@ Centrum voor Wiskunde en Informatica

REPORTRAPPORT

A complete transformational toolkit for compilers
J.A. Bergstra, T.B. Dinesh, J. Field and J. Heering

Computer Science/Department of Software Technology

CS-R9601 1996

Report CS-R9601
ISSN 0169-118X

CWwiI

P.O. Box 94079

1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.

SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

A COMPLETE TRANSFORMATIONAL
TOOLKIT FOR COMPILERS

J.A. Bergstra
Faculty of Mathematics and Computer Science, University of Amsterdam®

T.B. Dinesh J. Field
Department of Software Technology, CWI T IBM T.J. Watson Research Center *

J. Heering
Department of Software Technology, CWM &

Abstract

In an earlier paper, one of the present authors presented a preliminary account of an equational
logic called PiM. Pim is intended to function as a “transformational toolkit” to be used by
compilers and analysis tools for imperative languages, and has been applied to such problems as
program slicing, symbolic evaluation, conditional constant propagation, and dependence analysis.
Pim consists of the untyped lambda calculus extended with an algebraic rewriting system that
characterizes the behavior of lazy stores and generalized conditionals. A major question left
open in the earlier paper was whether there existed a complete equational axiomatization of PiM’s
semantics. In this paper, we answer this question in the affirmative for PIM’s core algebraic
component, PiM¢, under the assumption of certain reasonable restrictions on term formation. We
systematically derive the complete Pim logic as the culmination of a sequence of increasingly
powerful equational systems starting from a straightforward “interpreter” for closed Pim terms.

CR Subject Classification (1991): D.3.4, 1.2.2, F.3.2.

Keywords & Phrases (1991): code optimization, program transformation, algebraic semantics.
Note: An abridged version of this paper has been accepted for the 1996 European Symposium on
Programming, and will be published in the ESOP *96 proceedings (which will appear as a volume
of Springer-Verlag’s Lecture Notes in Computer Science series). This work was supported in part
by the European Communities under ESPRIT Basic Research Action 7166 (CONCUR I1) and the
Netherlands Organization for Scientific Research (NWO) under the Generic Tools for Program
Analysis and Optimization project.

*Kruislaan 403, 1098 SJ Amsterdam, The Netherlands; e-mail: janbefwi.uva.nl
TKruislaan 413, 1098 SJ Amsterdam, The Netherlands; e-mail: T.B.Dineshecwi .nl
{P.0. Box 704, Yorktown Heights, NY 10598, USA; e-mail: jfieldewatson. ibm.com
$Kruislaan 413, 1098 SJ Amsterdam, The Netherlands; e-mail: Jan.Heeringecwi.nl

A Complete Transformational Toolkit for Compilers

1 Introduction

In an earlier paper [18], one of the present authors presented a preliminary account of an equational
logic called Pim. Pim is intended to function as a “transformational toolkit” to be used by compilers
and analysis tools for imperative languages. In a nutshell, Pim consists of the untyped lambda calculus
extended with an algebraic rewriting system that characterizes the behavior of lazy stores [9] and
generalized conditionals. Together, these constructs are sufficient to model the principal dynamic
semantic elements of most Algol-class languages.

Translation of programs in most such languages to PiMm is straightforward; programs can then be
formally manipulated by reasoning about their Pim analogues. Moreover, the graph representations
of various PiMm normal forms can be manipulated in a manner similar to intermediate representations
commonly used in optimizing compilers. As with other intermediate representations, the Pim form of
the program can serve as a more suitable starting point for subsequent analysis than the program text
itself. Unlike other such representations, however, Pim has a strong formal foundation and permits a
number of different semantics-preserving manipulations to be carried out in the same framework.

A major question left open in [18] was whether there existed a complete equational axiomatization
of Pim’s semantics. In this paper, we answer this question in the affirmative for PIM’s core algebraic
component, Pim,, under the assumption of certain reasonable restrictions on term formation. Formally,
we show that there exists an w-complete equational axiomatization of Pim’s final algebra semantics.
Obtaining a positive answer to the completeness question is, we believe, quite important, since it
means that we can be assured that our transformational toolkit has an adequate supply of tools. In
[18], it was shown that many aspects of the construction and manipulation of compiler intermediate
representations could be expressed by partially evaluating Pim graphs using rewriting rules formed
from oriented instances of PiM equations. Until now, however, we could not be certain that all the
equations required to manipulate arbitrary programs were present (with or without restrictions on term
formation). Obtaining a complete equational axiomatization for PIM is also an important prerequisite
to designing a decision procedure.

We are aware of only a few prior completeness results for logics for imperative languages: Mason
and Talcott [32] show that their logic for reasoning about equivalence in a Lisp-like (rather than
Algol-class) language is complete; however, unlike Pim, their logic is a sequent calculus, rather than
an equational system. Hoare et al. [24] present a partial completeness result for an equational logic;
however, their result does not hold for the cases where addresses or stores are unknowns, i.e., can be
represented by variables. For program transformations commonly required in optimizing compilers,
it is extremely important that these latter cases be addressed.

Although the merits of equational reasoning for programs have been widely touted [2, 26, 35, 24,
27], results characterizing the power of formal systems required for such reasoning appear to be few
and far between. Similarly, while partial evaluation has often been advocated as a means for optimizing
programs [14, 15, 10, 7, 38], it is unusual to find a precise characterization of the transformational
capabilities that a particular partial evaluator implements.

In the sequel, we systematically derive the complete Pim logic as the culmination of a sequence
of increasingly powerful equational systems starting from a straightforward “interpreter” for PiM’s
term language. While this approach to developing a logic is not new, it appears to be undertaken only

A Complete Transformational Toolkit for Compilers

rarely. We therefore believe that the exposition of the process, especially for a nontrivial program
logic such as Pim, is itself a useful contribution.

The remainder of this paper proceeds as follows: In Section 2, we give an overview of Pim and
discuss related work. In Section 3, we introduce the system PimM,, which axiomatizes the behavior
of PiM’s first-order core. PIM; has the property that orienting its equations from left to right yields
an interpreter for closed programs producing observable “base” values as results. We discuss the
behavior of Pim.’s functions using examples written in a simple programming language. Section 4
gives an overview using examples of the relative power of the equational axiomatization of PIM ;s
initial algebra semantics (P1m?), the initial algebra axiomatization of Pim,’s final algebra semantics
(PiM), and an w-complete enrichment of Pim;, PIMZ. Section 5 discusses the relationship between
w-complete equational systems and partial evaluation. In Section 6, we make some basic definitions
and illustrate the process by which we develop a complete logic using an example involving a stack
data type. Next, in Section 7, we develop an enrichment of Pim; called Pim;" that characterizes Pim,’s
final algebra semantics; i.e., one that equates terms that behave the same in all contexts that generate
observable values. Such a semantics is natural for developing semantics-preserving transformations
on program fragments. In Section 8, we produce our main result: an w-complete axiomatization PiM ;-
for PIM". As before, PIM; is obtained simply by enriching Pim;" with additional equations. The
resulting system equates all open PiM, programs that behave the same under every substitution for
their free variables, and thus yields the complete transformational toolkit we seek. In Section 9, we
show how rewriting systems formed by orienting subsystems of PIM ; can be used to prove program
equivalences and produce normal forms with various interesting properties. We then develop several
rewriting systems based on Pim;~ and prove that they are confluent and terminating. Finally, Section 10
covers possible extensions and open problems.

2 PIM in Perspective

While there has been considerable work on calculi and logics of program equivalence for imperative
languages, our work has the following points of departure:

e A graph form of Pim is by design closely related to popular intermediate representations (IRs)
used in optimizing compilers, such as the PDG [17], SSA form [12], GSA form [3], the PRG
[44], the VDG [41], and the representation of Click [11]. Indeed, Pim can be regarded as a
rational reconstruction of elements of the earlier IRs. With the exception of the VDG and Click’s
representation, Pim differs from the other IRs in that procedures, functions, and computations
on addresses (e.g., as required for arrays or pointers) are “first-class” features of the formalism.
What sets Pim apart from other IR work, however, is not so much the form of its graphs, but
rather the existence of a logic for reasoning about equivalences, carrying out partial evaluation,
and performing analysis.

e For structured programs, most of the non-trivial steps required to translate a program to the Pim
analogue of one of the IRs mentioned above can be carried out as source-to-source transfor-
mations in PIM itself, once an initial Pim graph has been constructed from the program using a
simple syntax-directed translation. For example, when constructing the Pim equivalent of GSA

A Complete Transformational Toolkit for Compilers

form [3], various purely equational transformations on PIM graphs correspond to computation
of reaching definitions, building of data and control dependence edges, placement of so-called
¢ nodes, and determination of “gating” predicates. We know of no other formal system that has
this property.

For unstructured programs, the Pim analogue of a traditional IR may be constructed either by first
restructuring the program (e.g., using a method such as that of [1]), or by using a continuation-
passing transformation (e.g., one similar to that used in [41]) in which unstructured transfers of
control such as gotos or breaks are treated as function calls. The translation process is then
completed by application of the same transformations used for structured programs. We prefer
the restructuring approach to the continuation-passing transformation, since it obviates the need
to use higher order “interprocedural” methods when analyzing first-order programs.

e PIM is an equational logic, rather than, e.g., a sequent calculus such as that of Mason and
Talcott [32]. This is not simply an immaterial stylistic difference. A purely equational logic
has the advantage that it can be used not only to prove equivalences, but also to model the
“standard” operational semantics of a language (using a terminating and confluent rewriting
system on ground terms) or to serve as a “semantics of partial evaluation” (by augmenting
the operational semantics by oriented instances of the full logic). Equational logics are also
particularly amenable to mechanical implementation, using such techniques as graph rewriting
[4], unification, and equational unification.

e Unlike work on calculi for reasoning about imperative features in otherwise functional lan-
guages [16, 40, 39], Pim has a particular affinity for constructs in Algol-class (as opposed to
Lisp-like) languages, since it does not rely on the use of lambda expressions or monads to se-
guence assignments. This permits the use of stronger axioms for reasoning about store-specific
sequencing.

e Yang, Horwitz, and Reps [43] have presented an algorithm that determines when some pairs
of programs are behaviorally equivalent. However, their approach is limited by its reliance on
structural properties of the fixed PRG graphs used to represent the programs, and they make no
claims of completeness.

¢ Although the logics of Hoare et al. [24] and Boehm [8] treat Algol-class languages, [24] does
not accommodate computed addresses arising from pointers and arrays, and neither [8] nor
[24] cleanly separates store operations from operations on pure values. The separation of these
concerns in PIM means that it is easy to represent a language in which expressions with and
without side effects are intermixed in complicated ways (e.g., C). This also means that is usually
straightforward to extend Pim with new operations and axioms on base values, or change the
“memory model” used to represent addresses, since we need have no concern about how these
operations are interrelated.

In this paper, we will concentrate on the formal properties of first order systems derived from Pim’s
core algebraic component, Pim;. In particular, we will be concerned with the relative power of these
systems to reason about PiM graphs and the source programs to which they correspond. For further

A Complete Transformational Toolkit for Compilers

details on the correspondence between PimM and traditional IR’s, see [18]. For an example of a practical
application of Pim, see [19], which describes a novel algorithm for program slicing. The latter paper
also makes use of the full higher-order version of Pim, in which looping and recursive constructs are
treated by embedding the core first order algebraic system Pim; (treated here) in an untyped lambda
calculus.

3 How Pim Works
31 wpC

Consider the program fragments P;—Ps depicted in Fig. 1. They are written in a C language subset
that we will call »C, whose complete syntax is given in Fig. 15 of Appendix A. 1C has standard C
syntax and semantics, with the following exceptions:

e Meta-variables, such as ?P or ?X, are used to represent unknown values. Such a variable may
be thought of as a simple form of program input (where each occurrence of a meta-variable
represents the same input value) or as a (read-only) function parameter.

