 and �A�	 are schemes for an in�nite set of equations�

These sorts are intended to be instantiated as appropriate to model the data ma�
nipulated by a given programming language� Fig� � depicts the signature of a
small set of functions and auxiliary sorts used to actualize the parameter sorts of
Pim to model the integer data manipulated by �C programs� From the point of
view of the results presented in the sequel� these additional functions are simply
treated as uninterpreted �inert� constructors� In practice� of course� su�cient ad�
ditional equations would be added to axiomatize the properties of the additional
language�speci�c datatypes �e�g�� pairs� lists� records� or streams	� In addition� the
representation of addresses would have to be extended to allow for such constructs
as heap allocated data �which require a function that generates new addresses
	
and arrays �which require that the address of each array element be distinguished
from the address of other elements and the address of the base of the array	�

The Pimt signature given in Fig�
 as well as the equation systems we will present

�It is straightforward to design an
allocation function� that generates new address names simply
by encoding some form of counter� However� the equational semantics that result are somewhat
unsatisfactory� in that certain simple properties of heap�allocated addresses �e�g�� inequality of
addresses generated by two consecutive calls to the allocator� must be derived from the properties
of the counter used in the allocation function� A more abstract and natural encoding of heap�
allocated data remains an open problem�

� � Bergstra� Dinesh� Field� Heering

sorts
Id �identi�ers	

IntLiteral
 V �integer literals� subsort of base values	

functions
meta�Id	 � V �meta�variables constructed from identi�ers	

intSum�V � V	 � V �integer addition	
intDi��V � V	 � V �integer subtraction	
intEq�V � V	 � B �integer equality	
addr�Id	 � A �address constants constructed from identi�ers	

Figure �� Signature of �C�Speci�c Pim Extensions�

in the sequel are su�ciently simple in structure to be implementable with minimal
di�culty by many existing equational rewriting systems and theorem provers �e�g��
ASF!SDF �van Deursen� Heering� and Klint ����� and TIP �Fraus �����	� Other
than the possible need to convert in�x operators to pre�x form� the only other
requirements that Pimt imposes are the ability to encode an in�nite set of addresses
and to implement equations �A�	 and �A�	� This can easily be done using a �nite
number of auxiliary symbols and equations� e�g�� by encoding addresses using strings
over a �xed alphabet�

��� Pim�s Parts

In this section� we outline the behavior of Pim�s functions and the equations of
Pim

�
t using program P� and its Pim translation� SP� � depicted in Fig� ��

���� Stores

The graph SP� is a Pim store structure�� an abstract representation of memory�
SP� is constructed from the sequential composition of substores corresponding to
the statements comprising P�� The operator #�s� is used to concatenate two stores�
The subgraphs reachable from the boxes labeled S��S� in SP� correspond to the
four assignment statements in P��

The simplest form of store is a cell such as

S� � faddr�p	 �� �meta�P	�g

A store cell of this form associates an address expression �here addr�p		 with a
value �here meta�P	� the translation of the �C meta�variable �P	� The operator
#���� encapsulates the value being stored in a merge structure� we will discuss such
structures in greater detail below� Constant addresses such as addr�p	 represent
ordinary variables� More generally� address expressions may be used when addresses
are computed� e�g�� in pointer�valued expressions� �s is used to denote the null store�
Equations �L�	 and �L�	 of Pim�

t indicate that null stores disappear when composed

	For clarity� Fig� � does not depict certain null stores created by the translation process� this
elision will be irrelevant in the sequel�

Towards a Complete Transformational Toolkit for Compilers �
�

with other stores� Equation �L
	 indicates that the store composition operator is
associative�

Stores may be guarded� i�e�� executed conditionally� The subgraph labeled S	
in Fig� � is such a store� and corresponds to the #if� statement in P�� The guard
expression denoted by V� corresponds to the if�s predicate expression� Consistent
with standard C semantics� the guard V� tests whether the value of the variable p
is nonzero� When guarded by the true predicate� T� a store structure evaluates to
itself� If a store structure is guarded by the false predicate� F� it evaluates to the
null store structure� These behaviors are axiomatized by equations �L�	 and �L�	�

���� Lazy Store Retrieval

A reference to the value of a program variable is modeled in Pim in the usual manner
by retrieving the variable�s value from the store using the variable�s address as a
lookup key� However� the details of the retrieval operation are somewhat unusual
since Pim axiomatizes a variant of Cartwright and Felleisen�s ������ lazy store
semantics�

In a traditional �strict	 store semantics� the address to which an assignment is
made as well as the value being assigned are evaluated at the point of assignment�
Cartwright and Felleisen observed that it is possible to de�ne an alternative se�
mantics in which the evaluation of an assignment�s address� its value� or both are
deferred until a value in the store is retrieved by a reference to an address�

Cartwright and Felleisen�s aim in de�ning the notion of a lazy store was to pro�
vide a �denotational	 semantic foundation for program manipulations performed in
building Program Dependence Graphs �PDGs	 �Ferrante� Ottenstein� and Warren
������ However� they also observed that the termination behavior of lazy stores dif�
fers from that of strict stores
 an assignment that stores a divergent value which is
never subsequently retrieved does not cause nontermination in a lazy store seman�
tics� whereas the program would diverge in a strict store semantics� The possible
introduction of �gratuitous termination� under a lazy store semantics seems to be of
little concern in practice� however� since it is similar to other commonly used dead
code elimination steps that also have the potential to remove sources of divergence�
Pim�s operational axiomatization of lazy stores decomposes store retrieval into

two distinct steps
 dereferencing �using the #�� operator	 and selection �using the
#�� operator	� We see both operators in expressions of the form

�s � a	�

in SP� � where each such expression corresponds to a reference to the value of some
variable in P��

An expressions of the form s � a produces an ordered list of all the values
that are stored in s at address a prior to dereferencing� This retrieval behavior is
codi�ed by equations �S�	��S�	� �A�	� and �A�	� The list of values produced by
the dereferencing operation is deemed a merge structure� since values stored at the
same address are merged together�

���
 Merge Structures� Sets of Reaching De�nitions

The merge structures created by store dereferencing are best thought of as repre�
sentations of sets of de�nitions �i�e�� assignments	 that reach a particular use of

� � Bergstra� Dinesh� Field� Heering

some address� For a given use of an address� the set of reaching de�nitions contains
all those assigned values that could be retrieved at the point of use in some valid
execution� Due to the existence of conditionals and computed addresses� the set
of reaching de�nitions for a given use of an address cannot always be narrowed
to a singleton in an open program �i�e�� a program containing meta�variables	� A
merge structure orders the reaching de�nition set it represents by �least recent�
assignment to �most recent�� When applied to a closed merge structure m� the
selection operator #�� yields the rightmost element in the list represented by m� i�e��
the most recently assigned value�

The simplest nonempty form of merge structure is amerge cell � The boxes labeled
M�� M�� M�� M�� and M	 in Fig� � are all merge cells� As with store structures�
nontrivial merge structures may be built by prepending guard expressions� or by
composing merge substructures using the merge composition operator� #�m�� �m
denotes the null merge structure� Some of the characteristics of merge structures are
shared by store structures� as indicated by the �polymorphic� equations �L�	��L�	�
In the sequel� we will therefore often drop subscripts distinguishing related store
and merge constructs when no confusion will arise� Nontrivial merge structures can
be used to model various forms of conditional expressions� however� they arise most
frequently as results of Pim simpli�cations of other type of expressions�

When the selection operator #�� is applied to a non�empty merge structure m� m
must �rst be evaluated until it has the form

m� �m �v�

i�e�� one in which an unguarded cell is rightmost� At this point� the entire expression
m� evaluates to v� This behavior is axiomatized by equations �M�	 and �M
	�
Equation �M�	 states that attempting to apply the selection operator to a null
merge structure yields the special error value # ��

�� Reasoning with Pim Terms and Graphs

��� Example� Manipulating Lazy Stores

To get a feel for equational manipulations in Pim� consider the programs R� and R�

depicted in Fig� �� In both examples� we will concentrate on the Pim representation
of the �nal reference to the variable x� In the case of R�� the Pim representation
of the value of x �produced by the translation in Appendix A	 is given by the
expression

��s� �s s�	 �s s�	 � addr�x	 �

where

s� � F �s faddr�x	 �� ����g
s� � T �s faddr�y	 �� ����g
s� � T �s faddr�x	 �� ����g

For clarity� we have eliminated several null stores introduced by the translation pro�
cess� and simpli�ed the representation of the integers � and � used in the conditional
statements to their boolean Pim normal forms� #F� and #T�� respectively�

It should be easy to see that Pim stores s�� s�� and s� represent the correspond�
ingly labeled statements in R�� The Pim representation of the �nal reference to x

Towards a Complete Transformational Toolkit for Compilers �
�

�� int x�y� ��

f if �
	 x � ��� �� s� ��

if ��	 y � �
� �� s� ��

if ��	 x � ��� �� s� ��

� � � � x�

g

�� int x�y�

const int �P� �Q� ��

f if �� �P	 x � ��� �� t� ��

if ��Q	 y � �
� �� t� ��

if ��P	 x � ��� �� t� ��

� � � � x�

g

R� R�

Figure �� �C programs illustrating store and merge manipulations�

�rst dereferences the composite store using address addr�x	� then uses the selection
operator #�� as discussed above to extract the �rst reaching de�nition of x�

Using the equations of Pim�
t in Fig� �� we can simplify the portion of R� corre�

sponding to the reference to x as follows �the speci�c equations of Pim�
t used at

each step are indicated at the right	

��s� �s s�	 �s s�	 � addr�x	 �

" ���s� �s s�	 � addr�x		 �m �T �s faddr�x	 �� ����g � addr�x			 � �S�	

" ���s� �s s�	 � addr�x		 �m �faddr�x	 �� ����g � addr�x			 � �L�	

" ���s� �s s�	 � addr�x		 �m ��addr�x	 � addr�x		 �m ����	 � �S�	

" ���s� �s s�	 � addr�x		 �m �T �m ����	 � �A�	

" ���s� �s s�	 � addr�x		 �m ����	 � �L�	

" �� �M�	

Note how the lazy store semantics implemented by #�� and #�� retrieves the value
of the last assignment to x without simplifying any of the �rst two assignment
statements at all�

While the notion of a lazy store semantics might seem novel� but otherwise in�
consequential in the case of R�� R� �Fig� �	 illustrates its considerable utility in
simplifying open programs� The Pim representation of the �nal value of x in R� is
given by the expression

��t� �s t�	 �s t�	 � addr�x	 �

where

t� � �p �s faddr�x	 �� ����g
t� � q �s faddr�y	 �� ����g
t� � p �s faddr�x	 �� ����g

and

p � ��intEq�meta�P	 � �		
q � ��intEq�meta�Q	 � �		

� � Bergstra� Dinesh� Field� Heering

As with R�� we can use the rules of Pim to simplify the initial expression represent�
ing the �nal value of x� However� since the Pim term representing R� contains free
variables �representing the values of meta�variables �P and �Q	� the simpli�cation
process is somewhat more involved� requiring additional rules not needed for sim�
plifying closed programs� The additional rules are found in Fig� ��� and are part of
the ��complete system Pim

�
t we derive in Section ��

The simpli�cation of the Pim term representing R� proceeds as follows

��t� �s t�	 �s t�	 � addr�x	 �

"

�
� � �faddr�x	 �� ��p �m ����	g	 �s

�faddr�y	 �� �q �m ����	g	 	 �s
�faddr�x	 �� �p �m ����	g	

�
A � addr�x	 � �S�	

"

�
� � ��addr�x	 � addr�x		 �m ��p �m ����		 �m

��addr�y	 � addr�x		 �m �q �m ����		 	 �m
��addr�x	 � addr�x		 �m �p �m ����		

�
A � �S�	

"

�
� � �T �m ��p �m ����		 �m

�F �m �q �m ����		 	 �m
�T �m �p �m ����		

�
A � �A�	� �A�	

"

