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Abstract—In this paper, fast and accurate trajectory tracking
control of an autonomous surface vehicle (ASV) with com-
plex unknowns including unmodeled dynamics, uncertainties
and/or unknown disturbances is addressed within a proposed
homogeneity-based finite-time control (HFC) framework. Major
contributions are as follows: (1) In the absence of external
disturbances, a nominal HFC framework is established to achieve
exact trajectory tracking control of an ASV, whereby global finite-
time stability is ensured by combining homogeneous analysis and
Lyapunov approach; (2) Within the HFC scheme, a finite-time
disturbance observer (FDO) is further nested to rapidly and
accurately reject complex disturbances, and thereby contributing
to an FDO-based HFC (FDO-HFC) scheme which can realize
exactness of trajectory tracking and disturbance observation; (3)
Aiming to exactly deal with complicated unknowns including
unmodeled dynamics and/or disturbances, a finite-time unknown
observer (FUO) is deployed as a patch for the nominal HFC
framework, and eventually results in an FUO-based HFC (FUO-
HFC) scheme which guarantees that accurate trajectory tracking
can be achieved for an ASV under harsh environments. Simu-
lation studies and comprehensive comparisons conducted on a
benchmark ship demonstrate the effectiveness and superiority of
the proposed HFC schemes.

Index Terms—Global finite-time stability, accurate trajectory
tracking, finite-time disturbance observer (FDO), finite-time un-
known observer (FUO), autonomous surface vehicle (ASV).

I. I NTRODUCTION

I N RECENT YEARS, autonomous surface vehicles (ASVs)
have been widely deployed for various missions related

with observations, military tasks, coastal and inland waters
monitoring,etc., [1]. Generally, tracking control of an ASV
to a prescribed trajectory/path with an acceptable accuracy
plays a key role within the entire autopilot system and has
thus attracted great attention from both marine engineering
and control communities [2]. It is much more demanding to
achieve accurate tracking of a pre-determined trajectory in
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some applications; for example, marine surveying and map-
ping on the sea in the presence of complicated uncertainties
and variations including system uncertainties and external
disturbances due to ocean winds, waves and currents [3]–[7].
In this context, it becomes extremely challenging to achieve
accurate trajectory tracking of an ASV sailing in such harsh
environments.

The sliding mode control (SMC) technique has been in-
vestigated as a promising approach to achieve high accurate
trajectory tracking control of an ASV [8]. However, the SMC-
based approaches have to incur high-frequency chattering with
conservatively large magnitude around the sliding surface to
dominate unknowns and achieve the robustness. Furthermore,
the SMC technique can only handle matched unknowns. By
virtue of the (vectorial) backstepping technique [9], a trajec-
tory tracking controller has been designed for an ASV in the
presence of (mismatched) unknowns including time-varying
disturbances and system uncertainties. It should be noted that
tracking errors can only be made globally uniformly ultimately
bounded. Applying the integrator backstepping [10] technique
to the design of trajectory tracking control law for an underac-
tuated ASV contributes to semi-globally exponentially stable
tracking errors. Unfortunately, uncertainties and disturbances
have not been addressed. In combination with neural networks
(NNs) and adaptive robust control techniques [11], a saturated
tracking controller that renders tracking errors semi-globally
uniformly ultimately bounded has been proposed to preserve
the robustness against time-varying disturbances induced by
waves and ocean currents. In addition to NNs [12]–[14], a lot
of efforts on adaptive approximation based tracking control
have also been made via fuzzy systems (FS) [15]–[19], and
fuzzy neural networks (FNN) [20]–[25],etc., and can rough-
ly compensate unknown dynamics. Recently, a significant
progress has been made by an innovative approximator termed
self-constructing fuzzy neural network (SCFNN) [26]–[29]
towards the dynamic-structure-approximation based adaptive
control approaches [20] with much higher accuracy of both
reconstruction and trajectory tracking. It should be highlighted
that accurate tracking control can still hardly be achieved by
the foregoing SCFNN-based control approaches since there
still exist unexpected approximation residuals. Nevertheless,
the convergence rate of tracking errors is usually somewhat
slow since only asymptotic or exponential closed-loop stability
can be derived from previous tracking control approaches.

In order to further pursue better tracking performance,
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finite-time control approaches have been implemented in the
literature [30], [31]. In [30], the SMC technique has been
employed to realize attitude tracking of a rigid spacecraft
and a modified differentiator has been incorporated to com-
pensate disturbances and inertia uncertainties, whereby finite-
time convergence of tracking errors can be obtained. By
virtue of the homogeneous method in [31], finite-time stability
of the closed-loop control system with negative degree of
homogeneous can be ensured if tracking error dynamics can
be proved to be asymptotically stable. It should be noted that,
compared with traditional asymptotic convergent methods, the
aforementioned finite-time control approaches can achieve not
only faster convergence rate within the vicinity of the origin
but also stronger disturbance rejection. Meaningfully, finite-
time control approaches ensure that tracking errors can reach
to zero within a finite time. Note that, unlike SMC-based
approaches, the homogeneity-based method [31] contributes to
a straightforward solution without any couplings of tracking
errors. Besides, external disturbances can even excite un-
modeled dynamics of the ASV, and thus require to be well
estimated. Otherwise, complex disturbances pertaining to an
ASV cannot be exactly observed within a short time, and make
trajectory tracking inaccurate.

Recently, disturbance observer based control (DOBC) tech-
nique has also been proposed by Chen [32] to not only improve
system robustness but also enhance the entire performance
without sacrificing the nominal one [33]–[35]. In this context,
the DOBC schemes have been extensively studied and widely
applied to various industrial sectors, including mechatronics
systems [36], aerospace systems [37], and process control
systems [38]. Clearly, it is innovative within the DOBC frame-
work that all disturbances and/or unknowns are addressed as
a lumped nonlinearity estimated by a nonlinear disturbance
observer (NDO) which is usually involved.