¢ All data in uC are assumed to be integers or pointers (to integer variables or other pointers).
e Itis assumed that no address arithmetic is used?.

To make pC examples such as those in Fig. 1 easier to follow, we will add type “declarations” within
comment delimiters for the variables and meta-variables used therein; however, these declarations
are not part of the syntax of 4C per se. We use “const” in the declarations of meta-variables to
emphasize their non-assignable character.

3.2 PiM Terms and Graphs

A directed term graph [4] form of the Pim representation of Py, Sp,, is depicted in Fig. 2. Sp, is
generated by a simple syntax-directed translation, further details of which are given in Appendix A. A
term graph may be viewed as a term by traversing it from its root and replacing all shared subgraphs by
separate copies of their term representations?. Shared Pim subgraphs are constructed systematically
as a consequence of the translation process. In addition, when term rewriting is extended in a natural
way to term graphs [4], shared subgraphs are constructed “dynamically” during the rewriting process.

Parent nodes in PiMm term graphs will be depicted below their children to emphasize the corre-
spondence between pC program constructs and corresponding Pim subgraphs. This “upside down”
orientation also corresponds to the manner in which compiler IR graphs are commonly rendered. In
the sequel, only a small number of graph edges will be depicted explicitly, primarily those that are
shared. Most other subgraphs will be “flattened” for clarity.

! Although Pim admits arbitrary computation on addresses in general, the completeness results in this paper assume that
addresses are not themselves “results” of programs.

ZCycles are admissible in term graphs, and correspond to infinite terms. While such cycles arise naturally in conjunction
with loops and recursive functions, an acyclic representation suffices for the program constructs considered in this paper.

A Complete Transformational Toolkit for Compilers

/* int x,y.,p; /* int x,y,p; */
const int ?X, ?P; */
{ p = 7?p; { p=0;
X = ?X; x = 1;
Yy = Pbi: Yy = b
X = p; X = pi
if (p) if (p)
X =Y; X =Yi
} }
Py P,
/* int x,y,p; /* int x,y,p; */ /* int x,y,p;
const int ?P; */ const int ?P; */
{ p = 7?p; { p=0; { p = 7?p;
Yy = p; Yy = p; y = ?P;
X = pl- X = p,’ X = ?P,'
if (p) if (p) }
X =Y X =Y
} }
P P, Py

Figure 1: Some simple ».C programs.

A Complete Transformational Toolkit for Compilers

Figure 2: Sp,: The PIM representation of program P;. Empty stores and subscripts on store composi-
tion operators are omitted for clarity.

A Complete Transformational Toolkit for Compilers

The properties of the equational systems we consider in this paper are completely independent of
whether a tree or graph representation is used for PiM terms. Nonetheless, sharing is quite important in
practice. For instance, while the graph representation of a xC program constructed by the translation
in Appendix A always has size linear in the size of the program’s parse tree, the corresponding tree
form of the term may have an exponentially greater number of nodes (consider, e.g., the size of the
tree form of graph Sp, in Fig. 2).

3.3 Pim,: Core Pim

In this paper, we focus on the first-order core subsystem of Pim, denoted by Pim.. The full version of
Pim discussed in [18] and slightly revised in [19] augments PiM ; with lambda expressions, an induction
rule, and certain additional higher-order merge distribution rules that in the more general form given
in [19] propagate conditional “contexts” inside expressions computing base values or addresses. As
shown in [19], PiM’s higher-order constructs allow loops (among other things) to be modeled in a
straightforward way. In addition, [19] shows how specialized instances of PIM’s induction rule can be
used to facilitate loop-related transformations required to compute various kinds of programsdlices.

Without the higher-order extensions, PIM; is not Turing-complete. However, the constructs in
Pim; alone are sufficient to model the control- and data-flow aspects of finite programs in Algol-
class languages. As we shall see, these constructs have a non-trivial equational axiomatization, and
understanding their properties is a necessary prerequisite to studying the properties of higher-order
variants.

The signature® of Pim, terms is given in Fig. 3. The sort structure of terms restricts the form of
addresses and predicates in such a way that neither may be the result of an arbitrary Pim computation.
Although our completeness result depends on this restriction, the equations in the complete equational
system Pim; remain valid even when the term formation restrictions are dropped®. This means,
e.g., that we can still use our system to reason about situations in which addresses or predicates are
generated by arbitrary computations (or situations in which the values of such expressions are entirely
unknown), even though there may be additional valid equations (arising as a consequence of the
structure of those computations) that we will not necessarily be able to prove.

Fig. 4 depicts the equations® of the system PIm?. Pim? is intended to function as an “operational
semantics” for Pim,, in the sense that when its equations are oriented from left to right, they form a
rewriting system that is confluent on ground terms of sort V, the sort of observable “base” values.
Ple also serves to define the initial algebra semantics for Pim;.

PiM can be viewed as a parameterized data type with formal sorts V and .A. These sortsare intended
to be instantiated as appropriate to model the data manipulated by a given programming language.
Fig. 5 depicts the signature of a small set of functions and auxiliary sorts used to actualize the parameter

®This signature differs slightly from the corresponding signature in [18]; the differences principally relate to a simplifi-
cation in the structure of merge expressions.

*If address or predicate expressions may contain nonterminating computations, there are a number of semantic issues
beyond the scope of this paper that must be addressed. In brief, we take the position (usually adopted implicitly by optimizing
compilers) that equations remain valid as long as they equate terms that behave the same in the absence of nontermination.

®The gaps in the equation numbers used for Pim?, as well as those occurring in other systems discussed in the sequel,
are present to ensure compatibility with the equation numbers used in [18].

A Complete Transformational Toolkit for Compilers

Tl E<T®

{A— M}
B, S
So, 8
@s
S@ A

B, M
Mo, M
0,
A, 02y, ..
T,F
A=A
-B
BAB
BvEB
M!

C1,Coy. ..

L A A A

<<<®®®®®L§§§§§%%%%

sorts
(store structures)
(merge structures)
(addresses)
(booleans)
(base values)

functions

(store cell)

(guarded store)

(store composition)
(null store)

(store dereference)
(merge cell)

(guarded merge)
(merge composition)
(null merge)

(address constants)
(boolean constants)
(address comparison)
(boolean negation)
(boolean conjunction)
(boolean disjunction)
(merge selection)
(base value constants)
(unknown base value)

Figure 3: Signature of Pim; Terms.

A Complete Transformational Toolkit for Compilers

0,0, [(L1)

lo,0, = 1 (L2)
lio,(lao,l3) = (lyo,1l3)0,15 (L3)
Te,l = I (L5)

Fo,l = 0, (L6)

{a; —» m} Q a, (a1 X az) > m (S1)
lam0,} = 0 (82)

0, @a = 0, (S3)
(s1058,)Qa (s1@a)o, (s, @a) (S4)
(o < o) T (¢>1) (A1)

(o <) F (i#7) (A2)
(moy, [v))} = v (M2)
]! = w (M3)

0! = 7 (M4)

-T F (B1)

-F = T (B2)

TAp = »p (B3)

FAp = F (B4)

Tvp = T (B5)

Fvp = »p (B6)

Figure 4: Equations of PIM?. The equations labeled (Ln) are generic to merge or store structures, i.e.,
in each case ‘p’ should be interpreted as one of either s or m. Equations (A1) and (A2) are schemes
for an infinite set of equations.

10

A Complete Transformational Toolkit for Compilers

sorts
Id (identifiers)
IntLiteral C V (integer literals; subsort of base values)
functions
meta(Id) — V (meta-variables constructed from identifiers)
intSum(V, V) — V (integer addition)
intEq(V,V) — B (integer equality)
addr(Id) — A (address constants constructed from identifiers)

Figure 5: Signature of C-Specific PIM Extensions.

sorts of Pim to model the integer data manipulated by C programs. From the point of view of the
results presented in the sequel, these additional functions are simply treated as uninterpreted “inert”
constructors. In practice, of course, sufficient additional equations would be added to axiomatize the
properties of the additional language-specific datatypes.

3.4 Piv’s Parts

In the remainder of this section, we briefly outline the behavior of Pim’s functions and the equations
of PiM? using program Py and its Pim translation, Sp,, depicted in Fig. 2.

The graph Sp, is a PIM store structure®, an abstract representation of memory. Sp, is constructed
from the sequential composition (using the operator ‘o ,”) of substores corresponding to the statements
comprising P;. The subgraphs reachable from the boxes labeled S;-54 in Sp, correspond to the four
assignment statements in P;.

The simplest form of store is a cell such as

S, = {addr(p) — [meta(P)]}

A store cell associates an addressexpression (here ‘addr(p)’) witha mergestructure, (here [meta(P)],
where ‘meta(P)’ is the translation of the .C meta-variable ‘2 P’). Constantaddressessuchas ‘addr(p)’
represent ordinary variables. More generally, address expressions may be used when addresses are
computed, e.g., in pointer-valued expressions. ‘@,’ is used to denote the empty store. Equations (L1)
and (L2) of Pim? indicate that null stores disappear when composed with other stores. Equation (L3)
indicates that the store composition operator is associative.

Stores may be guarded, i.e., executed conditionally. The subgraph labeled S¢ in Fig. 2 is such a
store, and corresponds to the “i £’ statement in P;. The guard expression denoted by V; corresponds
to the if’s predicate expression. Consistent with standard C semantics, the guard V', tests whether
the value of the variable p is nonzero. When guarded by the true predicate (‘T’), a store structure

®For clarity, Fig. 2 does not depict certain empty stores created by the translation process; this elision will be irrelevant
in the sequel.

11

A Complete Transformational Toolkit for Compilers

evaluates to itself. If a store structure is guarded by the false predicate (‘F’), it evaluates to the null
store structure. These behaviors are axiomatized by equations (L5) and (L6).
An expression of the form
sQa

represents the result of dereferencing store s at address a. Examples of such expressions are those
contained in the subgraphs labeled (M ;) and (M,) in Sp,. The result of the dereferencing operation
is a merge structure. Unlike an ordinary “lookup” operation which retrieves a single value given
some “key”, the Pim store dereferencing operator can be thought of as retrieving all of the values ever
associated with the address at which the store is dereferenced, and amalgamating those results into a
merge structure. This retrieval behavior is codified by equations (S1)-(S4), (Al), and (A2), and can
be thought of as computing a very conservative initial approximation to all the definitions of a given
address that “reach” a particular use. Further simplification of merge expressions that result from a
store dereferencing operation can yield a more accurate (and conventional) set of definitions reaching
a given use.

The simplest nonempty form of merge expression is a merge cell. The boxes labeled M ,, M,,
M, M,, and Mg in Fig. 2 are all merge cells. As with store structures, nontrivial merge structures
may be built by prepending guard expressions, or by composing merge substructures using the merge
composition operator, ‘o,,,’. (,,, denotes the null merge structure. Some of the characteristics of merge
structures are shared by store structures, as indicated by the “polymorphic” equations (L1)—(L6). In
the sequel, we will therefore often drop subscripts distinguishing related store and merge constructs
when no confusion will arise.

Merge structures used in conjunction with the selection operator, ‘!*, yield values. When the
selection operator is applied to a merge structure m, m must first be evaluated until it has the form

m' o, [v]

i.e., one in which an unguarded cell is rightmost. At this point, the entire expression m! evaluates to
v. This behavior is axiomatized by equations (M2) and (M3). Equation (M4) states that attempting to
apply the selection operator to a null merge structure yields the special error value “?”.