�
� � ��p �m ����	 �m

�m 	 �m
�p �m ����	

�
A � �L�	� �L�	

" � ��p �m ����	 �m �p �m ����	 	 � �L�	

" ���p 	 p	 �m ����	 � �L��	

" �T �m ����	 � �B�
	� �B��	

" ���� � �L�	

" �� �M
	

We see in the step labeled �S�	 that the predicates are �pushed inside� the store
cells� This enables the store to be simpli�ed in subsequent steps without requiring
that the predicates themselves be simpli�ed� In the next four steps �using �S�	�
�A�	� �A�	� �L�	� �L�	� and �L�		� the de�nitions reaching the �nal use of x are
e�ectively �gathered together�� We can observe from the term in the equation
labeled �L�	 that two assignments of �� reach the use of x� and that the two
assignments are evaluated under di�erent conditions� However� since the predicates
implementing the conditions are logically complementary� we can conclude that
�� is always assigned to x� This fact is inferred in the next three steps using
rules �L��	� �B�
	� �B��	� and �L�	� These rules e�ectively convert the set of two
reaching de�nitions into a single composite reaching de�nition� This single reaching
de�nition is �nally �selected� in the last step using rule �M
	�

The collective e�ect of the rules implementing Pim�s lazy store semantics is to
enable addresses and predicates �which guard various substores	 to be manipulated
�orthogonally�� This behavior is vital for enabling the �nal value of x to be simpli�
�ed to a constant without requiring that the predicates themselves be simpli�ed�

Returning to program P� �Fig� �	� we can reason about its Pim representation

Towards a Complete Transformational Toolkit for Compilers �
�

{ addr(x)

[]

[]

P1

(M)

S

{ addr(

{ addr()

)

}p

}

(

[]y

[]

}

0,)

)

)

meta(P)

intEq((

Figure �� S�P�
 A simpli�ed form of SP� �

SP� �Fig� �	 in a manner similar to that of R�� SP� can be simpli�ed to the
store structure S�P� depicted in Fig� �� The merge structure denoted by M � in S�P�
represents all the assignments made to variable x in P�� and can be read roughly as
�if the variable to which this expression is bound is ever used� the resulting value
will be that of the meta�variable �P if �P is nonzero �i�e�� #true� in C semantics	�
otherwise the resulting value will be �P�� S�P� is very similar to several compiler
IRs� we will revisit this point in more detail in Section ����� It should be easy
to see that M � can be further simpli�ed to the expression �meta�P	�� although the
resulting graph does not correspond as closely to a compiler IR as does S�P� �

It is important to note that Pim�s axiomatization of lazy stores is independent
of whether a lazy �i�e�� �outermost�	 strategy is used to rewrite Pim expressions�
Indeed� such a strategy was not used in the simpli�cation of R� above� It is�
however� desirable to use a lazy strategy and graph reduction techniques in rewriting
implementations of Pim to ensure that unnecessary rewriting steps are avoided�

��� The Relative Power of Pim Subsystems

In order for Pim to make good on its claim to being a �program logic�� there must
be some semantics about which the logic can reason� The equations of Pim�

t in
Fig� � serve this function for any closed expression of sort V � We can generate an
interpreter from these equations simply by orienting the equations in Fig� � from
left to right� then applying them until a normal form is reached� �It is easily seen
that the system is terminating� i�e�� noetherian and yields unique normal forms on
closed terms	�

� � Bergstra� Dinesh� Field� Heering

An interpreter generated from Pim
�
t could have been used to mechanically sim�

plify the expression representing the �nal value of x in program R� of Fig� � to
���

For another example� consider program P� in Fig� �� Its Pim representation� SP� �
is the same as SP� � except that �P and �X are replaced with � and �� respectively�
The value of the variable x in the �nal store produced by evaluation of SP� � i�e��
the �nal value of x after executing P� is represented by the expression

�SP� � addr�x		�

and evaluates to the constant �� The interpreter generated by Pim�
t can be used to

evaluate the �nal value of any of P��s variables in a similar manner�
Consider now the program P� of Fig� �� Although it should be clear that P�

behaves the same as P�� the equations of Pim�
t are insu�cient to equate the Pim

translations of the two programs� We will require a more powerful system than Pim�
t

to axiomatize a �nal algebra semantics� in which all behaviorally equivalent closed
terms �such as those representing P� and P�	 are equated� Pim

�
t � the equational

axiomatization of Pim�
t �s �nal algebra semantics� will be the subject of Section ��

Finally� consider program P� of Fig� �� Although it is behaviorally equivalent to
both P� and P�� one cannot deduce this fact using Pim

�
t alone� Intuitively� this

is due to the fact that P�� P�� and P� are all open programs� To equate these
terms� as well as to prove all other valid equations on open terms� we will need the
��complete system Pim

�
t � which will be developed in Section ��

In Section ��� we will present several con�uent and terminating subsystems of
Pim

�
t � In addition to serving as partial decision procedures for equivalence� these

systems and variants thereof can alo be used to yield normal forms �i�e�� terms or
graphs to which no further rewriting rules are applicable	 that function in a manner
similar to that of a traditional compiler IR� and to implement partial evaluation
for optimization purposes�

�� Higher�Order Aspects of Pim

A complete exposition of the higher�order aspects of Pim is outside the scope of this
paper� However� to see how Pimt can be embedded in a higher�order framework�
consider the �C program L depicted in Fig� ��
L contains a simple loop and an initialization� The general scheme for �C while

loop translation is given by rule �Stmt		 in Fig� �� of Appendix A� This scheme
embeds a Pimt expression representing the loop body in a recursive lambda ex�
pression� Recursion is expressed formally using a Y combinator�� In practice� it
is advantageous to substitute a self�referential looping graph representation for an
explicit Y combinator �Peyton Jones ������ Note that �Stmt		 must account for the
possibility that the loop predicate has side�e�ects� this results in a representation
that is somewhat more complicated than it would be otherwise�

Fig� � depicts the Pim graph SL that results from translating program L� The
store labeled S� represents the loop itself� and is modeled by a lambda expression

For procedures� Y has type ��S � S�� �S � S��� �S � S�� and Yf � f�Yf� for any lambda
expression f � �S � S�� �S � S��

Towards a Complete Transformational Toolkit for Compilers �
	

�� int i� ��

f i � �
�

while �i	 i �� ��

g
L

Figure �� A simple program containing a loop�

s

xs

)(V1xs ,! 0i()(@ addr()))intEq(

S1)(

S(0))i [10]{ addr(}

xs

x

intDiff(

(SL)

(()) .

()

S)(2

()S3

()S4

()S5

{ addr()i] }(@ addr())) ,!i 1[

Figure �� SL
 The Pim representation of program L� Null stores are omitted�

that takes an incoming store xS and produces a store S� representing all the store
updates that occur during loop iteration� S� is guarded by the loop�s termina�
tion predicate� V�� The predicate has no side�e�ects� the translation rule �Stmt		
accounts for this fact by generating a null substore that is omitted in Fig� � for
clarity� S� is the composition of a store S� representing the update of i in the
current iteration� and a store S� representing updates in all subsequent iterations�
S� contains a recursive reference to the loop�s lambda expression� which is applied
to a store S� representing the incoming store for the next iteration� S� thus consists
of the current incoming store xS composed with S�� the store update produced by
the current iteration� Loop iteration is initiated the �rst time around by applying
S� to S�� a store representing the initialization of program variable i�

Procedures can be represented in a manner similar to loops� As with loops� local
storage within a procedure invocation can be represented simply by introducing a
store expression representing the side�e�ects of the procedure within the lambda
expression representing the procedure�

�� � Bergstra� Dinesh� Field� Heering

In order to accommodate various common loop simpli�cations� some form of
inductive reasoning is required� Field� Ramalingam� and Tip ������ provides several
induction rules that implement various classes of useful loop transformations� These
rules are derived from a more general induction rule given in �Field ������ which in
turn was inspired by work of Wand and Wang �������

While we have found that augmenting lambda terms with Pimt terms allows a
natural operational characterization of a variety of higher�order program constructs�
more work remains to be done to study the formal properties of higher�order vari�
ants of Pim� In Section ��� we outline some possible future directions�

�� Partial Evaluation and ��Completeness

Since many valid program transformations do not result from the application of
evaluation rules alone� an operational semantics does not form an adequate basis
for program optimization and transformation� For instance� consider the equation

if �p	 then e else e " e�

Some version of this equation is valid in most programming languages �at least if
we assume p terminates	� yet transforming an instance of the left hand side in a
program to the right hand side cannot usually be justi�ed simply by applying an
evaluation rule�

The open equations �equations containing variables� such as the one above	 valid
in a language are not in general equationally derivable from a speci�cation of the
language�s semantics� but require stronger rules of inference �such as structural
induction	 for their proofs� It is possible� however� to trade rules of inference for
equations� That is� by adding �nitely many equations �possibly involving auxiliary
sorts and functions	 to the speci�cation� the full equational theory of the language
may be brought within the scope of equational reasoning �Bergstra and Heering
������ Such an enriched speci�cation is called ��complete� Strictly speaking ��
completeness can be achieved only if the equational theory in question is recursively
enumerable� but this is to be expected and of no concern for Pimt� although it will
probably become a problem for the full higher�order version of Pim�

Furthermore� equational reasoning �of which term rewriting is a special case	
applies equally to closed and open terms� The latter corresponds to transformation
of incomplete programs with the variables in the input term representing missing
data or code� Evaluation of incomplete programs is usually called partial evaluation
�Ershov ����� Jones� Gomard� and Sestoft ���
�� In the present context� we are not
concerned with binding�time analysis or self�application� but� following �Heering
������ simply assert that

partial evaluation "
rewriting of open terms with respect to the
intended semantics�

While partial evaluation has often been advocated as a means for optimizing
programs �Ershov ����� Ershov and Ostrovski ����� Chambers and Ungar �����
Berlin and Weise ����� Nirkhe and Pugh ������ we know of few results that precisely
characterize the transformational capabilities that a particular partial evaluator
implements� In our setting� �nding an ��complete speci�cation amounts to showing

Towards a Complete Transformational Toolkit for Compilers � �

that one�s partial evaluator has all the rules it needs at its disposal� it will thus be
our goal in the sequel to �nd an ��complete axiomatization for Pimt�

	� Algebraic Preliminaries

In this section we give a brief summary of some basic facts of algebraic speci�cation
theory which are essential to an understanding of what follows� Good surveys are
Meinke and Tucker�s survey ������� Meseguer and Goguen�s survey ������� and
Wirsing�s survey ������� We assume some familiarity on the part of the reader with
equational logic and initial algebra semantics�

��� �	Completeness

Definition �� An algebraic speci�cation S " �$� E	 with non�void many�sorted
signature $� set of equations E� and initial algebra I�S	 is ��complete if I�S	 j"
t� " t� i
 E � t� " t� for open $�equations t� " t��

According to the de�nition� all equations valid in the initial algebra of an ��
complete speci�cation may be deduced using only equational reasoning� No struc�
tural induction is needed� Trading structural induction for equational reasoning
from an enriched equational base has two potential advantages

�An existing rewrite implementation of equational logic can be used� although an
A�� AC�� or some other E�rewriting capability may be needed depending on the
speci�cation involved�

�Rewriting may have a sense of direction lacking in structural induction� It may
perform useful simpli�cations of terms without having been given an explicit
inductive proof goal beforehand�

One way of proving ��completeness of a speci�cation is to show that every con�
gruence class modulo E has a representative in canonical form �not necessarily a
normal form produced by a rewrite system	 such that two distinct canonical forms
t� and t� can always be instantiated to ground terms
�t�	 and
�t�	 that cannot
be proved equal from E� Another way is to show by induction on the length �in
some sense	 of equations that equations valid in I�S	 are provable from E� We
use both methods in this paper� Additional information about proof techniques for
��completeness as well as examples of their application can be found in �Heering
����� Lazrek� Lescanne� and Thiel ����� Bergstra and Heering ������

��� Final Algebra Semantics

Final algebra semantics does not make a distinction between elements that have
the same observable behavior� We need the following de�nitions

Definition �� Let $ be a many�sorted signature and S� T � sorts�$	� A $�
context of type S � T is an open term of sort T containing a single occurrence of
a variable � of sort S and no other variables�

The instantiation C��
" t	 of a $�context C of type S � T with a $�term t of
sort S will be abbreviated to C�t	� If t is a ground term� C�t	 is a ground term as
well� If t is a $�context of type S � � S� C�t	 is a $�context of type S � � T �

�� � Bergstra� Dinesh� Field� Heering

Definition �� Let S " �$� E	 be an algebraic speci�cation with non�void many�
sorted signature $� set of equations E� and initial algebra I�S	� Let O
 sorts�$	�
The �nal algebra FO�S	 is the quotient of I�S	 by the congruence �O de�ned as
follows�

�i	 t�� t� ground terms of sort S � O�
t� �O t� i
 I�S	 j" t� " t��

�ii	 t�� t� ground terms of sort S �� O�
t� �O t� i
 I�S	 j" C�t�	 " C�t�	 for all contexts C of type S � T with T � O�

Item �ii	 says that terms of nonobservable sorts �sorts not in O	 that have the same
behavior with respect to the observable sorts �sorts in O	 correspond to the same
element of FO�S	� It is easy to check that �O is a congruence�

De�nition
 corresponds to the case M " I�S	 of N�M	 as de�ned in �Meseguer
and Goguen ����� p� ����� Observable sorts are called visible in �Meseguer and
Goguen ����� and primitive in �Wirsing ����� Section �����

��� Steps Towards a Completeness Result

Our completeness result will require two basic technical steps

�A	 Finding an initial algebra speci�cation of the �nal model FV�Pim
�
t 	� FV�Pim

�
t 	

is the quotient of the initial algebra I�Pim�
t 	 by behavioral equivalence with

respect to the observable sort V of base values� We add an equational de�nition
of the behavioral equivalence to Pim�

t � resulting in an initial algebra speci�cation
of FV�Pim

�
t 	�

�B	 Making the speci�cation obtained in step �A	 ��complete to improve its ability
to cope with program transformation and partial evaluation�

We illustrate these steps for a simple data type before attacking Pim�
t itself�

��� A Simple Example

We perform steps �A	 and �B	 �Section ��
	 for the speci�cation of a stack data
type shown in Figure ���

Step
A�

Consider the �nal model FV�Stack	 in the sense of De�nition
 with O " fVg� We
give an initial algebra speci�cation of it �Heering ����� Bergstra and Tucker ������
The normalized contexts of type S � V are

Cn " top�popn����		� �n � �	

The constant a� is special in view of �St�	� By �St�	��St�	

Cn�push�a�� �		 " Cn��	

for all n � �� This means push�a�� �	 and � have the same V�observable behavior�
and the equation

push�a�� �	 " � ��	

Towards a Complete Transformational Toolkit for Compilers � ��

sorts V �base values	
S �stacks	

functions a�� � � � � aN � V �base values� N � �	
� � S �empty stack	

push�V �S	 � S �stack constructor	
top�S	 � V �get top element	
pop�S	 � S �delete top element	

variables v � V
s � S

equations top��	 " a� �St�	
top�push�v� s		 " v �St�	

pop��	 " � �St
	
pop�push�v� s		 " s �St�	

Figure ��� Stack�

which is not valid in I�Stack	� holds in FV �Stack	� The rewrite system obtained
by interpreting the equations of Stack� " Stack ! ��	 as left�to�right rewrite
rules is easily seen to be con�uent and terminating��� The corresponding ground
normal forms of sort S are

push�ai� � push�ai� � � � � � push�aip � �	 � � �		 �p � �� ip �" �	 ��	

Equation ��	 happens to be the only additional equation we need� and Stack
� is

the initial algebra speci�cation we are looking for�

Proof� It is su�cient to check that two distinct terms in normal form ��	 are
observationally distinct� Let

t� " push�ai� � � � � � push�aip � �	 � � �	

t� " push�aj� � � � � � push�ajq � �	 � � �	

be two distinct normal forms� i�e�� p �" q or aik �" ajk for some k � �� In the �rst
case �p � q say	� t� and t� are distinguished by the context Cp " top�popp����		
since

Cp�t�	 " aip �" a� " Cp�t�	�

In the second case they are distinguished by Ck since

Ck�t�	 " aik �" ajk " Ck�t�	�

��Such rewrite systems are usually called complete or canonical� To avoid undue overloading of
both adjectives in this paper we prefer the more cumbersome terminology�

�� � Bergstra� Dinesh� Field� Heering

m �m �v� " �v� �M��	

fa� �� m�g �s fa� �� m�g " �a� � a�	 �s fa� �� �m� �m m�	g �s
��a� � a�	 �s �fa� �� m�g �s fa� �� m�g	 �S�	

Figure ��� Additional Equations of Pim�
t �

Step
B�

We give an ��complete enrichment Stack� of Stack�� The equation

push�top�s	� pop�s		 " s �
	

is easily seen to be valid in I�Stack�	 by verifying it for terms in normal form
��	� It is not equationally derivable from Stack

� since the corresponding rewrite
system is not applicable� Again� it happens to be the only additional equation we
need� We show that Stack� " Stack

� ! �
	 is ��complete�

Proof� Normal forms of sort V are �i	 constants a�� � � � � aN �N � �	� �ii	 vari�
ables v� � � �� and �iii	 terms Cn�t	 " top�popn���t		 with t a variable of sort S� We
have to check all combinations of normal forms� These are easily seen to be di�erent
in I�Stack�	� For instance� the normal forms C��s	 and C��s	 are distinguished
by the substitution s " push�a�� �	� Note the importance of N � ��

Normal forms of sort S are �i	 ground normal forms ��	� �ii	 variables s� � � �� �iii	
terms popn�t	 with t a variable of sort S and n � �� �iv	 terms push�ai� t	 with t a
normal form of sort S containing at least one variable� �v	 terms push�t�� t�	 with t�
a variable of sort V and t� a normal form of sort S� and �vi	 terms push�Cn�t�	� t�	
with t� a variable of sort S� and t� a normal form of sort S �" popn�t�	 in view of
�
	�

As before� we have to check all combinations of normal forms� The only nontrivial
cases are �iv	��vi	� Let the length of an equation be the number of nonlogical
symbols in it� For instance� �
	 has length �� We proceed by induction on the length
of equations� �a	 The equations of length � � valid in I�Stack�	 are provable from
�St�	��St�	� ��	� �
	� �b	 Assume the valid equations of length� n are provable� Let
push�t�� t�	 " t� be a valid equation of length n� Then top�t�	 " t� and pop�t�	 " t�
are valid equations of length � n� and hence provable by assumption� Hence�
push�t�� t�	 " t� itself is provable since push�t�� t�	 " push�top�t�	� pop�t�		 " t�
by �
	�

� Step �A�
The Final Algebra

We give an initial algebra speci�cation Pim
�
t of the �nal model FV �Pim

�
t 	� Pim

�
t

is shown in Figures
 and �� The additional equations of Pim�
t are shown in

Figure �����

Proposition �� FV�Pim
�
t 	 j" �M� �	� �S�	�

��Equation �M��� in Figure �� is a special case of �M�� in the preliminary version of Pim�t given
in �Field �		�� Figure ��� �S
� subsumes �S�� and �S�� in the preliminary version�

Towards a Complete Transformational Toolkit for Compilers � ��

Proof� We prove �M��	� The proof of �S�	 is similar�
The normalized contexts of type M� V are

Ck�n " ��ci� � �m � � � �m �cik�� � �m � �m �cik�� � �m � � � �m �cin �	�

�� � k � n	� By �M�	

Ck�n�m �m �v�	 " cin " Ck�n��v�	 �k � n	

Cn�n�m �m �v�	 " v " Cn�n��v�	�

�M�	 is rendered super�uous by �M��	� Let Pim�
t " Pim

�
t � �M�	!�M� �	!�S�	�

We have

Proposition �� I�Pim�
t 	 " FV�Pim

�
t 	�

Proof� We show that two distinct ground normal forms are observationally
distinct� �i	 Ground normal forms of sort M are

�m� � �� �ci� �i � �	� ��	

�m and � � are distinguished by the context ��c�� �m �	�� the others by � ��
�ii	 Ground normal forms of sort S are

�s� f�i� ��M�g �s � � � �s f�in ��Mng �n � �� i� � � � � � in�

Mj in normal form ��	�
Mj �" �m in view of �S�		�

��	

Two distinct normal forms of sort S can be distinguished with respect to M by
a suitable store dereference of the form � � �k for some k� Hence� they can be
distinguished with respect to V according to �i	�
�iii	 Sorts A and B are not a�ected� Any identi�cation of elements of these sorts
would immediately lead to collapse of the base values�

We note that repeating the above step for Pim�
t does not yield further equations

since FV �Pim
�
t 	 " I�Pim�

t 	�

�� Step �B�
��Complete Enrichment

We give an ��complete enrichment Pim�
t of Pim�

t � The additional equations of
Pim

�
t are shown in Figure ��� As before� 	 in equations �Ln	 is assumed to be

one of m or s� The reader will have no di�culty verifying the validity of the
additional equations of Pim�

t in the initial algebra I�Pim�
t 	 by structural induction�

Somewhat unexpectedly� their automatic inductive veri�cation succeeded only with
considerable di�culty �Naidich and Dinesh ������

The ��completeness proof uses both proof methods mentioned in Section ���� It
basically proceeds by considering increasingly complex open terms and their canon�
ical forms� The latter are determined up to some explicitly given set of equations
and are considered distinct only if they are not equal modulo these equations� The
fact that two distinct canonical forms can be instantiated to ground terms that
cannot be proved equal from Pim

�
t is not explicitly shown in each case� but has

been veri�ed and the reader will have no di�culty repeating this�
We successively consider the following terms

�� � Bergstra� Dinesh� Field� Heering

�boolean terms without ��

�boolean terms with ��

�open merge structures with � but without � or ��

�unrestricted open merge structures�

�open terms of sort V �

�open store structures without � or � and without variables of sort S�

�open store structures with � and � and with variables of sort S� but without
variables of sort A�

�unrestricted open store structures�

In two cases �boolean terms with � and unrestricted open store structures	 the
proof is not based on canonical forms� but proceeds by induction on the number of
di�erent address variables in an equation �its �length�	� The same method �with a
di�erent de�nition of length	 is used in Section ��� to show the ��completeness of
Stack

�� In the case of boolean terms with � we also obtained a canonical form
�included below	� but we failed to obtain one for unrestricted open store structures�
It would certainly be preferable to have one� but the ��completeness proof does not
depend on it� The proof would only get a more constructive character�

In the following we concentrate on the various canonical forms� The �rather
lengthy	 proofs that they can actually be reached by equational reasoning from
Pim

�
t as well as the proofs of the two inductive cases are available in Appendix B�

Boolean terms without �

The only booleans are T and F� Suitable canonical forms are the well�known
disjunctive normal forms without nonessential variables �variables whose value does
not matter	� See� e�g�� �Bergstra and Heering ����� Theorem
����

Boolean terms with �

These require �A
	��A�	 in addition to �A���	� �A�	 and �A�	 are substitution
laws� �S�	 and �S��	 are similar laws for guarded store and merge structures which
will be needed later on� The transitivity of � is given by the equation

�a� � a�	 � �a� � a�	 � ��a� � a�	 " F�

which is an immediate consequence of �A�	 or �A�	 in conjunction with �B��	�
Note that the number of address constants �i is in�nite� Otherwise an equationWK
i���a � �i	 " T would have been needed�
A suitable canonical form is the disjunctive normal form without nonessential

variables mentioned before with the additional condition that the corresponding
multiset of address constants and variables is minimal with respect to the multiset
extension of the strict partial ordering

� � � � a� � a� � �i �i � �	� ��	

A multiset gets smaller in the extended ordering by replacing an element in it by
arbitrarily many �possibly �	 elements which are less in the original ordering �Klop
����� p�
��� The canonical form is determined up to symmetry of � and up to
associativity and commutativity of 	 and � as before�

Towards a Complete Transformational Toolkit for Compilers � ��

p �� �� " �� �L�	
p �� �l� �� l�	 " �p �� l�	 �� �p �� l�	 �L�	

p� �� �p� �� l	 " �p� � p�	 �� l �L�	
l �� l� �� l " l� �� l �L�	

�p �� l�	 �� ��p �� l�	 " ��p �� l�	 �� �p �� l�	 �L��	
�p� �� l	 �� �p� �� l	 " �p� 	 p�	 �� l �L��	