In this paper, an ambitious goal of achieving fast and accu-
rate trajectory control of an ASV in the presence of unknowns
including disturbances and unmodelled dynamics is pursued.
To be specific, a homogeneity-based finite-time control (HFC)
scheme is developed to achieve accurate trajectory tracking of
an ASV in the absence of external disturbances. In conjunction
with a finite-time disturbance observer (FDO) which can be
further devised to exactly estimate external disturbances within
a short time, a FDO-based HFC (FDO-HFC) scheme is thus
implemented to exactly track an ASV suffering from complex
disturbances. In order to further address unmodelled dynamics
including uncertainties and/or excited dynamics due to dis-
turbances, a high-order sliding mode estimator is designed
to realize a finite-time unknown observer (FUO) which can
exactly capture unknown dynamics. Incorporating the FUO
into the HFC scheme contributes to the FUO-based HFC
(FUO-HFC) scheme which can achieve fast and accurate
trajectory tracking with complex unknowns including unmod-
elled dynamics and/or uncertainties in addition to disturbances.

The rest of this paper is organized as follows. In Section
II, preliminaries together with the trajectory tracking problem
associated with an ASV are addressed. The HFC, FDO-HFC
and FUO-HFC schemes together with theoretical analysis on
finite-time stability are presented in Section III. Simulation

studies and discussions are conducted in Section IV. Conclu-
sions are drawn in Section V.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Preliminaries

For the convenience of readers, we collect the key defini-
tions and lemmas frequently used in this paper in the sequel.

Consider an autonomous nonlinear system as follows:

ẋxx(t) = fff(xxx(t)), x(0) = 0, fff(0) = 0, xxx ∈ U0 ⊂ R
n (1)

where xxx = [x1, · · · , xn]
T and nonlinear functionfff(·) is

continuous on a open neighborhoodU0 of the origin.
Definition 1 (Globally Asymptotic Stability [39]):The equi-

librium xxxe = 0 of system (1) is globally asymptotically stable
if there exits a functionV (xxx) satisfying

(a) V (0) = 0;
(b) V (xxx) > 0, ∀ xxx 6= 0, andV (xxx) is radically unbounded;
(c) V̇ (xxx) ≤ 0;
(d) V̇ (xxx) does not vanish identically along any trajectory in

R
n, other than the null solutionxxx = 0. �

Definition 2 (Homogeneity [31]):DenoteV (xxx) : R
n →

R be a continuous scalar function.V (xxx) is said to be a
homogeneous function of degreeσ with respect to weights
(r1, · · · , rn) ∈ R

n with ri > 0, i = 1, 2, · · · , n, if, for any
given ε > 0,

V (εr1x1, · · · , ε
xnxn) = εσV (xxx), i = 1, · · · , n, ∀xxx ∈ R

n.

Denotefff(xxx) = [f1(xxx), · · · , fn(xxx)]
T be a continuous vector

field. fff(xxx) is homogeneous of degreek ∈ R with respect to
weights(r1, · · · , rn), if, for any givenε > 0,

fi(ε
r1x1, · · · , ε

rnxn) = εk+rifi(xxx), i = 1, · · · , n, ∀xxx ∈ R
n.

And, system (1) is said to be homogeneous iffff(xxx) is homo-
geneous. �

In combination with Definitions 1 and 2, a fundamental
result on global finite-time stability can be obtained as follows:

Lemma 1 (Global Finite-Time Stability [31]):System (1) is
globally finite-time stable if system (1) is globally asymptoti-
cally stable and is homogeneous of a negative degree.�

By virtue of Lemma 1, we can derive a cornerstone result,
whose proof is presented in details in Appendix A, for finite-
time observer design and analysis in this paper.

Lemma 2:The following system:

ż1 = z2 − l1sig
α2(z1)

ż2 = z3 − l2sig
α3(z1)

...

żn = −lnsig
αn+1(z1) (2)

whereli > 0, i = 1, 2, · · · , n are appropriate constants, and

sigαi(z1) := |z1|
αisgn(z1) (3)

with αi+1 = αi+τ, i = 1, 2, · · · , n andα1 = 1 for anyτ < 0,
is globally finite-time stable. �



2379-8858 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIV.2017.2657379, IEEE
Transactions on Intelligent Vehicles

WANG et al.: FAST AND ACCURATE TRAJECTORY TRACKING CONTROL OF AN AUTONOMOUS SURFACE VEHICLE 3

O Yo

Xo

ψ

xg

G

A
x

y

u

V

r

v

X

Y

Fig. 1: Earth-fixedOXoYo and body-fixedAXY coordinate
frames of an ASV

B. Problem Formulation

Let ηηη = [x, y, ψ]T denote the 3-DOF position(x, y) and
heading angle(ψ) of the ASV in the earth-fixed inertial
frame as shown in Fig. 1, and letννν = [u, v, r]T denote the
corresponding linear velocities(u, v), i.e., surge and sway
velocities, and angular rate(r), i.e., yaw, in the body-fixed
frame. An ASV sailing in a planar space can be modeled as
follows [3]:

η̇ηη = R(ψ)ννν

Mν̇νν = fff(ηηη,ννν) + τττ + τττd (4)

with dynamicsfff(ηηη,ννν) usually modeled by

fff(ηηη,ννν) = −C(ννν)ννν −D(ννν)ννν − ggg(ηηη,ννν) (5)

where τττ = [τ1, τ2, τ3]
T and τττd := MRT (ψ)ddd(t) with

ddd(t) = [d1(t), d2(t), d3(t)]
T are control input and mixed

disturbances, respectively, andggg denote the restoring forces
and moments due to gravitation/buoyancy. The termR(ψ) is
a rotation matrix given by

R(ψ) =




cosψ − sinψ 0
sinψ cosψ 0
0 0 1


 (6)

with the following properties:

RT (ψ)R(ψ) =I, and ‖R(ψ)‖ = 1, ∀ ψ ∈ [0, 2π] (7a)

Ṙ(ψ) = R(ψ)S(r) (7b)

RT (ψ)S(r)R(ψ) = R(ψ)S(r)RT (ψ) = S(r) (7c)

where S(r) =




0 −r 0
r 0 0
0 0 0


, the inertia matrixM =

MT > 0, the skew-symmetric matrixC(ννν) = −C(ννν)T and

the damping matrixD(ννν) are given by

M =



m11 0 0
0 m22 m23

0 m32 m33


 (8a)

C(ννν) =




0 0 c13(ννν)
0 0 c23(ννν)

−c13(ννν) −c23(ννν) 0


 (8b)

D(ννν) =



d11(ννν) 0 0

0 d22(ννν) d23(ννν)
0 d32(ννν) d33(ννν)


 (8c)

wherem11 = m − Xu̇, m22 = m − Yv̇, m23 = mxg −
Yṙ, m32 = mxg − Nv̇, m33 = Iz − Nṙ; c13(ννν) =
−m11v − m23r, c23(ννν) = m11u; d11(ννν) = −Xu −
X|u|u|u| − Xuuuu

2, d22(ννν) = −Yv − Y|v|v|v|, d23(ννν) =
−Yr−Y|v|r|v|−Y|r|r|r|, d32(ννν) = −Nv−N|v|v|v|−N|r|v|r|
and d33(ννν) = −Nr − N|v|r|v| − N|r|r|r|. Here,m is the
mass of the vessel,Iz is the moment of inertia about the yaw
rotation,Yṙ = Nv̇, andX∗, Y∗ andN∗ denote corresponding
hydrodynamic derivatives which are actually difficult to be
accurately obtained.

Consider the following desired trajectory:

η̇ηηd = R (ψd)νννd

Mν̇ννd = fff0(ηηηd, νννd) (9)

where fff0(·) is the nominal dynamics,ηηηd = [xd, yd, ψd]
T

andνννd = [ud, vd, rd]
T are the desired position and velocity

vectors, respectively.
In this context, the control objective is to design a controller

τττ such that the actual position and velocity vectors (i.e.,ηηη and
ννν) of the ASV in (4) can track exactly the desired trajectory
(i.e., ηηηd andνννd) generated by (9) in a finite time.

Remark 1:Clearly, in addition to unknown disturbancesτττd,
if the dynamicsfff of the ASV in (4) cannot be sufficiently
modeled due to parametric unknowns includingC, D and
ggg, and/or structural unmodeled dynamics, accurate trajectory
tracking control of an ASV under harsh environments would
become extremely challenging.

III. H OMOGENEITY-BASED FINITE-TIME TRACKING

CONTROL SCHEME

A. Nominal Homogeneity-Based Finite-Time Contol

In order to facilitate the controller design and analysis, we
introduce an auxiliary velocity vector as follows:

www = Rννν (10a)

wwwd = R(ψd)νννd (10b)

wherewww = [w1, w2, w3]
T , wwwd = [wd,1, wd,2, wd,3]

T , R =
R(ψ) andRd = R(ψd).

Together with (4) and (10a), using properties in (7), we have

η̇ηη = www

ẇww = RM−1τττ + hhh(ηηη,www) + ddd(t) (11)

where

hhh(ηηη,www) = S(w3)www +RM−1fff(ηηη,RTwww) (12)
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Similarly, using (9) and (10b), we have

η̇ηηd = wwwd

ẇwwd = S(wd,3)wwwd +RdM
−1fff0

(
ηηηd,R

T
dwwwd

)
(13)

Combining with (11) and (13), we have

η̇ηηe = wwwe

ẇwwe = RM−1τττ + hhhe(ηηη,www,ηηηd,wwwd) + ddd(t) (14)

whereηηηe = ηηη − ηηηd := [ηe,1, ηe,2, ηe,3]
T , wwwe = www − wwwd :=

[we,1, we,2, we,3]
T , and

hhhe(ηηη,www,ηηηd,wwwd) = Swww − Sdwwwd +RM−1fff(ηηη,RTwww)

−RdM
−1fff0(ηηηd,R

T
dwwwd) (15)

with S = S(w3) andSd = S(wd,3).
Starting from the tracking error dynamics (14), we set out to

design a nominal homogeneity-based finite-time control (HFC)
scheme which is expected to ensure that the tracking errorsηηηe
andwwwe converge to zero in a finite time.

To this end, a nominal HFC scheme for the ASV in (4)
without disturbances (i.e.,τττd = 0 orddd(t) = 0) is developed by
employing the homogeneous theory. Moreover, we show that
finite-time stability of the entire closed-loop tracking system
can be ensured by using the Lyapunov synthesis.

Design the nominal HFC lawτττHFC as follows:

τττHFC =−MR−1
(
K1sig

β1(ηηη − ηηηd) +K2sig
β2(Rννν −Rdνννd)

)

−MSννν +MR−1SdRdνννd

− fff(ηηη,ννν) +MR−1RdM
−1fff0(ηηηd, νννd) (16)

where sigβi(xxx) =
[
sigβi(x1), · · · , sig

βi(xn)
]T
, i = 1, 2,

K1 > 0, K2 > 0, 0 < β1 < 1 andβ2 = 2β1/(1 + β1).
It is essential that the proposed HFC scheme can make the

ASV in (4) track exactly the desired trajectory generated by
(9) in a finite time. The key result ensuring the closed-loop
finite-time stability is now stated.

Theorem 1 (HFC):Using the HFC scheme governed by
(16), the ASV in (4) can exactly track the desired trajectory
generated by (9) within a finite time0 < T <∞, i.e.,ηηη(t) ≡
ηηηd(t), ννν(t) ≡ νννd(t), ∀ t ≥ T .

