17 research outputs found

    Novel Levenberg–Marquardt based learning algorithm for unmanned aerial vehicles

    Get PDF
    In this paper, Levenberg–Marquardt inspired sliding mode control theory based adaptation laws are proposed to train an intelligent fuzzy neural network controller for a quadrotor aircraft. The proposed controller is used to control and stabilize a quadrotor unmanned aerial vehicle in the presence of periodic wind gust. A proportional-derivative controller is firstly introduced based on which fuzzy neural network is able to learn the quadrotor's control model on-line. The proposed design allows handling uncertainties and lack of modelling at a computationally inexpensive cost. The parameter update rules of the learning algorithms are derived based on a Levenberg–Marquardt inspired approach, and the proof of the stability of two proposed control laws are verified by using the Lyapunov stability theory. In order to evaluate the performance of the proposed controllers extensive simulations and real-time experiments are conducted. The 3D trajectory tracking problem for a quadrotor is considered in the presence of time-varying wind conditions

    Fast and accurate trajectory tracking control of an autonomous surface vehicle with unmodeled dynamics and disturbances

    Get PDF
    In this paper, fast and accurate trajectory tracking control of an autonomous surface vehicle (ASV) with complex unknowns including unmodeled dynamics, uncertainties and/or unknown disturbances is addressed within a proposed homogeneity-based finite-time control (HFC) framework. Major contributions are as follows: (1) In the absence of external disturbances, a nominal HFC framework is established to achieve exact trajectory tracking control of an ASV, whereby global finitetime stability is ensured by combining homogeneous analysis and Lyapunov approach; (2) Within the HFC scheme, a finite-time disturbance observer (FDO) is further nested to rapidly and accurately reject complex disturbances, and thereby contributing to an FDO-based HFC (FDO-HFC) scheme which can realize exactness of trajectory tracking and disturbance observation; (3) Aiming to exactly deal with complicated unknowns including unmodeled dynamics and/or disturbances, a finite-time unknown observer (FUO) is deployed as a patch for the nominal HFC framework, and eventually results in an FUO-based HFC (FUOHFC) scheme which guarantees that accurate trajectory tracking can be achieved for an ASV under harsh environments. Simulation studies and comprehensive comparisons conducted on a benchmark ship demonstrate the effectiveness and superiority of the proposed HFC schemes

    Finite-Time Observer Based Guidance and Control of Underactuated Surface Vehicles with Unknown Sideslip Angles and Disturbances

    Get PDF
    Suffering from complex sideslip angles, path following control of an under actuated surface vehicle (USV) becomes significantly challenging and remains unresolved. In this paper, a finite-time observer based guidance and control (FOGC) scheme for path following of an USV with time-varying and large sideslip angles and unknown external disturbances is proposed. The salient features of the proposed FOGC scheme are as follows: 1) time-varying large sideslip angle is exactly estimated by a finite-time sideslip observer, and thereby contributing to the sideslip-tangent line-of-sight guidance law which significantly enhances the robustness of the guidance system to unknown sideslip angles which are significantly large and time-varying; 2) a finite-time disturbance observer (FDO) is devised to exactly observe unknown external disturbances, and thereby implementing FDO-based surge and heading robust tracking controllers, which possess remarkable tracking accuracy and precise disturbance rejection, simultaneously; and 3) by virtue of cascade analysis and Lyapunov approach, global asymptotic stability of the integrated guidance-control system is rigorously ensured. Simulation studies and comparisons are conducted to demonstrate the effectiveness and superiority of the proposed FOGC scheme

    Fuzzy logic-based implicit authentication for mobile access control

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.In order to address the increasing compromise of user privacy on mobile devices, a Fuzzy Logic based implicit authentication scheme is proposed in this paper. The proposed scheme computes an aggregate score based on selected features and a threshold in real-time based on current and historic data depicting user routine. The tuned fuzzy system is then applied to the aggregated score and the threshold to determine the trust level of the current user. The proposed fuzzy-integrated implicit authentication scheme is designed to: operate adaptively and completely in the background, require minimal training period, enable high system accuracy while provide timely detection of abnormal activity. In this paper, we explore Fuzzy Logic based authentication in depth. Gaussian and triangle-based membership functions are investigated and compared using real data over several weeks from different Android phone users. The presented results show that our proposed Fuzzy Logic approach is a highly effective, and viable scheme for lightweight real-time implicit authentication on mobile devices

    Underwater Vehicles

    Get PDF
    For the latest twenty to thirty years, a significant number of AUVs has been created for the solving of wide spectrum of scientific and applied tasks of ocean development and research. For the short time period the AUVs have shown the efficiency at performance of complex search and inspection works and opened a number of new important applications. Initially the information about AUVs had mainly review-advertising character but now more attention is paid to practical achievements, problems and systems technologies. AUVs are losing their prototype status and have become a fully operational, reliable and effective tool and modern multi-purpose AUVs represent the new class of underwater robotic objects with inherent tasks and practical applications, particular features of technology, systems structure and functional properties

    Air Force Institute of Technology Research Report 2012

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems and Engineering Management, Operational Sciences, Mathematics, Statistics and Engineering Physics

    Air Force Institute of Technology Research Report 1997

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology\u27s Graduate School of Engineering and the Graduate School of Logistics and Acquisition Management. It describes research interests and faculty expertise; list student theses/dissertations; identifies research sponsors and contributions; and outlines the procedure for contacting either school

    Air Force Institute of Technology Research Report 2011

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems and Engineering Management, Operational Sciences, Mathematics, Statistics and Engineering Physics

    A vision-based optical character recognition system for real-time identification of tractors in a port container terminal

    Get PDF
    Automation has been seen as a promising solution to increase the productivity of modern sea port container terminals. The potential of increase in throughput, work efficiency and reduction of labor cost have lured stick holders to strive for the introduction of automation in the overall terminal operation. A specific container handling process that is readily amenable to automation is the deployment and control of gantry cranes in the container yard of a container terminal where typical operations of truck identification, loading and unloading containers, and job management are primarily performed manually in a typical terminal. To facilitate the overall automation of the gantry crane operation, we devised an approach for the real-time identification of tractors through the recognition of the corresponding number plates that are located on top of the tractor cabin. With this crucial piece of information, remote or automated yard operations can then be performed. A machine vision-based system is introduced whereby these number plates are read and identified in real-time while the tractors are operating in the terminal. In this paper, we present the design and implementation of the system and highlight the major difficulties encountered including the recognition of character information printed on the number plates due to poor image integrity. Working solutions are proposed to address these problems which are incorporated in the overall identification system.postprin

    Fourth SIAM Conference on Applications of Dynamical Systems

    Get PDF
    corecore