�a � a	 " T �A
	
�a� � a�	 " �a� � a�	 �A�	

�a� � a�	 � �a� � a�	 " �a� � a�	 � �a� � a�	 �A�	
�a� � a�	 � ��a� � a�	 " �a� � a�	 � ��a� � a�	 �A�	

�m�� " � � �m m �M�	
��p �m � �	 �m m	� " m� �M�	

p �s fa �� mg " fa �� �p �m m	g �S�	
�a� � a�	 �s fa� �� mg " �a� � a�	 �s fa� �� mg �S�	
�a� � a�	 �m �s � a�	 " �a� � a�	 �m �s � a�	 �S��	

�p �s s	 � a " p �m �s � a	 �S��	
fa �� mg �s s " s �s fa �� m �m �s � a	g �S��	

��p " p �B�	
�p� � p�	 � p� " p� � �p� � p�	 �B�	

p� � p� " p� � p� �B�	
p � p " p �B��	

p � �p " F �B��	
�p� 	 p�	 	 p� " p� 	 �p� 	 p�	 �B��	

p� 	 p� " p� 	 p� �B�
	
p 	 p " p �B��	

p 	 �p " T �B��	
p� � �p� 	 p�	 " �p� � p�	 	 �p� � p�	 �B��	
p� 	 �p� � p�	 " �p� 	 p�	 � �p� 	 p�	 �B��	

��p� � p�	 " �p� 	 �p� �B��	
��p� 	 p�	 " �p� � �p� �B��	

Figure ��� Additional Equations of Pim�
t �

�� � Bergstra� Dinesh� Field� Heering

Open merge structures with � but without � or �

These are similar to the if�expressions treated in �Heering ����� Section
�
�� but
there are some additional complications� First� we have

m �m �p �m �v�	 " ��p �m m	 �m �p �m �v�	� ��	

since

m �m �p �m �v�	

B���
L���

" ��p �m m	 �m �p �m m	 �m �p �m �v�	

L
�
" ��p �m m	 �m �p �m �m �m �v�		

M� ��
" ��p �m m	 �m �p �m �v�	�

��	 is a generalization of �M��	� Unfortunately� the even more general equation

m� �m �p �m m�	 " ��p �m m�	 �m �p �m m�	

is not valid for p " T and m� " �m� Instead we have the weaker analogue

�p� �m l	 �m l� �m �p� �m l	 " ���p� � p�	 �m l	 �m l� �m �p� �m l	� ��	

since

�p� �m l	 �m l� �m �p� �m l	 "

L��
" �p� �m l	 �m �p� �m l	 �m l� �m �p� �m l	

L���
" ��p� 	 p�	 �m l	 �m l� �m �p� �m l	

" ����p� � p�	 	 p�	 �m l	 �m l� �m �p� �m l	

L���
" ���p� � p�	 �m l	 �m �p� �m l	 �m l� �m �p� �m l	

L��
" ���p� � p�	 �m l	 �m l� �m �p� �m l	�

This a�ects the canonical forms of subterms involving variables of sort M� making
them somewhat more complicated then would otherwise be the case�

�L��	 has the equivalent conditional form

p� � p� " F "� �p� �� l�	 �� �p� �� l�	 " �p� �� l�	 �� �p� �� l�	� ��	

since� assuming p� � p� " F� we have

�p� �� l�	 �� �p� �� l�	 " �p� �� l�	 �� ���p� � p�	 �� l�	

L��
" �p� �� l�	 �� ��p� �� �p� �� l�		

L���
" ��p� �� �p� �� l�		 �� �p� �� l�	

" �p� �� l�	 �� �p� �� l�	�

��	 is often more readily applicable than �L��	�
A suitable canonical form �OMCF	 for open merge structures without � or � is

shown in Fig� �
�

Unrestricted open merge structures

A suitable canonical form �OMCFgen	� very similar to �OMCF	� is shown in Fig�
���

Towards a Complete Transformational Toolkit for Compilers � �	

�m

and

�P� �m�V��	 �m � � � �m �Pk �m�Vk�	 �m �Q� �mM�	 �m � � � �m �Qn �mMn	

with

�i	 Pi in boolean canonical form �" F� Pi � Pj " F �i �" j	

�ii	 Vi a variable or constant of sort V � Vi �" Vj �i �" j	

�iii	 Qi in boolean canonical form �" F� Qi �Qj " F �i �" j	

�iv	 Mi an open merge structure mi� �m mi� �m � � � consisting of � �
di�erent variables mi� �mi� � � � � of sort M� and Mi �" Mj �i �" j	�

Figure �

 �OMCF	 Canonical form for open merge structures without � or �� The
canonical form is determined up to associativity and commutativity of 	 and ��
symmetry of �� and associativity and conditional commutativity of �m �equations
�L
	 and ��	 with 	 " m	�

�m

and

�P� �m�V��	 �m � � � �m �Pk �m�Vk�	 �m �Q� �mM�	 �m � � � �m �Qn �mMn	

with

�i	��iii	 As for canonical form �OMCF	

�iv	 Mi an open merge structure consisting of � � di�erent variables� which
may be either ordinary variables of sortM or compound variables s � A�
and Mi �" Mj �i �" j	

�v	 The corresponding multiset of address constants and variables is mini�
mal with respect to the ordering ��	�

Figure ��
 �OMCFgen	 Canonical form for unrestricted open merge structures�
Apart from requirements �iv	 and �v	� it is the same as canonical form �OMCF	�

M �

with M in canonical form �OMCFgen	 without subterm P �m � ��

Figure ��� �OVCF	 Canonical form for open terms of sort V

�� � Bergstra� Dinesh� Field� Heering

Open terms of sort V

A suitable canonical form �OVCF	 is shown in Fig� ���

Open store structures without � or � and without variables
of sort S

We �rst note the following immediate consequences of �S�	

fa �� m�g �s fa �� m�g " fa �� �m� �m m�	g �S�	

�a� � a�	 " F "� fa� �� m�g �s fa� �� m�g " fa� �� m�g �s fa� �� m�g �S�	

��a� � a�	 �s �fa� �� m�g �s fa� �� m�g	 "

" ��a� � a�	 �s �fa� �� m�g �s fa� �� m�g	 ���	

�S�	 is a conditional commutative law��� ���	 is similar but with an appropriate
guard rather than a condition�

A suitable canonical form �OSCF	 is shown in Fig� ��� An important special
case �OSCFsimple	 is shown in Fig� ���

Open store structures with � and � and with variables of sort
S� but without variables of sort A

The main equation we need is �S��	� Note that in case of a �nite number K of
address constants �i� the stronger equation s " �f�� �� s � ��g	 �s � � � �s �f�K ��
s � �Kg	 would hold�

Since there are no address variables� any occurrences of � can be eliminated by
�A���	 and the extension �OSCFvar	 of the simple canonical form �OSCFsimple	
shown in Figure �� applies�

Let Pim�
t " Pim

�
t ! the equations of Figure ��� In view of the foregoing we have

Proposition �� Pim
�
t is ��complete�

��� Pim in Practice

�
�� Rewriting Pim Graphs

By orienting equation instances of Pim�
t and implementing the resulting rules on

graphs� we obtain a term graph rewriting system �Barendregt et al� ������ Such
systems can be designed to produce normal forms with a variety of interesting
properties� For example� the graph S�P� depicted in Fig� � is obtained by �rst
normalizing the graph SP� �Fig� �	 with respect to the system Pim

�

t developed in
Section ����� then using instances of equation �S�	 of Pim�

t to permute addresses
with respect to a �xed ordering� SP� is the normal form of the Pim representations

���S�� and �S�� correspond to �S�� and �S�� in the preliminary version of Pim�t given in �Field
�		�� Figure ���

Towards a Complete Transformational Toolkit for Compilers � �

�s

and

�%� �s fA� ��M�g	 �s � � � �s �%n �s fAn ��Mng	

with

�i	 Ai a constant or variable of sort A

�ii	 Mi a merge structure without � in canonical form �OMCF	 �" �m
�iii	 %i the canonical form �" F of

n�
k��

��Ai � Ak	

with ��Ai � Ak	 denoting one of Ai � Ak or ��Ai � Ak	

�iv	 %i � %j " F �Ai " Aj modulo �S�	� i �" j	

�v	
�

Aj�Ai

modulo
S��

%j " T �� � i � n	

�vi	 The corresponding multiset of address constants and variables is min�
imal with respect to the ordering ��	�

Figure ��
 �OSCF	 Canonical form for open store structures without � or � and
without variables of sort S� The canonical form is determined up to associativity
of �s �equation �L
	 with 	 " s	� Furthermore� as a consequence of requirements
�iii	 and �iv	 at least one of the conditional commutative laws ��	� �S�	� ���	 ap�
plies to any pair of adjacent store cells� and the canonical form is unconditionally
commutative� Unlike the original term� the canonical form is not ��free�

�T �s f�i� ��M�g	 �s � � � �s �T �s f�in ��Mng	

with

�i	 All �ij di�erent in view of requirement �iv	 of canonical form �OSCF	

�ii	 As requirement �ii	 of canonical form �OSCF	�

Figure ��� �OSCFsimple	 Special case of �OSCF	 if all addresses are known�

�� � Bergstra� Dinesh� Field� Heering

of both P� �i�e�� SP�	 and P� �Fig� �	� therefore� it is immediate that they are
behaviorally equivalent�

The normalization process can be used not only to discover equivalences not
apparent from the initial Pim representations� but also to �build� useful graph�
based compiler IRs as a side e�ect �Field ������ For example� the composition
operator in the subgraph M � of S�P� is very similar to an instance of the � node of
GSA form �Ballance� MacCabe� and Ottenstein ������ If we ignore the guard� we
can also interpret the composition operator in M � as an SSA form � node �Cytron
et al� ������ The principal di�erence between these IRs and the class of normal
forms exempli�ed by S�P� is that variable uses are linked directly to the expressions
that de�ne their value� even when� e�g�� a chain of copying assignments intervenes
�VDGs �Weise et al� ����� also have this property	�

Fig� �� depicts the graph S��P� � a further simpli�cation of S�P� � S��P� is also a
simpli�ed form of the Pim translations of programs P� and P� in Fig� �� As with S�P� �
S��P� is produced by a rewriting system� namely� Pim�t augmented with an oriented
instance of Pim�

t �s equation �L��	� followed as before by address permutation using
�S�	� Depending on the application� it may be more appropriate to use systems that
produce normal forms similar to compiler IRs� such as S�P� � rather than simplifying
further to forms such as S��P�

Consider �nally the �C programs depicted in Fig� ��� All of these programs are
behaviorally equivalent� this fact may be deduced by inspection of the normal form
graph S�P� shown in Fig� �� �produced by augmenting the system used to produce
S�P� with an oriented instance of equation �L��		� We know of no intermediate
representation in the compiler literature for which the representations of P	�P�
would be the same�

In general� the design of a Pim�based rewriting system will be governed by the
tradeo�s between properties desired of normal forms and the time complexity of
normalization strategies that yield those normal forms� As several Pim operators
are commutative and associative� one cannot rely entirely on structural properties
of normalized graphs to detect all valid program equivalences� However� rewriting
systems are an important stepping�stone to more powerful decision procedures� and
allow structural identity to be used to detect many more equivalences than would
be possible otherwise�

In the next section� we obtain con�uent and terminating rewriting systems from
Pim

�
t � While such systems constitute partial decision procedures for term equiv�

alence� they are also good starting points for designing �possibly non�con�uent	
systems that derive terms or graphs with useful structural properties �e�g�� in which
variable de�nitions are linked directly to uses	� The development of con�uent and
terminating systems can be mechanized to a certain extent by Knuth�Bendix com�
pletion �Dershowitz and Jouannaud ������ However� producing systems that yield
graphs with particular structural properties requires a more ad�hoc process of intro�
ducing �or deleting	 rules derived from Pim

�
t until the desired property is achieved�

�
�� Con�uent Subsystems of Pim�t

Our goal in this section will be to derive the strongest possible con�uent and ter�
minating subsystems of Pim�

t � Much of this work described in this section was
carried out with the assistance of the TIP inductive theorem proving system �Fraus