Proof: Substituting the HFC law (16) into the tracking
error system (14) without considering disturbances yields the
closed-loop tracking error dynamics as follows:

η̇e,j = we,j

ẇe,j = −K1sig
β1(ηe,j)−K2sig

β2(we,j) (17)

for j = 1, 2, 3.
In light of Lemma 1, global asymptotic stability and nega-

tive homogeneity of system (17) are expected to be guaranteed
respectively in the sequel.

1) Global Asymptotic Stability: Consider the following
Lyapunov function:

V (ηηηe,wwwe) =

3∑

j=1

(
K1

∫ ηe,j

0

sigβ1(µ)dµ+
1

2
w2

e,j

)
(18)

DifferentiatingV (ηηηe,wwwe) along the tracking error dynamics
(17), we have

V̇ (ηηηe,wwwe) = K1

3∑

j=1

sigβ1(ηe,j)we,j

−

3∑

j=1

we,j

(
K1sig

β1(ηe,j) +K2sig
β2(we,j)

)

= −K2

3∑

j=1

we,jsig
β2(we,j)

= −K2

3∑

j=1

|we,j |
1+β2 (19)

which yieldsV (t) is bounded as timet tends to infinity, i.e.,

1

2
‖wwwe(t)‖

2
≤ V (t) <∞ (20)

Using ‖wwwe(t)‖
1+β2 ≤ ‖wwwe(t)‖

2
+ 1, we further have

∥∥∥www(1+β2)/2
e (t)

∥∥∥ ≤
√
2V (t) + 1 <∞ (21)

Note, from (19), that
∫ t

0

∥∥∥www(1+β2)/2
e (τ)

∥∥∥
2

dτ =
V (0)− V (t)

K2
<∞ (22)

Combining with (21) and (22) and using Barbalat’s lemma
[40] yields

lim
t→∞

wwwe(t) = 0 (23)

In what follows, we expect to prove thatηηηe(t) also con-
verges to zero as timet tends to infinity. To this end, a proof
by contradiction is employed by assuming thatηηηe(t) converges
to a nonzero constantηηη0 6= 0.

Together with (17) and (23), we have, ast→ ∞,

η̇e,j = 0

ẇe,j = −K1sig
β1(ηe,j) (24)

which, combining with the hypothesis, implies thatηe,j con-
verges to a nonzero constantη0,j 6= 0, and therebyẇe,j =
−K1sig

β1(ηe,j) 6= 0. In this context,we,j deviates from the
origin and makesη̇e,j 6= 0, and thereby resulting in a new
convergent constant̄η0,j different from the assumed one, i.e.,
η̄0,j 6= η0,j . This leads to a contradiction and thus yields

lim
t→∞

ηηηe(t) = 0 (25)

It follows from (23) and (25) that using the HFC law in (16),
system (14) without disturbances (i.e.,ddd(t) = 0) is globally
asymptotically stable.

2) Negative Homogeneity: For system (17), selecting a
dilation as follows:

(r1, r2) = (1,
1 + β1

2
) (26)

for any givenε > 0, yields

f1(ε
r1ηe,j , ε

r2we,j) = εσ+r1f1(ηe,j , we,j)

f2(ε
r1ηe,j , ε

r2we,j) = εσ+r2f2(ηe,j , we,j) (27)
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with f1(·) = we,j , f2 = −K1sig
β1(ηe,j)−K2sig

β2(we,j) and
a negative degree of homogeneous with respect to the dilation
in (26), i.e.,σ = (β1 − 1)/2 < 0.

By Lemma 1, we can conclude that the tracking error system
(14) without disturbances controlled by the HFC scheme (16)
is globally finite-time stable, i.e., there exists a finite time
0 < T <∞ such that

ηηηe(t) ≡ 0, wwwe(t) ≡ 0, ∀ t ≥ T (28)

Together with (10), we further have

ηηηe(t) ≡ 0, νννe(t) ≡ 0, ∀ t ≥ T (29)

This concludes the proof.
Remark 2:If the powersβ1 andβ2 of the HFC scheme in

(16) are set asβ1 = β2 = 1, the closed-loop system composed
of the tracking error system (14) without disturbances and the
HFC law (16) degrades to be globally asymptotically stable,
i.e.,

η̇e,j = we,j (30)

ẇe,j = −K1ηe,j −K2we,j (31)

which can be derived easily from the conventional backstep-
ping technique. �

Remark 3:Note that the external disturbanceddd(t) in (14)
is not addressed in the nominal HFC scheme. In this context,
within the HFC framework, the disturbance observer is ex-
pected to be developed for enhancing the robustness and even
achieving exact disturbance rejection. �

B. Finite-Time Disturbance Observer Based HFC

In this subsection, the finite-time disturbance observer based
HFC (FDO-HFC) scheme is proposed. To this end, a generic
assumption on the disturbanceddd(t) is required as follows:

Assumption 1:The external time-varying disturbanceddd(t)
in (11) satisfies

ddd(n)(t) =

n−1∑

i=0

Hn−iddd
(i)(t), i = 0, 1, · · · , n− 1 (32)

wheren is a positive integer andHi = diag(hi,1, hi,2, hi,3)
with any constantshi,j ∈ R, j = 1, 2, 3. �

The key result pertaining to the FDO-HFC scheme is now
summarized as follows:

Theorem 2 (FDO-HFC):Consider the ASV in (11) with
unknown external disturbancesddd(t) satisfying Assumption 1,
an FDO-HFC scheme designed as follows:

τττFDO =−MR−1
(
K1sig

β1(ηηη − ηηηd) +K2sig
β2(Rννν −Rdνννd)

)

−MSννν +MR−1SdRdνννd

− fff(ηηη,ννν) +MR−1RdM
−1fff0(ηηηd, νννd)−MR−1d̂dd

(33)

with the FDO governed by

d̂dd = p̂pp1 +H1p̂pp0 (34)

wherep̂pp1 andp̂pp0 are derived by

˙̂ppp0 = p̂pp1 +H1ppp0 + uuu+ L0sig
α1(ppp0 − p̂pp0)