Note in Fig. 2 that the *!” operator is used in the translation of every reference to the value of
a variable in program P;. When the retrieval semantics of the ‘@’ operator are combined with the
selection semantics of the “!I” operator in an expression of the form

(s @a)!
the net effect is to

1. Retrieve all the values in store s associated with address a (i.e., assignments to the variable
associated with a).

2. Yield the rightmost (i.e., “most recently assigned”) value associated with a.

The merge structures depicted in Fig. 2 are all either simple merge cells or dereferenced stores.
However, more interesting merge structures are often produced by equational simplification. For

12

A Complete Transformational Toolkit for Compilers

meta(P)

f{addr(x)% I }

i
($)

Figure 6: Sp . A simplified form of Sp, .

example, it turns out that the store structure S depicted in Fig. 6 is equivalentto S p,, a fact provable
in the w-complete system Pim;~ we develop in the sequel. The merge structure denoted by M’ in S5,
represents all the assignments made to variable x in P;. M’ can be read roughly as “If the variable to
which this expression is bound is ever used, the resulting value will be that of the meta-variable 2P
if 2P is nonzero (i.e., ‘true’ in C semantics); otherwise the resulting value will be ?P.” It should be
easy to see that M’ can be further simplified to the expression [?P], although the resulting graph does
not correspond as closely to a compiler IR as does S5, .

4 Reasoning with Pim Terms and Graphs

4.1 Evaluating value-producing PIM expressions

Consider program P, in Fig. 1. Its Pim representation, Sp,, is the same as Sp,, except that 2P and ?X
are replaced with 0 and 1, respectively. Given S p,, the expression

Vi = (Sp, @ addr(x))!

represents the value of the variable x in the final store produced by evaluation of S p,, i.e., the final
value of x after executing P,. A similar expression can be constructed to compute the final value of any
variable in the program (including, if desired, a variable which never receives an initial assignment!).

Since V¥ is a closed expression of sort V, we can use the equations of Fig. 4 to evaluate it. A
simple interpreter for such expressions may be constructed by orienting the equations in Fig. 4 from

13

A Complete Transformational Toolkit for Compilers

left to right, then applying them until a normal form is reached. (It is easily seen that the system is
terminating; i.e., noetherian). The result of normalizing V5 is the constant ‘0°.

4.2 Reasoning about arbitrary PiM expressions

Consider now the program P, of Fig. 1. Although it should be clear that P, behaves the same as Ps,
the equations of Pim; are insufficient to equate the Pim translations of the two programs. We will
require a more powerful system to axiomatize the final algebra semantics, in which all behaviorally
equivalent closed terms (such as those representing P, and P,) are equated. Pim;", the equational
axiomatization of PiM;’s final algebra semantics, will be the subject of Section 7.

Finally, consider program Py of Fig. 1. Although it is behaviorally equivalent to both P, and Ps,
one cannot deduce this fact using Pim; alone. Intuitively, this is due to the fact that P, P;, and P; are
all open programs. To equate these terms, as well as to prove all other valid equations on open terms,
we will need the w-complete system Pim;~, which will be developed in Section 8.

In Section 9, we will present several confluent and terminating subsystems of PiM ;. In addition to
serving as partial decision procedures for equivalence, these systems and variants thereof can be used
to yield normal forms that function in a manner similar to that of a traditional compiler IR, and can
also be used to implement partial evaluation for optimization purposes.

5 Partial Evaluation and w-Completeness

It is often assumed that an operational semantics forms an adequate basis for program optimization and
transformation. Unfortunately, many valid program transformations do not result from the application
of evaluation rules alone. For instance, consider the equation

if (p) then e else e = e.

Some version of this equation is valid in most programming languages (at least if we assume p
terminates), yet transforming an instance of the left hand side in a program to the right hand side
cannot usually be justified simply by applying an evaluation rule.

Itis our view that transformations such as the equation above are best viewed as instances of partial
evaluation. Unlike some others, we are not concerned with binding-time analysis or self-application
[28], but, following [23], simply assert that

rewriting of open termswith respect to the

artial evaluation = .)
P intended semantics.

However, how do we know that we have enough rules for performing partial evaluation?

The open equations (equations containing variables, such as the one above) valid in the initial
algebra of a specification are not in general equationally derivable, but require stronger rules of
inference (such as structural induction) for their proofs. An w-complete specification [23] is one in
which all valid open equations may be deduced using only equational reasoning. In our setting, then,
finding such an w-complete specification amounts to showing that one’s partial evaluator has all the
rules it needs at its disposal; it will thus be our goal in the sequel to find an w-complete axiomatization
for Pim,.

14

A Complete Transformational Toolkit for Compilers

6 Algebraic Preliminaries

In this section we give a brief summary of some basic facts of algebraic specification theory which are
essential to an understanding of what follows. Good surveys are Meinke and Tucker’s survey [33],
Meseguer and Goguen’s survey [34], and Wirsing’s survey [42]. We assume some familiarity on the
part of the reader with equational logic and initial algebra semantics.

6.1 w-Completeness

Definition 1 Analgebraic specification S = (X, E') with non-void many-sorted signature %, finite set
of equations F, and initial algebra I(S) isw-complete if I(S) = t, = t, iff E - ¢; = ¢, for open
Y-equationst; = t,.

According to the definition, all equations valid in the initial algebra of an w-complete specification
may be deduced using only equational reasoning. No structural induction is needed. Trading structural
induction for equational reasoning from an enriched equational base has two potential advantages:

¢ An existing rewrite implementation of equational logic can be used, especially if it has an A-,
AC-, or general E-rewriting capability.

¢ Rewriting may have a sense of direction lacking in structural induction. It may perform useful
simplifications of terms without having been given an explicit inductive proof goal beforehand.

One way of proving w-completeness of a specification is to show that every congruence class
modulo E has a representative in canonical form (not necessarily a normal form produced by a rewrite
system) such that two distinct canonical forms ¢, and ¢, can always be instantiated to ground terms
o(t,) and o(t,) that cannot be proved equal from E. Another way is to show by induction on the
length (in some sense) of equations that equations valid in I(S) are provable from E. We use both
methods in this paper. Additional information about proof techniques for w-completeness as well as
examples of their application can be found in [23, 31, 5].

In the foregoing we assumed initial algebra semantics. In the case of Pim, which uses final algebra
semantics, we give an equivalent initial algebra specification first (Step (A), Section 7).

6.2 Final Algebra Semantics

Final algebra semantics does not make a distinction between elements that have the same observable
behavior. We need the following definitions:

Definition 2 Let ¥ be a many-sorted signatureand S, 7 € sorts(X). A X-context of typeS — 7 is
anopentermof sort7 containinga singleoccurrence of avariable O of sort S and no other variables.

The instantiation C(O := t) of a X-context C' of type S — 7 with a X-term ¢ of sort S will be
abbreviated to C(t). If ¢ is a ground term, C(¢) is a ground term as well. If ¢ is a £-context of type
§' — 8§, C(t) isa Z-context of type S’ — 7.

15

A Complete Transformational Toolkit for Compilers

Definition 3 Let S = (X, E') be an algebraic specification with non-void many-sorted signature %,
finite set of equations £, and initial algebra I(S). Let O C sorts(X). Thefinal algebra F o(S) isthe
quotient of I(S) by the congruence =, defined as follows:

(i) t1,t; groundtermsof sort S € O:
11 =0 12 iff I(S) |: 1, = 1,

(i) t1,%, groundtermsof sort S ¢ O:
t1 =0 L2 Iff I(S) = C(t1) = C(¢,) for all contexts C of type S — 7 with 7 € O.

Item (ii) says that terms of nonobservable sorts (sorts not in Q) that have the same behavior with
respect to the observable sorts (sorts in O) correspond to the same element of Fo(S). It is easy to
check that =, is a congruence.

Definition 3 corresponds to the case M = I(S) of N(M) as defined in [34, p. 488]. Observable
sorts are called visiblein [34] and primitivein [42, Section 5.4].
6.3 Steps Towards a Completeness Result

Our completeness result will require two basic technical steps:

(A) Finding an initial algebra specification of the final model Fy(PIM?). Fy,(Pim?) is the quotient
of the initial algebra I(P1M?) by behavioral equivalence with respect to the observable sort V of
base values. We add an equational definition of the behavioral equivalence to PIM?, resulting in
an initial algebra specification of Fy,(PIM)).

(B) Making the specification obtained in step (A) w-complete to improve its ability to cope with
program transformation and partial evaluation.

We illustrate these steps for a simple data type before attacking Pim? itself.

6.4 A Simple Example
We perform steps (A) and (B) (Section 6.3) for the specification of a stack data type shown in Figure 7.

Step (A) Consider the final model Fy,(STack) in the sense of Definition 3with O = {V}. We give
an initial algebra specification of it [22, 6]. The normalized contexts of type S — V are

Cr, = top(pop” (D). (n>1)
The constant a, is special in view of (St1). By (St1)—(St4)
C,(push(as,0)) = C,(0)
for all n > 1. This means push(ay,?) and @ have the same V-observable behavior, and the equation

push(ay,0) =0 (1)

16

A Complete Transformational Toolkit for Compilers

sorts vV (base values)
S (stacks)
functions ay,...,axy — V (base values, N > 1)
0 — S (empty stack)
push(V,S8) — S (stack constructor)
top(S) — V (gettop element)
pop(S) — S (delete top element)
equations top(d) = a1 (St1)
top(push(v,s)) = v (St2)
pop(0) = 0 (St3)
pop(push(v,s)) = s (Std)

Figure 7: STACK.

which is not valid in I(STack), holds in Fy(STack). The rewrite system obtained by interpreting
the equations of STack™ = Stack 4+ (1) as left-to-right rewrite rules is easily seen to be confluent
and terminating.” The corresponding ground normal forms of sort S are

pu‘Sh(ah’pu‘Sh(aiz’ s 7pu‘3h(aip7 ®) i)) (p Z 07 ip 7£ 1) (2)

Equation (1) happens to be the only additional equation we need, and Stack * is the initial algebra
specification we are looking for. This is shown in Appendix B.1.

Step (B) We give an w-complete enrichment STack™ of STack™. The equation

push(top(s),pop(s)) = s 3)

is easily seento be validin I(Stack ™) by verifying it for terms in normal form (2). It is not equationally
derivable from STack™ since the corresponding rewrite system is not applicable. Again, it happens to
be the only additional equation we need. It is shown in Appendix B.2 that STAck = = STAck™ + (3)
is w-complete.

7 Step (A)—The Final Algebra

We give an initial algebra specification Pim; of the final model Fy,(Pim?). PiM? is shown in Figures 3
and 4. The additional equations of Pim;" are shown in Figure 8.

“Such rewrite systems are usually called complete or canonical. To avoid undue overloading of both adjectives in this
paper we prefer the more cumbersome terminology.

8 Equation (M2') in Figure 8 is a special case of (M6) in the preliminary version of PimZ given in [18, Figure 6]. (S8)
subsumes (S6) and (S7) in the preliminary version.

17

A Complete Transformational Toolkit for Compilers

m on, [v] = [v] (M2')

{a1 = my} o, {az = my} = (a1 X az) > {a; — (mq 0,, ma)} o
~(a1 < az) >, ({az = ma} o, {a1 = mq}) (S8)

Figure 8: Additional Equations of PIM .

Proposition 1 Fy,(PIM)) = (M27), (S8).

Proof We prove (M2'). The proof of (S8) is similar.
The normalized contexts of type M — V are

Crm = ([¢i]) Om =+ 0 [Cip_y] Om O 0Opy, [cik“] O *** Oy [€5,])!
(1 <k<n) By(M2)

Cin(m oy, v]) =¢, = Cra(lv]) (kE<n)
Crn(m om [v]) = v = Cpn([v]).

(M2) is rendered superfluous by (M2’). Let Pim; = PIM? — (M2) 4+ (M2') + (S8). We have
Proposition 2 I(PIM}) = Fy,(PIMY).

Proof We show that two distinct ground normal forms are observationally distinct. (i) Ground normal
forms of sort M are

q)mv [?]7 [Cz] (z > 1)' (4)

0, and [?] are distinguished by the context ([¢] o,, O)!, the others by O !.
(if) Ground normal forms of sort S are

05, {as, = My}o, oo, {ay, — My} (21,4 < <y, (5)
M; in normal form (4),

M; # 0., in view of (S2)).