Towards a Complete Transformational Toolkit for Compilers � ��

$ �s ��T �s f�i� ��M�g	 �s � � � �s �T �s f�in ��Mng		

with

�i	 $ in canonical form �OMCF	 with k " �� or rather its equivalent for
sort S

�ii	 the rightmost part in canonical form �OSCFsimple	� but with merge
structure components Mi in canonical form �OMCFgen	 �" �m rather
than �OMCF	

�iii	 p � q " F for any p �s �� � � �s s	 in $ and q �m ��s � �ij 	 �m � � �	 in
Mj �

Figure ��
 �OSCFvar	 Canonical form for open store structures with � and � and
with variables of sort S� but without variables of sort A�

[]

{ addr(x) [] }

[]

Pmeta()

P1
S

{ addr(

{ addr()

)

}p

}y

)(

Figure ��� S��P�
 Simplest Pim representation of programs P�� P�� and P��

�� � Bergstra� Dinesh� Field� Heering

�� int x�y�z�

int �ptr�

const int �P� ��

f ptr � �z�

x � ���

y � ���

if ����P		

x � ���

z � y � x�

g

�� int x�y�z�

int �ptr�

const int �P� ��

f ptr � �z�

if ����P		

x � ���

else

x � ���

if ��P	

y � ���

else

y � ���

z � y � x�

g
P	 P

�� int x�y�z�

int �ptr�

const int �P� ��

f ptr � �z�

if ��P	 f
x �
��

y �
��

g
else f
x �

�

y �
��

g
z � y � x�

g

�� int x�y�z�

int �ptr�

const int �P� �Q� ��

f ptr � �x�

if ��P	 f
��ptr	 � ���

y � ���

g
ptr � �y�

z � ���

if ����P		 f
��ptr	 � ���

x � ���

ptr � �z�

g
if ��P jj �Q	
ptr � �z�

��ptr	 � y � x�

g
P� P�

Figure ��� Semantically equivalent �C programs�

Towards a Complete Transformational Toolkit for Compilers � ��

addr(] })z

[]12

[]13P

] })

6

{ addr() }

{ addr([)ptr

x

{ addr()z [

{ addr() }[]y

()

, 0meta())intEq(

intSum(

17

, !

SP

Figure ��� S�P�
 Common representation for P	� P
� P�� and P��

������ which was used to perform Knuth�Bendix completion and to aid in inductive
veri�cation of equations incorporated in Pim

�
t � While TIP was able to inductively

verify many Pim
�
t equations� it was unable to successfully use �S�	 as a lemma

during semi�automatic proofs �other theorem provers available to us had similar
limitations	� and the full mechanical veri�cation succeeded only with considerable
di�culty �Naidich and Dinesh ������ Here� we indicate progress in converting part
of Pim�

t into a term rewriting system� We �rst consider the completion of Pim�
t �

then treat the additional equations of Pim�
t � and �nally those of Pim�

t �
Knuth�Bendix completion of Pim

�
t � The rewriting system obtained by

interpreting the equations of Pim�
t as left�to�right rewriting rules and with AC�

declarations for � and 	 is con�uent and terminating with the addition of the
rule

�a� � a�	 �m �m � �m� �MA�	

which originates from a critical pair generated from the rules �S�	 and �S�	� Pim�
t

is ground con�uent even without this rule� Left�associative orientation of �L
	 �i�e��
left�to�right orientation of the equation	 is signi�cant forPim�

t � as a right�associative
orientation of �L
	 in conjunction with rule �M�	 causes the completion procedure
to add an in�nite number of rules

�m� �m �m� �m � � � �mi �m �v�	 � � �		� � v �i � �	� ���	

Knuth�Bendix completion of Pim�
t � When �M��	 is substituted for �M�	�

the orientation of �L
	 becomes irrelevant� since the context in which the pattern

�� � Bergstra� Dinesh� Field� Heering

m �m �v� could be matched is now immaterial� Using a left�associative orientation
of �L
	 for the merge case� the completion procedure adds only the rule �MA�	�
We note that this is a special case of �L�	 below�

Adding �S�	 is� however� a di�cult problem since the equation is �condition�
ally	 commutative� We therefore proceed by �rst splitting �S�	 into �S�	 and �S�	
�see p�
�	� �S�	 is di�cult to orient� but �S�	 has an obvious orientation and is
in acceptable form for mechanical analyzers� After attempting TIP�s completion
procedure on the system with �S�	 and �M��	� we see immediately that the criti�
cal pairs that result from �S�	 and �S�	� using �S�	� give rise to a special case of
�L�	 for 	 " m� Unfortunately� both �S�	 and �L�	 are left�nonlinear rules �when
oriented left�to�right	� Obtaining a left�linear completion is often preferable to a
left�nonlinear completion� since

�a left�linear system admits an e�cient implementation� without the need for
equality tests during matching�

�when a left�linear system is embedded in the untyped lambda calculus �as is
necessary to extend Pim to arbitrary source programs	� it is straightforward to
show that the combined system remains con�uent �M&uller ������

We therefore consider left�nonlinear equations separately� and proceed for the mo�
ment without �S�	 and �L�	�

Adding the boolean equations �B�	� �B��	 and �B��	� along with the oriented
versions of the equations �L�	 and �L�	 results in a con�uent and terminating
system� �L�	 requires us to use multiset ordering� due to the permutability of the
guards� To also accommodate �L
	� we use the generalized recursive path ordering
with status� which in TIP is called the �multiset ordering based on the lexicographic
ordering��

Adding �M�	 or �M�	 requires that �L
	 be oriented in the right�associative di�
rection� This is caused by the generation of the rule �MA�	� which is similar to
�M�	 �see the completion of Pim�

t above	 but with a pattern � � in the context ��
appearing on the left� Also� adding �M�	 and �M�	 generates the rules �MA�	 to
�MA�	� �MA�	 and �MA�	 are due to the right�associative ordering of �L
	� The
resulting system Pim

�

t is shown in Figure ��� Pim�t is con�uent� terminating� and
left�linear�
Enhancing the rewriting systems� Further enrichments to Pim

�

t seem to
require left�nonlinear rules in order to achieve con�uence� Adding �L�	� we require
the additional rules �MB�	��MB�	 shown in Fig� �
� If we then add �S�	� we need
the rule �SB�	� also shown in Fig� �
� Adding all the rules in Fig� �
 to those of
Pim

�

t � we get the system Pim
��

t �
If we enrich Pim

�

t with the equations �B��	� �B��	 and �B��	� oriented left�to�
right� the completion procedure of the LP system �Garland and Guttag ����� adds
the absorption law

p 	 �p � p�	 � p� �BA�	

Finally� both Pim
�

t and Pim
��

t produce normal forms modulo associativity and
commutativity of � and 	� i�e�� with respect to �B�	� �B�	� �B��	 and �B�
	� Note
that Pim

�

t does not require rewriting modulo associativity and commutativity�
since it can be enhanced with the symmetric variants of the rules �B
	��B�	 and
the two associativity rules for � and 	 �see Table �	�

Towards a Complete Transformational Toolkit for Compilers � ��

Systems Properties

Pim
�
t � equations oriented left�to�right ground�con�uent�

! �B�	� �B��	� g�B
	��B�	 terminating� left�linear

Pim
�
t � equations oriented left�to�right con�uent�

! �MA�	� �B�	� �B��	� g�B
	��B�	 terminating� left�linear

Pim
�
t � equations oriented left�to�right con�uent ��� 	
 modulo AC	�

! �MA�	 terminating� left�linear

Pim
�
t � �S�	� equations oriented left�to�right ground�con�uent�

! �B�	� �B��	� g�B
	��B�	 terminating� left�linear

Pim
�
t � �S�	� equations oriented left�to�right con�uent�

! �MA�	� �B�	� �B��	� g�B
	��B�	 terminating� left�linear

Pim
�
t � �S�	� equations oriented left�to�right con�uent ��� 	
 modulo AC	�

! �MA�	 terminating� left�linear

Pim
�

t con�uent�

! �B�	� �B��	� g�B
	��B�	 terminating� left�linear
Pim

�

t con�uent ��� 	
 modulo AC	�
terminating� left�linear

Pim
�

t con�uent ��� 	
 modulo AC	�
! �B��	� �B��	� �B��	� �BA�	 terminating� left�nonlinear

Pim
��

t con�uent ��� 	
 modulo AC	
terminating� left�nonlinear

Table �
 Properties of some of the Pimt systems� g�B
	��B�	 indicates symmetric
versions of the rules �B
	� �B�	� �B�	 and �B�	�

�� � Bergstra� Dinesh� Field� Heering

�� �� l � l �L�	
l �� �� � l �L�	

�l� �� l�	 �� l� � l� �� �l� �� l�	 �L
	
p �� �� � �� �L�	
T �� l � l �L�	
F �� l � �� �L�	

p� �� �p� �� l	 � �p� � p�	 �� l �L�	

fa� �� mg � a� � �a� � a�	 �m m �S�	
fa �� �mg � �s �S�	

�s � a � �m �S
	
�s� �s s�	 � a � �s� � a	 �m �s� � a	 �S�	
p �s fa �� mg � fa �� �p �m m	g �S�	
�p �s s	 � a � p �m �s � a	 �S��	

��i � �i	 � T �i � �	 �A�	
��i � �j	 � F �i �" j	 �A�	

m �m �v� � �v� �M��	
�v�� � v �M
	
�m� � �M�	
�m�� � � � �m m �M�	

��p �m � �	 �m m	� � m� �M�	

�T � F �B�	
�F � T �B�	

T � p � p �B
	
F � p � F �B�	
T 	 p � T �B�	
F 	 p � p �B�	
��p � p �B�	

��p� � p�	 � �p� 	 �p� �B��	
��p� 	 p�	 � �p� � �p� �B��	

m� �m ��v� �m m�	 � �v� �m m� �MA�	
�� � �m m	� � m� �MA�	
�p �m � �	� � �MA
	

� � �m �p �m � �	 � � � �MA�	
� � �m ��p �m � �	 �m m	 � � � �m m �MA�	

Figure ��� Rewriting rules of Pim�t �

Towards a Complete Transformational Toolkit for Compilers � �	

p �� �l� �� l�	 � �p �� l�	 �� �p �� l�	 �L�	
fa �� m�g �s fa �� m�g � fa �� �m� �m m�	g �S�	

�p �m m	 �m �p �m �v�	 � p �m �v� �MB�	
��p � p�	 �m m	 �m �p �m �v�	 � p �m �v� �MB�	

�p �m m�	 �m ��p �m �v�	 �m m	 � �p �m �v�	 �m m �MB
	
��p � p�	 �m m�	 �m ��p �m �v�	 �m m	 � �p �m �v�	 �m m �MB�	

fa �� m�g �s �fa �� m�g �s s	 � fa �� �m� �m m�	g �s s �SB�	

Figure �
� Pim
��

t " Pim
�

t ! rules above�

Problematic equations� Attempts to obtain further enriched con�uent and
terminating rewriting systems have been unsuccessful thus far� Adding both �B��	
and �B��	 results in a non�terminating system� Even adding one of them causes
problems for the TIP system� The left�nonlinear rules resulting from �B��	� �B��	�
�B��	 and �B��	 cause problems with TIP�s treatment of AC declarations� Unlike
TIP� LP was able to add �B��	� �B��	 and �B��	 to Pim�t � �A�	� �A�	� �A�	� �S�	�
�S��	 are good candidates to be put in the set of �modulo� equations but we are
not aware of any available Knuth�Bendix completion system that allows it� �S��	
and the general form of �S�	 cannot be ordered properly and thus lead to non�
terminating term rewriting systems� �L�	� �L��	 and �L��	 lead to left�nonlinear
rules� which again cause problems for completion modulo AC� Despite these di��
culties� we conjecture that larger con�uent subsystems of Pim�

t exist� particularly
if we consider con�uence modulo associativity� idempotence� identity� and com�
mutativity� Finding such systems is left as future work� One approach might be
to incorporate Hsiang and Dershowitz�s ����
� con�uent ��complete speci�cation
of the booleans� since the well�known disjunctive and conjunctive boolean normal
forms are not produced by any rewriting system� We have not been more successful
here� again due to the interference of the left�nonlinear rules in these booleans with
the other left�nonlinear rules of PIM�

��� Extensions and Future Work

Although we have treated the algebraic core of Pim quite extensively in this paper�
more work remains to be done to study the higher�order versions of Pim touched on
in Section �� In particular� we would like to develop this work along the following
lines