...
˙̂pppn−1 = p̂ppn +Hnppp0 −Hn−1uuu+ Ln−1sig

αn(ppp0 − p̂pp0)

˙̂pppn = −Hnuuu+ Lnsig
αn+1(ppp0 − p̂pp0) (35)

with
ppp0 = wwwe, uuu = RM−1τττ + hhhe (36)

andLi = diag(li,1, li,2, li,3), i = 0, 1, · · · , n, αi = 1+iϑ with
−1/(n+ 1) < ϑ < 0, andϑ = −q1/q2 with q1 andq2 being
positive even and odd integers, can render the ASV in (4)
exactly track the desired trajectory generated by (9) within a
short time0 < T <∞, i.e.,ηηη(t) ≡ ηηηd(t), ννν(t) ≡ νννd(t), ∀ t ≥
T .

Proof: In order to examine finite-time stability of the
closed-loop system (14) and (33) including an FDO (35), we
need to obtain the disturbance observation error dynamics. To
this end, we define auxiliary variables as follows:

εεε0 = wwwe, εεε1 = ddd(t), εεε2 = ḋdd(t), · · · , εεεn = ddd(n−1)(t) (37)

Together with (14) and (32), we thus have

ε̇εε0 = εεε1 + uuu

ε̇εεi = εεεi+1, i = 1, 2, · · · , n− 1

ε̇εεn = Hnεεε1 +Hn−1εεε2 + · · ·+H1εεεn (38)

Consider a coordinate transformation governed by

ppp0 = εεε0

ppp1 = εεε1 −H1εεε0
...

pppn = εεεn −H1εεεn−1 − · · · −Hnεεε0 (39)

we further have

ṗpp0 = ppp1 +H1ppp0 + uuu

...

ṗppn−1 = pppn +Hnppp0 −Hn−1uuu

ṗppn = −Hnuuu (40)

Together with (35) and (40), the disturbance observation
error dynamics can be derived as follows:

ṗppe,0 = pppe,1 − L0sig
α1(pppe,0)

...

ṗppe,n−1 = pppe,n − Ln−1sig
αn(pppe,0)

ṗppe,n = −Lnsig
αn+1(pppe,0) (41)

wherepppe,i = pppi − p̂ppi := [p1e,i, p
2
e,i, p

3
e,i]

T , i = 0, 1, · · · , n, and

ṗje,0 = pje,1 − l0,jsig
α1(pje,0)

...

ṗje,n−1 = pje,n − ln−1,jsig
αn(pje,0)

ṗje,n = −ln,jsig
αn+1(pje,0), j = 1, 2, 3 (42)
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Applying Lemma 2 to system (42), we can conclude that
the disturbance observation errorspppe,i, i = 0, 1, · · · , n are
globally finite-time stable, i.e., the FDO in (35) can exactly
observe the dynamics in (40) within a finite time0 < T <∞.
Together with (34), (37) and (39), we can immediately obtain
that p̂pp0 and p̂pp1 can exactly estimatewwwe and ddd − H1wwwe,
respectively, and̂ddd governed by (34) can thus exactly observe
the disturbanceddd in a finite time. Actually, the derivatives
ddd(i)(t), i = 1, 2, · · · , n−1 can also be exactly observed within
a finite time byp̂ppi+1 +H1p̂ppi + · · ·+Hi+1p̂pp0.

In this context, we eventually have

d̂dd
(i)
(t) ≡ ddd(i)(t), ∀ t > T, i = 0, 1, · · · , n− 1 (43)

with d̂dd
(i)

= p̂ppi+1 +H1p̂ppi + · · ·+Hi+1p̂pp0.
Substituting (33) together with (34) and (43) into (14) yields

η̇e,j = we,j

ẇe,j = −K1sig
β1(ηe,j)−K2sig

β2(we,j) + d̃j (44)

whered̃j = dj − d̂j .
Together with (43) and (44), we further have

η̇e,j(t) = we,j(t)

ẇe,j(t) = −K1sig
β1(ηe,j(t))−K2sig

β2(we,j(t)) (45)

for any t > T with a finite time0 < T <∞.
In what follows, similar to the proof of Theorem 1, global

finite-time stability of the closed-loop system (45) can be
ensured. As a consequence, in the presence of complex dis-
turbances, using the FDO-HFC in (33), the ASV in (4) can
exactly track the desired trajectory(ηηηd, νννd) generated by (9)
in a finite time. This concludes the proof.

Remark 4: In addition to disturbancesτττd, the dynamics
hhhe given by (15) might be at least partially unknown due to
nonlinearitiesfff(·) andfff0(·), and will make the foregoing HFC
in (16) and FDO-HFC in (33) unavailable. In this context, the
observer for accurate estimate on mixed unknowns including
not only unmodeled dynamics but also external disturbances
is required to be a patch within the HFC framework.

C. Finite-Time Unknown Observer Based HFC

Rewrite the tracking error dynamics in (14) as follows:

η̇ηηe = wwwe

ẇwwe = RM−1τττ + Swww − Sdwwwd + fffu(ηηη,www,ηηηd,wwwd, t) (46)

with the lumped unknownsfffu including unmodeled dynamics
fff , desired dynamicsfff0 and disturbancesddd, i.e.,

fffu(ηηη,www,ηηηd,wwwd, t) = RM−1fff(ηηη,RTwww)

−RdM
−1fff0(ηηηd,R

T
dwwwd) + ddd(t) (47)

From (47), it reasonably requires to assume that dynamics
fff , fff0 andddd are twice differentiable, and thereby contributing
to the following hypothesis:

‖f̈ffu‖ ≤ Lu (48)

for a bounded constantLu <∞.