Two distinct normal forms of sort S can be distinguished with respect to M by a suitable store deref-
erence of the form O @ «;, for some k. Hence, they can be distinguished with respect to V according
to (i).

(iii) Sorts A and B are not affected. Any identification of elements of these sorts would immediately
lead to collapse of the base values. O

18

A Complete Transformational Toolkit for Compilers

8 Step (B)—w-Complete Enrichment

We give an w-complete enrichment Pim; of PiM. The additional equations of Pim are shown in
Figure 9. As before, p in equations (Ln) is assumed to be one of m or s. The reader will have no
difficulty verifying the validity of the additional equations of Pim ; in the initial algebra I(Pim;") by
structural induction.

The w-completeness proof uses both proof methods mentioned in Section 6.1. It basically proceeds
by considering increasingly complex open terms and their canonical forms. The latter are determined
up to some explicitly given set of equations and are considered distinct only if they are not equal in the
corresponding theory. The fact that two distinct canonical forms can be instantiated to ground terms
that cannot be proved equal from PimM; is not explicitly shown in each case, but is easily verified.

In two cases (boolean terms with =< and unrestricted open store structures) the proof is not based
on canonical forms, but proceeds by induction on the number of different address variables in an
equation (its “length”). The same method (with a different definition of length) is used in Appendix
B.2 to show the w-completeness of STACK ™.

Boolean terms without < The only booleans are T and F. To see that (B1)-(B19) constitute an
w-complete specification of the booleans, take n = 2 in[5, Theorem 3.1]. Suitable canonical forms are
the disjunctive normal forms without nonessential variables (variables whose value does not matter)
used in the proof.

Booleantermswith < These require (A3)-(A6) inaddition to (A1-2). (A5) and (A6) are substitution
laws. (S9) and (S10) are similar laws for guarded store and merge structures which will be needed
later on. The transitivity of = is given by the equation

(a]_ = CLQ) A (CLQ = ag) A _‘(al = a3) = F’

which is an immediate consequence of (A5) or (A6) in conjunction with (B11). Note that the number
of address constants «; is infinite. Otherwise an equation \/i—, (a < ;) = T would have been needed.

It is sufficient to show that the tautologies are provably equal to T. We proceed by induction on
the number of (different) address variables N. The case N = 0 reduces to that of tautologies not
involving =< by (A1-2). Assuming the statement holds for tautologies with < N address variables, let
t be a tautology with address variables a4, . .., ayx,1. By bringing it in disjunctive normal form and
applying (B16) and (A5-6) we obtain

(aN+1 = ai) ANl = (aN+1 = ai) A t/,

with a; substituted for a -, ; everywhere int’ (1 <z < N). Hence, since t’ is a special case of ¢ with
N variables, it is provably equal to T by assumption, and

(aN+1 = ai) ANl = (aN+1 = ai) (1 <) < N) (6)
is provable. Without loss of generality we may assume the address constants in ¢ to be a4, ..., a,,
(m > 0). Similarly,

(anys1 X a)At=(ant1 X ;) (1<i<m) (7

19

A Complete Transformational Toolkit for Compilers

pr>, 0

P>, (lio, s

D1 |>p (Pz |>pl
lo,li0,

(P>, l)o, (7P, s
(PrD, 1) o, (P21, !

©

(a]_ = Qg

a; X CLQ) A (a]_ = as
(a]_ = CLQ) A —|(a1 = as
[m!

((p D [7]) 0 m)!

(a1 < a3) > {ag — m}
(a1 X a3) Dy (s @ ay)
(p>ss)Qa

{a— m}o,s

= {e— (p>rm)}

—|—|p =

(p1 Ap2) Aps
P1 AP

PAD

PATp
(p1Vp2) Vs
P11V P2
pVyp
pVp
(p2V ps)
(p2 A ps)
(p1 A p2)
—(p1 V p2)

p1 A
pLV

-

(a1 < az) s {ag — m}
(a1 X @) Dy (s @ ay)
P>y, (sQa)

so;{a— mo,, (s@a)}

p

p1 A (P2 A ps)

P2 AD1

p

=

p1 V(P2 V ps)
P2V

p

T

(p1 Ap2) V (p1 A ps)
(p1 Vp2) A (p1V p3)
“p1 V ps

“p1 A P2

(L4)
(L7)
(L8)
(L9)
(L10)
(L11)

(A3)
(A4)
(A5)
(A6)

(M7)
(M8)

(S5)
(S9)
(S10)
(S11)
(S12)

(B7)

(B8)

(B9)

(B10)
(B11)
(B12)
(B13)
(B14)
(B15)
(B16)
(B17)
(B18)
(B19)

Figure 9: Additional Equations of PIM .

20

A Complete Transformational Toolkit for Compilers

is provable. Let

II = Y(aN_H = Oéi) V Y(aN_H = ai). (8)
By (B16), (6), and (7)
ImAat=IL 9)

Next, consider —1I A ¢. By bringing ¢ in disjunctive normal form and using

=II = /\ _|(CLN+1 = Oéi) A /\ _|(CLN+1 = ai) (10)
i=1 i=1
we obtain
I At ==IIAY, (11)
where ¢’ does not contain ay.;. Suppose o(t') = F for some valuation o of a4, ..., ay. Since the
number of different address constants is infinite, we can extend o to a valuation o * of a4, ..., anx41

such that *(—II) = T. Since o*(t) = T by assumption, this contradicts (11). Hence, ¢’ is a tautology
and since it contains only N address variables it is provably equal to T by assumption. Hence

—II At = 11 (12)
is provable. By combining (9) and (12) we obtain
t=(MIv-IIAt=MAt)V(-IIAt)=TIVv-II=T.

This completes the proof. A suitable canonical form is the disjunctive normal form without nonessential
variables mentioned before with the additional condition that the corresponding multiset of address
constants and variables is minimal with respect to the multiset extension of the strict partial ordering

earar oy (12> 1). (13)

A multiset gets smaller in the extended ordering by replacing an element in it by arbitrarily many
(possibly 0) elements which are less in the original ordering [30, p. 38]. The canonical form is
determined up to symmetry of =< and up to associativity and commutativity of v and A as before.

Open merge structures with =< but without @ or! These are similar to the if-expressions treated
in [23, Section 3.3], but there are some additional complications.
First, we have

M 0 (P [v]) = (2P Bin M) 0 (P D [v]), (14)
since

m Oy, (P D> [v]) (B15)(T11) (7P D M) 0 (P By M) 0 (P B [])
(g) (_|p Do m) O (p D>m (m Om [’U]))
(M:2) (—|p >m m) Om (p B m [’U])

21

A Complete Transformational Toolkit for Compilers

(14) is a generalization of (M2'). Unfortunately, the even more general equation
M1 O (p I>m m2) = (_'p I>m ml) Om (p I>m m2)
is not valid for p = T and m,; = 0,,,. Instead we have the weaker analogue

(pl |>m l) Om ll Om (Pz |>m l) = ((_‘Pz /\pl) |>m l) Om ll Om (Pz |>m l)7

since
(P1>m) opm Iy 0 (P2 B 1) =
(g1 5 1) 0 (P2 B 1) Om by O (3 B 1)
02 (P1V P2) Bom) 0 by 0 (P2 B 1)
= (P2 AP1)V p2) B 1) 0 Iy 0 (P2 B 1)
2 (2 AP B 1) 0 (02 B 1) 0 Ly O (02 B 1)
C (P2 AP B) o by 0 (2).

(15)

This affects the canonical forms of subterms involving variables of sort M, making them somewhat

more complicated then would otherwise be the case.
(L10) has the equivalent conditional form

PiApPa=F = (p1>,101) 0, (P2, 1) = (p2>,12) 0, (p1 >, 11),

since, assuming p; A p; = F, we have

(P10, 1) 0, (P2 D>, la) (P10, 1) o, ((mpL Ap2) >, la)
@ (P12, 1) 0p (7P1 Dy (P2 B>y 12))
" iy (52, 1)) 0, (P10 1)
= (p2Ppla) o, (P>, lh)

(16) is often more readily applicable than (L10).
Suitable canonical forms for open merge structures without @ or ! are §,,, and

(Py g [Vi]) 0m *+ 0 (P Do [Vi]) 0 (Q1 D M) 0+ ++ 00n (Qr D0 M)
with
(i) P, inboolean canonical form # F, P; A P; = F (i # j)
(i) V; avariable or constantof sort V, V, # V; (i # 7)

(iii) @, inboolean canonical form # F, Q; A Q; = F (i # j)

22

(16)

(17)

A Complete Transformational Toolkit for Compilers

(iv) M, an open merge structure m,, o, m,, o, --- consisting of > 1 different variables

ms,, My, ... of sort M, and M; # M; (i # 7).

It is easily verified that two such canonical forms are equal in I(Pim}) if and only if they are
syntactically equal modulo associativity and commutativity of v and A, modulo symmetry of =, and
modulo associativity and conditional commutativity of o ,,, (equations (L3) and (16) with p = m). The
canonical form is derived as follows:

(1)

()

3)

Move guards inward by (L7), merge multiple guards by (L8), and add missing guards by (L5).
The resulting merge structure has elements P ., [V] and P t>,, m with V a variable or constant
of sort V and m a (single) variable of sort M.

Move elements P >, [V] to the left by (14) followed by as many applications of (16) as
needed. Further applications of (14), (16) and (L11) and normalization of the resulting mutually
exclusive guards P, ..., P, (k > 0) yields a merge structure satisfying conditions (i) and (ii)
of (17). Its tail consists of elements P 1> ,,, m as before.

We show that the tail can be brought in canonical form. For a single element P > ,, m with
m a single variable of sort M this is immediate. Assuming it is true for N elements, a merge
structure (P t>,, m) o,, - - - with N + 1 elements can be brought in the form

(P D>m m) O (Ql D>m Ml) Om *** Om (Qn Dm Mn)7

where m is a single variable of sort M as before, and the tail (Q 1 >>,, M;) o,, - - - is the canonical
form of the last NV elements. In particular, @; A @; = F and M, # M; (< # 7). There are two
cases:

(@) m does notoccur inany M,. Let P, = PA-Q:, Q1 =Q: AN P,Q7 = Q1. AN —P. We have
(P |>m m) Om (Ql |>m Ml) =
= (V@Y mm)on (Q1V Q) >m M)
(Lél) (Pl |>m m) Om (Qll I>m m) Om (Qll |>m Ml) Om (/1/ |>m Ml)

) (Piom m) om (Q) B (M 0y M1)) 0 (QF 1 M),

Since Py, @', QY are mutually exclusive, P, t,, m can be moved to the right of Q7 >, M; by
(16). Next, repeat the above step for

(Pl Dm m) Om (Qz D>m Mz)
and so on until
(Pn—l Dm m) Om (Qn B m Mn)

After normalizing the guards and dropping any element whose guard is F, the result is in
canonical form.

(b) m occurs in at least one M;. First, use (L7) and (15) to replace P r>,, m with P’ >,, m
where P = PA-=Q A-Q'A...forall elements @ >, M, Q'r>,, M’,...suchthat m occursin

23

A Complete Transformational Toolkit for Compilers

M, M’ Move these elements to the left of P’ 1>, m by repeated application of (16). Next,
apply (a) to bring the tail (P’ >,, m) o,, ---in canonical form. Finally, merge any elements
Qr>,, Mand Q' >,, M’ with M = M’ using (16) and (L11).