Provide an operational semantics for higher�order Pim� This would proceed by
de�ning a reduction strategy for Pimt ! the � rule� then proving a standardization
theorem� We expect such a result to be routine� given similar results by other
authors �Felleisen and Hieb ����� Odersky� Rabin� and Hudak ���
�� the lack of
overlap in the structure of pure lambda terms and Pimt terms� and the fact that an
oriented version of Pim�

t is sequential �Boudol ������ Con�uence follows trivially
from the result of M&uller �������

�� � Bergstra� Dinesh� Field� Heering

Study the e
ect of nontermination on Pim
�
t � It is not di�cult to show that in

the presence of nontermination� the additional equations introduced by Pim
�
t are

unsound in a technical sense� since they may cause a nonterminating term to be
equated with a terminating one� However� we expect to be able to show that
equations between any two terms are valid provided both of their standard reduc�
tions terminate� Such a result would provide a weak form of soundness consistent
with the way most compiler transformations are implemented in practice� Alter�
natively� one could attempt to completely reconcile formal semantics and practice
by reformulating certain equations of Pim�

t in conditional form� predicating their
consequents on proving nontermination for appropriate subterms�

Consider typed higher�order variants of Pim� Due to its simplicity and compu�
tational power� the untyped lambda calculus is attractive for encoding a variety of
higher�order program constructs� However� the absence of typing makes it more
di�cult to de�ne strong inference rules for commonly occurring higher�order con�
structs� It would therefore be useful to investigate typed higher�order versions of
Pim� Pim�s stores pose a challenge to de�ning appropriate type systems� since
�like real machine memory	 they may hold a variety of values of di�erent types�
including� e�g�� functional values�

Study induction principles� While we believe that the induction rules de�ned in
Field ������ and Field� Ramalingam� and Tip ������ are a good starting point for
reasoning about loops and recursion� other forms of induction may also be useful�
Rules for which inductive premises can be established mechanically� e�g�� by �xpoint
iteration� are especially attractive�

Obtain completeness results for restricted higher�order systems� Given the lack of
success in �nding an ��complete axiomatization for the pure untyped lambda calcu�
lus �Plotkin ������ it appears unlikely that a completeness result for a logic axioma�
tizing the operational properties of Pimt ! the � rule could be obtained� However�
one might nonetheless attempt to formulate completeness results for restricted sys�
tems� e�g�� for typed subsystems� or systems that eschew lambda terms in favor of
more restricted forms of recursion or iteration�

In addition to further study of the properties of higher�order variants of Pim� we
would also like to extend our results in the following directions

�Using the canonical forms discussed in this paper to develop a decision procedure
for Pimt� Obtaining a canonical form for unrestricted open store structures would
be a useful complement to this�

�Obtaining completeness results for variants of Pimt� including versions with no
restrictions on the formation of address or predicate expressions� variants incor�
porating the merge distribution rules� as used for addresses in �Field ����� and
generalized in �Field� Ramalingam� and Tip ������ and extensions with non�trivial
value operations�

�Constructing con�uent and'or terminating rewriting subsystems ofPim�
t stronger

than Pim
��

t �

ACKNOWLEDGMENTS

We are grateful to G� Ramalingam for his assistance in implementing various ver�
sions of Pim� as well as for valuable technical suggestions� We also wish to thank

Towards a Complete Transformational Toolkit for Compilers � �

the referees and associate editor for suggestions that helped to improve the presen�
tation of the paper� Without the help of Dimitri Naidich the mechanical veri�cation
of Pim�

t would not have succeeded�

References
Ammarguellat� Z� �		�� A control��ow normalization algorithm and its complexity� IEEE

Transactions on Software Engineering ��� � �March�� ��������

Ballance� R� A�� MacCabe� A� B�� and Ottenstein� K� J� �		�� The program dependence
Web� A representation supporting control�� data�� and demand�driven interpretation of
imperative languages� In Proc� ACM SIGPLAN Conference on Programming Language
Design and Implementation� White Plains� NY� pp� ��������

Barendregt� H�� van Eekelen� M��Glauert� J�� Kennaway� J�� Plasmeijer� M�� and Sleep�
M� �	
�� Term graph rewriting� In Proc� PARLE Conference� Vol� II� Parallel Languages�
Volume ��	 of Lecture Notes in Computer Science� pp� ������
� Springer�Verlag�

Bergstra� J� A� and Heering� J� �		�� Which data types have ��complete initial algebra
speci�cations� Theoretical Computer Science ���� ��	���
�

Bergstra� J� A� and Tucker� J� V� �		�� The data type variety of stack algebras� Annals of
Pure and Applied Logic 	
� � �May�� ������

Berlin� A� and Weise� D� �		�� Compiling scienti�c code using partial evaluation� IEEE
Computer �
� �� �December�� ������

Boehm� H��J� �	
�� Side e�ects and aliasing can have simple axiomatic descriptions� ACM
Trans� on Programming Languages and Systems 	� � �October�� ��������

Boudol� G� �	
�� Computational semantics of term rewriting systems� In M� Nivat and J� C�

Reynolds �Eds��� Algebraic Methods in Semantics� Chapter �� pp� ��	����� Cambridge
University Press�

Cartwright� R� and Felleisen� M� �	
	� The semantics of program dependence� In Proc�
ACM SIGPLAN Conference on Programming Language Design and Implementation� Port�
land� OR� pp� ������

Chambers� C� and Ungar� C� �	
	� Customization� Optimizing compiler technology for Self� a
dynamically�typed object�oriented programming language� In Proc� ACM SIGPLAN Conf�
on Programming Language Design and Implementation� pp� ��������

Click� C� �		�� Global code motion� global value numbering� In Proc� ACM SIGPLAN Conf�
on Programming Language Design and Implementation� La Jolla� CA� pp� �������� Pub�
lished as ACM SIGPLAN Notices ������

Cytron� R�� Ferrante� J�� Rosen� B� K�� Wegman� M� N�� and Zadeck� F� K� �		�� E��
ciently computing static single assignment form and the control dependence graph� ACM
Trans� on Programming Languages and Systems �
� � �October�� �����	��

Dershowitz� N� and Jouannaud� J��P� �		�� Rewrite systems� In J� van Leeuwen �Ed���
Handbook of Theoretical Computer Science� Vol� B� Formal Models and Semantics� pp�
�������� Elsevier�The MIT Press�

Ershov� A� P� �	
�� Mixed computation� Potential applications and problems for study� The�
oretical Computer Science ��� ������

Ershov� A� P� and Ostrovski� B� N� �	
�� Controlled mixed computation and its appplication
to systematic development of language�oriented parsers� In L� G� L� T� Meertens �Ed���
Program Speci�cation and Transformation� pp� ����
� North�Holland�

Felleisen� M� and Friedman� D� P� �	
	� A syntactic theory of sequential state� Theoretical
Computer Science
�� �����
��

Felleisen� M� and Hieb� R� �		�� The revised report on the syntactic theories of sequential
control and state� Theoretical Computer Science ��
� ��������

Ferrante� J�� Ottenstein� K� J�� and Warren� J� D� �	
�� The program dependence graph
and its use in optimization� ACM Trans� on Programming Languages and Systems �� �
�July�� ��	���	�

�� � Bergstra� Dinesh� Field� Heering

Field� J� �		�� A simple rewriting semantics for realistic imperative programs and its ap�

plication to program analysis� In Proc� ACM SIGPLAN Workshop on Partial Evaluation
and Semantics�Based Program Manipulation� San Francisco� pp� 	
����� Published as Yale
University Technical Report YALEU�DCS�RR�	�	�

Field� J�� Ramalingam� G�� and Tip� F� �		�� Parametric program slicing� In Proc� Twenty�
second ACM Symp� on Principles of Programming Languages� San Francisco� pp� ��	��	��

Fraus� U� �		�� Inductive theorem proving for algebraic speci�cations TIP system user�s
manual� Technical Report MIP 	���� University of Passau� The TIP system is available at
URL� ftp���forwiss�uni�passau�de�pub�local�tip�

Garland� S� and Guttag� J� �		�� A Guide to LP� The Larch Prover� Technical Report
�
�December�� Systems Research Center� DEC�

Heering� J� �	
�� Variaties op het thema !stack�� Technical Report CS�N
���� CWI� Amster�
dam� �In Dutch��

Heering� J� �	
�� Partial evaluation and ��completeness of algebraic speci�cations� Theoretical
Computer Science �
� ��	�����

Hoare� C�� Hayes� I�� Jifeng� H�� Morgan� C�� Roscoe� A�� Sanders� J�� Sorensen� I��
Spivey� J�� and Sufrin� B� �	
�� Laws of programming�Communications of the ACM
��

�August�� �����
�� Corrigenda� ibid�� p� ����

Horwitz� S�� Prins� J�� and Reps� T� �	

� On the adequacy of program dependence graphs
for representing programs� In Proc� Fifteenth ACM Symp� on Principles of Programming
Languages� San Diego� CA� pp� ��������

Hsiang� J� and Dershowitz� N� �	
�� Rewrite methods for clausal and non�clausal theorem
proving� In J� Diaz �Ed��� Automata� Languages and Programming ���th ICALP�� Volume
��� of Lecture Notes in Computer Science� pp� �������� Springer�Verlag�

Jones� N� D�� Gomard� C� K�� and Sestoft� P� �		�� Partial Evaluation and Automatic
Program Generation� Prentice�Hall�

Kahn� G� �	
�� Natural semantics� In Fourth Annual Symp� on Theoretical Aspects of Com�
puter Science� Volume ��� of Lecture Notes in Computer Science� pp� ����	� Springer�
Verlag�

Kennaway� J� R�� Klop� J� W�� Sleep� M� R�� and de Vries� F� J� �		�� On the adequacy
of graph rewriting for simulating term rewriting� ACM Trans� on Programming Languages
and Systems �
� �� �	������

Klop� J� W� �		�� Term rewriting systems� In S� Abramsky� D� Gabbay� and T� Maibaum

�Eds��� Handbook of Logic in Computer Science� Vol� II� pp� ������ Oxford University
Press�

Lazrek� A�� Lescanne� P�� and Thiel� J��J� �		�� Tools for proving inductive equalities�
relative completeness� and ��completeness� Information and Computation ��� ������

Mason� I� A� and Talcott� C� �	
	� Axiomatizing operational equivalence in the presence of
side e�ects� In Proc� Fourth IEEE Symp� on Logic in Computer Science� Cambridge� MA�
pp� �
���	��

Meinke� K� and Tucker� J� V� �		�� Universal algebra� In S� Abramsky� D� M� Gabbay� and
T� S� E� Maibaum �Eds��� Handbook of Logic in Computer Science� Vol� I� pp� �
	�����
Oxford University Press�

Meseguer� J� and Goguen� J� A� �	
�� Initiality� induction and computability� In M� Nivat

and J� C� Reynolds �Eds��� Algebraic Methods in Semantics� pp� ��	����� Cambridge
University Press�

M�uller� F� �		�� Con�uence of the lambda calculus with left�linear algebraic rewriting� In�
formation Processing Letters ��� �	���		� Amended proof available from Inge Bethke
�inge"cwi�nl��

Naidich� D� and Dinesh� T� B� �		�� An automated induction method for veri�cation of Pim
a transformational toolkit for compilers� Technical Report CS�R	���� CWI� Amsterdam�
The Netherlands�

Nirkhe� V� and Pugh� W� �		�� Partial evaluation of high�level imperative programming
languages with applications in hard real�time systems� In Proc� Nineteenth ACM Symp� on
Principles of Programming Languages� Albuquerque� NM� pp� ��	��
��

Towards a Complete Transformational Toolkit for Compilers � ��

Odersky� M�� Rabin� D�� and Hudak� P� �		�� Call by name� assignment� and the lambda

calculus� In Proc� Twentieth ACM Symp� on Principles of Programming Languages�
Charleston� SC� pp� ������

Peyton Jones� S� L� �	
�� The Implementation of Functional Programming Languages� Pren�
tice Hall International� Englewood Cli�s� NJ�

Plotkin� G� D� �	��� The ��calculus is ��incomplete� J� Symbolic Logic
�� � �June�� ��������

Ramalingam� G� and Reps� T� �	
	� Semantics of program representation graphs� Technical
Report 	�� �December�� Computer Sciences Department� University of Wisconsin� Madison�
���� W� Dayton St�� Madison WI ������

Selke� R� P� �	
	a� A rewriting semantics for program dependence graphs� In Proc� Sixteenth
ACM Symp� on Principles of Programming Languages� Austin� TX� pp� ������

Selke� R� P� �	
	b� Transforming program dependence graphs� Technical Report TR	�����
�July�� Department of Computer Science� Rice University� P�O� Box �
	�� Houston� TX
�������
	��

Swarup� V�� Reddy� U� S�� and Ireland� E� �		�� Assignments for applicative languages� In
Proc� Fifth ACM Conf� on Functional Programming Languages and Computer Architec�
ture� Volume ��� of Lecture Notes in Computer Science� pp� �	������ Springer�Verlag�

van Deursen� A�� Heering� J�� and Klint� P� �Eds�� �		�� Language Prototyping� An Alge�
braic Speci�cation Approach� AMAST Series in Computing� World Scienti�c�

Wand� M� and Wang� Z��Y� �		�� Conditional lambda�theories and the veri�cation of static
properties of programs� In Proc� Fifth IEEE Symp� on Logic in Computer Science� Philadel�
phia� PA�

Weise� D�� Crew� R� F�� Ernst� M�� and Steensgaard� B� �		�� Value dependence graphs�
Representation without taxation� In Proc� Twenty�First ACM Symp� on Principles of Pro�
gramming Languages� Portland� OR� pp� �	������

Wirsing� M� �		�� Algebraic speci�cation� In J� van Leeuwen �Ed��� Handbook of Theoretical
Computer Science� Vol� B� Formal Models and Semantics� pp� �����

� Elsevier�The MIT
Press�

Yang� W�� Horwitz� S�� and Reps� T� �	
	� Detecting program components with equivalent
behaviors� Technical Report
�� �April�� University of Wiconsin�Madison�

Yang� W�� Horwitz� S�� and Reps� T� �		�� A program integration algorithm that accom�
modates semantics�preserving transformations� In Proc� Fourth ACM SIGSOFT Symp� on
Software Development Environments� Irvine� CA� pp� ��������

A� �C�To�Pim Translation

A� �C Programs to Pim Terms

The syntax of �C is given in Fig� ��� A formal description of the translation of �C
programs to Pim terms is given in Figures �� and ��� The translation is written in
the style of Natural Semantics �Kahn ������ and adheres very closely to standard
C semantics� e�g�� integers are used to represent boolean values�

The translation uses several di�erent sequent forms corresponding to the principal

�� � Bergstra� Dinesh� Field� Heering

Pgm

" f StmtList g

StmtList

" Stmt
j StmtList Stmt

Stmt

" Exp �

j if � Exp 	 Stmt
j if � Exp 	 Stmt else Stmt
j while � Exp 	 Stmt
j f StmtList g

Exp

" Expp
j Expi

Expp

" Id
j IntLiteral
j �Id

Expi

" � Exp
j � LValue
j LValue � Exp
j LValue �� Exp
j Exp � Exp
j � Exp
j Exp �� Exp

LValue

" LValuep
j LValuei

LValuep

" Id

LValuei

" � Exp

Figure ��� Syntax of �C�

Towards a Complete Transformational Toolkit for Compilers � ��

�Pgm��
�s � Stmt �Stmt u

� Stmt �Pgm u

�Stmt��
s � Stmt �Stmt u

s � f Stmt g �Stmt u

�Stmt��

s � f StmtList g �Stmt u�

s � u � Stmt �Stmt u�

s � f StmtList Stmt g �Stmt u � u�

�Stmt��
s � Exp �Exp hv� ui

s � Exp� �Stmt u

�Stmt��

s � Exp �Exp hvE � uEi�

s � uE � Stmt �Stmt uS

s � if � Exp � Stmt �Stmt uE � �v�
E

� uS�

v�
E
� ItoB�vE�

�Stmt��

s � Exp �Exp hvE � uEi�

s� � Stmt� �Stmt uS� �

s� � Stmt� �Stmt uS�

s � if � Exp � Stmt� else Stmt� �Stmt

uE � �v�
E

� uS�� � ��v
�

E
� uS��

s� � s � uE
v�
E
� ItoB�vE�

�Stmt��

xS � Exp �Exp hvE � uEi�

xS � uE � Stmt �Stmt uS

s � while � Exp� Stmt �Stmt

��Y ��f��xS � �uE �s �vE �s �uS �s �f �xS �s uE �s uS������� s�

�Exp��
s � Expp �Expp

v

s � Expp �Exp hv� �si

�Exp��
s � Expi �Expi

hv� ui

s � Expi �Exp hv� ui

�Expp�� s � Id �Expp
s " addr�Id� #

�Expp�� s � IntLiteral �Expp
IntLiteral

�Expp�� s � �Id �Expp
meta�Id�

�Expi��
s � Exp �Exp hv� ui

s � � Exp �Expi
h�s � u� " v #� ui

Figure ��� Translation rules for �C� Part I�

�� � Bergstra� Dinesh� Field� Heering

�Expi��
s � LValue �LValue hv� ui

s � � LValue �Expi
hv� ui

�Expi��

s � Exp �Expi
hvE � uEi�

s � uE � LValue �LValue hvL� uLi

s � LValue � Exp �Expi

hvE � uE � uL � fvL �� �vE �gi

�Expi��

s � Exp �Expi
hvE � uEi�

s � uE � LValue �LValue hvL� uLi

s � LValue �� Exp �Expi

hv�� u� � fvL �� �v��gi

u� � uE � uL
v� � intDi���s � u�� " vL # � vE�

�Expi��

s � Exp� �Expi
hv�� u�i�

s � u� � Exp� �Expi
hv�� u�i

s � Exp� 	 Exp� �Expi

hintSum�v� � v��� u� � u�i

�Expi��
s � Exp �Exp hv� ui

s �
 Exp �Expi
hBtoI��ItoB�v��� ui

�Expi��

s � Exp� �Expi
hv�� u�i�

s � u� � Exp� �Expi
hv�� u�i

s � Exp� �� Exp� �Expi

hBtoI�v�� 	 v���� u� � ��v
�
� � u��i

v�� � ItoB�v��
v�� � ItoB�v��

�LValue��
s � LValuep �LValuep a

s � LValuep �LValue ha� �si

�LValue��
s � LValuei �LValuei ha� ui

s � LValuei �LValue ha� ui

�LValuep�� s � Id �LValuep addr�Id�

�LValuei��
s � Exp �Expi

ha� ui

s � � Exp �LValuei ha� ui

where�

ItoB�v�
 ��intEq�v � ���
BtoI�v�
 ���� � �v � �����#

Figure ��� Translation rules for �C� Part II�

Towards a Complete Transformational Toolkit for Compilers � ��

�C syntactic components� These sequent forms are as follows

s � c �Pgm u

s � c �Stmt u

s � c �Exp hv� ui
s � c �Expi hv� ui
s � c �Expp v

s � c �LValue ha� ui
s � c �LValuei ha� ui
s � c �LValuep a

Each of the sequents above takes a �C construct c and an incoming Pim store s�
and yields a Pim term or a pair�� of Pim terms� depending on the nature of the
�C construct being translated� Pure expressions �those having no side�e�ects	 and
impure expressions are distinguished in the translation process� subscripts p and i

are used to denote the two types� Details of the sequent types are as follows

�Sequents with #�Stmt� are used to translate statements� Sequents with #�Pgm� are
used to translate entire programs� Both yield a Pim store term u corresponding to
the cumulative e�ect of updates to the store made by the statement or program�

�Sequents with #�Expp� are used to translate pure expressions computing ordinary
values� Sequents with #�LValuep� are used to translate pure expressions computing
L�values �addresses	� An instance of the former yields a Pim base value term v

corresponding to the expression�s value� an instance of the latter yields a Pim

address term a corresponding to the expression�s L�value�

�Sequents with #�Expi� are used to translate impure expressions computing ordi�
nary values� Sequents with #�LValuei� are used to translate impure expressions
computing L�values� An instance of the former yields a pair hv� ui consisting of
the Pim base value term v corresponding to the expression�s value and the Pim
store term u corresponding to the expression�s side e�ects� An instance of the
latter yields a pair ha� ui consisting of the Pim address term a corresponding to
the expression�s L�value and the store term u corresponding to the expression�s
side e�ects�

�Sequents with #�Exp� or #�LValue� are used to translate arbitrary ordinary or
L�valued expressions� They yield pairs of the form hv� ui or ha� ui� respec�
tively� Rules using these sequents simply choose the appropriate pure or impure
sequents� depending on the type of construct being translated�

As an example of how the translation process works� consider rule �Eu�	 in
Fig� ��� This rule may be read as follows
 Given �C expression Exp� � Exp� and
incoming Pim store s� �rst translate Exp� to the pair hv�� u�i using initial store
s� Term v� represents the value of Exp�� and term u� represents the side e�ects
occurring in Exp�� Next� translate Exp� in an initial store given by the composition
of store s and store u�� yielding pair hv�� u�i� This means that any side e�ect oc�
curring in Exp� is accounted for in the store used to translate Exp�� thus e�ectively

��The pair constructor h�� �i is an auxiliary symbol used only during the translation process� it is
not itself a function symbol of Pim�

�� � Bergstra� Dinesh� Field� Heering

encoding a left�to�right order of evaluation� Finally� the Pim term corresponding to
the entire expression Exp� � Exp� is given by the pair hintSum�v� � v�	� u� � u�i�
The term intSum�v� � v�	 corresponds to the sum of v� and v�� and the term u� � u�
is the Pim store corresponding to the cumulative side e�ects occurring in both Exp�
and Exp��

A� Pim Terms to Pim Graphs

The translation given in Figures �� and �� takes a �C program and produces a
Pim term� To get the Pim graphs used in the examples in the main body of the
paper� we simply adopt the convention that any term bound to a variable used in
a translation rule is shared if that variable appears more than once in the rule� For
example� in the case of rule �Eu�	� the incoming store s appears twice in the rule�s
antecedent� If the term bound to s is used in the translation of both Exp� and
Exp� �which would happen� e�g�� if both Exp� and Exp� were identi�ers� causing
rule �Ep�	 to be applicable to each	� then the term bound to s may be shared�

In almost all cases where multiple instances of the same variable appear� the
variable represents a Pim store� This should not be surprising� since the store must
be �threaded� by the translation rules to every expression that could possibly use
it�note� e�g�� the extensive sharing of substores that occurs in the Pim graph SP�
of Fig� �� However� multiple instances of other kinds of variables also appear in the
rules� e�g�� in rules �S�	 and �Eu�	�

Although shared subgraphs arise most naturally from the structure of the rules
used in the translation� is often also useful to share identical subgraphs gener�
ated �serendipitously� during the translation of unrelated parts of the �C program�
Such sharing is often referred to as value numbering in the program optimization
literature� and hash consing in the functional and symbolic computation literature�
However� unlike many IRs used in program optimization� it is always semantically
valid to share identical Pim subgraphs� regardless of whether they represent state�
ments or expressions� and regardless of the context in which they are used�

B� ��Completeness of Pim"
t
Proof details

In the following we show that the canonical forms given in Section � can actu�
ally be reached by equational reasoning from Pim

�
t � In two cases �boolean terms

with � and unrestricted open store structures	 the proof is not based on canonical
forms� but proceeds by induction on the number of di�erent address variables in an
equation �its �length�	�

Boolean terms with �

It is su�cient to show that the tautologies are provably equal to T� We proceed by
induction on the number of �di�erent	 address variablesN � The caseN " � reduces
to that of tautologies not involving � by �A���	� Assuming the statement holds for
tautologies with � N address variables� let t be a tautology with address variables

Towards a Complete Transformational Toolkit for Compilers � �	

a�� � � � � aN��� By bringing it in disjunctive normal form and applying �B��	 and
�A���	 we obtain

�aN�� � ai	 � t " �aN�� � ai	 � t
��

where t� is t with ai substituted for aN�� everywhere �� � i � N	� Hence� since t�

is a special case of t with N variables� it is provably equal to T by assumption� and