In this context, a finite-time unknown observer based HFC
(FUO-HFC) scheme will be proposed to accurately track the
ASV in (4) with complex unknowns including both unmod-
elded dynamics and disturbances to a desired trajectory with
completely unknown dynamics. This challenging problem will
be solved by the proposed FUO-HFC scheme with global
finite-time stability presented as follows.

Theorem 3 (FUO-HFC):Consider the ASV in (4) with
unmodeled dynamicsfff and unknown external disturbances
ddd(t), an FUO-HFC scheme designed as follows:

τττFUO = −MR−1
(
K1sig

β1(ηηη − ηηηd)

+K2sig
β2(Rννν −Rdνννd) + zzz1

)
(49)

with zzz1 estimated by the following FUO:

żzz0 = ζζζ0 +RM−1τττ + Swww − Sdwwwd

ζζζ0 = −λ1LLL
1/3sig2/3(zzz0 −wwwe) + zzz1

żzz1 = ζζζ1

ζζζ1 = −λ2LLL
1/2sig1/2(zzz1 − ζζζ0) + zzz2

żzz2 = −λ3LLLsgn(zzz2 − ζζζ1) (50)

where zzzj := [zj,1, zj,2, zj,3]
T , j = 0, 1, 2, ζζζk :=

[ζk,1, ζk,2, ζk,3]
T , k = 0, 1, λi > 0, i = 1, 2, 3 and LLL =

diag(ℓ1, ℓ2, ℓ3), can render the ASV exactly track the desired
trajectory generated by (9) with completely unknown dynam-
ics fff0 in a short time0 < T < ∞, i.e.,ηηη(t) ≡ ηηηd(t), ννν(t) ≡
νννd(t), ∀ t ≥ T .

Proof: Define the FUO observation errors as follows:

eee1 = zzz0 −wwwe, eee2 = zzz1 − fffu, eee3 = zzz2 − ḟffu (51)

Combining with (46) and (50), we have the FUO observa-
tion error dynamics as follows:

ėee1 = −λ1LLL
1/3sig2/3(eee1) + eee2

ėee2 = −λ2LLL
1/2sig1/2(eee2 − ėee1) + eee3

ėee3 = −λ3LLLsgn(eee3 − ėee2)− f̈ffu (52)

i.e.,

ė1,j = −λ1ℓ
1/3
j sig2/3(e1,j) + e2,j

ė2,j = −λ2ℓ
1/2
j sig1/2(e2,j − ė1,j) + e3,j

ė3,j ∈ −λ3ℓjsgn(e3,j − ė2,j) + [−Lu, Lu] (53)

where “∈” denotes the differential inclusion understood in the
Filippov sense [41].

According to [42, Lemma 2] together with its detailed proof,
we can immediately conclude that the tracking error dynamics
in (53) is globally finite-time stable, i.e., there exists a finite
time 0 < T <∞ such that

zzz0(t) ≡ wwwe(t), zzz1(t) ≡ fffu(t), zzz2(t) ≡ ḟffu(t), ∀ t > T (54)

Substituting (49) into (46) and using (54) yields

η̇ηηe(t) = wwwe(t)

ẇwwe(t) = −K1sig
β1(ηηηe(t))−K2sig

β2(wwwe(t)), ∀ t > T (55)
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TABLE I: Main parameters of CyberShip II

m 23.8000 Yv −0.8612 Xu̇ −2.0

Iz 1.7600 Y|v|v −36.2823 Yv̇ −10.0

xg 0.0460 Yr 0.1079 Yṙ −0.0

Xu −0.7225 Nv 0.1052 Nv̇ −0.0

X|u|u −1.3274 N|v|v 5.0437 Nṙ −1.0

Xuuu −5.8664
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Fig. 2: Desired and actual trajectories in thexy plane

which has been proven to be globally finite-time stable in
Theorem 1. In this context, the proposed FUO-HFC in (49)
renders the ASV in (4) with lumped unmodeled dynamics and
disturbances can exactly track the desired trajectory(ηηηd, νννd)
generated by (9) with completely unknown dynamics in a finite
time. This concludes the proof.

Remark 5:It should be noted that in addition to unmodeled
dynamics and external disturbances pertaining to the ASV,
the desired dynamics of the trajectory to be tracked are also
not necessarily known for the FUO-HFC scheme. It implies
that the proposed FUO-HFC approach is completely inde-
pendent on dynamics of the ASV and the desired trajectory,
and thereby contributing to a both task-free and model-free
methodology.

IV. SIMULATION STUDIES AND DISCUSSIONS

In order to demonstrate the effectiveness and superiority of
the proposed control schemes for trajectory tracking control of
an ASV, simulation studies and comprehensive comparisons
are conducted on a well-known surface vehicle CyberShip II
[43] of which the main parameters are listed in Table I.

Our objective is to track exactly the desired trajectory
(ηηηd, νννd) governed by (9) with assumed dynamicsfff0(ηηηd, νννd) =
−C(νννd)νννd − D(νννd)νννd − g(ηηηd, νννd) + τττ0, where τττ0 =
[6, 3 cos2(0.2πt), sin2(0.2πt)]T , and the initial conditions are
set asηηηd(0) = [15.6, 6.8, π/4]T , νννd(0) = [1, 0, 0]T , ηηη(0) =
[15.5, 5.5, π/2]T andννν(0) = [0, 0, 0]T .

In what follows, 3 cases will be deployed to evaluate the
performance of the proposed HFC, FDO-HFC and FUO-HFC
approaches, respectively.
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A. Performance Evaluation on the HFC

In this subsection, a nominal case where the ASV is suffi-
ciently modeled (i.e.,fff is known) and external disturbances
are not considered (i.e.,ddd = 0) is employed to demonstrate
the effectiveness and superiority of the proposed HFC scheme.
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User-defined parameters are chosen as follows:K1 = 0.3,
K2 = 0.3, β1 = 1/3 andβ2 = 1/2.

Simulation results are shown in Figs. 2–7. Comparing with
the traditional asymptotic approach, i.e.,β1 = β2 = 1 within
the HFC scheme, we can see from Fig. 2 that the HFC with
β1 = 1/3 can achieve much faster convergence. In addition,
as shown in Figs. 3–6, the ASV can exactly track the desired
trajectory within a finite time by virtue of the HFC laws shown
in Fig. 7. In comparison with the asymptotic approach (i.e.,
β1 = 1), the HFC scheme withβ1 = 1/3 is able to render
tracking errors converge to the origin in a very short time.

B. Performance Evaluation on the FDO-HFC

In this subsection, a much more practical case with unknown
disturbances is deployed to demonstrate the performance e-
valuation and comparisons. In order to facilitate simulation
studies, the external disturbances are assumed to be governed
by

ddd(t) =




10 cos(0.1πt− π/5)
8 cos(0.3πt+ π/6)
6 cos(0.2πt+ π/3)


 (56)
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with H1 = diag(0, 0, 0) and H2 =
diag(−0.01π2,−0.09π2,−0.04π2).

Accordingly, user-defined parameters of the HFC and FDO-
HFC schemes are commonly chosen asK1 = 2.6, K2 =
2.6, β1 = 1/3 and β2 = 1/2. The other parameters of the
FDO are selected as follows:L0 = diag(10, 10, 10), L1 =
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diag(32, 32, 32), L2 = diag(20, 20, 20), α1 = 7/9, α2 = 5/9
andα3 = 1/3.

The actual and desired trajectories in the planar space are
shown in Fig. 8–12, from which we can see that, in comparison
with the conventional asymptotic control scheme (i.e.,β1 = 1),
the proposed HFC scheme (i.e.,β1 = 1/3) achieves faster
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convergence and stronger disturbance rejection simultaneous-
ly, and thereby resulting in higher tracking accuracy, and the
FDO-HFC approach is able to realize exact trajectory tracking
within a short time since unknown disturbances can be finite-
time observed exactly as shown in Fig. 13.
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C. Performance Evaluation on the FUO-HFC

In order to demonstrate the superiority of the proposed
FUO-HFC scheme, we employ a much more complex case
where both unmodeled dynamics of the ASV and desired
trajectory and unknown disturbances are included. The control

parameters are selected as follows:K1 = 2.6, K2 = 2.6,
β1 = 1/3, β2 = 1/2, λ1 = 2, λ2 = 1.5, λ3 = 1.1
andLLL = diag(30, 30, 30). Corresponding simulation results
and comparisons are shown in Figs. 14–19. The actual and
reference trajectories in the planar space are shown in Fig.
14, which indicates that the actual trajectory can exactly
track the desired one in a very short time although the ASV
suffers from unmodeled dynamics and unknown disturbances.
Actually, the previous HFC and FDO-HFC approaches become
unavailable due to the unexpected unmodeled dynamics of the
ASV and the desired trajectory. From the tracking performance
on position and velocity shown in Figs. 15–18, we can see that
trajectory tracking errors converge to zero in a very short time
in spite of complex unknowns including unmodeled dynamics
and unknown disturbances. In essence, the remarkable perfor-
mance of the proposed FUO-HFC scheme on exact trajectory
tracking relies on the accurate observation on the lumped
unknowns via a FUO, whereby the finite-time observation
results are shown in Fig. 19. In this context, the FUO-HFC
methodology can achieve fast and exact trajectory tracking
together with accurate reconstruction on complex unknowns
including unmodeled dynamics, uncertainties and unknown
disturbances.

V. CONCLUSIONS

In this paper, in order to achieve trajectory fast and accurate
tracking control of an autonomous surface vehicle (ASV)
subject to unmodeled dynamics and unknown disturbances, a
homogeneity-based finite-time control (HFC) framework has
been innovatively proposed. For exactly dealing with external
disturbances, a finite-time disturbance observer (FDO) has
been developed and has been incorporated into the HFC
framework, thereby contributing the FDO-based HFC (termed
FDO-HFC) scheme which can realize exact trajectory tracking
control of an ASV in the presence of complex disturbances.
To further accurately handle complicated unknowns including
both unmodeled dynamics and unknown disturbances, a finite-
time unknown observer based HFC (FUO-HFC) scheme has
been proposed to enhance the entire performance including
both trajectory tracking and unknowns identification, whereby
high accuracy and fast convergence can be ensured simulta-
neously. Simulation studies and comprehensive comparisons
have been conducted on a benchmark ship, i.e., CyberShip
II, and have demonstrated the effectiveness and superiority of
the proposed HFC schemes in term of exact trajectory tracking
and unknowns rejection.
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APPENDIX A
PROOF OFLEMMA 2

Proof: In the light of Lemma 1, the entire proof can be
divided into 2 phases, i.e., proves of global asymptotic stability
and negative homogeneity.
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Phase I: Global Asymptotic Stability
In order to facilitate an inductive proof, applying a set of

coordinate transformations as follows:

zi = li−1xi, i = 1, 2, · · · , n (A.1)

with l0 = 1, to system (2), we have

ẋ1 = c1 (x2 − xα2

1 )

ẋ2 = c2 (x3 − xα3

1 )

...

ẋn = −cnx
αn+1

1 (A.2)

wherexαi
1 := sigαi(x1) andci = li/li−1, i = 1, 2, · · · , n.

Using (A.2), a backward recursive procedure will be estab-
lished in the sequel.

Initial step: We first consider the following system:

ẋn = −cnx
αn+1/αn
n (A.3)

Choosing a Lyapunov function as follows:

Vn(xn) =
αn

2
|xn|

2/αn (A.4)

we have

V̇n(xn)|(A.3) ≤ −kn|xn|
(2+τ)/αn (A.5)

with kn = cn.
Inductive step:Assume there exists a Lyapunov function as

follows:

Vi+1(xi+1, xi+2, · · · , xn)

=

n∑

j=i+1

∫ xj

x
αj/αj+1

j+1

(
s(2−αj)/αj − x

(2−αj)/αj+1

j+1

)
ds

(A.6)

such thatV̇i+1 along the following system:

ẋi+1 = ci+1

(
xi+2 − x

αi+2/αi+1

i+1

)

ẋi+2 = ci+2

(
xi+3 − x

αi+3/αi+1

i+1

)

...

ẋn = −cnx
αn+1/αi+1

i+1 (A.7)

satisfies

V̇i+1|(A.7) ≤ −ki+1

n∑

j=i+1

∣∣xαj+1/αj

j − xj+1

∣∣(2+τ)/αj+1

(A.8)

with ki+1 > 0. It is easily verified that (A.8) holds for system
(A.3) at the initial step, i.e.,i = n− 1.

In this context, we are expected to prove that for the system
as follows:

ẋi = ci
(
xi+1 − x

αi+1/αi

i

)

ẋi+1 = ci+1

(
xi+2 − x

αi+2/αi

i

)

...

ẋn = −cnx
αn+1/αi

i (A.9)

there exists the following Lyapunov function:

Vi(xi,xi+1, · · · , xn) = Vi+1(xi+1, xi+2, · · · , xn)

+

∫ xi

x
αi/αi+1

i+1

(
s(2−αi)/αi − x

(2−αi)/αi+1

i+1

)
ds (A.10)

such thatV̇i along (A.9) satisfies the form like (A.8).
To this end, together with (A.8), we have

V̇i|(A.9) = V̇i+1|(A.7) −

n∑

j=1+1

cj
∂Vi+1

∂xj

(
x
αj+1/αi

i − x
αj+1/αi+1

i+1

)

+
d

dt

∫ xi

x
αi/αi+1

i+1

(
s(2−αi)/αi − x

(2−αi)/αi+1

i+1

)
ds
∣∣∣
(A.9)

≤ −ki+1

n∑

j=i+1

∣∣xαj+1/αj

j − xj+1

∣∣(2+τ)/αj+1

− ci
(
x
(2−αi)/αi

i − x
(2−αi)/αi+1

i+1

)(
x
αi+1/αi

i − xi+1

)

−
ci+1(2− αi)

αi+1
x
(2−αi−αi+1)/αi+1

i+1

×
(
xi+2 − x

αi+2/αi

i

)(
xi − x

αi/αi+1

i+1

)

−
n∑

j=1+1

cj
∂Vi+1

∂xj

(
x
αj+1/αi

i − x
αj+1/αi+1

i+1

)
(A.11)

Note that

− ci
(
x
(2−αi)/αi

i − x
(2−αi)/αi+1

i+1

)(
x
αi+1/αi

i − xi+1

)

≤ −ciki+1

∣∣xαi+1/αi

i − xi+1

∣∣(2+τ)/αi+1 (A.12)

−
ci+1(2− αi)

αi+1
x
(2−αi−αi+1)/αi+1

i+1

×
(
xi+2 − x

αi+2/αi

i

)(
xi − x

αi/αi+1

i+1

)

≤ µ1

n∑

j=i+1

∣∣xαj+1/αj

j − xj+1

∣∣(2+τ)/αj+1

+ ρ1(µ1)
∣∣xαi+1/αi

i − xi+1

∣∣(2+τ)/αi+1 (A.13)

−

n∑

j=1+1

cj
∂Vi+1

∂xj

(
x
αj+1/αi

i − x
αj+1/αi+1

i+1

)

≤ µ2

n∑

j=i+1

∣∣xαj+1/αj

j − xj+1

∣∣(2+τ)/αj+1

+ ρ2(µ2)
∣∣xαi+1/αi

i − xi+1

∣∣(2+τ)/αi+1 (A.14)

with positive continuous functionsρ1(·) andρ2(·) with respect
to any positive constantsµ1 andµ2, respectively.

Substituting (A.12)–(A.14) into (A.11) yields

V̇i|(A.9) ≤ −(ki+1 − µ1 − µ2)
n∑

j=i+1

∣∣xαj+1/αj

j − xj+1

∣∣(2+τ)/αj+1

− (ciki+1 − ρ1 − ρ2)
∣∣xαi+1/αi

i − xi+1

∣∣(2+τ)/αi+1

(A.15)

Selecting parametersµ1, µ2, ki+1 andci such that

ci ≥
ki + ρ1(µ1) + ρ2(µ2)

ki+1
, ki ≤ ki+1 − µ1 − µ2 (A.16)
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yields

V̇i|(A.9) ≤ −ki

n∑

j=i

∣∣xαj+1/αj

j − xj+1

∣∣(2+τ)/αj+1 (A.17)

which implies that (A.8) also holds for theith inductive step.
Recursively, we can eventually construct a Lyapunov func-

tion as follows:

V1(x1, x2, · · · , xn)

=

n∑

j=1

∫ xj

x
αj/αj+1

j+1

(
s(2−αj)/αj − x

(2−αj)/αj+1

j+1

)
ds

(A.18)

with xn+1 = 0 andα1 = 1, such that

V̇1|(A.2) ≤ −k1

n∑

j=1

∣∣xαj+1/αj

j − xj+1

∣∣(2+τ)/αj+1 (A.19)

with k1 > 0 recursively determined by (A.16).
It follows from (A.19) that system (A.2) is globally asymp-

totically stable. Together with the global diffeomorphism
(A.1), we have system (2) is globally asymptotically stable.

Phase II: Negative Homogeneity
Applying a dilation as follows:

(r1, r2, · · · , rn) = (α1, α2, · · · , αn) (A.20)

with α1 = 1, to system (2) yields a negative homogeneous of
degree, i.e.,τ = αi+1 − αi < 0, i = 1, 2, · · · , n.

In this context, combining with Phases I and II, and using
Lemma 1, we immediately have system (2) is globally asymp-
totically stable. This concludes the proof.
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