Open merge structures with < and @ but without! These can be flattened by using the distributive
law (S4) and replacing any dereferenced store cells (P>, {A+— M}) @ A’ withPA(A < A") >, M
by (S11), (S1), (L8). Dereferenced variables (P >, s) @ A with s a variable of sort S and 4 an
address constant or variable, can be replaced by P t>,, (s @ A) by (S11). Any remaining compound
variables s @ A cannot be eliminated but are similar to ordinary variables of sort M except that the
address component A is subject to the substitution law

(a1 X @3) Dy (M1 0 (P (8 @ @1)) 0, M3) =
= (a1 X a3) >y (Mg 0y (P> (8 @ ay)) 0, ma), (18)

which is a consequence of (L7-8), (§10). Two compound variables s @ A and s’ @ A’ are different if
s # s or A # A’ (modulo (18)). Canonical form (17) is still applicable if requirement (iv) is replaced

by

(iv’) M; an open merge structure consisting of > 1 different variables, which may be either ordinary
variables of sort M or compound variables s @ A, and M, # M; (v # j)

(v) The corresponding multiset of address constants and variables is minimal with respect to the
ordering (13).

Hence, an open merge structure with @ but without ! can be brought in
canonical form (17) with (iv’) and (v) instead of (iv). (19)
Open merge structures with ! This is the general case of merge structures. Subterms containing

I'are of the form [M!] for some merge structure M. These subterms can be eliminated by means of
(M7), which is valid in T(Pim]") since

Hence, merge structures with ! can be brought in canonical form (19).

Open terms of sort V. These can be brought in the form M! with M in canonical form (19). If M
has a subterm P r>,,, [?] move it to the leftmost position by repeated application of (16), and eliminate
it with (M8), which is valid in I(Pim;") since

(T 5 [2]) 0 B! = (T [7]) = 7 = B!
(T [2]) 0m (T 5 [o]))! "2 [o)!
((F>pm [1) 0 M) = (B, 0, m)! = ml.

24

A Complete Transformational Toolkit for Compilers

Hence, open terms of sort V have canonical form
M! (M in canonical form (19) without subterm P t>,, [?]). (20)
Open store structures without @ or < and without variablesof sort S We first note the following
immediate consequences of (S8):
{a= mi} o, {a—= my} ={a (mqon ms)} (S6)

(a1 X a3) =F = {a;— mq} o, {as— ma} = {az — my} o, {a; — m} (S7)

(a1 < ag) > ({a1 — my} o {az — my}) =

= =(a1 X az) >; ({az = ma} o, {a; — my}) (21)

(S7) is a conditional commutative law.® (21) is similar but with an appropriate guard rather than a
condition.
Suitable canonical forms in this case are @, and

(Il; >, {A; — Mi}) o, -+ -0, (I, >, {A, — M, }) (22)
with
(i) A; aconstant or variable of sort A
(i) M; a merge structure without =< in canonical form (17) # 0,,

(iii) II; the canonical form # F of

=

k=1

with +(A; < A;) denoting one of A; < A or =(A; < Ay)

(v) V I =T (1<i<n)
A=A,
modulo (S9)

(vi) The corresponding multiset of address constants and variables is minimal with respect to the
ordering (13).

The canonical form is determined up to associativity of o , (equation (L3) with p = s). Furthermore, as

a consequence of requirements (iii) and (iv) at least one of the conditional commutative laws (16), (S7),

(21) applies to any pair of adjacent store cells, and the canonical form is unconditionally commutative.
Unlike the original term, the canonical form is not <-free. It is derived as follows:

®(S6) and (S7) correspond to (S6) and (S7) in the preliminary version of PIM$ given in [18, Figure 6].

25

A Complete Transformational Toolkit for Compilers

(1) Eliminate any > ,-operators by moving them into the store cells by (L8), (L7), (S5).

(2) We show that the resulting sequence of unguarded store cells can be brought in canonical form
by induction on the number N of (different) address variables in it. If N = 0, all addresses are
known and (22) reduces to

(Tos{a, = Mi})os -0, (T {au, — M,}) (24)

with all «;; different in view of (iv) and the A; in canonical form (17) # @,, in view of (ii).
Apart from the normalization of the merge structure components, this canonical form can be
reached by (S7) and (S6).

Assuming store structures with < N address variables can be brought in canonical form (22), let
S be a store structure in canonical form with address variables a 1, . . ., ax and address constants
ay,. .., 0, Let Tl and —1I be given by respectively (8) and (10). We have

S o, {ant1 — Myqa} =
= S O, ((H vV —|H) > {CLN_|_1 = MN+1})

U2 S 0, (15, {awss = Mysa}) o, (<11, {anss = Myii}).
(25)
In view of (10), —IT is an instance of (23), so the last store cell of (25) is already in the required

form apart from straightforward normalization of —II and My, ,. For the next to last cell we
have

I, {any1 — My} =

(8)(;;11) (CLN_|_1 = Oél) > {CLN_|_1 4 MN+1} Og =+

©* 0y (0N+1 = aN) > {anii — My}
(59)(A%) (Oél = aN+1) >s {ar— Myy1}os -+
<+ O (CLN = CLN+1) > {CLN — MN+1}' (26)
Consider a single guarded store cell (a; < anxy1) s {a; — Mxy1} in the right-hand side of
(26). Since S is in canonical form, unconditional commutativity applies and .S = S, o, S5,
where
Sz = (I, > {a; = M, }) o, -+ o, (I, s {ai = My, }) @7)
consists of all guarded store cells with address component a ; (modulo (S9)). By requirements
(iv) and (v), I;, ATL;, = F (A # p)and V5_, IT;, = T. Hence,
So, (@i < ayy1) s {as = Myya}) =
= 51055 0 ((ai = aN+1) > {a; — MN+1})
= Sl Os
(_'(ai = aN+1) B> 52) Os
((ai = CLN+1) > (Sg O {ai — MN+1})) (28)

26

A Complete Transformational Toolkit for Compilers

For the last element of (28) we obtain

Sy 0, {a; = Myyi} =

(27£L5) (Hj1 > {a; — Mjl}) 0, -0, (ij >, {a; — M]k}) 0,
(T {a;— Myya})
(v)(_Lll) (H D> {CLHM })O ++-0 (H > {CLHM })O
- J1 s 4 J1 s s Ik 78 l Ik ¢
(Hh D5 {ai = MN+1}) Os +*+0s (HJ’“ D5 {ai = MN+1})
(Hj1 > {ai — (M] Os MN+1)}) O v~

w0, (IL, oy {a; — (M, o5 Myy1)}).

(iv£S6)

Hence, by (28) and (L8) any guarded store cell II;, >, {a; — M;, } (1 < XA < k) of S, gives
rise to two new ones, namely,

]'_‘[jx A —|(ai = CLN+1) > {ai — M]A}

and
I, A(a; X angr) s {ai — (Mj, oy Myyq)}

Repeating this for all elements of I and substituting in the right-hand side of (25) yields the
required canonical form (22).

Open store structures with @ and = and with variables of sort S, but without variables of sort
A The main equation we need is (S12). Note that in case of a finite number K of address constants
a;, the stronger equation s = ({o; — s @ oy }) o, - -+ 0, ({ax — s @ ax }) would hold.

Since there are no address variables, any occurrences of < can be eliminated by (A1-2) and the
following extension of the simple canonical form (24) applies:

B0, (Tre{au, = My} o, -0 (T {as, = My})) (29)
with
(i) X in canonical form (17) with £ = 0, or rather its equivalent for sort S

(i) the rightmost part in canonical form (24), but with merge structure components M ; in canonical
form (19) # 0,, rather than (17)

(iii) pAg=Fforanyp>, (---o, s)inX and g >,, ((s @ o) 0y, -+) In M.
The canonical form is derived as follows:

(1) Move variables of sort S to the left by repeated application of (S12). The resulting store structure
consists of a sequence %’ of (possibly guarded) variables of sort S followed by a sequence of
(possibly guarded) store cells %”. Bring X’ in the equivalent of canonical form (17) with £ = 0
by using equations (Ln) and (15) with p = s rather than p = m.

27

A Complete Transformational Toolkit for Compilers

(2) Use (S11) to replace any instances of t, with t,, in £” and bring the resulting sequence of
store cells in the form required by (ii).

(3) Suppose (iii) is not satisfied. Move any pair of offending items in adjacent positions using the
commutative laws (16) with p = s for the store variable part, and (S7) and (16) with p = m for
the store cell part. Apply

(ps 8) 05 {a > (¢ (5@ a))} =
= ((pA-g)>ss)o, (PN s s) o
{ar ((PAQ)>.5) @a)}o, {ar ("0 A Q) B (s Ca))}
) (pAag) > s) 0, (PAG) > s) 0, {a > (<P A Q) B (s @ a))}
= (pres)o. {am (A Q) B (s @ a)).

(4) Repeat steps (1)—(3) until both parts are in the required form and (iii) is satisfied.

Unrestricted open store structures The proof is similar to that of boolean terms with =, and
proceeds by induction on the number N of (different) address variables. The case N = 0 (no address
variables) corresponds to the previous case. Assuming the statement holds for equations with < N
address variables, let t; = ¢, be a valid equation with N + 1 address variables a,,...,ayy;. LetII
and —II be given by respectively (8) and (10). First, consider the equation TT >, ¢; = II >, t,. Itis
valid in I(Piv;) and

(&)(L11)

H|>s tl ((CLN+1X061) > tl) Og ++* Oy ((CLN+1 XCLN) > tl)

= ((aN+1 = al) B> ti,l) Og *** O ((aN+1 = aN) D> ti,m+N)7

such that o1, has been eliminated from ¢, ; (: = 1,2, 1 < 7 < m + N) by the substitution laws
(A5-6), (S9-10) in conjunction with the guard propagation laws (L7-8), (S5), (S11). Hence, the
equations ¢, ; = t, ; are provable by assumptionand II o, ¢; = II >, ¢, is provable.

Next, consider the equation —II >, ¢, = —II 1>, t,. Itis valid in I(Pim]). By bringing ¢, and ¢, in
flattened form (see above) and using (10) we obtain —II >, ¢, = =1l >, ¢ (z = 1, 2), where the guards
in ¢, no longer contain a,; although store cells {ax,; — M} and compound variables s @ ap,
are retained.

Suppose the equation —II o>, ¢} = —II >, t} is not provable. Replace a . ; by an address constant
B # o, (1 <k<m). Let

I'=(-I)ans1:=p] = /\ —(a; < B)

i=1
and
t! = tifayy1 := B).

Then the equationI' >, ¢] = I' >, ¢ isnot provable either since it does not allow additional derivation
steps in comparison with —II >, ¢; = =1L >, ¢,. But since it is a valid equation with N variables this

28

A Complete Transformational Toolkit for Compilers

is a contradiction. Hence, —1I >, ¢} = —IIl >, t} is provable, and —-II o>, t; = —II >, ¢, is provable
as well.

This completes the proof. We have not obtained a canonical form in this case. Note, however,
that there is some overlap between the present case and the case based on canonical form (22).

Let PIM; = Pim;" + the equations of Figure 9. In view of the foregoing we have

Proposition 3 PIM; isw-complete.

9 PIMin Practice

9.1 Rewriting PIM Graphs

By orienting equation instances of PiM;~ and implementing the resulting rules on graphs, we obtain
a term graph rewriting system [4]. Such systems can be designed to produce normal forms with a
variety of interesting properties. For example, the graph S5 depicted in Fig. 6 is obtained by first
normalizing the graph Sp, (Fig. 2) with respect to the system Pim;” developed in Section 9.2, then
using instances of equation (S8) of PIM;" to permute addresses with respect to a fixed ordering. Sp,
is the normal form of the Pim representations of both P, (i.e., Sp,) and P; (Fig. 1); therefore, it is
immediate that they are behaviorally equivalent.

The normalization process can be used not only to discover equivalences not apparent from the
initial PIm representations, but also to “build” useful graph-based compiler IRs as a side effect [18].
For example, the composition operator in the subgraph M " of S, is very similar to an instance of the
~ node of GSA form [3]. If we ignore the guard, we can also interpret the composition operator in A4’
as an SSA form ¢ node [12]. The principal difference between these IRs and the class of normal forms
exemplified by S5 is that variable uses are linked directly to the expressions that define their value,
even when, e.g., a chain of copying assignments intervenes (VDGs [41] also have this property).

Fig. 10 depicts the graph Sz , a further simplification of 53 . S7 is also a simplified form of
the Pim translations of programs P; and Ps in Fig. 1. As with S , Sp is produced by a rewriting
system, namely, PiM;” augmented with an oriented instance of PIM; ’s equation (L11), followed as
before by address permutation using (S8). Depending on the application, it may be more appropriate
to use systems that produce normal forms similar to compiler IRs, such as S, rather than simplifying
further to forms such as S,

Consider finally the nC programs depicted in Fig. 11. All of these programs are behaviorally
equivalent; this fact may be deduced by inspection of the normal form graph S5, shown in Fig. 12
(produced by augmenting the system used to produce S , with an oriented instance of equation (L11)).
We know of no intermediate representation in the compiler literature for which the representations of
Ps—P, would be the same.

In general, the design of a Pim-based rewriting systems will be governed by the tradeoffs between
properties desired of normal forms and the time complexity of normalization strategies that yield those
normal forms. As several PIM operators are commutative and associative, one cannot rely entirely
on structural properties of normalized graphs to detect all valid program equivalences. However,

29

A Complete Transformational Toolkit for Compilers

meta(P)

addr(®) = [+ 1}

[(addr(y) =11}

k]{addr(x) =11}

($)

Figure 10: 5% : Simplest PIM representation of programs P;, P;, and P;.

rewriting systems are an important stepping-stone to more powerful decision procedures, and allow
structural identity to be used to detect many more equivalences than would be possible otherwise.

9.2 Confluent Subsystems of Pim;

In this section, we concentrate on obtaining confluent and terminating rewriting systems derived from
PiM; . Much of this work was carried out with the assistance of the TIP inductive theorem proving
system [20], which was used to perform Knuth-Bendix completion [13], and to aid in inductive
verification of equations incorporated in PiM; . While TIP was able to inductively verify many PIM;
equations, the remaining equations had to be verified by hand since we were unable to successfully
use (S8) as a lemma during semi-automatic proofs (other theorem provers available to us had similar
limitations)—details will be discussed elsewhere [37]. Here, we indicate the progress with respect to
converting part of PIM;" into a term rewriting system. We first consider the completion of Pim¢, then
treat the additional equations of Pim;, and finally those of PIM;".

Knuth-Bendix Completion of PIM?. The rewriting system obtained by interpreting the equa-
tions of Pim? as left-to-right rewriting rules and with AC-declarations for A and V is confluent and
terminating with the addition of the rule

(a1 a2) D0 — O, (MAD)

which originates from a critical pair generated from the rules (S1) and (S2). Pim? is ground confluent
even without this rule. Unfortunately, the default mode of TIP’s completion procedure uses the
lexicographic term ordering, which overrides the left-to-right orientation and orients (L3) in the right-
associative direction. With rule (M2), this causes the completion procedure to add an infinite number
of rules

(1 0 (M2 03 (M5 0 [0]) - D= v (3> 2). (30)

However, we can use TIP’s “set permutation” command and allow a left-associative ordering for (L3),
which then yields a complete system without generating any rules in addition to (MAOQ). Alternatively,

30

A Complete Transformational Toolkit for Compilers

/* int x,v,2z; /* int x,v,2z;
int *ptr; int *ptr;
const int ?P; */ const int ?P; */

{ ptr = &z; { ptr = &z;

X = 12; if (! (?P))
y = 17; x = 13;
if (1 (?P)) else
x = 13; x = 12;
Z =Y + X; if (?P)
} y = 17;
else
y = 17;
Z =V + X;
}
P Py
/* int x,y,z; /* int x,vy,z;
int *ptr; int *ptr;
const int ?P; */ const int ?P, ?Q; */
{ ptr = &z;
if (2p) { { ptr = &X;
x = 12; if (?P) {
v = 17; (*ptr) = 12;
} y = 17;
else { }
x = 13; ptr = &y;
y = 17; z = 17;
; if (1 (?P)) {
Z =Y + X;
1 (*ptr) = 19;
X = 13;
ptr = &z;
}
if (?P || 2Q)
ptr = &z;
(*ptr) = v + x;
}
Py Py

Figure 11: Semantically equivalent C programs.

31

A Complete Transformational Toolkit for Compilers

intEq(meta(®) , 0)»L f[13]
JD

[12]
{addr(ptr) = [addr(z)]} \

]{ addr(x) = }

\f{addr(Y)%[1}
A\j,{addr(z) = [intSum(s ,+!)]}

A
($)

17

Figure 12: Sp_: Common representation for Ps, P7, Ps, and Ps.

we can also observe that the infinite number of rules (30) generated above is due to the absence of
the desired unification modulo associativity *° during completion, although we only need matching
modulo associativity during rewriting. The system is complete without the rules (30), in the presence
of rewriting modulo associativity of operator ‘o,,,”. By rewriting modulo associativity we mean, as
usual, that a rule containing this operator is matched against all possible associative variants.

Knuth-Bendix Completion of PiM}. When (M2') is substituted for (M2), the orientation of
(L3) becomes irrelevant, since the context in which the pattern m o,, [v] could be matched is now
immaterial. As a result, TIP’s completion procedure terminates automatically under the default lexi-
cographic term ordering, giving (L3) for the merge case a right-associative orientation and generating
the additional rules (MAQ) and

my O, ([V] 0y m2) — [v] 0y, Ma. (MA1)

If we now force a left-associative orientation of (L3) for the merge case, TIP’s completion procedure
adds only the rule (MAQ). We note that this is a special case of (L4) below.

Adding (S8) is, however, a difficult problem since the equation is (conditionally) commutative. We
therefore proceed by first splitting (S8) into (S6) and (S7) (see p. 25). (S7) is difficult to orient, but (S6)
has an obvious orientation and is in acceptable form for mechanical analyzers. After attempting TIP’s
completion procedure on the system with (S6) and (M2"), we see immediately that the critical pairs that

19 Associative unification is infinitary.

32

A Complete Transformational Toolkit for Compilers

result from (S6) and (S4), using (S1), give rise to a special case of (L7) for p = m. Unfortunately, both
(S6) and (L7) are left-nonlinear rules (when oriented left to right). Obtaining a left-linear completion
is often preferable to a left-nonlinear completion, since

e a left-linear system admits an efficient implementation, without the need for equality tests during
matching;

e when a left-linear system is embedded in the untyped lambda calculus (as is necessary to extend
PiM to arbitrary source programs), it is straightforward to show that the combined system
remains confluent [36].

We therefore consider left-nonlinear equations separately, and proceed for the moment without (S6)
and (L7).

Adding the boolean equations (B7), (B18) and (B19), along with the oriented versions of the
equations (L4) and (L8) results in a confluent and terminating system. (L8) requires us to use
multiset ordering, due to the permutability of the guards. To also accommodate (L3), we use the
generalized recursive path ordering with status, which in TIP is called the “multiset ordering based on
the lexicographic ordering”.

Adding (M7) or (M8) requires that (L3) be oriented in the right-associative direction. This is
caused by the generation of the rule (MA2), which is similar to (M2) (see the completion of Pim?
above) but with a pattern [?] in the context O! appearing on the left. Also, adding (M7) and (M8)
generates the rules (MA1) to (MA5). (MA1) and (MA5) are due to the right-associative ordering
of (L3). The resulting system Pim;” is shown in Figure 13. PiM;” is confluent, terminating, and
left-linear. If we assume rewriting modulo associativity, we do not have to consider explicit versions
of (L3) and thus (MA1) and (MAS5) can be dispensed with (see Table 1).

Enhancing the rewriting systems. Further enrichments to PImM;” seem to require left-nonlinear
rules in order to achieve confluence. Adding (L7), we require the additional rules (MB1)—(MB4)
shown in Fig. 14. If we then add (S6), we need the rule (SB1), also shown in Fig. 14. Adding all the
rules in Fig. 14 to those of PIm;”, we get the system Pim; ™.

If we enrich Pim;~ with the equations (B10), (B14) and (B16), oriented left-to-right, the completion
procedure of the LP system [21] adds the absorption law

pV(pAp) — P (BA1)

Finally, both Pim;” and Pim;™ produce normal forms modulo associativity and commutativity of A
and v, i.e., with respect to (B8), (B9), (B12) and (B13). Rewriting modulo associativity is commonly
available since it can be efficiently implemented. We can obtain several variants of these systems by
choosing rewriting modulo associativity, or modulo associativity and commutativity. For example, we
can treat (L3) and thus (MAL), (MA5), (MB3), (MB4) and (SB1) using rewriting modulo associativity.
Table 1 describes some of them. Note that Pim;” does not require rewriting modulo associativity and
commutativity, since it can be enhanced with the symmetric variants of the rules (B3)—(B6) and the
two associativity rules for A and V.

Problematic equations. Attempts to obtain further enriched confluent and terminating rewriting
systems have been unsuccessful thus far. Adding both (B16) and (B17) results in a non-terminating

33

A Complete Transformational Toolkit for Compilers

SYSTEMS

PROPERTIES

Pim?, equations oriented left-to-right
+ (B8), (B12), (B3)—(B6)

ground-confluent,
terminating, left-linear

Pim?, equations oriented left-to-right
+ (MAQ0), (B8), (B12), (B3)-(B6)

confluent,
terminating, left-linear

Pimy, equations oriented left-to-right
+ (MAO), (B3)-(B6)

- (L3)

+ rewriting modulo A

confluent (modulo A),
terminating, left-linear

Pimy, equations oriented left-to-right
+ (MAQ)

confluent (A, V: modulo AC),
terminating, left-linear

PiM;T — (S8), equations oriented left-to-right
+ (B8), (B12), (B3)-(B6)

ground-confluent,
terminating, left-linear

PiM;F — (S8), equations oriented left-to-right
+ (MAO), (B8), (B12), (B3)-(B6)

confluent,
terminating, left-linear

PiM;" — (S8), equations oriented left-to-right
+ (MAO), (B3)-(BS)

- (L3)

+ rewriting modulo A

confluent (modulo A),
terminating, left-linear

PIM;T — (S8), equations oriented left-to-right
+ (MAO0)

confluent (A, V: modulo AC),
terminating, left-linear

PiM;” confluent,

+ (B8), (B12), (BSﬁBG) terminating, left-linear
Pim;”

+ (B3)—(B6) confluent (o ,,: modulo A),

— (L3), (MAL), (MAS)
+ mod A rewriting

terminating, left-linear

Pim;” confluent (A, V: modulo AC),
terminating, left-linear
Pim;” confluent (A, V: modulo AC),

1 (B10), (B14), (B16), (BA1)

terminating, left-nonlinear

PIM,” confluent (A, V: modulo AC)
terminating, left-nonlinear
PIM,~ confluent

— (L3), (MA1), (MA5), (MB3), (MB4), (SB1)
+ mod A rewriting

(A, v: modulo AC; o ,: modulo A),
terminating, left-nonlinear

Mod A rewriting: Rewriting using associative matching for associative operators.
(B3)-(B6): Symmetric versions of the rules (B3), (B4), (B5) and (B6).

Table 1: Properties of some of the PIM; systems.

34

A Complete Transformational Toolkit for Compilers

(lyo,13) 0,15
pr>,0,
T,

F>,l

P1D, (P2, 1)

{a; — m} Q q,
{a+0,}

0, @aqa
(s1058,)Qa
prs {a— m}
(prss)Qa

(Oéi = Oéi)
(Oéi = Oéj)

0!

[ml]

(P [?]) om m)!
T

-F

TAp

FAp

Tvyp

Fvp

=p

—(p1 A p2)

—(p1 V p2)

My O, ([V] 0y M2)

([?] o m)!

(p>m [?])!

[?] om (P B [7])

[?] om ((p B> [7]) 0 m)

A

L

!

!

L A A

L A A

©

= S
23

3

(L1)
(L2)
(L3)
(L4)
(LS)
(L6)
(L8)

(S1)
(S2)
(S3)
(S4)
(S5)
(S11)

(A1)
(A2)

(M2
(M3)
(M4)
(M7)
(M8)

(B1)
(B2)
(B3)
(B4)
(B5)
(B6)
(B7)
(B18)
(B19)

(MAL)
(MA2)
(MA3)
(MA4)
(MAD5)

Figure 13: Rewriting rules of Pim;”.

35

—

A Complete Transformational Toolkit for Compilers

p>,(lio,ly) = (P, 1) o, (P>, s) (L7)

{a = mi} o, {a— my} — {a+— (my o0, my)} (S6)
(P B m) 0 (P B [v]) = P [0] (MB1)
(PAPL) Brm) 0 (p D [v]) = PP [v] (MB2)
(PBm M) 0m (P [v]) 0 m) — (P D [v]) 0 m (MB3)
(P ADP1) B M) 0m (P B [v]) 0 m) — (P Doy [V]) 0 m (MB4)
{a— mi}o, ({a— mz}o,s) = {a— (myo,ma)}to, s (SB1)

Figure 14: PIM;~ = PIM;”+ rules above.

system. Even adding one of them causes problems for the TIP system. The left-nonlinear rules resulting
from (B10), (B11), (B14) and (B15) cause problems with TIP’s treatment of AC declarations. Unlike
TIP, LP was able to add (B10), (B14) and (B16) to Pim;”. (A4), (A5), (A6), (S9), (S10) are good
candidates to be put in the set of “modulo” equations but we are not aware of any available KB-
completion system that allows it. (S12) and the general form of (S8) cannot be ordered properly and
thus lead to non-terminating term rewriting systems. (L9), (L10) and (L11) lead to left-nonlinear rules,
which again cause problems for completion modulo AC. Despite these difficulties, we conjecture that
larger confluent subsystems of Pim;~ exist, particularly if we consider confluence modulo associativity,
idempotence, identity, and commutativity. Finding such systems is left as future work. One approach
might be to incorporate Hsiang and Dershowitz’s confluent w-complete specification of the booleans
[25], since the well-known disjunctive and conjunctive boolean normal forms are not produced by
any rewriting system. We have not been more successful here, again due to the interference of the
left-nonlinear rules in these booleans with the other left-nonlinear rules of PIM.

10 Extensions and Future Work
There are four major areas in which we would like to see additional work:

¢ Using the canonical forms discussed in this paper to develop a decision procedure for Pim ;.

¢ Providing a more extensive formal treatment of Pim’s embedding into the untyped A-calculus
than that of [18] and [19], addressing in particular nontermination issues and the induction rule
used in [18].

¢ Obtaining completeness results for variants of Pim., including versions with no restrictions on
the formation of address or predicate expressions, variants incorporating the merge distribution
rules, as used for addresses in [18] and generalized in [19], and extensions with non-trivial value
operations.

e Constructing confluent and/or terminating rewriting subsystems of Pim ;~ stronger than Pim;”.

36

A Complete Transformational Toolkit for Compilers

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

AMMARGUELLAT, Z. A control-flow normalization algorithm and its complexity. |EEE Transac-
tions on Software Engineering 18, 3 (March 1992), 237-251.

BAckus, J. Can programming be liberated from the von Neumann style? A functional style and
its algebra of programs. Communicationsof the ACM 21, 8 (August 1978), 613-641.

BALLANCE, R. A., MACCABE, A. B., AND OTTENSTEIN, K. J. The program dependence Web:
A representation supporting control-, data-, and demand-driven interpretation of imperative
languages. In Proc. ACM S GPLAN Conference on Programming Language Design and Imple-
mentation (White Plains, NY, June 1990), pp. 257-271.

BARENDREGT, H., VAN EEKELEN, M., GLAUERT, J., KENNAWAY, J., PLASMEIJER, M., AND SLEEP,
M. Term graph rewriting. In Proc. PARLE Conference, \Vol. Il: Parallel Languages (Eind-
hoven, The Netherlands, 1987), vol. 259 of Lecture Notesin Computer Science, Springer-Verlag,
pp. 141-158.

BERGSTRA, J., AND HEERING, J. Which data types have w-complete initial algebra specifications?
Theoretical Computer Science 124 (1994), 149-168.

BERGSTRA, J., AND TUCKER, J. The data type variety of stack algebras. Annals of Pure and
Applied Logic 73, 1 (May 1995), 11-36.

BERLIN, A., AND WEISE, D. Compiling scientific code using partial evaluation. IEEE Computer
23, 12 (December 1990), 25-36.

BoeHM, H.-J. Side effects and aliasing can have simple axiomatic descriptions. ACM Trans. on
Programming Languages and Systems 7, 4 (October 1985), 637-655.

CARTWRIGHT, R., AND FELLEISEN, M. The semantics of program dependence. In Proc. ACM
S GPLAN Conference on Programming Language Design and Implementation (Portland, OR,
June 1989), pp. 13-27.

CHAMBERS, C., AND UNGAR, C. Customization: Optimizing compiler technology for Self, a
dynamically-typed object-oriented programming language. In Proc. ACM SIGPLAN Conf. on
Programming Language Design and | mplementation (1989), pp. 146-160.

CLick, C. Global code motion, global value numbering. In Proc. ACM SSGPLAN Conf. on
Programming Language Design and Implementation (La Jolla, CA, June 1995), pp. 246-257.
Published as ACM SIGPLAN Notices 30(6).

CYTRON, R., FERRANTE, J., ROSEN, B. K., WEGMAN, M. N., AND ZADECK, F. K. Efficiently
computing static single assignment form and the control dependence graph. ACM Trans. on
Programming Languages and Systems 13, 4 (October 1991), 451-490.

37

A Complete Transformational Toolkit for Compilers

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

DERSHOWITZ, N., AND JOUANNAUD, J.-P. Rewrite systems. In Handbook of Theoretical Computer
Science, Vol. B, Formal Models and Semantics, J. van Leeuwen, Ed. Elsevier/The MIT Press,
1990, pp. 243-320.

ErRsHOV, A. Mixed computation: Potential applications and problems for study. Theoretical
Computer Science 18 (1982), 41-67.

ERsHOv, A. P, AND OsTROVSKI, B. N. Controlled mixed computation and its appplication to
systematic development of language-oriented parsers. In Program Specification and Transfor-
mation, L. Meertens, Ed. North-Holland, 1987, pp. 31-48.

FELLEISEN, M., AND FRIEDMAN, D. P. A syntactic theory of sequential state. Theoretical
Computer Science 69 (1989), 243-287.

FERRANTE, J., OTTENSTEIN, K. J., AND WARREN, J. D. The program dependence graph and its
use in optimization. ACM Trans. on Programming Languages and Systems 9, 3 (July 1987),
319-349.

FIELD, J. A simple rewriting semantics for realistic imperative programs and its application to
program analysis. In Proc. ACM Sl GPLAN Workshop on Partial Eval uation and Semanti cs-Based
Program Manipulation (San Francisco, June 1992), pp. 98-107. Published as Yale University
Technical Report YALEU/DCS/RR-909.

FIELD, J., RAMALINGAM, G., AND TIp, F. Parametric program slicing. In Proc. Twenty-second
ACM Symp. on Principles of Programming Languages (San Francisco, January 1995), pp. 379—
392.

FrRAus, U. Inductive theorem proving for algebraic specifications—TIP system user’s manual.
Tech. Rep. MIP 9401, University of Passau, 1994. The TIP system is available at URL:
ftp://forwiss.uni-passau.de/pub/local/tip.

GARLAND, S., AND GUTTAG, J. A Guide to LP, The Larch Prover. Tech. Rep. 82, Systems
Research Center, DEC, Dec 1991.

HEERING, J. Variaties op het thema ‘stack’. Tech. Rep. CS-N8502, CWI, Amsterdam, 1985. (In
Dutch).

HEERING, J. Partial evaluation and w-completeness of algebraic specifications. Theoretical
Computer Science 43 (1986), 149-167.

HOARE, C., HAYES, |., JIFENG, H., MORGAN, C., ROSCOE, A., SANDERS, J., SORENSEN, |., SPIVEY,
J., AND SUFRIN, B. Laws of programming. Communications of the ACM 30, 8 (August 1987),
672—-686.

HSIANG, J., AND DERSHOWITZ, N. Rewrite methods for clausal and non-clausal theorem proving.
In Automata, Languagesand Programming (10th I CALP) (1983), J. Diaz, Ed., vol. 154 of Lecture
Notesin Computer Science, Springer-Verlag, pp. 331-346.

38

A Complete Transformational Toolkit for Compilers

[26] HUGHES, J. Why functional programming matters. Report 16, Programming Methodology
Group, Department of Computer Sciences, Chalmers University of Technology and University
of Goteborg, S-412 96 Goteborg, Sweden, 1984.

[27] JiIFENG, H., AND HOARE, C. From algebra to operational semantics. Information Processing
Letters 45 (February 1993), 75-80.

[28] JONES, N., GOMARD, C., AND SESTOFT, P. Partial Evaluation and Automatic Program Genera-
tion. Prentice-Hall, 1993.

[29] KaHN, G. Natural semantics. In Fourth Annual Symp. on Theoretical Aspects of Computer
Science (1987), vol. 247 of Lecture Notesin Computer Science, Springer-Verlag, pp. 22-39.

[30] KrLop, J. Term rewriting systems. In Handbook of Logicin Computer Science, Vol. 11, S. Abram-
sky, D. Gabbay, and T. Maibaum, Eds. Oxford University Press, 1992, pp. 1-116.

[31] LAZREK, A., LESCANNE, P., AND THIEL, J.-J. Tools for proving inductive equalities, relative
completeness, and w-completeness. Information and Computation 84 (1990), 47-70.

[32] MAsoN, I. A., AND TALcOTT, C. Axiomatizing operational equivalence in the presence of side
effects. In Proc. Fourth IEEE Symp. on Logic in Computer Science (Cambridge, MA, March
1989), pp. 284-293.

[33] MEINKE, K., AND TUCKER, J. Universal algebra. In Handbook of Logicin Computer Science, Vol.
[, S. Abramsky, D. Gabbay, and T. Maibaum, Eds. Oxford University Press, 1992, pp. 189-411.

[34] MESEGUER, J., AND GOGUEN, J. Initiality, induction and computability. In Algebraic Methods
in Semantics, M. Nivat and J. Reynolds, Eds. Cambridge University Press, 1985, pp. 459-541.

[35] MossEs, P. A basic abstract semantic algebra. In Proc. Semanticsof Data Types (1984), vol. 173
of Lecture Notesin Computer Science, Springer-Verlag, pp. 87-107.

[36] MULLER, F. Confluence of the lambda calculus with left-linear algebraic rewriting. Information
Processing Letters 41 (1992), 293-299.

[37] NAIDICH, D., AND DINESH, T. B. An automated induction method for verification of PiIM—a
transformational toolkit for compilers. Tech. rep., CWI, Amsterdam, The Netherlands, 1996.
Upcoming report.

[38] NIRKHE, V., AND PUGH, W. Partial evaluation of high-level imperative programming languages
with applications in hard real-time systems. In Proc. Nineteenth ACM Symp. on Principles of
Programming Languages (Albuquerque, NM, January 1992), pp. 269-280.

[39] ODERsKY, M., RABIN, D., AND HUDAK, P. Call by name, assignment, and the lambda calculus. In
Proc. Twentieth ACM Symp. on Principlesof Programming Languages (Charleston, SC, January
1993), pp. 43-56.

39

A Complete Transformational Toolkit for Compilers

[40] SwARUP, V., REDDY, U., AND IRELAND, E. Assignments for applicative languages. In Proc. Fifth
ACM Conf. on Functional Programming Languagesand Computer Architecture (August 1991),
vol. 523 of Lecture Notes in Computer Science, Springer-Verlag, pp. 192-214.

[41] WEISE, D., CREw, R., ERNST, M., AND STEENSGAARD, B. Value dependence graphs: Repre-
sentation without taxation. In Proc. Twenty-First ACM Symp. on Principles of Programming
Languages (Portland, OR, January 1994), pp. 297-310.

[42] WIRSING, M. Algebraic specification. In Handbook of Theoretical Computer Science, Vol. B,
Formal Modelsand Semantics, J. van Leeuwen, Ed. Elsevier/The MIT Press, 1990, pp. 675-788.

[43] YANG, W., HORWITZ, S., AND REPS, T. Detecting program components with equivalent behaviors.
Tech. Rep. 840, University of Wiconsin-Madison, April 1989.

[44] YANG, W., HORWITZ, S., AND REPS, T. A program integration algorithm that accommodates
semantics-preserving transformations. In Proc. Fourth ACM S GSOFT Symp. on Software
Development Environments (Irvine, CA, December 1990), pp. 133-143.

40

A Complete Transformational Toolkit for Compilers

A pC-To-Pim Translation

A.l pC Programs to Pim Terms

The syntax of nC is given in Fig. 15. A formal description of the translation of .C programs to Pim
terms is given in Figures 16 and 17. The translation is written in the style of Natural Semantics [29],
and adheres very closely to standard C semantics, e.g., integers are used to represent boolean values.

The translation uses several different sequent forms corresponding to the principal uC syntactic
components. These sequent forms are as follows:

s F ¢ =pgm U
s F ¢ =gtmt U
sk ¢ =gy (v, u)
s ¢ =pxp, (v, u)
sk ¢ = Exp, v

S l_ C = Lvalue <CL, u>

S l_ c :>LVa1ueu <CL, u>
S l_ c :>LVa1uep a

Each of the sequents above takes a uC construct ¢ and an incoming Pim store s, and yields a Pim
term or a pair'! of Pim terms, depending on the nature of the C construct being translated. Pure
expressions (those having no side-effects) and unpure expressions are distinguished in the translation
process; subscripts p and w are used to denote the two types. Details of the sequent types are as
follows:

e Sequents with * =" are used to translate statements. Sequents with * = p,,," are used to
translate entire programs. Both yield a Pim store term « corresponding to the cumulative effect
of updatesto the store made by the statement or program.

e Sequents with * =gy, * are used to translate pure expressions computing ordinary values.
Sequents with * = 1ya1u., are used to translate pure expressions computing L-values (addresses).
An instance of the former yields a Pim base value term v corresponding to the expression’s
value; an instance of the latter yields a Pim address term « corresponding to the expression’s
L-value.

e Sequents with * =g, * are used to translate unpure expressions computing ordinary values.
Sequents with * = 1va14e,” are used to translate unpure expressions computing L-values. An
instance of the former yields a pair (v, u) consisting of the Pim base value term v corresponding
to the expression’s value and the Pim store term « corresponding to the expression’s side effects.
An instance of the latter yields a pair (@, u) consisting of the Pim address term a corresponding
to the expression’s L-value and the store term « corresponding to the expression’s side effects.

X The pair constructor {-, -} is an auxiliary symbol used only during the translation process; it is not itself a function
symbol of Pim.

41

A Complete Transformational Toolkit for Compilers

Pgm := {StmtList }

Stmt
StmtList Stmt

StmtList

Stmt Exp ;
if (Exp) Stmt
if (Exp) Stmt else Stmt

{ StmtList }

Exp Exp,

Exp,

Id
IntLiteral
?1d

Exp,

Exp, == *Exp
| & LValue
| LValue = Exp
| LValue += Exp
| Exp + Exp
| ! Exp
| Exp || Exp

LValue := LValue,
| LValue,

LValue, == 1Id

Lvalue, == =* Exp

Figure 15: Syntax of uC.

42

A Complete Transformational Toolkit for Compilers

0, F Stmt =stmt

(P)
F Stmt =pgm ©
sk Stmt =sims u
(S1) Stmt
sk {Stmt } =sime u
sk {StmtList } =simt u,
(52) soul Stmt =sgim: o
s+ { StmtList Stmt } =simt wou
sk Exp =Exp (v, v
5 o)
st Exp; =sim u
st Exp =Exp {vE, uE),
(Ss) soup b Stmt =sims us vg = ItoB(vg)

sk if (Exp) Stmt =simt um o (v D> us)

st Exp =Exp {vE, uE),

I
s’ F Stmt u
1 =Stmt USy, s’ =soup

(5s)

s'F Stmty =sim: us, vy = ItoB(vg)
sk if (Exp) Stmt; else Stmte =>simt
ug 0 (’U}E > u51) o (_"U}E > usz)

(En) sk Expp =Bxp, ¥

st Exp, =Exp (v, 0s)

st Exp, =Ex v, U
- e (0 0)

s+ Exp, =Exp (v, u)
(Epy) sk Id =Exp, S @ addr(Id)!
(Ep,) s F IntLiteral =Exp, IntLiteral
(Eps) sk 2Id =Bxp, meta(ld)

st Exp =Exp (v, u)
(Bur) -

st *Exp =pxp, {(s0u)Q@u!, u)

Figure 16: Translation rules for nC, Part I.

43

A Complete Transformational Toolkit for Compilers

where:

(Buz)

(Eus)

(Bus)

(Eus)

(Eue)

(Eu7)

(L1)

(L2)

(L)

(L)

sk LValue =rvae (v, u)

st &LValue =gxp, (v, u)

sk EXP :>Expu <71E7 uE):

soug F LValue =rvane (vz, ur)
s - LValue = Exp =Exp,
{ve, wg o ur o {vr — [vE]})

sk EXP :>Expu <71E7 uE):
u' = U O UL

S0U I—LValue = LValue vL, W
5 Lvalue (UL, uL) v/ = intSum((s o w') @vr !, vg)

s I LValue += Exp =gxp,
(v, v o {vr — [¥]})

st Exp, =Exp, (v1, 1),

sour - Exp, =Exp, (v2, u2)

s - Exp; + Exp, =Exp,
(intSum(vy , v2), u1 0 uz)

st Exp =Exp (v, u)
st | Exp =gxp, (Btol(—ItoB(v)), u)

st Exp, =Exp, (v1, 1),

sour - Exp, =Exp, (v2, u2)

s Exp, || Exp, =Exp,
{BtoI(ItoB(v1) V ItoB(v2)), u1 0 uz)

s LValue, =tivalue, @

st LValue, =Lvane {a, 0.)

sk LValueu :>LVa1ueu <a7 u)

sk LValueu = LValue <a7 u)

sk Id =tLvae, addr(Id)

st Exp =EBxp, (@, u)

stk * Exp =Lvalue, (@, u)

ItoB(v) = —(intEq(v, 0))
BtoI(v) = ([0] o (v > [1]))!

Figure 17: Translation rules for x.C, Part II.

44

A Complete Transformational Toolkit for Compilers

e Sequents with “ =g’ Or “ =rvaiwe are used to translate arbitrary ordinary or L-valued expres-
sions. They yield pairs of the form (v,) or (a, u), respectively. Rules using these sequents
simply choose the appropriate pure or unpure sequents, depending on the type of construct being
translated.

As an example of how the translation process works, consider rule (£ ;) in Fig. 17. This rule may
be read as follows: Given n.C expression Exp, + Exp, and incoming PiMm store s, first translate Exp,
to the pair (vy, uq) using initial store s. Term v, represents the value of Exp,, and term w; represents
the side effects occurring in Exp,. Next, translate Exp, in an initial store given by the composition
of store s and store w4, yielding pair (v,, uy). This means that any side effect occurring in Exp,
is accounted for in the store used to translate Exp ,, thus effectively encoding a left-to-right order of
evaluation. Finally, the Pim term corresponding to the entire expression Exp ; + Exp, is given by the
pair (intSum(v; , v2), uy 0 uz). The term intSum(v; , w,) corresponds to the sum of v, and v, and
the term u; o w, is the PIM store corresponding to the cumulative side effects occurring in both Exp ,
and Exp,.

A.2 PimM Terms to Pim Graphs

The translation given in Figures 16 and 17 takes a C program and produces a PIm term. To get the
Pim graphsused in the examples in the main body of the paper, we simply adopt the convention that
any term bound to a variable used in a translation rule may be shared if that variable appears more
than once in the rule. For example, in the case of rule (E,5), the incoming store s appears twice in
the rule’s antecedent. If the term bound to s is used in the translation of both Exp ; and Exp, (which
would happen, e.g., if both Exp, and Exp, were identifiers, causing rule (£,,) to be applicable to
each), then the term bound to s may be shared.

In almost all cases where multiple instances of the same variable appear, the variable represents a
Pim store. This should not be surprising, since the store must be “threaded” by the translation rules to
every expression that could possibly use it—note, e.g., the extensive sharing of substores that occurs
in the Pim graph Sp, of Fig. 2. However, multiple instances of other kinds of variables also appear in
the rules, e.g., in rules (Ss) and (E.,,).

Although shared subgraphs arise most naturally from the structure of the rules used in the transla-
tion, is often also useful to share identical subgraphs generated “serendipitously” during the translation
of unrelated parts of the uC program. Such sharing is often referred to as value numbering in the
program optimization literature, and hash consing in the functional and symbolic computation liter-
ature. However, unlike many IRs used in program optimization, it is always semantically valid to
share identical Pim subgraphs, regardless of whether they represent statements or expressions, and
regardless of the context in which they are used.

45

A Complete Transformational Toolkit for Compilers

B A Simple Example—Proofs

B.1 I(Stack®) = Fy(STACK)

It is sufficient to show that two distinct terms in normal form (2) are observationally distinct. Let

ty = push(a,,,...,push(a;,,0)...)
ty = push(a;,,...,push(a; ,0)...)

be two distinct normal forms, i.e., p # g or a;, # a;, forsome & > 1. In the first case (p > ¢ say), ¢
and ¢, are distinguished by the context C', = top(pop?~*(0)) since

Cot1) = @i, # a1 = Cp(ta).
In the second case they are distinguished by ', since

Ci(t1) = as, # a5, = Ci(t2).

B.2 STACK™ isw-Complete

Normal forms of sort V are (i) constants a1, ...,ay (N > 1); (ii) variables v, .. .; and (iii) terms
C,(t) = top(pop™*(t)) with ¢ a variable of sort S. We have to check all combinations of normal
forms. These are easily seen to be different in I(STack™). For instance, the normal forms C(s) and
C,(s) are distinguished by the substitution s = push(a ,,?). Note the importance of N > 1.

Normal forms of sort S are (i) ground normal forms (2); (ii) variables s, . . .; (iii) terms pop™(t)
with ¢ a variable of sort S and » > 1; (iv) terms push(a;, t) with ¢ a normal form of sort S containing
at least one variable; (v) terms push(t,, t) with ¢; a variable of sort V and ¢, a normal form of sort S;
and (vi) terms push(C,(t1), ;) with t; a variable of sort S, and ¢, a normal form of sort S # pop™(t;)
in view of (3).

As before, we have to check all combinations of normal forms. The only nontrivial cases are
(iv)—(vi). Letthe length of an equation be the number of nonlogical symbolsin it. For instance, (3) has
length 6. We proceed by induction on the length of equations. (a) The equations of length < 6 valid in
I(Stack™) are provable from (St1)-(St4), (1), (3). (b) Assume the valid equations of length < = are
provable. Let push(ty,t,) = t3 be a valid equation of length n. Then top(¢3) = ¢, and pop(t3) = i,
are valid equations of length < =, and hence provable by assumption. Hence, push(t,t,) = ¢ itself
is provable since push(ty,t2) = push(top(ts), pop(ts)) = t3 by (3).

46