�aN�� � ai	 � t " �aN�� � ai	 �� � i � N	 ���	

is provable� Without loss of generality we may assume the address constants in t

to be ��� � � � � �m �m � �	� As in the previous case�

�aN�� � �i	 � t " �aN�� � �i	 �� � i � m	 ��
	

is provable� Let

% "
m�
i��

�aN�� � �i	 	
N�
i��

�aN�� � ai	� ���	

By �B��	� ���	� and ��
	

% � t " %� ���	

Next� consider �% � t� By bringing t in disjunctive normal form and using

�% "

m�
i��

��aN�� � �i	 �
N�
i��

��aN�� � ai	 ���	

we obtain

�% �t " �% � t�� ���	

where t� does not contain aN��� Suppose
�t�	 " F for some valuation
 of
a�� � � � � aN � Since the number of di�erent address constants is in�nite� we can
extend
 to a valuation
� of a�� � � � � aN�� such that
���%	 " T� Since
��t	 " T
by assumption� this contradicts ���	� Hence� t� is a tautology and since it contains
only N address variables it is provably equal to T by assumption� Hence

�% �t " �% ���	

is provable� By combining ���	 and ���	 we obtain

t " �% 	 �%	 � t " �% � t	 	 ��% � t	 " % 	 �% " T�

This completes the proof�

Open merge structures with � but without � or �

These can be brought in canonical form �OMCF	 �Fig� �
	 as follows

��	 Move guards inward by �L�	� merge multiple guards by �L�	� and add missing
guards by �L�	� The resulting merge structure has elements P �m�V � and P �mm

with V a variable or constant of sort V and m a �single	 variable of sort M�

��	 Move elements P �m �V � to the left by ��	 followed by as many applications of
��	 as needed� Further applications of ��	� ��	 and �L��	 and normalization of the
resulting mutually exclusive guards P�� � � � � Pk �k � �	 yields a merge structure
satisfying conditions �i	 and �ii	 of �OMCF	� Its tail consists of elements P �mm

as before�

�� � Bergstra� Dinesh� Field� Heering

�
	 We show that the tail can be brought in canonical form� For a single element
P �m m with m a single variable of sort M this is immediate� Assuming it is
true for N elements� a merge structure �P �m m	 �m � � � with N ! � elements
can be brought in the form

�P �m m	 �m �Q� �m M�	 �m � � � �m �Qn �m Mn	�

where m is a single variable of sortM as before� and the tail �Q� �mM�	 �m � � �
is the canonical form of the last N elements� In particular� Qi � Qj " F and
Mi �" Mj �i �" j	� There are two cases

�a	 m does not occur in any Mi� Let P� " P ��Q�� Q

�
� " Q��P � Q��

� " Q���P �
We have

�P �m m	 �m �Q� �m M�	 "

" ��P� 	Q
�

�	 �m m	 �m ��Q�

� 	Q
��

�	 �m M�	

L���
" �P� �m m	 �m �Q�

� �m m	 �m �Q�

� �m M�	 �m �Q��

� �m M�	

L
�
" �P� �m m	 �m �Q�

� �m �m �m M�		 �m �Q��
� �m M�	�

Since P�� Q
�
�� Q

��
� are mutually exclusive� P� �mm can be moved to the right of

Q��
� �m M� by ��	� Next� repeat the above step for

�P� �m m	 �m �Q� �m M�	

and so on until

�Pn�� �m m	 �m �Qn �m Mn	�

After normalizing the guards and dropping any element whose guard is F� the
result is in canonical form�
�b	 m occurs in at least one Mi� First� use �L�	 and ��	 to replace P �mm with
P � �mm where P � " P ��Q��Q�� � � � for all elements Q �mM� Q� �mM �� � � �

such that m occurs in M� M �� � � �� Move these elements to the left of P � �mm by
repeated application of ��	� Next� apply �a	 to bring the tail �P � �m m	 �m � � �
in canonical form� Finally� merge any elements Q �m M and Q� �m M � with
M " M � using ��	 and �L��	�

Unrestricted open merge structures

These can be brought in canonical form �OMCFgen	 �Fig� ��	 as follows�

��	 Subterms containing � are of the form �M �� for some merge structure M � Elim�
inate them by means of �M�	�

��	 The resulting term is �attened using the distributive law �S�	 and replacing
any dereferenced store cells �P �s fA ��Mg	 � A� with P � �A � A�	 �mM by
�S��	� �S�	� �L�	� Dereferenced variables �P �s s	 � A with s a variable of sort
S and A an address constant or variable� can be replaced by P �m �s � A	 by
�S��	� Any remaining compound variables s � A cannot be eliminated but are
similar to ordinary variables of sort M except that the address component A is
subject to the substitution law

�a� � a�	 �m �m� �m �p �m �s � a�		 �m m�	 "

" �a� � a�	 �m �m� �m �p �m �s � a�		 �m m�	� ���	

Towards a Complete Transformational Toolkit for Compilers � �

which is a consequence of �L���	� �S��	� Two compound variables s � A and s� �
A� are di�erent if s �� s� or A �" A� �modulo ���		� Hence� the previous canonical
form �OMCF	 is still applicable in the slightly generalized form �OMCFgen	�

Open terms of sort V

These can be brought in canonical form �OVCF	 �Fig� ��	� First bring them in
the form M � with M in canonical form �OMCFgen	� If M has a subterm P �m � �
move it to the leftmost position by repeated application of ��	� and eliminate it
with �M�	�

Open store structures without � or � and without variables
of sort S

These can be brought in canonical form �OSCF	 �Fig� ��	 as follows

��	 Eliminate any �s�operators by moving them into the store cells by �L�	� �L�	�
�S�	�

��	 We show that the resulting sequence of unguarded store cells can be brought
in canonical form by induction on the number N of �di�erent	 address variables
in it� If N " �� all addresses are known and �OSCF	 reduces to canonical form
�OSCFsimple	 �Fig� ��	� Apart from the normalization of the merge structure
components� the latter can be reached by �S�	 and �S�	�
Assuming store structures with � N address variables can be brought in canon�
ical form �OSCF	� let S be a store structure in canonical form with address
variables a�� � � � � aN and address constants ��� � � � � �m� Let % and �% be given
by respectively ���	 and ���	� We have

S �s faN�� ��MN��g "

" S �s ��% 	 �%	 �s faN�� ��MN��g	

L���
" S �s �% �s faN�� ��MN��g	 �s ��% �s faN�� ��MN��g	�

���	

In view of ���	� �% is already in the conjunctive form required by �iii	 of �OSCF	�
so the last store cell of ���	 is already in the required form apart from straight�
forward normalization of �% and MN��� For the next to last cell we have

% �s faN�� ��MN��g "

���
L���
" �aN�� � ��	 �s faN�� ��MN��g �s � � �

� � � �s �aN�� � aN 	 �s faN�� ��MN��g

S��
A��
" ��� � aN��	 �s f�� ��MN��g �s � � �

� � � �s �aN � aN��	 �s faN ��MN��g� ���	

Consider a single guarded store cell �ai � aN��	 �s fai ��MN��g in the right�
hand side of ���	� Since S is in canonical form� unconditional commutativity
applies and S " S� �s S�� where

S� " �%j� �s fai ��Mj�g	 �s � � � �s �%jk �s fai ��Mjkg	 ���	

�� � Bergstra� Dinesh� Field� Heering

consists of all guarded store cells with address component ai �modulo �S�		� By

requirements �iv	 and �v	� %j� �%j� " F �
 �" �	 and
Wk
��� %j� " T� Hence�

S �s ��ai � aN��	 �s fai ��MN��g	 "

" S� �s S� �s ��ai � aN��	 �s fai ��MN��g	

" S� �s

���ai � aN��	 �s S�	 �s

��ai � aN��	 �s �S� �s fai ��MN��g		� ��
	

For the last element of ��
	 we obtain

S� �s fai ��MN��g "

���
L��
" �%j� �s fai ��Mj�g	 �s � � � �s �%jk �s fai ��Mjkg	 �s

�T �s fai ��MN��g	

v�
L���
" �%j� �s fai ��Mj�g	 �s � � � �s �%jk �s fai ��Mjkg	 �s

�%j� �s fai ��MN��g	 �s � � � �s �%jk �s fai ��MN��g	

iv�
S	�
" �%j� �s fai �� �Mj� �s MN��	g	 �s � � �

� � � �s �%jk �s fai �� �Mjk �s MN��	g	�

Hence� by ��
	 and �L�	 any guarded store cell %j� �s fai ��Mj�g �� �
 � k	
of S� gives rise to two new ones� namely�

%j� � ��ai � aN��	 �s fai ��Mj�g

and

%j� � �ai � aN��	 �s fai �� �Mj� �s MN��	g�

Repeating this for all elements of % and substituting in the right�hand side of
���	 yields the required canonical form �OSCF	�

Open store structures with � and � and with variables of sort
S� but without variables of sort A

These can be brought in canonical form �OSCFvar	 �Fig� ��	 as follows

��	 Move variables of sort S to the left by repeated application of �S��	� The
resulting store structure consists of a sequence $� of �possibly guarded	 variables
of sort S followed by a sequence of �possibly guarded	 store cells $��� Bring $�

in the equivalent of canonical form �OMCF	 with k " � by using equations �Ln	
and ��	 with 	 " s rather than 	 " m�

��	 Use �S��	 to replace any instances of �s with �m in $�� and bring the resulting
sequence of store cells in the form required by �ii	�

�
	 Suppose �iii	 is not satis�ed� Move any pair of o�ending items in adjacent
positions using the commutative laws ��	 with 	 " s for the store variable part�
and �S�	 and ��	 with 	 " m for the store cell part� Apply

�p �s s	 �s fa �� �q �m �s � a		g "

" ��p � �q	 �s s	 �s ��p � q	 �s s	 �s

Towards a Complete Transformational Toolkit for Compilers � ��

fa �� ���p � q	 �s s	 � a	g �s fa �� ���p � q	 �m �s � a		g

S���
" ��p � �q	 �s s	 �s ��p � q	 �s s	 �s fa �� ���p � q	 �m �s � a		g

" �p �s s	 �s fa �� ���p � q	 �m �s � a		g�

��	 Repeat steps ��	��
	 until both parts are in the required form and requirement
�iii	 is satis�ed�

Unrestricted open store structures

The proof is similar to that of boolean terms with �� and proceeds by induction
on the number N of �di�erent	 address variables� The case N " � �no address
variables	 corresponds to the previous case� Assuming the statement holds for
equations with � N address variables� let t� " t� be a valid equation with N ! �
address variables a�� � � � � aN��� Let % and �% be given by respectively ���	 and
���	� First� consider the equation % �s t� " % �s t�� It is valid in I�Pim�

t 	 and

% �s ti

���
L���

" ��aN�� � ��	 �s ti	 �s � � � �s ��aN�� � aN 	 �s ti	

" ��aN�� � ��	 �s ti��	 �s � � � �s ��aN�� � aN 	 �s ti�m�N 	�

such that �N�� has been eliminated from ti�j �i " �� �� � � j � m ! N	 by the
substitution laws �A���	� �S����	 in conjunction with the guard propagation laws
�L���	� �S�	� �S��	� Hence� the equations t��j " t��j are provable by assumption
and % �s t� " % �s t� is provable�

Next� consider the equation �% �s t� " �% �s t�� It is valid in I�Pim�
t 	� By

bringing t� and t� in �attened form �see above	 and using ���	 we obtain �% �s ti "
�% �s t

�
i �i " �� �	� where the guards in t�i no longer contain aN�� although store

cells faN�� ��Mg and compound variables s � aN�� are retained�
Suppose the equation �% �s t

�
� " �% �s t

�
� is not provable� Replace aN�� by an

address constant � �" �k �� � k � m	� Let

(" ��%	�aN��
" �� "

N�
i��

��ai � �	

and

t��i " t�i�aN��
" ���

Then the equation (�s t
��
� " (�s t

��
� is not provable either since it does not allow

additional derivation steps in comparison with �% �st
�
� " �% �st

�
�� But since it is a

valid equation with N variables this is a contradiction� Hence� �% �s t
�
� " �% �s t

�
�

is provable� and �% �s t� " �% �s t� is provable as well� This completes the proof�

